
Diversifying Greedy Best-First Search by
Clustering States

Bachelor Thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Artificial Intelligence

http://ai.cs.unibas.ch

Examiner: Malte Helmert

Supervisor: Jendrik Seipp

Daniel Killenberger

daniel.killenberger@unibas.ch

2013-059-647

01.03.2017

Acknowledgments

I would like to thank Jendrik Seipp for all the helpful advice during and outside of our weekly meetings. I

would also like to thank Prof. Dr. Helmert for inspiring me to pursue this thesis in his group with the

Lecture ’Foundations of Artificial Intelligence’ and giving me the possibility to do so. Thanks also to Gordon

Mickel, Matthias Chinyen Tsai and Elliot Walmsley for proof reading. Calculations were performed at sciCORE

(http://scicore.unibas.ch/) scientific computing core facility at University of Basel.

Abstract

Greedy best-first search has proven to be a very efficient approach to satisficing planning but can potentially lose

some of its effectiveness due to the used heuristic function misleading it to a local minimum or plateau. This is

where exploration with additional open lists comes in, to assist greedy best-first search with solving satisficing

planning tasks more effectively. Building on the idea of exploration by clustering similar states together as

described by Xie et al. [2014], where states are clustered according to heuristic values, we propose in this paper

to instead cluster states based on the hamming distance of the binary representation of states [Hamming, 1950].

The resulting open list maintains k buckets and inserts each given state into the bucket with the smallest average

hamming distance between the already clustered states and the new state. Additionally, our open list is capable

of reclustering all states periodically with the use of the k-means algorithm.

We were able to achieve promising results concerning the amount of expansions necessary to reach a goal state,

despite not achieving a higher coverage than fully random exploration due to slow performance. This was caused

by the amount of calculations required to identify the most fitting cluster when inserting a new state.

Table of Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

2 Theoretical Background 3

2.1 Classical Planning . 3

2.2 SAS+ Formalism . 3

2.3 State Space Planning . 4

2.4 Open Lists . 4

2.5 Heuristics . 5

2.6 Greedy Best-First Search . 5

2.7 Diversification of Open Lists . 5

3 Cluster-based Open List 7

4 Cluster-based Open List with K-Means Reclustering 10

5 Evaluation 12

5.1 Comparing the Amount of Clusters . 12

5.2 Determining the Parameters for K-Means Reclustering . 13

5.3 Comparing Reclustering with not Reclustering . 21

5.4 Comparing to Single FF without Exploration . 21

5.5 Comparing to Type-based Exploration . 23

6 Conclusion 25

6.1 Future Work . 25

Appendix A Appendix 26

Appendix B Appendix 30

Bibliography 31

1
Introduction

Classical planning is an approach to automated problem solving, which assumes a simplified environment for an

agent to work within. Such an environment is defined by its initial state, a set of operators that can be applied

by the agent to modify the environments state and a goal, which the agent is supposed to reach.

Greedy best-first search (GBFS) is a technique used in classical planning that tries to find a solution by ex-

panding states evaluated as being closest to a goal state according to a heuristic function. A so called open

list usually makes the decision which state is going to be expanded next by the search algorithm. In the case

of GBFS the open list is implemented as a priority queue which stores inserted states sorted by their heuristic

values. This has proven to be an effective method to solving satisficing planning tasks in many domains, without

any guarantee for optimality. Due to being highly dependent on the employed heuristic function, GBFS has

the potential to fail in some domains due to the heuristic being misleading, which can lead the search to a

local minimum or plateau [Xie et al., 2014]. By diversifying the state space of GBFS with an additional open

list to allow for the exploration of a wider selection of states, significant performance gains can be achieved as

shown by Xie et al. [2014]. The mentioned paper describes the implementation of a Type-based open list that

clusters states based on their type. The type of a state can be defined arbitrarily but is usually a combination

of the state’s heuristic value for different heuristics and it total path cost. These type attributes act as a key to

identify which cluster a state is being assigned to. If no cluster exists that can be associated with a state’s key,

the Type-based open list creates a new cluster. When asked to return a state, the open list returns a random

state from a random cluster.

In this paper we build on the idea of diversifying GBFS with an open list that clusters similar states, but define

the similarity of states differently. We evaluate states as more dissimilar the greater the distance between them

is. We define said distance to be the hamming distance between their respective binary representations [Ham-

ming, 1950]. When inserting a new state s into what we call the Cluster-based open list, s is assigned to one

of k clusters with the minimal average distance between the states contained within the cluster and s. When

the search algorithm asks for a new node to expand, the Cluster-based open list returns a random state from a

randomly chosen cluster. Additionally we provide the option to periodically reassign all states to more fitting

clusters using the k-means algorithm to correct for sub optimal assignments. It is possible that the suggested

way of clustering states proves to be a better way of distinguishing between dissimilar states than the type of

a state. If this holds true and every cluster contains only very similar states we expect to only have to look

at few of the states within a cluster to introduce fruitful exploration and consequently reduce the amount of

expansions required to solve a given planning task.

When evaluating our experiments, we noticed a trend of reducing the amount of required expansions for com-

monly solved hard planning tasks when using Cluster-based exploration compared to random or Type-based

exploration. This trend is even more apparent when compared to GBFS without exploration. Due to the

implementation being not as efficient as we desired it to be, we weren’t able to compete with the coverage of

random or Type-based exploration or even GBFS alone.

This paper is organized as follows; first we introduce the reader to the theoretical background of classical plan-

Introduction 2

ning, the SAS+ formalism, and planning within state spaces. We then provide some background on open lists

and heuristics in order to then briefly explain GBFS. We will then elaborate on why the diversification of GBFS

with an additional open list can make it more effective at solving satisficing planning tasks. We follow up

with the description of the two proposed algorithms for the Cluster-based open list (one with and one without

k-means reclustering) and end with the evaluation of the conducted experiments.

The implementation has been realized within the Fast Downward planning system [Helmert, 2006].

2
Theoretical Background

2.1 Classical Planning
”Planning is the reasoning side of acting. It is an abstract, explicit deliberation process that chooses

and organizes actions by anticipating their expected outcomes.” [Ghallab et al., 2004, p. 1]

A classical planning task consists of an initial state, a goal and a set of actions that determine how the state of

the environment can be changed [Weld, 1999, p. 93]. We formally define a classical planning task as follows:

Definition 1. Given Σ = (S, s0, s
∗,O) where S is the set of possible states, s0 the initial state, s∗ the goal and

O a set of operators, find a sequence of operators 〈o1, o2, ..., ok〉 such that s0
o1−→ s1

o2−→ s2. . . sk−1
ok−→ sk and sk

fulfills s∗, or prove that no such sequence exists [Ghallab et al., 2004, p. 10].

Classical planning is one of many strategies to automated problem solving that assumes the system to be finite,

fully observable, static and all operators to be deterministic [Ghallab et al., 2004, p. 9-10].

In order to find optimal solutions to classical planning problems, one can introduce a cost function cost : O → R+
0

that assigns a non-negative cost to every operator. The optimal solution is then a path π = 〈o1, o2, ..., ok〉 where∑k
i=1 cost(oi) is minimal. Since optimal solutions are not the goal of satisficing planning, costs will be ignored

in this work.

