
Oxiflex - A Constraint Programming
Solver for MiniZinc written in Rust

Bachelor’s thesis

University of Basel

Department of Mathematics and Computer Science

Artificial Intelligence

Examiner: Prof. Dr. Malte Helmert

Supervisor: Simon Dold

Gianluca Klimmer

gianluca.klimmer@stud.unibas.ch

2019-915-594

15. July 2024

Abstract

Constraint Satisfaction Problems (CSPs) are typical NP-complete combinatorial problems

in the field of Artificial Intelligence. As part of this thesis, we introduce Oxiflex, a CSP solver

written from scratch in Rust. Oxiflex is built on the MiniZinc tool chain and supports a

subset of FlatZinc constraint builtins. Starting with a naive backtracking approach, we

enhance Oxiflex by applying variable ordering and inference. Both forward checking and

arc consistency enforcing algorithms like AC-1 and AC-3 are used for inference. Results

show that for Oxiflex, variable ordering and forward checking have a positive impact on time

measurements, but AC-1 and AC-3 do not. However, by measuring the number of iterations,

results show that AC-1 and AC-3 can significantly reduce the number of iterations needed

for backtracking. This work shows that inference does tighten the problem size, but careful

implementation is needed to make it fast.

Table of Contents

1 Introduction 1

2 Constraint Satisfaction Problems 3

2.1 Overview . 3

2.2 MiniZinc . 4

2.2.1 FlatZinc . 5

2.3 Queens Problem . 7

3 Solving Constraint Satisfaction Problems 9

3.1 Backtracking . 9

3.1.1 Variable Ordering . 10

3.2 Inference . 11

3.2.1 Forward Checking . 12

3.2.2 Arc Consistency . 13

3.2.2.1 Enforcing Arc Consistency 13

4 Implementation 15

4.1 Oxiflex . 15

4.2 Rust . 15

4.2.1 Limitations . 15

4.3 Dependencies . 16

4.3.1 flatzinc . 16

4.3.2 structopt . 16

4.4 Architecture . 16

4.4.1 parser . 16

4.4.2 model . 16

4.5 Solver . 17

4.5.1 Value Ordering . 18

4.5.2 Forward Checking . 18

4.5.3 Arc Consistency . 18

5 Results 19

5.1 Method . 19

5.2 N-Queens . 20

Table of Contents iv

5.3 Slow Convergence . 21

5.4 Gecode . 22

6 Conclusion 26

6.1 Discussion . 26

Bibliography 27

1
Introduction

Constraint Satisfaction Problems (CSPs) represent a common category of NP-complete

combinatorial issues within Artificial Intelligence, involving a collection of variables and

constraints that establish how these variables interact. The main goal of this thesis is the

development of a CSP solver entirely from scratch.

In Chapter 2 we will discuss how we can write down CSPs in both a formal way and in

way that is useful for solvers. For the latter we will be using MiniZinc [NSB+07], a CSP

modeling language developed at and by Monash University in Australia. MiniZinc comes

with tools for users that want to solve CSPs, and tools for solvers as well. The main idea of

MiniZinc is to be translated to a simpler language called FlatZinc that solvers are able to use

directly. MiniZinc is only the language and does not provide a solver. MiniZinc problems

are independent from solvers and make it really easy to give the same problem to multiple

solvers. At the end of this chapter we will showcase an example problem domain called

8-Queens Problem as an easy to understand CSP that will also be used for benchmarking

the solver later.

Afterwards in Chapter 3 we will explore how we can actually solve CSPs. We will start

from a naive backtracking algorithm approach that resembles depth first search. Next we

will improve on this algorithm by changing which variables the solver tries out first. This

is called variable ordering. In a last step we will introduce a method to enhance solving

CSPs by using inference. Inference is a way to tighten the problem size and reduce the

amount of search we have to do with backtracking. To apply inference there will be two

methods discussed: Forward checking and enforcing arc consistency. The former being a

simpler approach that is a special case of enforcing arc consistency. The latter can be done

in multiple ways, we will be discussing the algorithms called AC-1 and AC-3.

Furthermore in Chapter 4 we introduce our new CSP solver called Oxiflex written from

scratch in Rust. Rust [MI14] is a general purpose programming language focused on security

and, importantly for Oxiflex, performance. Oxiflex supports a subset of FlatZinc builtin

constrains. Builtin constraints are a type of constraint that has to be supported by any

solver in order to support FlatZinc and in turn MiniZinc. The architecture of Oxiflex is

made up of tree parts: parser, model and solver. Building a solver from scratch has the

additional benefit that we can build it in a way so that we can provide flags to turn on each

Introduction 2

improvement for the algorithm separately. This structure will allow us then in a next step

to measure each algorithm combination by its own.

We then proceed in Chapter 5 to conduct experiments with Oxiflex. There are two prob-

lem domains used: N-Queens (introduced in Chapter 2) and Slow Convergence which is a

problem from the MinZinc benchmarks repository [Min18]. The improvements to the solver

algorithm discussed in Chapter 3 will be compared to each other and visualized using di-

agrams. Both time and and number of iterations are part of the measurements. Time is

great to showcase how fast the solving is for the user and iterations is great to see how much

we tightened the problem size after each inference step. As we will see those can vary a

lot. Results will show that arc consistency enforcing algorithms in Oxiflex do not outper-

form forward checking or even the naive approach of the algorithm in time measurements.

However, they do decrease iterations significantly. We will also see that variable ordering

improves the N-Queens problem solving by a lot and even enables Oxiflex to solve the Slow

Convergence problem at all.

Finally in Chapter 6 we will finish with a discussion of the thesis.

