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Abstract

Monte Carlo search methods are widely known, mostly for their success in game domains,

although they are also applied to many non-game domains. In previous work done by

Schulte and Keller[4], it was established that best-first searches could adapt to the action

selection functionality which make Monte Carlo methods so formidable. In practice however,

the trial-based best first search, without exploration, was shown to be slightly slower than

its explicit open list counterpart. In this thesis we examine the non-trial and trial-based

searches and how they can address the exploitation exploration dilemma. Lastly, we will

see how trial-based BFS can rectify a slower search by allowing occasional random action

selection, by comparing it to regular open list searches in a line of experiments.
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1
Introduction

Automated planning is a branch of AI, which envelops the searching of strategies and actions

for autonomous entities to execute, these being machines or humans.

The context in which these strategies are realized vary, from deciding on a game strategy in

the game of chess, to the automated conduction of unmanned vehicles.

Automated planning includes many different sub-areas of planning. Searching for strate-

gies in chess, for example, is part of classical planning, whereas driving an unmanned vehicle

would constitute a conditional planning problem. Classical planning searches are further

split between forward and backward searches.

In this paper, we have a look at a certain group of forward searches, namely best-first

search, which make use of a heuristic enhancement. We will compare best first search (BFS)

with trial-based open list (TOL)[4] to BFS with an explicit open list. We will extend the

Fast-Downward classical planning system, which was founded and is being maintained by

Malte Helmert[3], with TOL searches, and we will be comparing them to the existing epsilon-

greedy open list implementation of Valenzano et al.[5]. We will talk about the fundamental

issue of balancing exploration and exploitation, and we will view several methods which seek

to address it. Lastly, we will discuss the results, analyzing the best searches and coming up

with improvements.
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Background

2.1 Automated Planning

Automated Planning is a broad term used to describe the deduction of a strategy to be

executed by an autonomous agent. An autonomous agent refers to any entity which is able

to execute (directed) actions without any assistance. With the help of automated planning,

we are able to give machines directives, which would otherwise be infeasible due to the task

complexity.

The act of deducting a strategy is called a search. The search is a simulation of an

agent performing actions in an environment. The search will play out scenarios in order to

determine the best strategy for the agent to perform. The environment, in which the search

is conducted is called a state space. The state space is a mathematical representation of

an environment, as well as container for actions the agent can execute. The state space

additionally contains the task to be completed by the search, in the form of an initial state

and a set of goal states.

Definition - State space A state space is a tuple S “ pS,A, c, T, s0, S˚q where

• S is the set of all states.

• A is the set of all actions.

• c is the cost function c : A Ñ R`
0

• T Ď S ˆ A ˆ S is the relation that describe all possible transitions within the state

space.

• s0 P S is the initial state.

• S˚ Ď S are the goal states.

An environment which is completely known can be described with a state space, as we can

formulate and numerate all of its aspects. If the environment is completely known, and

for ps, a, s1q P T Ñ ps, a, s2q R T , meaning that an action may not have several transitions
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from the same state, then the resulting state space is deterministic. Deterministic state

space searches are what the subbranch of automated planning, classical planning, concerns

itself with. The game of checkers is an example of a domain/environment which has a

deterministic state space representation.

Unknown and partially unknown environments usually have non-deterministic aspects. An

example of this could be the a robotic agent on earth, trying to walk across a busy highway.

It might have a sensor to recognize approaching vehicles, but it cannot predict when exactly

a vehicle will arrive, to precompute a plan. Instead, the search for a strategy needs to

be done live(online), using the sensors to track oncoming traffic. Since we will be working

within known environments, we can fully describe them in a state space, and we can compute

these strategies offline.

State space representation State spaces with many states cannot realistically be repre-

sented by humans using the definition above, as each state needs to be declared individually.

Instead, we can represent the state space compactly by defining a set of state variables V,

where each state is represented as a tuple of variable assignments.

This means a state, i.e. a total assignment, is defined by the values of the variables

v P V . A total assignment α for a set of variables V is a tuple α “ pd1, ..., d|V |q, for which

every variable vi P V is assigned a value di P dompviq in the domain of vi. A set of states

can be defined by a partial assignment, which is an assignment, for which only a subset

of the variables in V are given values. Partial assignments simplify the definition of goal

states and setting non-trivial action constraints.

An action a is applicable in state s, if there exists a state s1 ‰ s for which the transition

ps, a, s1q P T . In that case s is called parent or predecessor of s’, and s’ is called child or

successor of s.

A state s is reachable from state s0 if there exists a sequence of transitions in T ă

t0, t1, ..., tn ą, so that t0 “ ps0, a0, s1q and tn “ psn, an, sq.

A path from s0 to sn`1 is a sequence of actions ă a0, a1, ..., an ą, so that ti “ psi, ai, si`1q

and ai is applicable is si, for i P t0, ..., nu.

Action Languages Action languages are programming languages, which are used in con-

nection with planning tasks. They utilize the compact form of state space representation,

using variable assignments or predicates. A predicate can be viewed as a binary assignment,

since it is either true, or false.

PDDL is one of the action languages used in the Fast-Downward planning system. Through-

out the years, the language has evolved, creating a family of languages with differing levels

of detail and expressivity.

Example - Blocks world domain

(define (domain BLOCKS)
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(:requirements :strips)

(:predicates (on ?x ?y)

(ontable ?x)

(clear ?x)

(handempty)

(holding ?x))

(:action pick-up

:parameters (?x)

:precondition (and (clear ?x) (ontable ?x) (handempty))

:effect(and (not (ontable ?x))(not (clear ?x))(not(handempty))(holding ?x)))

(:action put-down

:parameters (?x)

:precondition (holding ?x)

:effect (and (not (holding ?x))(clear ?x)(handempty)(ontable ?x)))

(:action stack

:parameters (?x ?y)

:precondition (and (holding ?x) (clear ?y))

:effect (and (not (holding ?x))(not (clear ?y))(clear ?x)(handempty)(on ?x ?y)))

(:action unstack

:parameters (?x ?y)

:precondition (and (on ?x ?y) (clear ?x) (handempty))

:effect (and (holding ?x)(clear ?y)(not (clear ?x))(not (handempty))(not (on ?x ?y)))))

Problem domain The domain defines the universal aspects of the search problem. In

this part are defined the types of objects existing in the universe, as well as predicates for

these types.