2.2 SAS+ Formalism
There are multiple ways of describing a classical planning task. The one we will be focusing on is SAS+ as it is

the formalism used internally in the Fast Downward planning system. The SAS+ formalism uses multi-valued

state variables to describe states. Each of the state variables has a domain, that defines a finite set of valid

values. Operators have a precondition and an effect. The precondition specifies which variables must have which

values before the operator can be executed. The effect defines which variables will be changed to which values

after the operator has been applied. We formally define a SAS+ planning problem as follows [Bäckström and

Nebel, 1995].

Definition 2. A SAS+ planning task is given by Π = 〈V,O, s0, s∗〉 where V is a finite set of variables, O is a

finite set of operators, s0 is the initial state and s∗ the goal condition. Each variable v ∈ V has an associated

finite domain Dv. We define a fact as a pair 〈v, d〉 with v ∈ V and d ∈ Dv and a set of facts as consistent, if

all facts belong to different variables. We define a partial assignment p as a consistent set of facts. We denote

the set of variables contained in p as vars(p). If vars(p) = V , p is called a state. We denote the value of a

variable v in state s as s[v]. We will refer to the set of all states as SV and to the set of all partial assignments

as PV . We define o ∈ O as a pair 〈pre, eff〉, where pre, post ∈ PV define the precondition and effect. The initial

state s0 is a state and therefore s0 ∈ SV . The goal condition is similar to a precondition in that it is a partial

assignment and therefore s∗ ∈ PV .

Theoretical Background 4

It is easy to see that every finite domainDv associated with variable v ∈ V can be projected on to {0, 1, . . . , |Dv|−
1} ⊂ N+

0 using a bijective function f : Dv → {0, 1, . . . , |Dv| − 1}. This is important to note as we can then

standardize all variables v ∈ V to have an associated domain Dv = {0, 1. . . , |Dv| − 1}. This standardized form

is how the Fast Downward planning system [Helmert, 2006] describes state variables and their domains and we

assume all domains to be standardized in this way going forward.

Tasks described by a formalism other than SAS+ e.g. PDDL or STRIPS are being translated without any loss

of information by the Fast Downward planning system before the initialization of the actual search.

2.3 State Space Planning
A planning task Π = 〈V,O, s0, s∗〉 induces a state space consisting of nodes that correspond to states s ∈ SV ,

edges that correspond to operators o ∈ O and the set of goal nodes that correspond to the set of states S∗ ∈ SV

that fulfill the goal condition s∗ ∈ PV . The set of all states is initially not explicitly given but instead continually

generated by applying operators to existing states. The state resulting from the effect of an operator applied to

a state s is called the child of s [Ghallab et al., 2004, p. 69; 544]. Generating all children of a particular state s

is called expanding s. The plan for solving the given planning task corresponds to the path within the induced

state space that leads from the root node (initial state) to a node associated with a goal state.

s0start

s1

s2

s3 s4
o1

o2

o5

o4

o3

o7

o6

Figure 2.1: Example of an explicitly generated state space where s4 ∈ S∗
.

In order to recreate the path that solves the given planning task and to calculate the final cost, nodes can not

just be representative of states. Instead they have to be implemented as data structures which we’ll call search

nodes that contain the following information: [Russel et al., 1995, p. 72]:

• the state the node corresponds to

• the node that generated this node (parent node)

• the operator that was applied to get from the parent node to this node

• the number of nodes on the path to this node (depth of the node)

• the path cost from the initial state to this node (not important in our case)

As we expand nodes we need another data structure to be able to store the generated nodes for later expansion.

This is where open lists come in to play.

2.4 Open Lists
Open lists are data structures used to temporarily store search nodes that have been generated by expanding

a parent node. Stored nodes can later be retrieved by the search algorithm for their expansion. An open list

must implement three basic functions to work with a state space search algorithm.

• open.is empty() returns true if no nodes are stored in the open list, else return false

Theoretical Background 5

• open.pop() removes and returns the next node to expand

• open.insert() inserts the node into the open list

These functions can be implemented differently depending on the requirements of the open list.

2.5 Heuristics
”Heuristics are criteria, methods, or principles for deciding which among several alternative courses

of action promises to be the most effective in order to achieve some goal. They represent compromises

between two requirements: the need to make such criteria simple and, at the same time, the desire

to see them discriminate correctly between good and bad choices.” [Pearl, 1984, p. 3]

Applied to state space search, heuristics are usually functions h : S → R+
0 , where S is the set of states of the

given planning task, that assign a real value to every state to approximate the state’s distance to the task’s

goal. If h(s) were a perfect heuristic it would return the exact cost required to reach the nearest goal state,

return h(s) = 0 if s ∈ S∗ and h(s) =∞ if no solution can be found originating from s.

2.6 Greedy Best-First Search
Greedy Best-first Search(GBFS) is an informed search algorithm that uses a heuristic function to decide which

states to expand next while ignoring the cost of operators. We formulate Algorithm 1 to describe GBFS using

an open list. Said open list is implemented as a priority queue sorted by the heuristic value of the nodes in

ascending order. Algorithm 1 assumes states s ∈ S to be contained in search nodes n which we require to keep

track of the path. We use the function get path(n) to recursively build the path that leads from n0 (the initial

node) to n. Additionally we assume to have a function expand(n) that returns the set of all nodes N ′ reachable

through the effect of operators that are applicable to s contained in n.

Algorithm 1 Greedy Best-First Search

n← n0
open← empty list
while n.s 6∈ S∗ do
N ′ ← expand(n)
for n′ ∈ N ′ do

open.insert(n′)

if open.is empty() then
return failure

n← open.pop()

return get path(n)

Using solely heuristics to decide how to move towards a goal within a given state space is a very useful tool in

many domains, but can result in mistakes, caused by sibling nodes being expanded in the wrong order. The

reason for this is that the root node has a lower heuristic value than its siblings even though its subtree contains

very hard to find solutions, or no solutions at all. To lessen the impact of such mistakes we candiversify GBFS

by exploring a wider range of states [Xie et al., 2014, p. 2]. We will now discuss how this can be realized.

2.7 Diversification of Open Lists
Instead of just using one open list, e.g., an open list sorted by the value of a heuristic function, it proved very

profitable to diversify the search by introducing a second or more open lists dedicated to exploration. This

makes the search algorithm look at states that the heuristic function would normally ignore, which often results

in finding a goal state more efficiently as shown by Xie et al. [2014].

Theoretical Background 6

The Fast Downward planning system implements an alternating open list, that allows the search algorithm to

use multiple open lists. For this purpose the alternating open list inserts all generated nodes into all underlying

open lists. When the search algorithm ask for a node it chooses which open list to pop the node from in a round

robin manner.

Xie et al. [2014] implemented an exploration open list which clusters states based on their type which is defined

by multiple heuristics and or its total path cost as type attributes, putting the states with equal values for

all attributes into the same cluster and generating a new cluster if no cluster with such type-attributes exists.

