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Abstract

Carcassonne is a tile-based board game with a large state space and a high
branching factor and therefore poses a challenge to artificial intelligence.
In the past, Monte Carlo Tree Search (MCTS), a search algorithm for
sequential decision-making processes, has been shown to find good solu-
tions in large state spaces. MCTS works by iteratively building a game
tree according to a tree policy. The profitability of paths within that tree
is evaluated using a default policy, which influences in what directions the
game tree is expanded. The functionality of these two policies, as well
as other factors, can be implemented in many different ways. In conse-
quence, many different variants of MCTS exist. In this thesis, we applied
MCTS to the domain of two-player Carcassonne and evaluated different
variants in regard to their performance and runtime. We found significant
differences in performance for various variable aspects of MCTS and could
thereby evaluate a configuration which performs best on the domain of
Carcassonne. This variant consistently outperformed an average human
player with a feasible runtime.
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1 Introduction
Carcassonne is a tile-based board game for between two and five players (Wrede,
2005) which poses an interesting challenge to artificial intelligence. The board
is iteratively built by the players, who try to shape it to their own advantage.
In consequence, a significant branching factor emerges via the possibilities of
expanding the board over the course of 72 rounds of play, leading to more than
1040 possible board configurations (Heyden, 2009). In addition, the different
possibilities of placing meeples (see Section 2.1) add to the branching. Conse-
quently, there are roughly 10192 possible states the game can be in, as shown
by Heyden (2009).

A comparable domain in that regard is the game Go, for which, despite
decades of research, a truly strong computer player wasn’t developed for a long
time due to its large branching factor and consequently large state space (Bouzy
and Cazenave, 2001). When AlphaGo beat Fan Hui back in 2015, it was the
first time a program had won against a professional Go player (Silver et al.,
2016), nearly 20 years after DeepBlue beat Garry Kasparov, the world’s leading
Chess player at the time.

AlphaGo used the Monte Carlo Tree Search (MCTS) framework for handling
Go’s large state space (Silver et al., 2016). In the past few years, the MCTS
framework has been shown to handle other domains with a large state space well
(Browne et al., 2012), e.g. Hex (Arneson et al., 2010), Lines of Action (Winands
et al., 2010), Settlers of Catan (Szita et al., 2009) and self-driving cars (Lenz et
al., 2016).

In regard to previous research on computers playing Carcassonne, Heyden
(2009) concluded that the Star2.5 algorithm, an adaptation of Minimax search
with α-β pruning, managed to outperform both an MCTS variant, as well as
advanced human players in Carcassonne. However, she only tested one MCTS
variant, and fails to describe it in any great detail. Additionally, she does not
report on the runtimes of her implementations. Ameneyro et al. (2020), on
the other hand, report to have found a variant of MCTS which “consistently
outperformed the Star2.5 algorithm” (p. 2343), attributing this to the ability of
MCTS to “find long-term strategies” (p. 2349). Their MCTS variant is also not
described in much detail. Both papers only mention that they used UCT as a
tree policy (see Section 3.3.3).

Ameneyro et al. (2020) also considered MCTS-RAVE, which uses the all-
moves-as-first (AMAF) heuristic. MCTS-RAVE assumes that there will be a
similar outcome from an action regardless of when it was performed. It does
this by assuming an AMAF-value for each action regardless of the state it was
played at. MCTS-RAVE proved to be profitable for Go (Gelly and Silver, 2011),
yet Ameneyro et al. (2020) concluded that MCTS performed better without the
AMAF heuristic.

In this thesis, we will be considering and optimising Monte Carlo Tree Search
on the domain of two-player Carcassonne. We will be testing and comparing
different variants in regard to their performance and runtime, in order to ap-
proximate an optimal MCTS variant.