This is also where all actions are defined. An action has a set of predicates, called the

precondition, and another set of predicates containing the effects of this action. An action

can only be taken, when the precondition is satisfied. Lastly, the cost of the action is set, if

needed.

An example of this is the Blocks world, where there are predicates such as on x y, ontable

x, clear x or holding x. x and y are placeholders for certain object types. In the case of

blocks world, there exist only blocks. The actions are pick-up, put-down, stack, unstack.

Problem definition The problem definition now contains a set of domain objects and

their types, and the initial state of the problem as a set of predicates. We also define all

goal states that lead to a solution of this search problem, using predicates.

State space functionalities We will be viewing a broad spectrum of different problem

domains, so in order to give a sensible overview of search algorithms, we define these universal

black-box functionalities for state spaces.
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• init() - generate the initial state s0

• succ(s : State) - find all successor states

• par(s : State) - retrieve parent state

• cost(a : Action) - calculate the cost of a

• is goal(s : State) - check if s is a goal state

• trace path(s : State) - trace a path from s back to s0

2.2 Forward Search
A forward (chaining) search, is an algorithm which conducts a search for a goal state, starting

at the initial state s0. The planner can generate the initial state, and begin the search there.

The planner expands the current state, meaning it finds all applicable actions from the

current state, and it then generates the successor states. The successors are evaluated

and then added to the state space graph. A successor state is chosen for expansion, and the

steps are repeated, until a goal state is found. If a goal state was found, the planner traces

a path back to the initial state, in which case it reports a successful search, and returns the

sequence of legal actions that lead to a solution.

Algorithm 1 Example of a tree search algorithm

open = [ ]
open.add(init())
while open is not empty do

s Ð open.removeElementpq

open.add(succ(s))
if is goal(s) then

return trace path(s)
end if

end while

2.2.1 Tree Search
A tree search is a search algorithm, which keeps an open list. In every step, it will remove

an state from the open list, and add all the state’s successors to the open list. If the state

is a goal state, it traces back and returns the path from s0 to s. The way in which we

maintain the open list influences the order of states visited and therefore the path to the

goal. There are a great variety of open list implementations, most notably the priority

queue, for which specifically the min-heap is a very efficient way of removing (or popping)

a prioritized element. However there are other sorts of open lists aswell.

2.2.2 Graph Search
A graph search is a specific type of tree search, which additionally maintains a closed list.

This closed list serves as a way to ignore previously visited states, by preventing states that
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are in the closed list to be added to the open list. Beyond the difference in utility, searches

are usually faster when keeping a close list, at the cost of additional memory overhead for

maintaining it. When using closed lists, the option for reopening states is presented. A

state can be removed from the close list, if the state was found on a cheaper path. Usually

a graph search with reopening will return slightly better solution costs that one without.

2.3 Data structures
2.3.1 Search Node
A search node data structure and is a container for the state, it is used instead of a state

in the state space search. It can be described as tuple n “ xs, p,N , fy, where s is the state,

p is the parent, N are the children nodes, and f is the value estimate. Using this container,

the planner can traverse the generated graph.

In most cases, having a lookup table for states and instead wrapping a state ID, will save

memory when initializing new nodes.

2.3.2 Open list
The open list is a data structure, which generally contains nodes that are yet to be expanded.

From the open list are picked the future nodes to be expanded. Depending on the search, a

different type of open list is used. For example, depth first search uses a stack, to order the

elements, whereas breadth first search uses a FIFO (first-in first-out) queue. These searches

base their queue order on the order of generation, and not on any evaluations, so they are

named uninformed searches.

Heuristic search Heuristic search is a term for a group of search algorithms that order

the open list based on a heuristic function. The heuristic function maps assigments to a

value in R`
0 . The heuristic value represents the quality of a node, in terms of the distance

to the goal. It is important to note that the heuristic value is not an exact measurement of

the distance, as the path to the goal is not known at runtime. However many heuristics are

reliable to an extent, some more than others.

The heuristic and uninformed searches can be implemented both as tree as well as graph

searches.

2.3.3 Closed list
The closed list is a list containing nodes which have already been expanded in the search.

The closed list often improves the speed of the algorithm, as it prevents the search engine

from considering previously expanded nodes. There are searches where duplicate elimination

is not needed, or even wanted. Keeping a closed list requires a lot of memory. Close lists

are usually implemented as hash sets.
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2.4 Best first search
Best-first searches have been around since the 1960s, with A* being created as part of the

Shakey projects task planning system. However, best-first searches to this day are some of

the most efficient and consistent heuristic searches discovered.

Best first searches are a type of search algorithm, that explore the graphs by expanding

the most promising nodes first. The value of a node is predetermined by an evaluation

function f, which is based on the current path cost from the initial state g, and the heuristic

function h, where h approximates distance from a goal state.

Different BFS algorithms have different evaluation functions. For example A* uses the

evaluation function f “ g ` h to order the open list. In a sense A* tries to optimize solu-

tion path cost and chooses the path with the presumably cheapest path. With the correct

heuristic, A* can be provably optimal, meaning A* returns an optimal solution if it exists.

Greedy BFS, on the other hand, uses the evaluation f = h, which only depends on the heuris-

tic value. When expanding a node, GBFS focuses on the shortest remaining path to the

solution, approximated by the heuristic, and doesnt care about the path already traveled.