2
Constraint Satisfaction Problems

2.1 Overview
Constraint Satisfaction Problems (CSP) [Mac87] are mathematical questions defined as a

finite set of variables whose value must satisfy a number of constraints or limitations. When

solely talking about the problem without the algorithmic finding of a solution, these are

called Constraint Networks. CSPs are typical NP-complete combinatorial problems in the

field of Artificial Intelligence. See Example 2.1.1 for an simple constraint network.

Example 2.1.1: Simple Constraint Network

w = {1, 2, 3, 4}

y = {1, 2, 3, 4}

x = {1, 2, 3}

z = {1, 2, 3}

where:

w = 2 · x

w < z

y > z

We define variables w, y, x and z. Variables w and y can both have one value from {1, 2, 3, 4}
and variables x and z can have one value from {1, 2, 3}. The constraints then restrict which

values are valid from their respective domains. Here w = 2 · x restricts the value of x to be

double of w for example. If there are no constraints for variables, the constraints are still

there but they allow every assignment. These constraints are called trivial constraints and

are usually omitted.

In this example we define constraints in a mathematical notation. There are no formal re-

strictions on stating constraints neither by their complexity nor by the number of variables

involved. To make it easier to reason about and easier to understand, we model constraints

as binary constraint sets within this explanation. This is not needed when implementing

the constraints later. Constraints are then sets of valid value pairs for two specific variables.

Instead of stating the desired relation between any variables, we list all valid value pair

tuples in a set. Constraint w < z then becomes (Rwz = {(1, 2), (1, 3), (2, 3)} which contains

all possible value pairs for the two variables w and z.

Constraint Satisfaction Problems 4

We define constraint networks formally:

A (binary) constraint network is a 3-tuple C = ⟨V,dom, (Ruv)⟩ such that:

• V is a non-empty and finite set of variables,

• dom is a function that assigns a non-empty and finite domain to each variable

v ∈ V , and

• (Ruv)u,v∈V,u ̸=v is a family of binary relations (constraints) over V where for all

u ̸= v : Ruv ⊆ dom(u)× dom(v)

And we define our example formally:

C = ⟨V,dom, (Ruv)⟩ with

• variables:

V = {w, x, y, z}

• domains:

dom(w) = dom(y) = {1, 2, 3, 4}
dom(x) = dom(z) = {1, 2, 3}

• constraints:

Rwx = {(2, 1), (4, 2)}
Rwz = {(1, 2), (1, 3), (2, 3)}
Ryz = {(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)}

The goal of a CSP is then to find an assignment that satisfies all constraints. For this

simple example a possible assignment would be (w 7→ 2), (x 7→ 1), (y 7→ 4), (z 7→ 3). If a

value pair from an partial assignment is not within a constraint set, the partial assignment

is in conflict. A CSP is called inconsistent if each total assignment results in a conflict.

2.2 MiniZinc
MiniZinc [NSB+07] is a free and open-source constraint modeling language developed at and

by Monash University in Australia. It allows us to express Constraint Satisfaction Problems

in a mathematical notation-like way. MiniZinc also holds an annual competition of constraint

programming solvers on a variety of benchmarks. Here we will be talking about the modeling

language. See our simple previous Example 2.1.1 written in the MiniZinc language: Example

2.2.1.

Constraint Satisfaction Problems 5

Example 2.2.1: MiniZinc Translation

var 1..4: w;

var 1..4: y;

var 1..3: x;

var 1..3: z;

constraint w = 2 × x;

constraint w < z;

constraint y > z;

solve satisfy;

Remember that MiniZinc is only the language to express a problem domain. Once a problem

domain is specified we can give the problem to multiple solvers to solve them. This way we

can compare the performance of various solvers on the same problem domain. Note that in

MiniZinc we also specify how we want the problem to be solved. With solve satisfy;

we can tell the solver to give us any solution that satisfies the constraints. MiniZinc also

supports solve maximize and solve minimize for optimization problems. We will be

focusing on finding any solution.

MiniZinc also provides a way to parameterize a problem domain. This is a great way to scale

a problem size up and see how increasing the problem size affects the solving speed. A great

example for this is the Queens Problem (See Section 2.3). We define the Queens Problem

domain once and can then run specific problem instances for different n. This makes it

really easy to compare the solving speed for the queens problem when n = 8, n = 10 or

n = 14 for example. Those files where we specify parameters for MiniZinc files are called

data files and have the extension dzn. Files where we define the problem domain like in

Example 2.2.1 are called MiniZinc files and have the file extension mzn. We can combine

mzn files with dzn files to created FlatZinc files that a solver is able to read and solve.

2.2.1 FlatZinc
FlatZinc is a simpler problem specification language provided by the MiniZinc tool chain.

It is designed to be used by solvers directly. MiniZinc files in combination with data files

are translated to FlatZinc files in a pre-solving step. FlatZinc files have the file extension

fzn and can directly be read by solvers.

Translating from MiniZinc to FlatZinc maps more advanced instructions from MiniZinc to

primitives supported in FlatZinc. An analogy to this translation is compiling a C program

to Assembly where MiniZinc is C and FlatZinc is Assembly. FlatZinc therefore requires

solvers to support a set of standard constraints called FlatZinc builtins. Builtins need to be

implemented to be a fully compatible FlatZinc solver. See Example 2.2.2 for an FlatZinc

translation using our Simple Example 2.2.1.