Popping from the open list returns a random node from a random cluster. This lead to a significant performance

boost in many domains. Their work forms the basis for the idea of this bachelor thesis concerning the clustering

of states with similar attributes. We will explain next how the definition of similarity and the creation of clusters

in our proposed algorithms differs from the approach by Xie et al. [2014].

3
Cluster-based Open List

The main objective of this bachelor thesis is to develop an open list that clusters states based on their similarity

and pops random states from randomly chosen clusters. This should help diversify the search when using greedy

best-first search and therefore avoid early mistakes caused by a misleading heuristic, when both open lists are

used in conjunction. One benefit is that clustering by similarity may prove to be faster than evaluating heuristics

as done by the Type-based open list. Additionally it may prove that, by clustering based on similarity, and

therefore reducing entropy within clusters, exploration becomes more effective which would lead to reducing the

amount of required expansions to reach a goal state.

Using a tuple notation for states, intuitively 〈3, 3, 2〉 is a lot more similar to 〈3, 3, 3〉 than to 〈2, 1, 0〉. With this

idea in mind we need a formal way for describing similarity. For this purpose we transform states to a binary

representation: for variable v ∈ V in state s the associated domain Dv is of standardized form which indicates

s[v] ∈ {0, . . . , |Dv|− 1}. We represent the state with a binary string where for each variable there are (|Dv|− 1)

0′s and a 1 at index s[v]. Chaining all resulting binary strings, which correspond to the states’ variables, we

get the binary representation of the given state. We call this binary representation bit mask and it is created

according to Algorithm 2. Said bit mask will be stored as a vector of booleans. We will call the contained

bits facts and they can be addressed by the the index that corresponds to their position within the bit mask:

bit mask[i]. The total number of facts N is calculated according to Equation 3.1.

N =
∑
v∈V
|Dv| (3.1)

Algorithm 2 Calculate Binary Representation of States

function bin(s)
bit mask ← new vector of size N
i← 0
for v ∈ V do

bit mask[i+ s[v]]← True
i← i+ |Dv|

return bit mask

Let us go through an example where state s is defined by a set of two variables V = {v, w} with |Dv| = 3,

|Dw| = 2, s[v] = 0 and s[w] = 1. The following vector would then be the binary representation of state s

according to Algorithm 2: bin(s) = 〈1, 0, 0, 0, 1〉, where the first three bits of the binary representation represent

variable v and the last two bits represent variable w.

Now, to calculate the similarity or rather the opposite, the hamming distance between two states, one only

needs to sum the number of facts that are different [Hamming, 1950].

Cluster-based Open List 8

Definition 3. We define the distance d between two states s1 and s2 as:

d(s1, s2) =

N∑
i=1

e(bin(s1)[i], bin(s2)[i]) (3.2)

where N is the total number of facts and

e(x, y) =

0, if x = y

1, otherwise
(3.3)

Now the goal is to cluster states together based on which states are closest to each other. For this purpose we

want to be able to calculate the distance between not only states but also the average distance between a state

and all states within a cluster. In order to more efficiently calculate the distance between a state and a cluster

of states, we save a vector per cluster that saves how many states’ binary representation hold a specific fact true

(factsCount) and also the total amount of states stored in a given cluster (numStates). For example: Cluster

c already stores s1 with bin(s1) = 〈1, 0, 0, 0, 1〉 therefore c.factsCount = 〈1, 0, 0, 0, 1〉 and c.numStates = 1. If

we were to insert s2 with bin(s2) = 〈1, 0, 0, 1, 0〉 into c then c.factsCount = 〈2, 0, 0, 1, 1〉 and c.numStates = 2.

Definition 4. We define the average distance d between a state s and a cluster of states c as:

d(s, c) =
N∑
i=1

∣∣∣∣c.factsCount[i]c.numStates
− bin(s)[i]

∣∣∣∣ (3.4)

where N is the total number of facts.

For an additional speed boost we introduce an additional vector associated with every cluster, that stores the

mean value for every fact (factsMean) and has to be recalculated every time a state is being inserted into or

popped from a cluster:

c.factsMean[i] =
c.factsCount[i]

c.numStates
(3.5)

which means we can simplify Equation 3.4 to:

d(s, c) =

N∑
i=1

|factsMean[i]− bin(s)[i]| (3.6)

Compared to the Type-based open list there is no easy way to decide on the amount of clusters. This means

that the open list will be using a static amount k which can be altered by a parameter. The open list creates

the bit mask at the point of inserting a newly generated node and replaces state s to be the newly generated bit

mask instead, as we have no use for the original state representation in the Cluster-based open list. It inserts

nodes into an empty cluster until every cluster contains at least one node. Afterwards if there are no empty

clusters left, the open list calculates the distance between the state, associated with the node that is to be

inserted, and all clusters. It then inserts the node into the cluster that has the smallest distance to the state

contained within the node according to Equation 3.6. To pop a node it chooses a random node from a random

cluster which then gets removed and returned. We assume variables factsCount, numStates and factsMean

to automatically be adjusted correctly. This results in Algorithm 3.

Cluster-based Open List 9

Algorithm 3 Cluster-based open list

function calculate distance(c, b)
d← 0
i← 0
for mean ∈ c.factsMean do

d← distance+ abs(b[i]−mean)
i← i+ 1

return d

function do insertion(n)
n.b← bin(n.s)
delete n.s
if there are empty clusters then

insert n into an empty cluster
else

insert n into cluster c with minimal distance d =CALCULATE DISTANCE(c, n.b).

function pop
return and remove random node from random nonempty cluster

function empty
return numStates == 0

4
Cluster-based Open List with K-Means Reclustering

In order to correct for badly clustered states, especially at the start of Algorithm 3 where nodes are just filling

up empty clusters, we implemented Algorithm 4 to reassign nodes using k-means clustering. It is very fitting to

use k-means considering us already having k clusters with calculated mean vectors (factsMean) to represent

them. Standard k-means clustering is composed of four steps:

1. Initialize: Generate k random mean vectors.

2. Cluster: Associate every data point with the closest mean.

3. Centroid: Calculate the centroid of every cluster to get the new representative mean vectors.

4. Convergence: Check for convergence. If criteria not yet fulfilled jump to step 2.

As we already have calculated mean vectors we will skip step 1 and we will replace the stop criterion to check

for a given time limit instead of checking for convergence. As it is difficult to decide when to reassign nodes, the

open list will do so periodically (time interval) and then cluster for the given time limit. The open list will check

if the time interval has been reached at the end of the insertion method. It is important to note that k-means

may produce empty clusters. The resulting algorithm is described in Algorithm 4. For the corresponding C++

implementation see Appendix A.