A search is greedy, if the evaluation does not depend on past knowledge, such as g, being

the current path length. Hence the connotation ”greedy”.

In the following we will show some greedy best first algorithms (f “ h), with reopening,

as this additional feature improves solution costs even further, at the cost of some memory

complexity.

Algorithm 2 BFS

openlist Ð new MinHeap ă SearchNode ą Ź Order the min-heap using h,g
s Ð initpq

if hpSearchNodepsqq ă 8 then
openlist.addpSearchNodepsqq

closed Ð new HashMap ă State ą Ź Hash-map storing closed nodes
end if
while not openlist.emptypq do

node Ð openlist.poppq Ź Pop minimum
if not closed.containspnode.state) or gpnodeq ă node.get gpq then

node.get gpq “ gpnodeq Ź Where g returns the distance from root node
if is goalpnode.stateq then

return trace pathpnodeq

end if
for xa, n1y in succ(node) do

if hps1q ă 8 then
n1 “ make nodepn, a, s1q

openlist.addpn1q

end if
end for

end if
end while
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Figure 2.1: GBFS (Algorithm 2) - The tree shown is generated by the GBFS algorithm.
The blue nodes show expanded nodes. The red nodes represent goal states. The green
path showcases the shortest path to goal. The value on edges are action costs, and the
values within nodes are the heuristic values. As mentioned earlier, GBFS expands the
most promising nodes first. After GBFS has expanded n0 and generated n1, n2 and n3, it
chooses to expand n2 first, as its f-value is the lowest h “ 13. After generating and
expanding both n4 and n5, GBFS reveals a goal state n5. It is clear, looking at the
highlighted path in green, that the path chosen by GBFS was not the optimal one. Unlike
A*, which looks for an optimal solution in terms of the path cost, GBFS looks for a
solution with the least amount of actions taken, by purely focusing on the h-value.

Algorithm 2 and the Figure 2.1 depicted above shows the GBFS algorithm as it generates

the tree and traverses it. The blue nodes show expanded nodes, and red nodes represent

goal states. The optimal path to a goal state, in terms of action cost, is highlighted with

green. We can see in this case the algorithm ordered the open list using the minimum of h,

and we can see the expanded nodes are, in each their turn, the lowest f-values for f “ h.

GBFS will always try to take the minimum amount of steps needed, towards the goal. If

there were a goal state with heuristic value 0 (like n5) as a child of the root node, the greedy

BFS will choose this path, no matter the cost of the action leading to it.



Background 9

Algorithm 3 EGBFS(eps)

openlist Ð new MinHeap ă SearchNode ą Ź Order the min-heap using h
s Ð initpq

if hpSearchNodepsqq ă 8 then
openlist.addpSearchNodepsqq

closed Ð new HashMap ă State ą Ź Hash-map storing closed nodes
end if
while not openlist.emptypq do

e Ð drandp0, 1q Ź random double in [0,1]
if e ă“ eps then Ź Exploration

node Ð openlist.getRandompq

else Ź Exploitation
node Ð openlist.poppq Ź Pop minimum

end if
if not closed.containspnode.state) or gpnodeq ă node.get gpq then

node.get gpq “ gpnodeq Ź Where g returns the distance from root node
if is goalpnode.stateq then

return trace pathpnodeq

end if
for xa, n1y in succpnodeq do

if hps1q ă 8 then
n1 “ make nodepn, a, s1q

openlist.addpn1q

end if
end for

end if
end while

A drawback of heuristic search however, is that the heuristic cannot perfectly predict

the distance from goal, it often serves as an approximation. The inconsistencies can lead

to suboptimal searches, which increase search time and memory costs. In many cases this

can even lead to suboptimal strategies being realized. As a remedy, one can introduce a

factor of exploration, as in a feature of randomness. A well-balanced search would exploit

the heuristic whenever it is predicting correctly, and disregard it (instead exploring the

state space) otherwise. The goal of the epsilon-greedy BFS (or EGBFS) is to balance

heuristic exploitation with random action exploration. The version of the EGBFS used in

the experiments for comparison, have been based on the work of Valenzano et al.[5]. It

uses knowledge-free exploration, in other words it uses an exploration parameter ϵ to choose

between random and greedy open-list selection.
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Figure 2.2: EGBFS (Algorithm 3) - For EGBFS, we start the tree off in the same fashion
as for GBFS. Since EGBFS is a greedy search, the open list order is based on only f “ h
the heuristic. First EGBFS expands the root node n0, and generates n1, n2 and n3. It
then expands n2, because it has the smallest f-value. However, in the next step, the search
chooses to explore a little, so a random node is picked from the open list, namely n3. It
was not supposed to be picked, but due to the introduced exploration, we expand n3 and
find a goal node n5 as its successor.

Algorithm 3 and the figure 2.2 depicts an epsilon greedy variant of the BFS class. The

greediness is visible due to nodes being picked based only on the heuristic, with some prob-

ability of a random element being chosen from the open list. This allows for new paths to

be found, that the heuristic might deem suboptimal.
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Contribution

3.1 Explicit and Trial-based open lists

So far, all the open lists we have viewed were examples of explicit open lists. However, we

can simulate the popping of an element by traversing the generated search tree, until we

reach a node contained in the open list. The traversal of the tree until reaching an open

node, and the subsequent expansion is called a trial.

3.1.1 Explicit open list (OL)
The open list contains static tuples of nodes with f-values. The next open node to expand

is selected by retrieving the top element in the list, as it contains the node with the smallest

value.

This is primarily done with priority queues, for which the min-heap is the best candidate.

The min-heap’s primary purpose, is to provide quick removal of the minimum element. It

does so in Op1q, and manages element insertion in Oplog nq, where n is the amount of nodes

in the min-heap.