Constraint Satisfaction Problems 6

Example 2.2.2: FlatZinc Translation (Simplified)

array [1..2] of int: x introduced 2 = [1,-2];

array [1..2] of int: x introduced 3 = [1,-1];

array [1..2] of int: x introduced 4 = [-1,1];

var 2..4: w:: output var;

var 1..4: y:: output var;

var 1..3: x:: output var;

var 1..3: z:: output var;

constraint int lin eq(x introduced 2 ,[w,x],0);

constraint int lin le(x introduced 3 ,[w,z],-1);

constraint int lin le(x introduced 4 ,[y,z],-1);

solve satisfy;

The translation of the variable declarations is straight forward. For the constraints, MiniZ-

inc translated all constraints into FlatZinc builtin constraints. For our simple example

MiniZinc used two builtins: int_lin_eq and int_lin_le. See the lines that start with

constraint. We will look at int_lin_eq further to see how FlatZinc builtins work. Ex-

ample 2.2.3 shows the signature of the builtin int_lin_eq that was used for the constraint

w = 2 · x.

Example 2.2.3: FlatZinc builtin: int lin eq

predicate int lin eq(array [int] of int: as,

array [int] of var int: bs,

int: c)

Note that the builtin int_lin_eq expects 3 parameters. The first as is an array of int

constants. This is what FlatZinc translated to x_introduced_2. This array is called a

parameter, because it has concrete values assigned to it. Here x_introduced_2 has the

value [1,-2] assigned. The second parameter bs is an array of int variables, that is an

array of variables that we want to solve for. Here the variables w and x are passed in also

as an array [w,x]. The third parameter c is also a parameter because it is also a constant

value that needs to be passed. Here the value for c is 0.

Every FlatZinc builtin also has a description for when the constraint is valid or violated

respectively. For int_lin_eq the description is given with Eq. (2.1).

c =
∑
i

as[i] · bs[i] (2.1)

For this builtin, MiniZinc therefore translated our constraint into a linear combination. With

our example we can fill in the passed parameters to the constraint and we get 0 = w − 2x

which can be rearranged to w = 2 · x.
Note that MiniZinc created these parameter arrays by itself. The x within x_introduced_2_

is not the same as our variable x that we defined ourselves. Also does the 2 in the name

Constraint Satisfaction Problems 7

have nothing to do with our model but is instead defined by the MiniZinc translation.

Additionally note that for the translation MiniZinc already does some basic level of inference.

The FlatZinc variable w can only have values between 2 and 4 in the translated FlatZinc.

Whereas in the MiniZinc version we defined w with the domain {1, 2, 3, 4}. This means

MiniZinc infers that w can not be value 1 and removes it from its domain declaration. Due

to the constraint w = 2× x, the variable w has to be double of x and x must have at least

value 1. Therefore excluding 1 as possible value for w.

2.3 Queens Problem
Also called the Eight Queens Puzzle, the Queens Problem is an example of a classic Con-

straint Satisfaction Problem that involves placing eight queens on an 8x8 chessboard in such

a way that no two queens threaten each other. That is, no two queens can share the same

row, column, or diagonal. See Fig. 2.1 for an example solution to the 8-Queens Problem.

8 0L0Z0Z0Z
7 Z0ZQZ0Z0
6 0Z0Z0L0Z
5 Z0Z0Z0ZQ
4 0ZQZ0Z0Z
3 L0Z0Z0Z0
2 0Z0Z0ZQZ
1 Z0Z0L0Z0

a b c d e f g h

Figure 2.1: Possible solution to the 8-Queens problems.

The Queens Problem is really good suited as an example problem domain for CSPs because

it is easy to understand and can also easily be scaled up to increase complexity for a solver.

By generalizing the problem from a fixed 8 × 8 grid size to an n × n grid with n queens,

the problem remains the same in principle, but gets way harder to solve. See Example 2.3.1

[RR06] for the N-Queens Problem modeled in MinZinc.

Constraint Satisfaction Problems 8

Example 2.3.1: N-Queens Problem MiniZinc Model

int: n;

array [1..n] of var 1..n: q;

predicate

noattack(int: i, int: j, var int: qi, var int: qj) =

qi != qj /\
qi + i != qj + j /\
qi - i != qj - j;

constraint

forall (i in 1..n, j in i+1..n) (

noattack(i, j, q[i], q[j])

);

solve satisfy;

This MiniZinc model defines an array of variables q where each index corresponds to a

column on the chessboard and the value at each index represents the row position of the

queen in that column. The constraints ensure that no two queens are on the same row,

column or diagonal. Remember that this model receives a parameter n and is therefore not

specific to 8 queens.

3
Solving Constraint Satisfaction Problems

Constraints Satisfaction Problems on finite domains are typically solved using a form of

search. We search for a solution to the constraint network by trying out possible values

until a solution is found or we find that there is no solution. A solution is a valid assignment

of all variables with a value of their respective domain satisfying all constraints within the

constraint network.

3.1 Backtracking
Backtracking is a technique used to search a problem space for potential solutions [BR75]. It

systematically organizes the search process by attempting to extend a partial solution step-

by-step. If an extension of the current partial solution proves to be leading to no solution,

the algorithm ”backtracks” to a previous, shorter partial solution and tries a different path.

This method is particularly useful in solving CSPs, as we can do partial assignments of

variables and expand them step by step by assigning more variables. We can start by using

backtracking without any enhancements. See function 3.1.1 for reference with the following

notes:

Input: constraint network C and partial assignment α for C. On first invocation of Naive-

Backtracking we pass an empty assignment α = ∅.
Result: Total assignment (solution) of C or inconsistent no solution is found.