In the next chapter, we will be introducing Carcassonne and the basic idea
of MCTS in an effort to make the thesis self-contained. Thereafter we will be
introducing relevant variable aspects of MCTS. In Section 4 we will cover the
detailed results of our experiments, in order to reach a conclusion in Section 5.
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2 Background
2.1 Carcassonne
Carcassonne is a tile-based board game for between 2 and 5 players which in-
volves placing a total of 72 tiles to create a landscape consisting of roads, cities,
fields and monasteries. The players aim to claim these in order to obtain points,
which is done by placing meeples. It is a perfect information game despite the
randomness of drawing the tile due to the fact that all players share their in-
formation (Osborne and Rubinstein, 1994). For this thesis, we will only be
considering Carcassonne for 2 players and will therefore introduce it as such.

Each player is dealt 7 meeples. The players take turns in executing the
following sequence of actions:

1. Drawing a tile from the deck.

2. Placing a tile.

3. Optionally placing a meeple on the placed tile.

The following sections will cover the rules involved in the three steps.

2.1.1 Placing a tile

Each tile has a distinct pattern, which can include monasteries, intersections
and/or parts of cities, roads and fields. The tiles can only be placed such that
the roads, fields and cities are continued. In the rare case that this shouldn’t
be possible, the card is discarded and the player has to draw a new tile.

2.1.2 Placing a follower

The player may place a meeple on and thereby occupy either a monastery, a field,
or on an unfinished road or city on the card they have placed. The following
rules must be adhered to:

• Only a single meeple may be placed at once.

• The meeple may only be placed on the card which has been drawn in the
previous step.

• The meeple can take the role of a thief, a knight, a monk or a farmer by
placing them on a road, city, monastery or field respectively.

• On a single connected road, city, field or monastery only a single meeple of
any player can be placed at any given time, regardless of their distance.1

1Despite this rule, it is possible to have a city, road or field occupied by multiple players,
if two unfinished roads, cities or fields are both occupied and later connected.
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2.1.3 Counting the points

Points are generated by completing parts of the map while having followers
placed on the completed part. There are three ways to obtain points during the
game:

1. A road is completed if both ends reach a border, which can either be an
intersection or a city. The player whose follower is placed on the completed
road earns 1 point per tile which the road consists of. If there are multiple
followers placed on the road, the player with the most followers gets the
points. If both players have the same amount of followers on the road,
both get the points.

2. A city is completed once it’s completely surrounded by walls, without
gaps. The player who occupies the city earns 2 points for each tile the
city consists of, as well as an extra 2 points per pennant, which can occur
on tiles with cities on them. If there are multiple followers placed on a
city, the player with the most followers gets the points. If both players
have the same amount of followers on a city, then both get the points.

3. A monastery is completed if it is fully surrounded by 8 tiles. The player
who occupies the monastery then earns 9 points.

At the end of the game, the points for occupying fields are distributed. Fields
are separated from each other by roads and cities. The field is occupied by
whichever player has placed the most followers on a given field. The occupant
of a field gains 3 points per completed city which borders on the field. If both
players have the same amount of followers on a field, then both get the points.

Additionally, at the end of the game each occupied, yet non-completed road,
city and monastery the occupying player gains 1 point per involved tile.

2.2 Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) is an uninformed search algorithm, used for
sequential decision making processes. It combines the Monte Carlo method,
with reinforcement learning in order to approximate an optimal strategy for
traversing a state space in form of a tree (Browne et al., 2012). We define a
state space as the set of all possible states which the game can be in. The state
space can be represented as a game tree, whereby the nodes represent the states
and the edges represent actions which lead from one state to the next. Thereby
for a parent node vp with a child vc, the parent-child relation represent the fact
that the state represented by vc can be reached by executing an action at the
state represented by vp. The Monte Carlo method is hereby defined as a type
of algorithm which uses random sampling as a means of obtaining numerical
results (Metropolis and Ulam, 1949). Reinforcement learning has been defined
by Kaelbling et al. (1996) as “the problem faced by an agent that must learn
behavior through trial-and-error interactions with a dynamic environment” (p.
237).

MCTS manages to deal with large state spaces (i.e., those represented by
a game tree with a large branching factor) by iteratively expanding the game
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tree rather than trying to navigate the entire state space. It does this by ap-
proximating which directions are profitable to explore further and consequently
ignores those which it considers not to be.