3.1.2 Trial-based open list (TOL)
In the trial-based selection, the process begins at the root node and an action is continuously

chosen based on the selection policy, until a previously unexpanded (i.e open) node, in the

frontier, is reached. The frontier of a tree is the set of leaf nodes in the tree. In order for a

node in the frontier to be picked for expansion, each action on the path from n0 to the leaf

node must be selected, in order.

The Algorithm 4 below shows a version of a trial-based open list algorithm, with explo-

ration. The algorithm selects the best-value successor with probability p1 ´ epsq, otherwise

picks a random successor. For TOL, this algorithm is used repeatedly, until a leaf node is

chosen, in which case TOL expands the node.
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Algorithm 4 Select Action(eps)

node Ð SearchNodepinitpqq

r Ð random doublep0, 1q

if r ă“ eps then
node Ð select randompnode.get childrenq Ź Select random successor

else
node Ð choose min nodepnode.get childrenq Ź Child with min. f-value

end if
return node

In comparison to keeping an ordered list and popping the minimum, the trial-based open

list needs to compute a path to the frontier every time a node is to be expanded. For

maximum search tree depth d and maximum degree c(i.e the maximum amount of children

to one parent), a trial takes Opd log cq time, as we need to choose a successor from the list

of children in Opcq, at most d times. The generation of a new node and its addition to the

tree takes constant time, however, which adds a constant factor Opcq to the overall time.

Overall, for an explicit open list with n number of elements, the time to pick a element and

adding its (at most c) successors to the list is Opc log nq , whereas a trial needs Opdcq time.

The tree depth is mostly in Oplog |S|q, S being the set of states in the state space. However

in extreme circumstances, when the tree has a very long chain of nodes, it is worst case in

Op|S|q, and therefore the overall worst case time compl. for 1 trial in TOL is Opc|S|q, and 1

iteration for OL is Opc log nq. The maximum degree c is usually smaller than the tree depth

d. The explicit open list is quicker in general, however with a high maximum degree d, trial-

based open lists can surpass the explicit version. The slight overhead as shown in Schulte

and Keller’s paper[4], becomes apparent when working on larger sets of problems, as the

trial-based version of GBFS has lower task coverage (number of successful tasks run) than

the explicit GBFS. This does not come as a surprise, as with large state spaces, trial-based

searches will mostly lag behind.

The immutability of the open list means that it is impossible to update an entry in the

list. Instead, a new entry with the updated value must be entered. This makes the open list

contain older versions of potentially expanded nodes, creating additional memory and time

overhead. For the trial-based action selection, the entire tree needs to be constantly kept

updated, as when back propagating utility values. We need to backup the frontier’s utility

values, as we need them for the action selection policy. This means the selections made are

dynamic and versatile, as any changes in the tree will immediately affect the expansions.

It does come with the price of additional time complexity, as the backup requires to move

up the tree, until reaching the root node. With maximum tree depth d, this requires an

additional Opdq time. When reopening, we additionally need to forward propagate the g-

value to the sub-tree with current node n as root, because the path from initial node to n

was found on a cheaper path. This adds a worst case time overhead of Op|S|q, as the subtree

can have a size of up to |S| ´ 2.

Searches which utilize the trial-based action selection are called Trial-based heuristic tree

searches (THTS). For the ease of notation later on, we will call them trial-based open list
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searches (TOL) instead. TOL are not necessarily tree searches, such as defined in the

previous chapter. The word tree in this case refers to the maintenance of a tree structure

to enable tree traversal and action selection.

Although TOL-GBFS is slightly slower than GBFS, as we will see with the use of explo-

ration, the tree structure used in TOL is able to use exploration to a much larger extent.

Figure 3.1: The frontier in the tree is highlighted in yellow. The frontier is the set of all
leaf nodes in the tree. With , the trial begins at v1, and picks an action according to the
policy. This continues until one of these highlighted, leaf nodes is reached. The search
algorithm then expands the node, and generates its successors. These successors then are
then added to the tree, and they become the new leaf nodes.

Figure 3.2: This is an example of an open list with the same search setting as for the tree
above. All the nodes, which were highlighted in yellow, are contained within this list. An
open list search would pick a node in the list according to the policy, and expand it just
the same. But instead of adding the successors to a tree, we add them to the list itself.
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The frontier in a TOL search tree, is equivalent to the nodes contained in the open list.

In the open list, the nodes are ordered according to the evaluator values. In the trial-based

open list, the evaluator values are used when choosing an action

3.2 On balancing exploration and exploitation
Having showcased TOL-GBFS and the GBFS having explored the inner workings of both

algorithms, we proceed to compare them in terms of exploration. Exploration is knowledge-

free, when the exploration parameter is fixed.

3.2.1 Knowledge-free exploration
The open list contains all leaf nodes, which still need to be expanded. Choosing a random

element in the open list spreads the probability of being chosen equally among all the nodes,

because the open list doesnt keep track of where its node elements are located in the tree.

The removal of an element in an open list is a one-time action and can be considered atomic

with respect to the search algorithm.

In contrast, TOL (trial-based open list) can randomize the choice of successor at most d

times, d being the maximum tree depth. Starting a trial from the root, we can in each step

choose a random successor among the set of children, until we reach a leaf node. Trial-based

open list selection has multiple iterations, in which we can enforce exploration, and so the

way in which we want the search to explore the tree can be conveyed in more detail. For

TOL, we might be choose a random action, and then follow the most promising path in the

leftover subtree for a while, only to later on choose another random successor.

An arbitrary node selection in the open list is a one-time, completely random endeavor.