Solving Constraint Satisfaction Problems 10

function 3.1.1: NaiveBacktracking(C,α)

⟨V,dom, (Ruv)⟩ := C

if α is inconsistent with C:

return inconsistent

if α is a total assignment:

return α

select some variable v for which α is not defined

for each d ∈ dom(v) in some order:

α′ := α ∪ {v 7→ d}
α′′ := NaiveBacktracking(C, α′)

if α′′ ̸= inconsistent:

return α′′

return inconsistent

This algorithm corresponds to Depth First Search. It assigns values to variables from their

domains to form a partial assignment. This process continues until either all variables are

assigned and a solution is found, or a constraint is violated. If a constraint is violated,

the algorithm backtracks and tries a different value from the domain until a solution is

found. If all possible assignments violate constraints, there is no solution and inconsistent

is returned. Finding a total assignment, that is, an partial assignment that gives all variables

a valid value from their domain, is finding a solution.

Backtracking is great as an easy to understand solving technique, but is far from the best

way to solve CSPs [BG95].

3.1.1 Variable Ordering
Backtracking in general does not specify in which order the search is done. For CSPs we

want to assign critical variables early. Critical variables are variables that tighten the search

size the most by their assignment. This can be done in multiple ways:

• static order

Fixed order defined prior to search.

• dynamic order

Order depends on current search state and is calculated after each assignment.

Dynamic ordering is more powerful but also requires computational overhead during search

for each iteration. The following are two commonly used variable ordering criteria:

• minimum remaining values:

Prefer variables that have small domains.

Solving Constraint Satisfaction Problems 11

• most constraining variable:

Prefer variables involved in many constraints.

Dynamic variable ordering is usually more effective combined with inference.

3.2 Inference
Inference allows us to modify our constraint network by tightening the constraint network.

Tightening works by excluding values from domains of variables that we know are not

possible. For example in the Queens Problem (See Section 2.3) if we place a Queen on

d4, we can exclude the value 4 from all other columns. We can also exclude all diagonally

positioned squares like a1, b2, c3 and so forth. See Fig. 3.1 for reference. Note that we do

not need to do anything with the column the queen is on because we modeled the column

to be a variable to solve for and a variable can only be one value anyways. The Queen can

not be in multiple rows of the same column.

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0L0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Figure 3.1: We apply inference after placing Queen on d4 tightening the problem size.

By removing values from the remaining domains we can tighten the resulting constraint

network and have a smaller search space. We adjust our NaiveBacktracking approach by

applying inference after each assignment of a variable. See function 3.2.1 for the adjusted

algorithm.

Solving Constraint Satisfaction Problems 12

function 3.2.1: BacktrackingWithInference(C,α)

⟨V,dom, (Ruv)⟩ := C

if α is inconsistent with C:

return inconsistent

if α is a total assignment:

return α

C ′ := ⟨V,dom′, (R′
uv)⟩ := copy of C

apply inference to C ′

if dom′(v) ̸= ∅ for all variables v:

select some variable v for which α is not defined

for each d ∈ copy of dom′(v) in some order:

α′ := α ∪ {v 7→ d}
dom′(v) := {d}
α′′ := BacktrackingWithInference(C ′, α′)

if α′′ ̸= inconsistent:

return α′′

return inconsistent

Note that we now have to copy the constraint network after each assignment which can

introduce significant overhead for large problems. The copying is needed because we still

have to backtrack if we find an inconsistent assignment. When backtracking we have to

restore the domain for each variable again because it is possible that the domain had values

that are valid again after backtracking.

3.2.1 Forward Checking
We start with a simple inference method called Forward Checking [HE80]. See function

3.2.2 for reference.

function 3.2.2: ForwardChecking(C,α)

⟨V, dom, (Ruv)⟩ := C

for each v ∈ unassigned variable in α:

for each Rvx in (Ruv):

for each d ∈ dom(v):

if ∃ conflict in α ∪ (v 7→ d)

dom(v) = dom(v) \d

Forward checking is basically looking ahead in the future to see which values can be excluded

from search after an assignment. By looking ahead we can omit the backtracking part that

Solving Constraint Satisfaction Problems 13

would result by finding a dead end. We check each value for each variable with the new

assignment and remove all values that are not valid anymore from their respective domain.

3.2.2 Arc Consistency
Originally developed to address vision problems, arc consistency represents a generalization

of forward checking [Wal72]. Forward checking enforces arc consistency for all variables with

respect to the just assigned variable. Arc consistency does this for all variables. This makes

forward checking a special case of arc consistency. We can define arc consistency formally:

Let C = ⟨V , dom, (RUV)⟩ be a constraint network.

• The variable v ∈ V is arc consistent with respect to another variable v′ ∈ V , if

for every value d ∈ dom(v) there exists a value d′ ∈ dom(v′) with ⟨d, d′⟩ ∈ Rvv′ .

• The constraint network C is arc consistent, if every variable v ∈ V is arc

consistent with respect to every other variable v′ ∈ V .

Note that for a variable pair the definition is not symmetrical. That means if v is arc

consistent with respect to v′, v′ does not have to be arc consistent with respect to v′.

3.2.2.1 Enforcing Arc Consistency

There are multiple algorithms to enforce arc consistency [Mac77] [Bes94]. The simplest is

called AC-1. It works by making use of a function called revise. The function 3.2.3 revise

ensures arc consistency in one direction between two variables.

function 3.2.3: revise(C, v, v′)

⟨V, dom, (Ruv)⟩ := C

for each d ∈ dom(v):

if there is no d′ ∈ dom(v′) with ⟨d, d′⟩ ∈ Rvv′ :

remove d from dom(v)

The function 3.2.4 called AC-1 iterates over each constraint and applies revise in both

directions to each variable pair for each constraint until there was no change within its it-

eration of using revise.

function 3.2.4: AC-1(C)