Cluster-based Open List with K-Means Reclustering 11

Algorithm 4 Cluster based open list with K-Means Reclustering

function Calculate distance(c, b)
d← 0
i← 0
for mean ∈ c.factsMean do

d← distance+ abs(b[i]−mean)
i← i+ 1

return d

function do insertion(n)
n.b← bin(n.s)
delete n.s
if there are empty clusters then

insert n into an empty cluster
else

insert n into cluster c with minimal distance d =CALCULATE DISTANCE(c, n.b).
insert n into the set of all stored nodes N

if time interval has been reached then
K-MEANS()

function pop
return and remove random node from random nonempty cluster

function empty
return numStates == 0

function k-means
while time limit has not been reached do

for n ∈ N do
assign n to cluster with minimal distance d =CALCULATE DISTANCE(c, n.s).

recalculate means of clusters

5
Evaluation

In this chapter we will elaborate on how well the two implementations described in Chapter 3 and Chapter 4

solved common satisficing planning tasks when used in conjunction with GBFS. As described in Section 2.7 and

Chapter 3 the goal was to improve GBFS by diversifying the search through the exploration of states that are

dissimilar to each other. We will be looking at how well the Cluster-based open list is able to improve GBFS,

which is using the FF-heuristic [Hoffman and Nebel, 2001] as its heuristic evaluator function, to a higher solving

rate or coverage of common satisficing problems. Furthermore we will look at how well the Cluster-based open

list was able to reduce the amount of required expansions. The FF-heuristic has been established as the heuristic

to compare new algorithms to as it solves many planning tasks very efficiently. As shown by Valenzano et al.

[2014] greedy best-first search can be enhanced with random exploration to reach higher coverage. We confirm

this in Table 5.2. This means we will try to improve upon the baseline of GBFS using FF combined with the

Cluster-based open list using only one cluster for exploration, which is equal to random exploration. In our

experiments we will be ignoring the cost of operators as it leads to a higher coverage using the FF-heuristic as

shown by the LAMA planner [Richter and Westphal, 2010, p. 155].

In our series of experiments we first compare Cluster-based exploration to random exploration for different

amount of clusters. We go on to compare different reclustering parameters in order to determine which ones

to use for the following comparisons of reclustering vs no reclustering, Cluster-based exploration (with and

without reclustering) vs Single FF, and Cluster-based exploration (with and without reclustering) vs Type-

based exploration.

The experiments have been conducted using the lab1 Python module and computed on sciCORE 2 with a three

minute time limit and a memory cap of two gigabytes.

From here on we will always assume that the compared implementations of exploration open lists are being

used in an alternating open list in conjunction with GBFS that uses the FF-heuristic, unless explicitly stated

otherwise.

The search options that have been used for the Fast Downward planning system can be found in Appendix B.

5.1 Comparing the Amount of Clusters
The following experiments have been conducted to determine the amount of clusters k that lead to a bet-

ter performance than just one cluster, which is equal to random exploration. We will be comparing k =

{1, 10, 100, 1000, 10000, 100000} with each other over 2532 satisficing planning tasks using the algorithm de-

scribed in Chapter 3.

As it turns out we didn’t manage to get a higher coverage over all tasks for any k > 1 as shown in Table 5.1.

Just a few domains i.e. mistery, nomisteray-sat11-strips and thougtful-sat14-strips were solved more effectively

1 http://lab.readthedocs.io/
2 https://scicore.unibas.ch/

http://lab.readthedocs.io/
https://scicore.unibas.ch/

Evaluation 13

k 1 10 100 1000 10000 100000

Coverage - Sum 1726 1674 1615 1468 1373 1527

Table 5.1: Comparison between different amounts of clusters - coverage of 2532 satisficing planning tasks

using k = 100 clusters, as shown in Table 5.2. It is interesting to note that k = 100000 is able to achieve a higher

coverage than k = {1000, 10000}. This is due to tasks that generate less than 100000 states are basically still

using random exploration comparable to k = 1 as not all of the clusters have been assigned a state yet, which

means not having to calculate distances when inserting new nodes. What we did manage to achieve though,

is to reduce the amount of expansions with k = {100, 1000} for some of the hard planning tasks, that required

more than 105 expansions when using the random open list with k = 1, as shown in Figure 5.1 and Figure 5.2.

This trend indicates that clustering with the right amount of clusters actually may reduce the amount of ex-

pansions required for some difficult tasks, when compared to a random open list and therefore has the potential

of being a an effective approach to exploring the state space if there weren’t so many unsolved tasks. The

issue with this trend is that it is possible that planning tasks which would have required more expansions when

using Cluster-based open list couldn’t be solved at all due to the implementation being inefficient and therefore

reaching the search time limit of three minutes. We can see the significantly greater amount of unsolved tasks

on the outer side of the graphs. The performance issues mainly come from having to calculate the distance to

every cluster for every node that is being inserted into the open list. Finding the cluster with minimal distance

to the node that is being inserted already uses about 20% of CPU time of the entire search algorithm when

using k = 10. This increases to about 78% for k = 1000. Another but significantly less impactful factor is that

the creation of the bit masks for every state also uses more CPU time than we anticipated. This effect can also

be seen in the Figure 5.3, Figure 5.4 and Figure 5.5, where we compare the expansions per second ratio between

different amounts of clusters.

In summary, we can see a trend of the Cluster-based open list being able to reduce the amount of expansions

in hard to solve planning tasks when using k = {100, 1000} compared to random exploration with k = 1. This

trend could come from the fact that because of the inefficient implementation, planning tasks that would have

required more expansions could not be solved at all by the Cluster-based open list. The performance issues

come from having to calculate the distance to every cluster for every node that is being inserted into the open

list.

5.2 Determining the Parameters for K-Means Reclustering
Clustering as described in Chapter 3 showed a trend of reducing the amount of expansions required to find a

goal state. Indicating that if we clustered more effectively, reducing the entropy within clusters even further, we

would need even fewer expansions. This is the expectation going into the following experiments where we used

the Cluster-based open list with k-means reclustering as described in Chapter 4. As a consequence of clustering

for a specific amount of time every interval, thus blocking the search algorithm for the entire duration, we expect

the expansions per time to reduce even further, thus giving us an even lower coverage. Before we compare with

and without reclustering to each other, we will compare different parameters for reclustering to find those that

work best. For this purpose we first tried to determine a good time limit l after which we stop to recluster with a

static time interval of one second and a static amount of clusters k = 100. The decision on the amount of clusters

is somewhat arbitrary but comes as seemingly reasonable compromise between coverage and the usefulness of

clustering. We chose the time interval i = 1 fully arbitrarily in order to make the testing of the following time

limits l = {0.1, 0.2, 0.5, 1, 2} (seconds) consistent. As expected the coverage has become even lower compared to

not reclustering as we are using even more time to recluster. See Table 5.3. What is very interesting to note is

that a the longest time limit for reclustering l = 2 resulted in the highest coverage indicating that the amount

of expansions must have been reduced significantly for some of these additionally covered planning tasks, when