The TOL adaptation of EGBFS seems to explore alot more than the standard implementa-

tion, even with same exploration coefficient. This can be seen in the example figure, Figure

3.3. This is because the exploration may happen at each iteration of the action selection,

unlike with the open list. It makes exploration with TOL more likely to select nodes that

are in upper layers, rather than the lower (deeper) layers of the tree. The deeper the tree,

the more TOL with fixed (or knowledge-free) exploration reduces the probability of the leaf

node with the best f-value being chosen. Knowledge-free exploration such as mentioned

here, uses a fixed probability parameter for randomness. Given a very large search tree,

using a fixed exploration factor would make it practically impossible for TOL to choose the

most promising node in the frontier, as p1 ´ ϵqd, even for small ϵ, converges to 0 for large

tree depth d. Even miniscule amounts of exploration can lead to the most promising node

rarely being chosen. This disregard for heuristic exploitation increases exponentially with

tree depth. The practicality of exploration might be better suited when a variable parameter

is introduced.
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Figure 3.3: TOL-EGBFS with fixed exploration. The green nodes represents nodes which
were chosen in the trial, when actions are selected. Red nodes are goal nodes. The best
path according to the heuristic would be v2 and then either v4 or v5. Due to exploration,
another path is chosen, and in our case leads to a goal.

In figure 3.4 the TOL-EBGFS algorithm is selecting actions to reach an open node. Since

in the last iteration the f-value was back propagated to the parent, the left parent is the

most promising node. However due to a random action selection, the right node is selected

instead and is expanded. The expansion reveals a goal state, that wouldnt have been chosen

without exploration. Using an open list with ϵ as the exploration factor, would have a ϵ{3

chance to expand this node, whereas a TOL search has ϵ{2. This difference only increases

in magnitude with elevated tree depth.

Figure 3.4: Example of choosing a leaf node in an open list vs. trial-based open list. The
open list knows nothing of the tree besides having the nodes in the frontier, and so it has
only 2 options: choosing the most promising node, v9, or another leaf node at random. For
the TOL, the probabilities are much different. Even in a such a shallow tree, the most
promising node, which is at depth 4, has a lower probability of being chosen than a node
in the upper layers, such as v6. A fixed exploration parameter in TOL promotes the
generation of the most shallow branches first.
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Even though both searches are using the same exploration coefficient, the TOL spreads out

the probabilities much more evenly. TOL is more likely to expand v6 as it is to expand the

most promising node, v9. The most promising node almost triple as likely to be expanded

using explicit open lists than with TOL. The upper layers of the search tree have high chance

of exploration with TOL, and it decreases with tree depth.

Algorithm 5 TOL-EGBFS(eps)

while not is timeoutpq & not is plan foundpq & not out of memorypq do
perform trialpq

end while
return plan

procedure perform trialpq

node Ð initpq

while node.is closedpq do Ź While node is not a leaf node
node Ð select actionpepsq

end while
if spnodeq in S˚ then

return extract pathpnodeq

end if
Initializepnodeq

backup queue.addpnodeq

for n in backup queue do
backuppnq

if not n.equalspinitpqq then
backup queue.addpparentpnqq

end if
end for

3.2.2 Knowledgeable exploration
The issue with using a fixed exploration parameter combined with TOL, is that the heuristic

exploitation is increasingly ignored with longer tree depth. Knowledge-free exploration

comes with the price of not being able to contain itself. The thought of knowledgeable

exploration is to bound the exploration in certain ways, so that we reduce its damaging

effect on the heuristic exploitation. It is knowledgeable, because it uses search information

stored in the nodes. Such information could for example be a visited counter, where each

node can tell you how often it has been visited so far. Another example is the current

node depth, meaning the path length starting from the root. These variables give us the

opportunity to vary exploration, depending on the current node placement, or how often it

is chosen. We can do this by creating a function f : N ÞÑ Rr0,1s, where a node n P N is

given a certain probability of exploration.

Even simple functions, that are easily computed, can be used to vary exploration.

• Linear Path length pTOLPL1q: Keeping track of the longest path in the tree with
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depth dm, and using it to decrease ϵ based on current tree depth dnode.

ϵnode “

ˆ

dm ´ dnode
dm

˙

ϵ

This function linearly reduces exploration with increasing tree depth. The reason for

fixed exploration not being that good, is that in deep trees, the most promising leaf

node has a miniscule chance of being chosen for expansion. This function attempts

to mediate the exploration by removing some of its potency in the deeper layers. A

search using a fixed parameter ϵ on a tree of depth d will have a probability of at least

p “ p1 ´ ϵqd, of choosing the most promising leaf node. A search using linear path

length increases the lower bound probability to p “
śd

i“1 1 ´ d´i
d ϵ.

It still promotes exploration in the shallow parts of the tree, in an attempt to start

the search off well by exploring the state space first. Then, as the search progresses

and the search tree grows in depth, it will exploit the heuristic more. This way, the

search is more likely to find many different paths at lower layers. Gradually, however,

the search hones in on the goal(s) using the heuristic.

We can extend this logic to create the quadratic path length pTOLPL2q, which

constrains exploration at a faster rate, going into deeper layers. The function can in

fact be generalized to a polynomial path length function pTOLPLmq of degree m P N :

ϵnode “

ˆ

dm ´ dnode
dm

˙m

ϵ

• Visited count pTOLV C1q: Keeping a visited count a for each node can be very

helpful in limiting exploration in areas where it is overpowering the exploitation. The

idea here is to find the child which paths to the most promising node in the subtree

(namely child*) and reduce exploration based on its visit count.

ϵnode “

ˆ

vchild˚

vnode

˙

ϵ

Since we are searching through a tree, which is acyclic, the visited counters are ordered

by tree hierarchy. A parents visit counter will always upper bound the childs. Meaning

if the child has a visited counter equal to the parent, that the child was chosen any

time the parent was. This visited counter is good way to quantify the the amount of

exploitation vs. exploration happening in a local area of the search tree. If child* has

been exploiting the heuristic alot, then the value of epsilon wont change by much. This

emphasizes the need for exploration in parts of the search tree in which exploration

is scarce. At the same time, it reduces exploration in highly volatile parts of the tree.