⟨V, dom, (Ruv)⟩ := C

repeat

for each nontrivial constraint Ruv:

revise(C, u, v)

revise(C, v, u)

until no domain has changed in this iteration

Solving Constraint Satisfaction Problems 14

Building on AC-1, AC-3 tries to save redundant checks made by AC-1. Instead of repeatedly

going over all constraints, AC-3 iterates over all constraint once and revises variable pairs

again only if needed. We can achieve this by using a queue. See function 3.2.5 for reference.

function 3.2.5: AC-3(C)

⟨V, dom, (Ruv)⟩ := C

queue := ∅
for each nontrivial constraint Ruv:

insert ⟨u, v⟩ into queue

insert ⟨u, v⟩ into queue

while queue ̸= ∅:
remove an arbitrary element ⟨u, v⟩ from queue

revise(C, u, v)

if dom(u) changed in the call to revise:

for each w ∈ V \ {u, v} where Rwu is nontrivial:

insert ⟨w, u⟩ into queue

4
Implementation

4.1 Oxiflex
As part of this thesis we present Oxiflex, a minimal CSP solver from scratch for MiniZinc

written in Rust. Oxiflex is a FlatZinc solver that can be used as an backend to MiniZinc.

This means Oxiflex minimally supports the requirements for a solver to take advantage of

the MiniZinc tool chain and its language. The goal is to have a minimal solver that is able to

measure the impact of our improvements like forward checking and enforcing arc consistency

on CSP solving.

Oxiflex is open-source, licensed under the MIT license and available on Github1.

4.2 Rust
Rust [MI14] is a general purpose systems programming language focused on safety and

performance. It achieves these goals without using a garbage collector by ensuring mem-

ory safety through a system of ownership with strict compile-time checks enforced by the

borrow checker. This makes Rust particularly well-suited for creating performance-critical

applications like CSP solvers where control over resources is crucial. This makes Rust an

ideal choice for developing Oxiflex.

4.2.1 Limitations
Not all FlatZinc builtins are supported in Oxiflex. The idea is to implement just the needed

builtins for any given interesting problem domain. Further are only ints supported, no

floating point values. With that, there are no optimization solving structures available in

Oxiflex to be able to search for an optimal solution instead of just any solution.

1 https://github.com/glklimmer/oxiflex

https://github.com/glklimmer/oxiflex

Implementation 16

4.3 Dependencies
4.3.1 flatzinc
The library flatzinc [Thi20] is a FlatZinc parser for Rust. It parses the FlatZinc format into

Rust structures and variables. Oxiflex uses version 0.3.20 of flatzinc.

4.3.2 structopt
The library structopt [Pin20] is utilized to parse command-line arguments in Oxiflex. This

library simplifies setting up custom commands and flags for Oxiflex. Oxiflex uses version

0.3.26 of structopt.

4.4 Architecture
Oxiflex is made up of three parts: parser, model and solver. The solver part can be fine

tuned from outside by using command line flags that enable different solving strategies. The

output is printed to standard output in a format given by the MiniZinc tool chain.

4.4.1 parser
Using the library flatzinc Oxiflex reads an FlatZinc fzn file and collects all parts needed

to then construct a constraint satisfaction network. These include a list for parameters,

variables and constraints. In order to also output the solution after solving the problem,

Oxiflex has to know which variables it has to output. MiniZinc does this by making use of

annotations on FlatZinc elements. Variables that are needed for the output are annotated

as output_var. There are two possible output annotations in FlatZinc: output_var and

output_array.

4.4.2 model
After parsing a FlatZinc file into Rust structures that can be used directly, Oxiflex starts

to build useful structures to solve a given CSP. This is where Oxiflex creates a model

containing variables with their respective domains and constraints. Models use HashMaps

to keep track of its variables and their respective domains. This allows for constant access

time to domains to either read or modify them after inference for example. Constraints are

saved by the model as a list (In Rust this is a pointer, capacity, length triplet). Usually when

checking if constraints are violated we either want all constraints or all constraints related to

a variable. For this reason an additional HashMap is created called constraint_index,

that uses variable ids as keys and points to a list of constraints on the heap. In Rust this

can be done by using reference counting. This results in two ways to access constraints.

One that is just a list to iterate over all constraints and one where a HashMap is used to

get all constraints involved by a specific variable.

Variables all have an id. All variable ids are strings. Oxiflex also uses reference counting to

store variable ids. As it is often also needed to pass variable ids around, we can mitigate the

cost of calling clone on variable ids by using reference counting. Instead of actually cloning

Implementation 17

variable ids, we just pass a pointer to the variable id needed. With reference counting we

can ensure the actual memory for the variable id is freed after all pointers to it have been

deleted.

4.5 Solver
The solver is the core part of Oxiflex. By allowing control over what optimization is turned

on or off we can measure the impact of each optimization individually. As discussed in

Chapter 3 there are various optimizations for solving CSPs. See Fig. 4.1 for an overview of

how the optimizations can turned on.

Solver

Naive Backtracking Inference

Variable
Ordering

Forward
Checking

AC-1

AC-3

Figure 4.1: Architecture of the Solver options. Blue: choose one of general solver plans,
Yellow: turn on or off, Green: choose one.

By default each optimization in Oxiflex is turned on. By passing flags named after each

optimization we can disable the respective optimization. The help menu can be printed

using oxiflex --help from the console.

FLAGS:

-f, --forward-checking

Use forward checking as inference

-n, --naive-backtracking

Use naive backtracking, e.g. no forward_checking

-r, --random-variable-order

Use random order for variable ordering.