Evaluation 14

Coverage No Reclustering k = 100 Random (k = 1) With Reclustering k = 100 Single FF type-based(ff, g())

airport (50) 30 30 26 30 30
assembly (30) 30 30 28 30 30
barman-sat11-strips(20) 0 7 0 4 2
barman-sat14-strips(20) 0 0 0 0 0
blocks(35) 35 35 32 35 35
cavediving-14-adl(20) 7 7 4 7 7
childsnack-sat14-strips(20) 0 0 0 0 0
citycar-sat14-adl(20) 1 0 0 0 0
depot(22) 13 14 9 14 14
driverlog(20) 16 18 14 17 19
elevators-sat08-strips(30) 30 30 24 30 30
elevators-sat11-strips(20) 10 13 4 16 11
floortile-sat11-strips(20) 4 7 1 4 6
floortile-sat14-strips(20) 2 2 1 2 2
freecell(80) 76 76 66 77 76
ged-sat14-strips(20) 10 13 0 18 14
grid(5) 4 5 4 4 4
gripper(20) 20 20 20 20 20
hiking-sat14-strips(20) 19 20 10 20 20
logistics00(28) 28 28 28 28 28
logistics98(35) 20 24 12 24 23
maintenance-sat14-adl(20) 4 5 0 10 12
miconic(150) 150 150 150 150 150
miconic-fulladl(150) 133 136 130 133 134
miconic-simpleadl(150) 150 150 150 150 150
movie(30) 30 30 30 30 30
mprime(35) 28 29 28 29 29
mystery(30) 18 17 16 17 18
nomystery-sat11-strips(20) 10 9 8 9 9
openstacks(30) 27 30 24 27 30
openstacks-sat08-adl(30) 30 30 24 30 30
openstacks-sat08-strips(30) 30 30 24 30 30
openstacks-sat11-strips(20) 10 12 4 10 10
openstacks-sat14-strips(20) 0 0 0 0 0
openstacks-strips(30) 26 27 23 27 27
optical-telegraphs(48) 2 3 2 3 3
parcprinter-08-strips(30) 30 30 30 30 30
parcprinter-sat11-strips(20) 20 20 20 20 20
parking-sat11-strips(20) 7 10 0 9 10
parking-sat14-strips(20) 0 0 0 2 0
pathways(30) 10 14 6 9 14
pathways-noneg(30) 10 14 6 9 14
pegsol-08-strips(30) 30 30 29 30 30
pegsol-sat11-strips(20) 20 20 19 20 20
philosophers(48) 24 35 12 44 35
pipesworld-notankage(50) 29 38 26 27 34
pipesworld-tankage(50) 22 26 14 21 23
psr-large(50) 16 18 11 14 16
psr-middle(50) 40 42 31 39 42
psr-small(50) 50 50 50 50 50
rovers(40) 19 22 17 23 24
satellite(36) 24 25 17 26 25
scanalyzer-08-strips(30) 24 26 21 25 27
scanalyzer-sat11-strips(20) 15 16 11 15 16
schedule(150) 37 50 21 30 48
sokoban-sat08-strips(30) 25 26 18 27 26
sokoban-sat11-strips(20) 15 16 9 17 17
storage(30) 19 20 18 18 18
tetris-sat14-strips(20) 1 1 0 0 1
thoughtful-sat14-strips(20) 12 11 12 8 10
tidybot-sat11-strips(20) 15 16 13 16 14
tpp(30) 15 15 10 16 15
transport-sat08-strips(30) 15 16 12 15 16
transport-sat11-strips(20) 0 0 0 0 0
transport-sat14-strips(20) 0 0 0 0 0
trucks(30) 14 12 10 14 17
trucks-strips(30) 15 15 12 14 17
visitall-sat11-strips(20) 2 4 0 3 6
visitall-sat14-strips(20) 0 0 0 0 0
woodworking-sat08-strips(30) 15 23 11 14 19
woodworking-sat11-strips(20) 2 8 1 2 4
zenotravel(20) 20 20 14 20 20

Sum 2532 1615 1726 1377 1662 1711

Table 5.2: Comparison of coverage on all domains

Evaluation 15

10−1 100 101 102 103 104 105 106 107

10−1

100

101

102

103

104

105

106

107

107

107

k = 100

k
=

1

Expansions

Figure 5.1: Comparison of the amount of expansions with k = {1, 100}

10−1 100 101 102 103 104 105 106 107

10−1

100

101

102

103

104

105

106

107

107

107

k = 1000

k
=

1

Expansions

Figure 5.2: Comparison of the amount of expansions with k = {1, 1000}

Evaluation 16

10−1 100 101 102 103 104 105

10−1

100

101

102

103

104

105

105

105

k = 10

k
=

1

Expansions per Second

Figure 5.3: Comparison of the amount of expansions per second with k = {1, 10}

10−1 100 101 102 103 104 105

10−1

100

101

102

103

104

105

105

105

k = 100

k
=

1

Expansions per Second

Figure 5.4: Comparison of the amount of expansions per second with k = {1, 100}

Evaluation 17

10−1 100 101 102 103 104 105

10−1

100

101

102

103

104

105

105

105

k = 1000

k
=

1

Expansions per Second

Figure 5.5: Comparison of the amount of expansions per second with k = {1, 1000}

reclustering for a longer time. This is confirmed in Figure 5.6 where planning tasks show a trend of benefiting

from longer reclustering times, indicating that reclustering is effective at reducing entropy within clusters and

therefore making exploration more diverse.

l 0.1 0.2 0.5 1 2

Coverage - Sum 1460 1454 1455 1447 1461

Table 5.3: Comparison between different time limits l with time interval i = 1 and k = 100 clusters - Coverage
of 2532 satisficing planning tasks

Due to the highest coverage with l = 2 seconds as the time limit we chose l = 2 as the static parameter for our

following experiments, as it also promises the highest effect on reducing entropy within clusters. The amount

of clusters of k = 100 stayed the same and we went on to test different time intervals i = {0.1, 0.2, 0.5, 1, 2}.
We expect a lower coverage for lower time intervals as we use more time to recluster. This holds true as we can

see in Table 5.4. We do expect a higher amount of expansions for higher time intervals for commonly solved

planning tasks, assuming the reclustering to be effective at reducing entropy within clusters.

i 0.1 0.2 0.5 1 2

Coverage - Sum 1340 1377 1432 1458 1486

Table 5.4: Comparison between different time intervals i with time limit l = 2 and k = 100 clusters - Coverage
of 2532 satisficing planning tasks

As we can see in Figure 5.7 this is the case for commonly solved hard planning tasks, therefore indicating that

reclustering could be a more effective way of exploration, if we didn’t have the problem of the high run time.

Evaluation 18

10−1 100 101 102 103 104 105 106

10−1

100

101

102

103

104

105

106

106

106

k = 100, i = 1, l = 0.1

k
=

1
0
0,
i

=
1,
l

=
2

Expansions

Figure 5.6: Comparison of the amount of expansions with time limits l = {0.1, 2}

Again the trend of reduced expansions for hard planning tasks could come from the fact that planning tasks

that would have used more expansions could not be solved at all because of the search time limit being reached.

For obvious reasons the expansions per second go down when we recluster more often as shown in Figure 5.8.

To decide on which time interval to use for our comparison between using k-means for reclustering and not

reclustering at all, we look at Figure 5.9 which shows some tendency to reduce the amount of expansions when

using i = 0.1 compared to i = 0.5 for some of the hard planning tasks. Using i = 0.1 over i = 0.2, however shows

no such tendency, as illustrated in Figure 5.10, but effectively doubles our run time. This is why we decided

on using i = 0.2 and l = 2 as our default parameters for reclustering, to get the most effect out of reclustering

while not punishing our run time too much. If not stated otherwise when we refer to Cluster-based open list

with reclustering we will assume the use of these parameters.