Each node v stores the values Q(v) ∈ R+
0 and N(v) ∈ N0. Q(v) denotes

the approximated payoff which can be expected when the game is in the state
represented by node v. N(v) denotes how often v was visited during training
(Browne et al., 2012). The payoff is a measure of the quality of an action or a
path of actions. In the case of Carcassonne we will be using the score as the
payoff.

2.2.1 Training Steps

The training works by incrementally and asymmetrically building a game tree.
In the beginning, the tree only consists of the root node v0 denoting the start
state s0. MCTS trains by executing n ≫ 1 training iterations (Browne et al.,
2012). Each training iteration of MCTS consists of the following four steps:

1. Selection: Starting from the root node v0, the game tree is traversed
according to the tree policy until a leaf node is reached. The tree policy is
a non-deterministic function mapping each node v to one of its child nodes
vj or to itself if it does not have any children. This function is recursively
called on each child node it returns, until a leaf node is reached. The goal
of a tree policy is to explore the state space by guiding the traversal of
the game tree. Thereby it needs to balance the exploitation of previously
profitable choices with the need for exploring new parts of the state space.

2. Expansion: If the reached leaf node v does not represent the end of the
game, i.e., it does not represent a terminal state, and has successor states
which aren’t yet represented by child nodes, then the node is expanded.
The expansion consists of adding either one or many child nodes repre-
senting legal actions which can be played at the state s represented by the
leaf node v. One of the created child nodes is then visited.

3. Simulation: In the Simulation step, the payoff which reaching the given
leaf node will produce is approximated using the default policy. This
can either be done directly using a heuristic function or by performing
a playout, which makes use of the Monte Carlo method. In a playout,
starting from the node visited in the Expansion step, the game is played
until the end. The most common implementation of the default policy is
a playout, where a random legal action is played at every state (Browne
et al., 2012).

4. Backpropagation: The payoff yielded by the Simulation step (denoted
by ∆) is propagated back up the tree, along the path chosen in the Se-
lection step. Thereby each node’s Q-value is updated as Q(v) ← Q(v)+∆

N(v)
for all visited nodes v. The visit count N(v) is also updated as N(v) ←
N(v) + 1.

Consequently, for each node v, Q(v) takes on the value defined in Equation (1).

Q(vj) = 1
N(vj)

N(v)∑
i=1

Ii(vj)zi (1)
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Thereby vj denotes a child node of v. Ii is an indicator function returning 1 if
vj was selected at the i-th visit of v, and zi is the payoff that was achieved in
the playout after v’s i-th visit.

MCTS repeatedly playing games against itself and updating its strategy ac-
cording to the outcome of each game denotes the reinforcement learning aspect
of the algorithm. This makes MCTS flexible, since it does not necessarily re-
quire domain-specific knowledge to produce good results (Browne et al., 2012),
thereby making it applicable to any domain which can be modelled using a tree.
Despite this, domain-specific knowledge can be implemented to potentially im-
prove or change performance.

Figure 1 provides a visualisation of the training process of MCTS, consisting
of the four steps described above.

Figure 1: A visual representation of the training process with a playout as a
default policy, whereby X denotes the number of training iterations (Chaslot et
al., 2008, p. 216).

2.2.2 Asymptotic Optimality

A MCTS variant is asymptotically optimal if the probability of MCTS deciding
on a sub-optimal action converges to 0. This implies that, given infinite time
and memory, the Q-values of all nodes converge to their optimal value Q∗.
Consequently, an asymptotically optimal MCTS variant allows the game tree
to converge to the Minimax tree (Browne et al., 2012).

3 Implementation
The previous section offers a high-level introduction to how MCTS works. This
introduction barely reveals any concrete details on how the individual steps
of the algorithm work, since they are highly dependant on how various as-
pects of MCTS are implemented. For example, the choice of tree policy and
default policy are not predefined and significantly influence the algorithm’s per-
formance (Browne et al., 2012). Additionally, there are many aspects which
can be tweaked when implementing a MCTS variant. In this section, we will
be describing the variable aspects of MCTS which we will be considering in the
evaluation in Section 4 or find noteworthy regarding some other aspect. The
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variants this section will introduce are not complete implementations, but rather
different ways of implementing various aspects of the algorithm. These aspects
regard the form of the game tree, the heuristic function, as well as different
ways of implementing each of the four steps described in Section 2.2. In the
evaluation in Section 4 we will be assembling variants composed of these aspects
and testing their performance.