-a, --arc-consistency <arc-consistency>

Specify arc consistency version [default: 3]

Implementation 18

4.5.1 Value Ordering
Oxiflex is able to use dynamic ordering of variables during search based on the number of

constraints. Enabled by default, Oxiflex orders variables from most constraints involvement

to least for an assignment. So variables that are involved with the most constraints are

chosen first to be assigned. This fail early approach to ordering can be used both for

NaiveBacktracking and Inference based algorithms. For the calculation for which a variable

has the most constraints, we use the HashMap called constraint_index mentioned in

Section 4.4.2: model. This gives us a list of constraints that we can count based on number

of constraints and then choose the variable with the most.

4.5.2 Forward Checking
Forward checking in Oxiflex works by removing values of domains that are no longer valid

for some constraints. Domains in Oxiflex are lists of type Vec, which are pointer, capacity

and length triplets. The removal of values happens in-place. That is, values within the Vec

are removed without copying the whole domain. We use the function retain for that. It

iterates over all values in a Vec and only ”retains” values that pass the constraint checks.

Removing single values from a Vec has a complexity of O(n), but as retain iterates over

all elements either way, the complexity stays there even when removing multiple elements.

Forward checking also uses constraint_index mentioned in Section 4.4.2: model to only

get the constraints that are needed instead of checking all constraints.

4.5.3 Arc Consistency
Both AC-1 and AC-3 use the function revise which ensures arc consistency in one direction

for two variables. The main computational work happens within this function. The role

of AC-1 and AC-3 is to arrange the calls to revise. Within revise we also use the

constraint_index (See 4.4.2: model) to get only constraints that are involved with the

given variable for revise.

Checking constraints works by checking a PartialAssignment. The actual type for

PartialAssignment is a HashMap with variable id for keys and assignments of variables

as values. Therefore within revise the given PartialAssignment α is expanded with

each combination of values from both variables given to revise. That means for each value

pair within the two domains, α is expanded with two assignments. The first assignment of

the first variable and the second assignment of the second variable.

5
Results

5.1 Method
For benchmarking two metrics were measured:

• Time

Seconds until a solution is found.

• Iterations

How many times the recursive algorithm was called.

For Time measurements hyperfine [Pet23] is used. Each Time Benchmark includes 3 warm

up runs and is averaged. The longer the solver takes, the fewer runs are done. This is default

behavior of hyperfine. However, at least 10 runs made were made for each benchmark. Time

is given in seconds. Iterations were measured by doing 5 runs and averaging them.

A benchmark is a pair of problem size with a combination of algorithmic modifications to

the solver. As Oxiflex allows us to enable each optimization individually, we can create 8

optimization combinations.

• -n -r

NaiveBacktracking

• -n

NaiveBacktracking with variable ordering

• -f -r

Inference with forward checking

• -f

Inference with forward checking and variable ordering

• -a 1 -r

Inference with AC-1

• -a 1

Inference with AC-1 and variable ordering

Results 20

• -r

Inference with AC-3

• no flags

Inference with AC-3 and variable ordering

The following Problem Domains where measured:

• N-Queens

• Slow Convergence

All benchmarks were performed on the same machine.

CPU: Intel i7-6700K (8) @ 4.200GHz

Memory: 6051MiB / 32021MiB

hyperfine version: 1.16.1

Rust version: 1.76.0

Operating System: Pop! OS 22.04 LTS

5.2 N-Queens
Fig. 5.12 shows the runtime comparison for the N-Queens Problem (See Section 2.3: Queens

Problem) with n = 8..20 for all combinations. It shows that arc consistency enforcing

methods AC-1 and AC-3 in Oxiflex take much more Time then the naive and forward

checking approach. We can also see that variable ordering seems to improve all approaches

significantly.

Fig. 5.2 does not include arc consistency enforcing methods making it clear to see the impact

of forward checking on Time measurements for the N-Queens Problem. This shows that

although the naive approach without variable ordering performs much worse then forward

checking without variable ordering, it outperforms forward checking with variable ordering.

Fig. 5.3 shows benchmarks with the same parameters for measurements of Iterations. It

shows that the number of Iterations grows significantly up from n = 20. And although we

could see that arc consistency enforcing methods worsen the performance Time wise, they

provide huge improvements for number of Iterations.

In Fig. 5.4 we provide benchmarks for Iterations without the naive approach with n = 14

up to n = 24. As expected forward checking performed the worst out of the three.

Table 5.1 and Table 5.2 contain results for Time and Iterations including standard deviation.

Time values are rounded to 2 decimal places. If there is a standard deviation for the mea-

surements it is given after the ± symbol. If there is no variable ordering the measurements

can vary greatly because variables are chosen randomly to be assigned a value.

2 ChatGPT 4 was used to help write scripts that create the plots. https://chatgpt.com

https://chatgpt.com

Results 21

Figure 5.1: N-Queen Time measurements averaged over multiple runs (at least 10).

n 14 16 18 20
Naive 0.05 ± 0.08 0.09 ± 0.12 0.21 ± 0.45 0.49 ± 1.29
FC 0.03 ± 0.03 0.04 ± 0.04 0.07 ± 0.10 0.20 ± 0.66
AC-1 1.35 ± 0.73 1.95 ± 1.06 4.62 ± 3.25 17.17 ± 31.87
AC-3 2.99 ± 1.92 4.00 ± 2.67 4.23 ± 0.97 14.09 ± 9.93

Naive w/ VO 0.03 0.00 0.02 0.02
FC w/ VO 0.02 0.01 0.02 0.03
AC1 w/ VO 1.09 ± 0.02 1.08 ± 0.03 2.23 ± 0.04 4.39 ± 0.06
AC3 w/ VO 2.02 ± 0.04 1.84 ± 0.05 3.69 ± 0.06 7.15 ± 0.05

Table 5.1: N-Queens Time in seconds averaged over multiple runs (at least 10), Mean±SD,
w/ VO: with variable ordering.

n 14 16 18 20
Naive 3538 ± 1148 1749 ± 907 2760 ± 1145 21479 ± 11183
FC 110 ± 51 415 ± 76 79 ± 16 270 ± 63
AC-1 51 ± 9 396 ± 343 195 ± 67 104 ± 19
AC-3 103 ± 41 34 ± 6 91 ± 68 86 ± 30

Naive w/ VO 3536 137 1018 1011
FC w/ VO 112 17 46 52
AC1 w/ VO 52 17 25 36
AC3 w/ VO 49 17 24 34

Table 5.2: N-Queens Iterations averaged over 5 runs, Mean±SD, w/ VO: with variable
ordering.