This function, however, does not necessarily decrease epsilon going down the tree,

because the fraction is dependent on only local node values.

• Geometric avg. of visited count and linear path length pTOLPL1,V C1q:

ϵnode “

d

vchild˚pdm ´ dnodeq

vnodedm
ϵ
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The two functions above focus on two different concerns for limiting exploration. The

combination of the two fractions using the geometric average would include both concerns

into a single function.

Figure 3.5: Here we showcase the same search tree as above, and the probabilities of the
leaf nodes being picked with TOL using linear path length pTOLPL1q, quadratic path
length TOLPL2 and a fixed parameter. TOL with path length pTOLPLq have a higher
probability of picked the most promising leaf node, v9. TOLPL is better at exploiting the
heuristic in the long run, but in the early stages allow similar exploration as TOL.
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Algorithm 6 TOLLP1,V C1-EGBFS(eps)

while not is timeoutpq & not is plan foundpq & not out of memorypq do
d max Ð 0
perform trialpq

end while
return plan

procedure perform trialpq

node Ð initpq

while node.is closedpq do Ź While node is not a leaf node
d Ð node.get distance from rootpq

c Ð node.child with best hpq Ź can return a list of children
vc Ð sum visited countpcq Ź Sum of visited count of children in c
node eps Ð sqrtppd max ´ dq ˚ vc{pd max ˚ node.get visited countpqqq Ź local

exploration probability
node.inc visitedpq Ź Increase visited counter
node Ð select actionpnode epsq

end while
if spnodeq in S˚ then

return extract pathpnodeq

end if
Initializepnodeq

backup queue.addpnodeq

d Ð node.get distance from rootpq

if d ą d max then Ź Keeping d max updated
d max Ð d

end if
for n in backup queue do

backuppnq

if not n.equalspinitpqq then
backup queue.addpparentpnqq

end if
end for

3.2.3 Monte Carlo methods
Monte Carlo methods[1] address the issue of balancing exploration and exploitation, by

choosing the child with the highest expected reward value. It calculates the average reward

for all children, and picks the child with the highest average. The reward is a value rep-

resenting the quality of the node. In game trees, the reward represents the result of the

simulation.

Multi Armed Bandit problems (MAB) are solved taking a similar approach to balancing

exploration and exploitation. Consider a MAB with n arms, and random variables Vi for

1 ď i ď n, where Vi represents the i-th arm of the MAB. The goal is to approximate the

unknown, true means of the rewards for each arm µi “ ErVis, by considering independent,

identically distributed samples. Using a fixed confidence variable 0 ă δ ă 1, we continue

sampling the arms until we can choose the arm with the best mean µi with probability at

least 1 ´ δ.

Median Elimination (ME) is an algorithm for the MAB problem. It chooses a best arm by
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iteratively eliminating arms with expected reward ErVis smaller than the median of all the

arms, until only one arm is left. The algorithm takes as input pε, δq-tuple. It outputs an

ε-optimal arm with probability at least p1 ´ δq[2]. An ε-optimal arm is an arm for which

the expected reward is at most ε less than the optimal reward. The elimination of ”bad”

actions allows the search to exploit more optimal paths. The resulting tree size is reduced,

so that search times are generally increased It at the same time reduces search time by not

exploring the removed actions. The downside to removing actions from the search tree, is

that the successor might later turn out to lead to a goal. Considering the confidence value

δ “ 0.1, the action removed has a probability of 0.1 of actually having an expected reward

above the median value. In large state spaces with many states, this mishap is bound to

happen eventually.

Algorithm 7 ME(error,delta) - [2]

l Ð 1, errorl Ð error{4, deltal Ð delta{2
while |A| ą 1 do Ź While there is more than one action left

Sample all actions a P A
1

perrorl{2q2 log 3{deltal
-times

calculate the average of each action µa

if µa ă Medtµa|a P Au then
remove a from A

end if
l Ð l ` 1, errorl Ð error ˚ 3{4, deltal Ð delta{2

end while
return best action a

There is however no way of coming back once an action is removed. An approach to

remedy this, could be to instead save the actions that are removed with ME in a list of

forgotten actions. If the prediction of it being a bad action to choose from, is true, we dont

care about these forgotten actions. However, in the case of a misprediction, or when none

of the ”better” actions lead to the goal, we can add them to the children list again.

State space search has a slightly different reward system than game tree search. In a state

space search, the reward is the f-value that is back propagated at the end of each trial. The

median elimination algorithm can trigger at each inner node, when all children have visited

counts above the bound set. It then calculates the median, and removes all actions with

an average reward less than the median. However, this may sometimes lead to a conflict

between the f-evaluator and ME. In the case that ME tries to remove the best child in terms

of the f-value, we will prioritize the evaluator and keep the child.
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Algorithm 8 TOL-EGBFS(eps,error,delta) with ME, without forgotten list

while not is timeoutpq & not is plan foundpq & not out of memorypq do
perform trialpq

end while
return plan

procedure perform trialpq

node Ð initpq

while node.is closedpq do Ź While node is not a leaf node
node.inc visitedpq

l Ð node.lpq Ź l is the amount of times Median elimination has been triggered on
this node before

errorl Ð error{4 ˚ p3{4ql, deltal Ð delta ˚ p1{2ql

if all children have been visited at least
1

perrorl{2q2 log 3{deltal
-times then

m Ð Median of all childrens average rewards
for child in node.get children do

if child.average reward ă m and child does not have best f-value then
remove child from node.children

end if
end for
node.inc lpq Ź increment l

end if
node Ð select actionpepsq

end while
if spnodeq in S˚ then

return extract pathpnodeq

end if
Initializepnodeq

backup queue.addpnodeq

for n in backup queue do
backuppnq

if not n.equalspinitpqq then
backup queue.addpparentpnqq

end if
end for0



4
Experiments

4.1 Fast Downward
Fast-Downward is a free and open-source, redistributable project, which was founded in

2003 by Malte Helmert [3] & Silvia Richter. A few years later, Fast-Downward merged with

LAMA, which was founded by Silvia Richter & Matthias Westphal based on the original

FD.