3.1 Game Tree
Referring back to Section 2.1, each action in Carcassonne consists of three sep-
arate steps:

1. Chance Step: The player draws a tile randomly from the deck.

2. Placement Step: Given the drawn tile, the player decides on where and
with which rotation to place it.

3. Meeple Step: Given the placement on the board, the player has the
option to place a meeple on the tile.

As such, we model the game tree in a similar fashion, whereby every action
consists of three layers of nodes which are independently expanded. Each layer’s
nodes represent one of the three action types. The placement nodes denote the
action of deciding on a placement of the tile, the meeple nodes denote the action
of deciding on a meeple placement and the chance nodes denote the random
action of drawing a tile.

If each action were to be modelled on a single layer, we would have an
average branching factor of 55 (Heyden, 2009). In our implementation, we have
a branching factor between 4 and 30, which is much more manageable.

We implemented two ways for dealing with the random aspect of drawing
tiles as part of the game tree. We will discuss these in the following subsections.

3.1.1 Single Game Tree

In most literature MCTS uses a single game tree and as such it stands to reason
that modelling the random aspect of Carcassonne as part of a single game tree
makes sense. We did this by adding a placement node for each possible tile
which can be drawn at a given chance node. When the tree policy reaches a
chance node, it does not pick the child node according to the tree policy, but
rather picks a random child. Thereby the random nature of the chance node is
considered during the Selection step. During the Expansion step, we expand all
three layers, such that each Expansion step expands one action.

Figure 2 is a visualisation of a partially expanded game tree that our imple-
mentation generated during the training process after 50 training iterations.2
The red nodes denote the placement nodes, the green nodes are the meeple
nodes and the blue nodes are the chance nodes.

2The trees in Figures 2 and 3 were generated using Graphviz (https://www.graphviz.
org/).
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Figure 2: An excerpt of a game tree generated by our implementation.

This method assumes that drawing a tile corresponds to a uniform distribution
over the remaining tiles in the deck. In other words, the algorithm assumes that
the probability of drawing a tile of which four are present in the deck is identical
to drawing a tile of which only one is left. We implemented it as such to keep
the size of the game tree within manageable limits. It may be interesting, for
future work, to explore the possibility of adding a node for each individual tile
remaining in the deck, such that MCTS takes into account the probability of
drawing a particular tile.

3.1.2 Ensemble MCTS

The drawback of using a single game tree is that a significant part of the game
tree (roughly a third) is occupied by nodes which are only randomly visited and
do not add to the knowledge on the state space. This is due to the fact that
their Q-values and visit counts N are insignificant (because they get selected
randomly). The proportion of such placement nodes when using a single game
tree can be observed in Figure 2, where they are denoted by the red nodes.

As an alternative, we will consider Ensemble MCTS, as described by Sievers
and Helmert (2015) and Mirsoleimani et al. (2015). Thereby the tree assumes a
fixed permutation of the deck and thereby constructs the game tree as if there
were no randomness. To counteract overfitting, multiple game trees assuming
different permutations are constructed, whose results are merged in order to
make a decision on the move to pick. This merge takes on the form of a vote,
whereby each tree votes for one action. MCTS then chooses the action with the
most votes, or one of the actions randomly if no action has a majority.

Figure 3: An excerpt of a game tree generated by our implementation using
Ensemble MCTS.

Our implementation remains the same in regard to the differentiation between
the three types of nodes. What changes is that each chance node generates
exactly one placement node corresponding to the tile it draws from the fixed
deck permutation it assumes, instead of generating a placement node for each
possible tile it could draw. This can be seen in Figure 3. As in Figure 2, the
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red nodes denote the placement nodes, the green nodes are the meeple nodes
and the blue nodes are the chance nodes.