Evaluation 19

10−1 100 101 102 103 104 105 106

10−1

100

101

102

103

104

105

106

106

106

k = 100, l = 2, i = 0.1

k
=

1
0
0,
l

=
2
,
i

=
2

Expansions

Figure 5.7: Comparison of the amount of expansions with time intervals i = {0.1, 2}

10−1 100 101 102 103 104 105

10−1

100

101

102

103

104

105

105

105

k = 100, l = 2, i = 0.1

k
=

10
0,
l

=
2,
i

=
2

Expansions per Second

Figure 5.8: Comparison of the amount of expansions per second with time intervals i = {0.1, 2}

Evaluation 20

10−1 100 101 102 103 104 105 106

10−1

100

101

102

103

104

105

106

106

106

k = 100, l = 2, i = 0.1

k
=

1
0
0,
l

=
2
,
i

=
0.

5

Expansions

Figure 5.9: Comparison of the amount of expansions with time intervals i = {0.1, 0.5}

10−1 100 101 102 103 104 105

10−1

100

101

102

103

104

105

105

105

k = 100, l = 2, i = 0.1

k
=

10
0,
l

=
2,
i

=
0.

2

Expansions

Figure 5.10: Comparison of the amount of expansions with time intervals i = {0.1, 0.2}

Evaluation 21

5.3 Comparing Reclustering with not Reclustering
As expected we get a much lower coverage when we recluster with the above mentioned parameters of time limit

l = 2 and time interval i = 0.2, due to the amount of time spent on doing so. This is confirmed in Table 5.5.

There is one domain thoughtful-sat14-strips where reclustering is actually on part with not reclustering and

where both of the implementations reached a higher coverage than random exploration. See Table 5.2.

No Reclustering With Reclustering

Coverage - Sum 1615 1372

Table 5.5: Comparison between reclustering and not reclustering with 100 clusters - coverage of 2532 satisficing
planning tasks

As more frequent reclustering has shown a trend of requiring fewer expansions for commonly solved tasks we

expect the same when comparing reclustering (l = 2, i = 0.2) to not reclustering at all. This is confirmed in

Figure 5.11, which even shows this trend even for easier planning tasks.

10−1 100 101 102 103 104 105 106

10−1

100

101

102

103

104

105

106

106

106

No k-means Reclustering

W
it

h
k
-m

ea
n

s
R

ec
lu

st
er

in
g

Expansions

Figure 5.11: Comparison of the amount of expansions when reclustering vs not reclustering

5.4 Comparing to GBFS without Exploration
In this section we compare GBFS with FF using both configurations of the Cluster-based open list (with and

without reclustering) as the exploration open list and using no exploration at all (Single FF). Again the coverage

of GBFS + Cluster-based open list can not match Single FF as we can see in Table 5.6, due to the inefficiencies

we explained earlier. There is the same interesting domain thoughtful-sat14-strips which got the lowest coverage

by Single FF, but was solved most effectively when using Cluster-based open list (with and without reclustering)

for exploration. See Table 5.2.

Evaluation 22

No Reclustering With Reclustering Single FF

Coverage - Sum 1615 1377 1662

Table 5.6: Comparison between Cluster-based with reclustering and GBFS using FF without exploration -
Coverage of 2532 satisficing planning tasks

There is a clear trend of Single FF requiring more expansions for harder planning tasks when compared to both

Cluster-based configurations as illustrated in Figure 5.12 and Figure 5.13. We have to mention again that this

trend could come from GBFS + Cluster-based exploration not being able to solve the hard planning tasks that

would have required significantly more expansions than Single FF because the implementation is inefficient and

therefore reaches the search time limit.

10−1 100 101 102 103 104 105 106 107

10−1

100

101

102

103

104

105

106

107

107

107

Single FF

C
lu

st
er

-b
as

ed
w

it
h

ou
t

R
ec

lu
st

er
in

g

Expansions

Figure 5.12: Comparison of expansions between Single FF and Cluster-based exploration without Reclustering

Evaluation 23

10−1 100 101 102 103 104 105 106 107

10−1

100

101

102

103

104

105

106

107

107

107

Single FF

C
lu

st
er

-b
as

ed
w

it
h

R
ec

lu
st

er
in

g

Expansions

Figure 5.13: Comparison of expansions between Single FF and Cluster-based exploration with Reclustering

5.5 Comparing to Type-based Exploration
When comparing our implementation with the Type-based open list by Xie et al. [2014] it is not at all surprising

that we were not able to compete with their coverage due to our inefficient insertion process we explained earlier.

We mentioned the domain thoughtful-sat14-strips before. Again it is worth mentioning because both configu-

rations of Cluster-based open list (with and without reclustering) were able to beat the random configuration

k = 1, but the Type-based open list was not.

Interestingly there is the same trend of reduced amount of expansions compared to Type-based with both

configurations, with and without reclustering, for some commonly solved, hard planning tasks, as illustrated

in Figure 5.14 and Figure 5.15. The trend has the same potential flaw that planning tasks that would have

required more expansions with Cluster-based exploration, may not have been solved at all. What came some-

what as a surprise is that Type-based exploration reached a lower coverage than random exploration using the

Cluster-based open list with k = 1 as shown in Table 5.2.

No Reclustering With Reclustering Type-based

Coverage - Sum 1615 1377 1711

Table 5.7: Comparison between Cluster-based without reclustering, with reclustering and Type-based - Coverage
of 2532 satisficing planning tasks

Evaluation 24

10−1 100 101 102 103 104 105 106 107

10−1

100

101

102

103

104

105

106

107

107

107

Type-based

C
lu

st
er

-b
a
se

d
w

it
h

ou
t

R
ec

lu
st

er
in

g

Expansions

Figure 5.14: Comparison of expansions between Type-based and Cluster-based exploration with Reclustering

10−1 100 101 102 103 104 105 106 107

10−1

100

101

102

103

104

105

106

107

107

107

Type-based

C
lu

st
er

-B
as

ed
w

it
h

R
ec

lu
st

er
in

g

Expansions

Figure 5.15: Comparison of expansions between Type-based and Cluster-based exploration with Reclustering

6
Conclusion

We discussed how the Cluster-based open list can be used in conjunction with GBFS in order to introduce

state space exploration to negate mistakes made by misleading heuristics. Furthermore we elaborated on how

clustering states based on the hamming distance of their binary representation may be able to reduce entropy

within clusters allowing for a more diverse and therefore more effective exploration when expanding states from

a randomly chosen cluster.

The conducted experiments showed a trend of reducing the amount of expansions for hard satisficing planning

tasks when compared to random exploration. When compared to Single FF there was a clear trend of fewer

required expansions when we add exploration using the Cluster-based open list. Cluster-based exploration was

also able to reduce the amount of expansions for some hard planning tasks when compared to Type-based

exploration. The problem with these trends is that the inefficient implementation might not have been able to

solve the hard planning tasks that would have required more expansions to solve. We were able to see a more

promising trend of reclustering using k-means being able to reduce the amount of expansions even for easier

planning tasks compared to the configuration without reclustering.