FD eventually merged with FD-Tech in 2011, which was made by Erez Karpas & Michael

Katz. This formed the system which is currently known as Fast Downward today.

The goal of the FD project was to build an independent, classical AI planning system.

Fast-Downward uses many different evaluators and heuristics to estimate distance from goal

state and to determine which states to expand next. Fast-Downward has a choice of different

search algorithms as well, which help us find a path toward the goal. There are many search

options available, such as setting time or memory limits, choosing between tree or open-list

search-engines, reopening closed nodes, or setting preferred operators.

FD is constantly being updated, and has remained lightweight and fast over the years,

becoming one of the most recognized and consistent planning systems contributing to the

AI planning community1,with many of the top planners based on the FD codebase.

1 https://planning.wiki/ref/planners/fd
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4.2 Experimentation and comparison of trial-based open list (TOL) and
explicit open list (OL)

We now run the default optimal suite, comprised of 64 domains with 1797 tasks in total.

However, there are certain domains with very costly plans, and so the relative differences of

these tasks are much higher. Other tasks might be overlooked in terms of cost, so instead

there are two batch jobs, where high-cost (over 100’000 per task) and the lower cost ones are

seperated. In the costly table we have the domains parcprinter-08-strips and parcprinter-

opt11-strips, all the other 62 domains are in the lower-cost table. Since the costly batch

consists of few tasks, any statistical analysis on it will be less precise than on the cheap

batch, which is larger in number of tasks by a factor of 35. We will therefore be using the

cheap task batch for analysis. We use the hFF heuristic, as it has a very fast translation

time. The FF-heuristic is a heuristic than can very quickly compute the heuristic values of

a state space, and this will leave more time for the search to complete.

4.2.1 (OL)-EGBFS vs TOL-EGBFS
Cheap tasks with reopening (1747)

Results OL-0.3 OL-0.2 OL-0.1 OL-0.05 TOL-0.3 TOL-0.2 TOL-0.1 TOL-0.05 TOL-0.01

Coverage 1506 1498 1494 1494 1137 1306 1444 1505 1548

Cost 128504 128115 127660 129783 105202 111300 119614 120550 131376

Memory 35229036 34645528 36120352 38496812 136844072 46611520 35180276 33295648 36588732

Search Time 0.15 0.15 0.14 0.14 1.76 0.62 0.26 0.17 0.19

Cheap tasks without reopening (1747)

Results OL-0.3 OL-0.2 OL-0.1 OL-0.05 TOL-0.3 TOL-0.2 TOL-0.1 TOL-0.05 TOL-0.01

Coverage 1506 1505 1497 1492 1134 1294 1454 1501 1548

Cost 127773 128719 131403 129850 109667 115328 120750 122749 131391

Memory 34121888 34483204 38025116 37775024 158902144 50886072 36366868 34254224 36970164

Search Time 0.15 0.14 0.14 0.14 1.89 0.67 0.26 0.18 0.19

OL-EGBFS seems to have a relatively consistent coverage when varying ϵ. This can

be explained by the way the epsilon greedy open list from Valenzano et al.[5] chooses a

random successor. The min heap used for the open list is implemented with a vector. This

vector is maintained is such a way, that the minimum value is the first element. Consider

a node element with placement i in the vector. The children of this node in the min heap,

correspond to the elements with placements 2i, 2i ` 1 in the vector. Since a min heap

is a binary tree, this is well-defined behaviour. The random selection from the vector is

therefor equivalent to a random selection from a min heap structure, and our arguments

from chapter 3 still hold. Since OL-EGBFS can choose a random successor without adding

complexity, the search times and coverage are very similar. For TOL, however there is a

decrease in coverage, search time and memory with decreasing ϵ. The smaller ϵ-value leads

to exponentially less exploration, and as a result, evaluations. In evaluating less states, we

find increasingly expensive solutions. Since the searches for TOL without reopening are
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worse in every aspect, we will continue comparisons using only searches with reopening.

4.2.2 TOL-EGBFS vs TOLPL2,V C2-EGBFS (PV2)

Cheap tasks with reopening (1747)

Results TOL-0.2 TOL-0.1 TOL-0.05 TOL-0.01 PV2-0.3 PV2-0.2 PV2-0.1 PV2-0.05 PV2-0.01

Coverage 1309 1444 1504 1548 1325 1407 1477 1510 1544

Cost 111524 119798 120797 131521 113474 115080 120943 122721 129729

Memory 46482632 35343332 33600284 36634580 47783252 39184080 36043580 34637792 37309104

Search Time 0.75 0.32 0.22 0.19 0.79 0.45 0.29 0.22 0.19

When comparing PV2 to TOL, the general increase in quality with decreasing ϵ is still

visible, but less extreme. PV2-0.3 vs TOL-0.3 shows an increase of almost 200 coverage on

the optimal suite. However, the relative coverage improvements also decrease for ϵ Ñ 0, as

for 0.01, PV2 lags behind slightly in coverage to its TOL counterpart.