5.3 Slow Convergence
The Slow Convergence Problem is from the MiniZinc benchmarks repository [Min18]. Bench-

marks for this problem without variable ordering took over 300 seconds and are therefore

Results 22

Figure 5.2: N-Queens Time measurements without arc consistency averaged over multiple
runs (at least 10).

omitted. Fig. 5.5 shows benchmarks for n = 2..10 with combinations using variable ordering.

We can see that Time measurements for AC-1 and AC-3 grow exponentially and it seems

that the naive and forward checking approach grow linearly.

Fig. 5.6 shows benchmarks with the same parameters for measurements of Iterations. Note

the huge spike in Iterations at n = 3. This spike is not a measurement error. The benchmarks

were run multiple times and provided the same results. We can see that when measuring

Iterations, inference methods help reducing the number of Iterations.

Next, increasing n for non arc consistency enforcing benchmarks. Fig. 5.7 shows Time

measurements on the left and iteration measurements on the right for n = 10..60. Note

the inverse correlation between Iterations and Time for the two options. Although naive

backtracking (-n) takes more Iterations, it is still faster than forward checking (-f). We

can also observe that it looks like forward checking was growing linearly in Fig. 5.5, and

Fig. 5.7 on the left clearly show also exponential growth for forward checking. Further we

can again observe that the naive approach seems to be growing linearly, but as we will see,

it also grows exponentially.

Table 5.3 and Table 5.4 contain results for Time and Iterations with standard deviation for

the n = 10..60 range.

5.4 Gecode
For comparison Fig. 5.8 shows Oxiflex compared to Gecode [Tea06]. Gecode is a CSP solver

compatible with MiniZinc with state-of-the art performance. Note the steep increase in

n = 100..600. And we can again observe that the naive approach grows exponentially.

Results 23

Figure 5.3: N-Queens iteration measurements averaged over 5 runs.

Figure 5.4: N-Queens Iterations only inference averaged over 5 runs.

Results 24

Figure 5.5: Slow Convergence Time measurements averaged over multiple runs (at least
10).

Figure 5.6: Slow Convergence iteration measurements averaged over 5 runs.

Results 25

Figure 5.7: Comparison for higher n = 10..60. Left: Time, right: Iterations.

n Naive w/ VO FC w/ VO
10 0.00 0.01
20 0.00 0.13
30 0.01 0.54 ± 0.01
40 0.01 1.58 ± 0.08
50 0.02 5.29 ± 0.14
60 0.04 21.94 ± 0.5

Table 5.3: Slow Convergence Time in seconds
averaged over multiple runs (at least 10),
Mean±SD, w/ VO: with variable ordering.

n Naive w/ VO FC w/ VO
10 77 23
20 252 43
30 527 63
40 902 83
50 1377 103
60 1952 123

Table 5.4: Slow Convergence number of
Iterations over 5 runs, w/ VO: with variable
ordering.

Figure 5.8: Slow Convergence Time measurements averaged over multiple runs.

6
Conclusion

6.1 Discussion
The goal of this thesis was to create a Constraint Satisfaction Problem Solver from scratch.

Within this thesis we developed Oxiflex, a CSP solver from scratch written in Rust. The

solver supports the CSP modeling language MiniZinc through implementing a subset of

FlatZinc builtin constraints.

We started by discussing what CSPs exactly are and by writing them down formally and

in the MiniZinc language. Further we especially looked at the Queens Problem as an easy

to understand CSP. Next we discussed possible techniques to solve CSPs using a method

called backtracking. We started by using a naive form of the algorithm and improved it

further. The first improvement discussed was variable ordering with an fail early approach.

That means that we choose variables to assign first, that have the most constraints. We

then improved on the backtracking algorithm by adding inference. Starting with forward

checking, introducing arc consistency and finally discussing AC-1 and AC-3, arc consistency

enforcing algorithms.

Furthermore we gave insights into how Oxiflex works and what data structures are used to

solve CSPs within Oxiflex. We discussed how the improvements like forward checking and

arc consistency within Oxiflex work and what structures are in place to support them.

Finally we measured how each improvement effected both Time and number of Iterations

needed for solving the N-Queens and the Slow Convergence Problems in Oxiflex. It is great

to see the trade off between search and inference. As we saw in Fig. 5.7 that showed the

inverse correlation between Time and number of Iterations. Although it took longer to solve,

inference did reduce the number of iterations significantly. It is interesting to observe the

effect that variable ordering has for the slow convergence problem. In fact it made it even

possible to solve the problem at all in under 300 seconds. It can be useful to measure other

things than time (like iterations) to gather insights like these.

Therefore the main takeaway for this thesis is that data structures matter. Although an

algorithm performs better in theory, the right data structures have to be used to make it

really go faster. Using HashMaps to hold all the data might not be the best approach if

performance is the main criteria of a program. This also underlines that just using a fast

programming language is not sufficient to make a program go fast.