We weren’t able to reach a higher coverage of the tested planning tasks compared to random exploration, Single

FF or the Type-based open list, because of the inefficiency of the implemented algorithm, caused mainly by the

numerous distance calculations between new states and all clusters. Because of the k-means algorithm adding

an additional computational overhead, the Cluster-based open list became even less effective.

As the trend of reduced expansions for hard to solve planning tasks could have occurred due to GBFS +

Cluster-based being unable to solve those tasks that would have required more expansions, further testing with

a more efficient implementation or a higher search time limit is required to confirm this trend to be consistent.

6.1 Future Work
In order to increase the speed of the Cluster-based open list, one could try only doing clustering runs for a large

amount of nodes at once instead of assigning every new node to a cluster right at the time of insertion.

We could also try and optimize the algorithm by introducing parallelism to the process of finding the cluster

with minimal distance to the node that is to be inserted, by forking k child processes that calculate the node’s

distance to the k clusters. The parent process then decides, based on the results that the children processes

have returned, in which cluster the new node should be inserted to.

If we are able to make Cluster-based open list significantly faster, and the trend of reducing the amount of

expansions for harder planning tasks turns out to be consistent, it has the potential to be an effective approach to

diversifying GBFS with efficient state space exploration and consequently produce a high coverage of satisficing

planning tasks.

A
Appendix

template<class Entry>

class ClusterBasedOpenList : public OpenList<Entry> {
struct StateTuple {
Entry entry ;

vector<bool> bit mask ;

StateTuple (Entry e , vector<bool> b) : entry (e) , bit mask (b) {}
} ;

class Bucket {
vector<StateTuple> s t a t e s ;

vector<int> f a c t s c oun t ;

vector<double> facts mean ;

public :

Bucket () {
f a c t s c oun t = vector<int>(u t i l s : : ge t num fact s ()) ;

facts mean = vector<double>(u t i l s : : ge t num fact s ()) ;

}

bool operator <(const Bucket &other) const {
return s t a t e s . s i z e () < other . s t a t e s . s i z e () ;

}

double g e t d i s t an c e (const vector<bool> &bit mask) const {
a s s e r t (static cast<int>(bit mask . s i z e ()) == u t i l s : : ge t num fact s ()) ;

double sum = 0 ;

for (s i z e t i = 0 ; i < bit mask . s i z e () ; i++) {
double d i f f = abs (facts mean [i] − bit mask [i]) ;

sum += d i f f ;

}
return sum ;

}

int s i z e () {
return s t a t e s . s i z e () ;

}

void c l e a r () {
s t a t e s . c l e a r () ;

f i l l (f a c t s c oun t . begin () , f a c t s c oun t . end () , 0) ;

f i l l (facts mean . begin () , facts mean . end () , 0) ;

}

void c l ea r but keep means () {

Appendix 27

s t a t e s . c l e a r () ;

f i l l (f a c t s c oun t . begin () , f a c t s c oun t . end () , 0) ;

}

void i n s e r t (StateTuple &state , bool keepMeans) {
s t a t e s . push back (s t a t e) ;

for (int i = 0 ; i < u t i l s : : ge t num fact s () ; ++i) {
i f (s t a t e . bit mask [i]) {

f a c t s c oun t [i]++;

}
i f (! keepMeans) {

facts mean [i] = static cast<double>(f a c t s c oun t [i]) / s i z e () ;

}
}

}

Entry pop (int pos) {
a s s e r t (u t i l s : : in bounds (pos , s t a t e s)) ;

StateTuple s t a t e = u t i l s : : swap and pop from vector (s t a t e s , pos) ;

Entry &r e s u l t = s t a t e . entry ;

vector<bool> &bit mask = s t a t e s [pos] . b it mask ;

i f (! empty ()) {
for (int i = 0 ; i < u t i l s : : ge t num fact s () ; i++) {

i f (bit mask [i]) {
f a c t s c oun t [i]−−;

}
facts mean [i] = static cast<double>(f a c t s c oun t [i]) / s t a t e s . s i z e () ;

}
} else {

c l e a r () ;

}
return r e s u l t ;

}

StateTuple pop end s t a t e tup l e () {
StateTuple r e s u l t = s t a t e s . back () ;

s t a t e s . pop back () ;

return r e s u l t ;

}

bool empty () {
return s t a t e s . empty () ;

}

vector<double> &get fac t s mean () {
return facts mean ;

}

vector<int> &ge t f a c t s c o un t () {
return f a c t s c oun t ;

}

void r e ca l cu la t e mean () {
i f (! s t a t e s . empty ()) {

for (int i = 0 ; i < u t i l s : : ge t num fact s () ; i++) {
facts mean [i] = static cast<double>(f a c t s c oun t [i]) / s t a t e s . s i z e () ;

}
} else {

generate (facts mean . begin () , facts mean . end () , [] () {
return static cast<double>(rand ()) / (RANDMAX) ;

}) ;

Appendix 28

}
}

} ;

int get min index (const vector<bool> &bit mask) {
double min di s tance = numer i c l im i t s<double> : :max () ;

vector<int> min indexes ;

for (int i = 0 ; i < static cast<int>(buckets . s i z e ()) ; i++) {
double d i s t ance = buckets [i] . g e t d i s t an c e (bit mask) ;

i f (d i s t ance < min di s tance) {
min di s tance = d i s t ance ;

min indexes . c l e a r () ;

min indexes . push back (i) ;

}
i f (d i s t ance == min d i s tance) {

min indexes . push back (i) ;

}
}
i f (min indexes . s i z e () == 1) {

a s s e r t (u t i l s : : in bounds (min indexes [0] , buckets)) ;

return min indexes [0] ;

} else {
a s s e r t ((int) min indexes . s i z e () > 0) ;

int index = (∗ g rng ()) ((int) min indexes . s i z e ()) ;

a s s e r t (u t i l s : : in bounds (min indexes [index] , buckets)) ;

return min indexes [index] ;

}
}

void k means () {
u t i l s : : CountdownTimer s top t imer (s top t ime) ;

while (! s t op t imer . i s e x p i r e d ()) {
for (Bucket &bucket : buckets) {

bucket . c l ea r but keep means () ;

}
for (StateTuple &s t a t e : a l l s t a t e s) {

int min index = get min index (s t a t e . bit mask) ;

buckets [min index] . i n s e r t (s ta te , true) ;

}
for (Bucket bucket : buckets) {

bucket . r e ca l cu la t e mean () ;

}
}
s o r t (buckets . rbeg in () , buckets . rend ()) ;

while (buckets [num f i l l e d − 1] . empty ()) {
−−num f i l l e d ;

}
}

int num buckets ;

double i n t e r v a l ;

double s top t ime ;

vector<Bucket> buckets = vector<Bucket>(num buckets) ;

int num f i l l e d = 0 ;

u t i l s : : Timer t imer ;

vector<StateTuple> a l l s t a t e s ;

template<class Entry>

void ClusterBasedOpenList<Entry > : : d o i n s e r t i o n (EvaluationContext &eva l contex t , const Entry &entry) {
const Globa lState &s t a t e = eva l c on t ex t . g e t s t a t e () ;

int i n d e x t o i n s e r t = −1;