4.2.3 TOL-EGBFS with ME

Cheap tasks with reopening and exploration ϵ “ 0.2 (1747)

Results (0.2-0.1) (0.2-0.05) (0.4-0.1) (0.4-0.05) (0.6-0.1) (0.6-0.05) (0.8-0.1) (0.8-0.05)

Coverage 1372 1376 1393 1387 1394 1396 1401 1398

Cost 159025 158404 163060 165543 165862 166122 167251 173801

Memory 108452204 105793064 67260888 68005452 60134664 56523064 55252500 55069228

Search Time 1.65 1.61 1.28 1.28 1.11 1.08 0.97 0.93

Cheap tasks with reopening and exploration ϵ “ 0.3 (1747)

Results (0.2-0.1) (0.2-0.05) (0.4-0.1) (0.4-0.05) (0.6-0.1) (0.6-0.05) (0.8-0.1) (0.8-0.05)

Coverage 1335 1343 1361 1363 1362 1362 1363 1370

Cost 152371 154835 156696 155729 161729 161864 167232 164805

Memory 175805344 160400692 90151524 87744812 73113596 71566088 65689780 62464568

Search Time 3.10 2.96 2.11 2.04 1.73 1.64 1.40 1.33

Already just looking at TOL with ME, we can see the difference to the results for TOL

and OL from above. The coverages are lower. This might be due to removing children,

only to add them again later, when all the other options have been considered. Although,

eventually TOL with ME should find the same solutions as TOL, the removal of children

slows the process down. For low ϵ, TOL with ME seems to speed up, in line with the

other TOL searches. For the perror, deltaq parameters, coverage quality favors higher error

acceptance and a relatively low confidence value.
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4.2.4 Comparison
Having used the default optimal suite to find the quickest versions of each search, we can

now move on to the default satisficing suite. It consists of 2742 tasks in 83 domains. Again,

as in the last section, we will remove very expensive tasks, as they influence the cost too

much for useful assessment. We will remove 2 domains, namely parcprinter-08-strips and

parcprinter-sat11-strips. This leaves us with 81 domains and 2692 tasks.

Satisficing track cheap tasks, with reopening (2692)

Results ME(0.2,0.8,0.05) ME(0.2,0.8,0.1) PV2-0.05 PV2-0.01 TOL-0.05 TOL-0.01 OL-0.3 OL-0.4

Coverage 1664 1665 1897 1964 1841 1997 1878 1851

Cost 88642 88199 91038 94722 90743 94361 99130 97049

Memory 105209140 100244792 49293224 47105748 53639352 44974748 46687472 48394208

Search Time 1.72 1.68 0.64 0.47 0.76 0.46 0.54 0.59

The combined experiment on the satisficing track bring the quickest searches together. In

very last place, with more than double the memory usage of fellow searches, we have TOL

with ME. The coverage is low, at 1665, and the small increase in cost doesnt make up for

the big difference in search time.

The OL searches have the worst cost of all searches, but the coverages are much better than

TOL with ME. The memory used is also lower, which puts another point in how inefficient

TOL with ME actually is. The OL searches are however worse in all aspects but memory,

comparing to the top 2 competitors PV2 and TOL.

That being said, TOL-0.01 takes the spotlight. Exploration in a TOL search exponentially

decreases for linear decrease in ϵ, and has given better results even, than using a varying

factor.

Comparing PV2-0.05 and TOL-0.05, we can see that PV increases coverage up until a certain

lower bound 0.01 ă b ă 0.05, as with memory and search time.

Figure 4.1: Figures showing evaluations for OL-0.3 vs TOL-0.01 (left), OL-0.3 vs PV2-0.01
(middle) and OL-0.3 vs ME-0.2-0.8-0.05. Both TOL and PV2 seem to grow linearly in
evaluations. TOL with ME and ϵ “ 0.2, on the other hand has a line forming the upper
bound. The upper bound seems to be polynomial, around x2. TOL with ME search has a
lower coverage, because it evaluates too many states, from having too much exploration.
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Conclusion

In conclusion, the TOL search as first mentioned in Schulte and Keller[4] by the name

THTS can be very advantageous for exploration. Splitting the task of producing a frontier

node up into indivual action selection allows for a variety of methods to be used, that is

infeasible for OL search. The action selection can be modeled as a multi-armed bandit

problem for solutions stemming from statistical decision theory, such as median elimination.

Although median elimination was showcased to not be efficient, the same might not be

said from other methods. Even-Dar[2] mentions successive elimination as an alternative

PAC-Bound (Probably Approximately Correct) algorithm, which might be more effective.

Even so, other, simpler methods for balancing exploration in TOL are shown to have an

impact. TOLPL2,V C2 uses a geometric average of quadratic path length and quadratic

visited count, to reduce exploration more than that of a regular TOL search. TOL with

exploration parameters all have in common, that the parameter should remain relatively

small. Exploration explodes in deeper search trees. The best-f leaf node at a depth 100

will be picked with the low probability of 36.6% for a fixed exploration parameter ϵ “ 0.01.

While decreasing the exploration in deeper layers of the tree can remedy this issue, using

a function declining in depth such as polynomial path length (TOLPLn) brings in new

problems. The non-best leaf nodes in deep layers have almost no chance of being expanded,

by far less than in TOL, and infinitesimal compared with OL. Additionally, polynomial

path length provides negligible support for exploitation in the upper layers of the tree. The

search might be better off with exploration increasing in deeper layers instead. Changing

polynomial path length, so that exploration increases in deeper layers can perhaps fix or

lessen the issues, while still keeping best-f nodes the priority.

Although TOL-0.01 came through on top in our experiments, there is ample chance for

there to exist methods to balance exploration in more consistent ways. But although Monte

Carlo methods and PAC-algorithms balance exploration in their own right, the inner pro-

ceedings differ to ϵ´Exploration. With MC and PAC, there is no randomness in the sense

of choosing an arbitrary action, but there is a certain amount of doubt that the action was

not up to standards. With ϵ´Exploration, we doubt an already given estimate of the best

action, and with some probability we take another one instead. The differences make it
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difficult to find a seamless combination of the two procedures, in which neither party comes

in conflict with the other.

TOL is a powerful way to elaborate the selection process of a frontier node. It allows

a refined process of selection, in which exploration can be manipulated in minute detail.

However the chaining of such selections also reveals its vulnerability, as it gradually hinders

the exploitation of the heuristic.
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