3.2 Heuristic Function
We implemented two heuristic functions, hP : S ×A→ R+

0 for the set of states
S and the set of legal placements of a given tile A and hM : S × A×M → R+

0
for the set of legal meeple placements M . The functions hP and hM value state-
action pairs by considering actions which immediately generate points as more
valuable than actions which do not or generate less.

3.3 Tree Policies
As previously mentioned, MCTS does not have a pre-defined tree policy. As
such, the choice of tree policy is not fixed and will therefore influence the perfor-
mance of the algorithm. In this chapter we will be introducing the tree policies
which we have implemented and will evaluate in regard to their performance in
Section 4.

3.3.1 Greedy

A naive implementation of the tree policy would involve mapping the child
node vj with the highest Q-value to the parent node node v (Gelly and Silver,
2011). We will call this tree policy Greedy, since it approaches the problem of
deciding on how to expand the game tree by exclusively considering the locally
optimal choice. MCTS with a Greedy tree policy does not give any incentive
to explore unknown parts of the game tree, thereby failing to consider that the
local optimum usually does not correspond to the global optimum.

3.3.2 ε-Greedy

An ε-Greedy tree policy expands on the Greedy tree policy by allowing for
exploration of the game tree. This is achieved by returning a random child node
with a probability of ε ∈ [0, 1] and selecting a node greedily with a probability
of 1−ε. The probability ε can either be stated as a scalar or take on a gradually
decaying value, such as ε = 1/t for iteration t of the training process. We will
call this decaying variant Decaying ε-Greedy.

3.3.3 Upper Confidence Bounds for Trees (UCT)

Upper Confidence Bound for Trees (UCT) was introduced by Kocsis and Szepesvári
(2006) and expands on the upper confidence bounds policy UCB1 for multi-
armed bandit problems (Auer et al., 2002) by extending it for the use on trees,
i.e., on sequential decision making processes. A K-armed bandit problem is
defined by random variables Xi,n for 1 ≤ i ≤ K and n ≥ 1, whereby i denotes
which of the K decisions can be made and n denotes the amount of times the
decision will have been made. Xi,1, ..., Xi,n are independently and identically
distributed, whereby the distribution is not known. The approximated mean µj

of Xj for state sj corresponds to the Q-value of the node representing the given
state, such that X̄j = Q(vj) holds. This implies that Q(vj) corresponds to the
expected payoff when reaching the state represented by node vj .
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For each node v, UCT returns the child node vj according to equation (2)
(Browne et al., 2012).

UCT(v) = arg max
vj

Q(vj) + 2c

√
2 ln N(v)

N(vj) (2)

N is defined as in Equation (1) and c is an exploration constant, a hyperpa-
rameter which can be adjusted in order to specify the degree of exploration. If
N(vj) = 0 holds, then UCT(v) = vj holds, such as to guarantee that each node
gets visited at least once. The UCT function encourages exploitation as a mea-
sure of the node’s value, i.e., ensuring that a node is more likely to be chosen if
it has previously yielded a high payoff in the Simulation steps. The exploration
term 2c

√
2 ln N(v)

N(vj) encourages exploration by being large if the node hasn’t been
visited often. Thereby nodes which haven’t been visited and therefore evalu-
ated extensively continue to be considered and aren’t forgotten. The value of
the exploration term c influences the degree of exploration in the Selection step.

UCT has been a very prominent tree policy. This is likely due to its early
success in computer Go (e.g., Gelly and Silver, 2011). Additionally, Kocsis and
Szepesvári (2006) proved that using UCT as a tree policy allows for asymptot-
ically optimal MCTS variants.

3.3.4 UCT-Tuned

Auer et al. (2002) suggest UCB1-Tuned as an enhancement for UCB1. It
replaces the exploration term of UCT, such that the UCT-Tuned tree policy is
defined as in Equation (3).

UCT-Tuned(v) = arg max
vj

Q(vj) + 2c

√
ln N(v)
N(vj) min

{
1
4 , Vj

}
(3)

Thereby Vj is defined as in Equation (4).