Appendix 29

vector<bool> bit mask = u t i l s : : c r e a t e b i t mask (s t a t e) ;

StateTuple s tateTuple = StateTuple (entry , bit mask) ;

i f (num f i l l e d < num buckets) {
a s s e r t (u t i l s : : in bounds (num f i l l ed , buckets)) ;

i n d e x t o i n s e r t = num f i l l e d ;

num f i l l e d++;

i f (num f i l l e d == num buckets && i n t e r v a l > 0) {
t imer . r e s e t () ;

}
} else {

i n d e x t o i n s e r t = get min index (bit mask) ;

}
buckets [i n d e x t o i n s e r t] . i n s e r t (stateTuple , fa l se) ;

a l l s t a t e s . push back (stateTuple) ;

i f (i n t e r v a l > 0 && num f i l l e d == num buckets) {
i f (t imer () > i n t e r v a l) {

k means () ;

t imer . r e s e t () ;

}
}

}

template<class Entry>

Entry ClusterBasedOpenList<Entry > : : remove min (vector<int> ∗) {
a s s e r t (num f i l l e d > 0) ;

int index = (∗ g rng ()) (num f i l l e d) ;

a s s e r t (u t i l s : : in bounds (index , buckets)) ;

Bucket &bucket = buckets [index] ;

a s s e r t (bucket . s i z e () > 0) ;

int pos = (∗ g rng ()) (static cast<int>(bucket . s i z e ())) ;

Entry r e s u l t = bucket . pop (pos) ;

i f (bucket . empty ()) {
a s s e r t (u t i l s : : in bounds (num f i l l e d − 1 , buckets)) ;

buckets [index] = buckets [num f i l l e d − 1] ;

buckets [num f i l l e d − 1] . c l e a r () ;

num f i l l ed −−;
}
return r e s u l t ;

}

template<class Entry>

bool ClusterBasedOpenList<Entry > : : empty () const {
return num f i l l e d == 0 ;

}

These are only the most important methods of the C++ implementation. For the entire working code integrated

into Fast Downward go to https://bitbucket.org/danielkillenberger/openlist-clustering.

https://bitbucket.org/danielkillenberger/openlist-clustering

B
Appendix

The following are the search options used for different parameters using the Fast Downward planning system:

Cluster-based without Reclustering and k = 100:

−−search ” eager (a l t ([s i n g l e (f f (c o s t t ype = one)) , c l u s t e r b a s ed (1 0 0)]) , c o s t t ype = one) ”

Cluster-based with Reclustering, i = 0.2, l = 2 and k = 100:

−−search ” eager (a l t ([s i n g l e (f f (c o s t t ype = one)) , c l u s t e r b a s ed (100 , 0 . 2 , 2)]) , c o s t t ype = one) ”

Cluster-based with only one cluster k = 1 (random exploration):

−−search ” eager (a l t ([s i n g l e (f f (c o s t t ype = one)) , c l u s t e r b a s ed (1)]) , c o s t t ype = one) ”

GBFS with Single FF:

−−search ” eager (s i n g l e (f f (c o s t t ype = one)) , c o s t t ype = one) ”

Type-based configuration:

−−h e u r i s t i c ” h f f=f f (c o s t t ype=one) ”

−−search ” eager (a l t ([s i n g l e (h f f) , type based (h f f , g ())]) , c o s t t ype = one) ”

Bibliography

Bäckström, C. and Nebel, B. (1995). Complexity Results for SAS+ Planning. Computational Intelligence, 11(4).

Ghallab, M., Nau, D., and Traverso, P. (2004). Automated Planning: Theory & Practice. Morgan Kaufmann

Publishers, 500 Sansome Street, San Francisco.

Hamming, R. W. (1950). Error Detecting and Error Correcting Codes. The Bell System Technical Journal,

29(2).

Helmert, M. (2006). The Fast Downward Planning System. Journal of Artificial Intelligence Research, 26.

Hoffman, J. and Nebel, B. (2001). The FF Planning System: Fast Plan Generation Trough Heuristic Search.

Journal of Artificial Intelligence Research, 14.

Pearl, J. (1984). Heuristics - Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley

Publishin Company, California.

Richter, S. and Westphal, M. (2010). The LAMA Planner: Guiding Cost-Based Anytime Planning with Land-

marks. Journal of Artificial Intelligence Research, 39.

Russel, S. J., Norvig, P., Canny, J. F., Malik, J. M., and Edwards, D. D. (1995). Aritificial Intelligence A

Modern Approach. Prentice Hall, Englewood Cliffs, New Jersey 07632.

Valenzano, R., Sturtevant, N. R., Schaeffer, J., and Xie, F. (2014). A Comparison of Knowledge-Based GBFS

Enhancements and Knowledge-Free Exploration. In Twenty-Fourth International Conference on Automated

Planning and Scheduling.

Weld, D. S. (1999). Recent Advances in AI Planning. AI Magazine, 20(2).

Xie, F., Müller, M., Holte, R., and Imai, T. (2014). Type-based Exploration with Multiple Search Queues. In

AAAI’14 Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence.

UilIVEH$ITAT BASEL

PH I LOSOPH I SCH-NAT U RW ISSEN SC H A FTLICH E FA K U LTAT

Declaration on Scientific Integrity
(including a Declaration on Plagiarism and Fraud)

Bachelor's / I* Thesis (Please cross out what does not apply)

Title of Thesis (Please print in capital lettersl

Diversifying Greedy Best-First Search
b Clusteri States

First Name, Surname (Please print in capital letters): Daniel Killenberger

Matriculation No.: 2013-059-647

I hereby declare that this submission is my own work and that I have fully acknowledged the
assistance received in completing this work and that it contains no material that has not been
formally acknowledged.

I have mentioned all source inaterials used and have cited these in accordance with recognised
scientific rules.

In addition to this declaration, I am submitting a separate agreement regarding the publication of or
public access to this work.

EYes ENo

Place, Date: Basel ,26.02.2017

Signature: il l,tllu 5,,sor-

Please enclose a conrpleted and signed copy ofthis declaration inyour Bachelor's or Master's thesis

UNI
BASEL

	Acknowledgments
	Abstract
	Table of Contents
	1 Introduction
	2 Theoretical Background
	2.1 Classical Planning
	2.2 SAS+ Formalism
	2.3 State Space Planning
	2.4 Open Lists
	2.5 Heuristics
	2.6 Greedy Best-First Search
	2.7 Diversification of Open Lists

	3 Cluster-based Open List
	4 Cluster-based Open List with K-Means Reclustering
	5 Evaluation
	5.1 Comparing the Amount of Clusters
	5.2 Determining the Parameters for K-Means Reclustering
	5.3 Comparing Reclustering with not Reclustering
	5.4 Comparing to Single FF without Exploration
	5.5 Comparing to Type-based Exploration

	6 Conclusion
	6.1 Future Work

	A Appendix
	B Appendix
	Bibliography