Bibliography

[Bes94] Christian Bessière. Arc-consistency and arc-consistency again. Artificial Intelli-

gence, 65(1):179–190, 1994.

[BG95] Fahiem Bacchus and Adam Grove. On the forward checking algorithm. In Ugo

Montanari and Francesca Rossi, editors, Principles and Practice of Constraint

Programming — CP ’95, pages 292–309. Springer Berlin Heidelberg, 1995.

[BR75] James R. Bitner and Edward M. Reingold. Backtrack programming techniques.

Commun. ACM, 18(11):651–656, 1975.

[HE80] Robert M. Haralick and Gordon L. Elliott. Increasing tree search efficiency for

constraint satisfaction problems. Artificial Intelligence, 14(3):263–313, 1980.

[Mac77] Alan K. Mackworth. Consistency in networks of relations. Artificial Intelligence,

8(1):99–118, 1977.

[Mac87] Alan K. Mackworth. Constraint satisfaction. In S. Shapiro, editor, Encyclopedia

of Artificial Intelligence, pages 205–211. J. Wiley and Sons, NY, 1987.

[MI14] Nicholas D. Matsakis and Felix S. Klock II. The rust language. In ACM SIGAda

Ada Letters, volume 34, pages 103–104. ACM, 2014.

[Min18] MiniZinc. Slow convergence problem, minizinc benchmarks, 2018. https://github.

com/MiniZinc/minizinc-benchmarks/tree/master/slow convergence.

[NSB+07] N. Nethercote, P.J. Stuckey, R. Becket, S. Brand, G.J. Duck, and G. Tack. Miniz-

inc: Towards a standard cp modelling language. In C. Bessiere, editor, Proceed-

ings of the 13th International Conference on Principles and Practice of Constraint

Programming, volume 4741 of LNCS, pages 529–543. Springer, 2007.

[Pet23] David Peter. hyperfine, 2023. https://github.com/sharkdp/hyperfine.

[Pin20] Guillaume Pinot. structopt, 2020. https://github.com/TeXitoi/structopt.

[RR06] Peter Stuckey Reza Rafeh. N-queens problem, minizinc benchmarks,

2006. https://github.com/MiniZinc/minizinc-benchmarks/blob/master/queens/

queens.mzn.

[Tea06] Gecode Team. Gecode: Generic constraint development environment, 2006. http:

//www.gecode.org.

 https://github.com/MiniZinc/minizinc-benchmarks/tree/master/slow_convergence
 https://github.com/MiniZinc/minizinc-benchmarks/tree/master/slow_convergence
https://github.com/sharkdp/hyperfine
https://github.com/TeXitoi/structopt
 https://github.com/MiniZinc/minizinc-benchmarks/blob/master/queens/queens.mzn
 https://github.com/MiniZinc/minizinc-benchmarks/blob/master/queens/queens.mzn
http://www.gecode.org
http://www.gecode.org

Bibliography 28

[Thi20] Sven Thiele. flatzinc, 2020. https://github.com/potassco/flatzinc.

[Wal72] David Waltz. Understanding line drawings of scene with shadows. The Psychol-

ogy of Computer Vision, pages 19–91. MCGraw Hill, 1972.

https://github.com/potassco/flatzinc

Declaration on Scientific Integrity
(including a Declaration on Plagiarism and Fraud)
Translation from German original

Title of Thesis:

Name Assessor: __

Name Student: __

Matriculation No.: __

I attest with my signature that I have written this work independently and without outside
help. I also attest that the information concerning the sources used in this work is true and
complete in every respect. All sources that have been quoted or paraphrased have been
marked accordingly.

Additionally, I affirm that any text passages written with the help of AI-supported
technology are marked as such, including a reference to the AI-supported program used.
This paper may be checked for plagiarism and use of AI-supported technology using the
appropriate software. I understand that unethical conduct may lead to a grade of 1 or “fail”
or expulsion from the study program.

Place, Date: _______________________ Student: ____________________________

Will this work, or parts of it, be published?

No

Yes. With my signature I confirm that I agree to a publication of the work (print/digital)
in the library, on the research database of the University of Basel and/or on the
document server of the department. Likewise, I agree to the bibliographic reference in
the catalog SLSP (Swiss Library Service Platform). (cross out as applicable)

Publication as of: ___

Place, Date: _______________________ Student: ____________________________

Place, Date: _______________________ Assessor: ____________________________

Please enclose a completed and signed copy of this declaration in your Bachelor’s or Master’s thesis.

September 2023

Prof. Dr. Malte Helmert

Gianluca Klimmer

2019-915-594

15.07.2024

Oxiflex - A Constraint Programming Solver for MiniZinc written
in Rust

	Table of Contents
	1 Introduction
	2 Constraint Satisfaction Problems
	2.1 Overview
	2.2 MiniZinc
	2.2.1 FlatZinc

	2.3 Queens Problem

	3 Solving Constraint Satisfaction Problems
	3.1 Backtracking
	3.1.1 Variable Ordering

	3.2 Inference
	3.2.1 Forward Checking
	3.2.2 Arc Consistency
	3.2.2.1 Enforcing Arc Consistency

	4 Implementation
	4.1 Oxiflex
	4.2 Rust
	4.2.1 Limitations

	4.3 Dependencies
	4.3.1 flatzinc
	4.3.2 structopt

	4.4 Architecture
	4.4.1 parser
	4.4.2 model

	4.5 Solver
	4.5.1 Value Ordering
	4.5.2 Forward Checking
	4.5.3 Arc Consistency

	5 Results
	5.1 Method
	5.2 N-Queens
	5.3 Slow Convergence
	5.4 Gecode

	6 Conclusion
	6.1 Discussion

	Bibliography