Vj =

 1
N(vj)

N(vj)∑
τ=1

z2
j,τ

− X̄2
j +

√
2 ln t

N(vj) (4)

zj,τ denotes the payoff in the τ -th visit of sj during the selection phase. The
integer t denotes the number of training iterations at that point. Thus, the tree
policy using UCB1-Tuned explores increasingly less, corresponding to the fact
that the state space becomes increasingly known.

3.3.5 Boltzmann Exploration

Boltzmann exploration returns a child node proportionally to the Gibbs-Boltzmann
distribution, such that the probability of selecting child node vj is defined as in
Equation (5) (Riveret et al., 2014).

P(v) ∝ e
X̄j
τ (5)

The Gibbs-Boltzmann distribution has its main application in statistical me-
chanics, used for determining the probability of a system being in a state sj
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given its energy X̄j and temperature τ . In regard to using it in a tree policy for
MCTS, X̄j is defined as for UCT and τ is simply a constant to avoid the term
growing past the limits of computational feasibility (Riveret et al., 2014).

3.4 Heuristic Tree Policy
It is also possible to use the heuristic functions as a tree policy. Thereby the
choice of meeple nodes is guided by hP and the choice of chance nodes is guided
by hM , as defined in Section 3.2.

3.5 Default Policies
The default policy determines how the simulation is performed, i.e., how the
payoff ∆ is approximated for the leaf nodes reached during the Selection step. In
this section we will be describing the default policies that we will be considering
during the evaluation in Section 4.2.4, as well as one default policy we find
noteworthy in regard to potential future research.

3.5.1 Random Playout

In its most basic form, MCTS uses a random playout as a default policy.
Thereby the game is simulated to the end by sampling each action according to
a uniform distribution over the set of all legal actions at every decision point.
Implemented as such, MCTS is an uninformed algorithm which works without
requiring domain-specific knowledge and is applicable in the same form for any
state space which can be modelled as a tree. This is usually the fastest way of
performing a playout as part of the Simulation step, since it requires relatively
little computational power to uniformly sample an action given a set of actions
(Browne et al., 2012).

While it is most common for a random playout to perform a single playout
per training iteration (Browne et al., 2012), we will later consider how using
multiple playouts during the Simulation step influences performance.

3.5.2 Heuristic Playout

On the other hand, as has been mentioned extensively (e.g., by Silver et al.
(2017a)), adding domain-specific knowledge can lead to better results. If the
default policy consists of informed moves, then the generated payoff much more
accurately reflects the true payoff of a state, since the playout more closely
reflects optimal play. This is achieved by using a heuristic function and playing
the game such that for every round the move is picked which maximises the
heuristic function.

A heuristic playout could also be implemented to only perform a limited
amount of actions per playout, instead of simulating the game until the end, in
order to reduce the runtime. We didn’t test this, but mention it for potential
future research.

Additionally, it has been shown that using a shallow α-β search as a default
policy can increase the performance for certain domains, such as for Lines of
Action (Winands and Björnsson, 2009). This is impractical for the domain of
Carcassonne, due to the large branching factor. We observed that a Minimax
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playout for Carcassonne with a depth of d = 2 requires, on average, around 30
seconds to compute each move, which is infeasibly long for use as a playout for
the default policy. As such, we will not be considering a shallow α-β search as
a default policy.

3.5.3 Direct Heuristic

An alternative to executing an actual playout (in the sense of simulating entire
games per training iterations) is to use the heuristic function to directly evaluate
a state and propagate the resulting value back up the tree. This is cheaper than
performing a playout, since a playout consumes significantly more resources
than the heuristic function needs to evaluate a state.

3.5.4 Neural Networks

It would also be possible to use a neural network as a tree policy. Therefore
it would need to be trained such as to evaluate the expected payoff when at a
given state. AlphaGo, the first algorithm to reach a superhuman level of play
in the game of Go, used two neural networks3 as part of the default policy in
order to achieve this unprecedented feat (Silver et al., 2017b).

We unfortunately haven’t found a way of efficiently representing the itera-
tively growing board with the different types of tiles. There are 72×72 possible
board dimensions, which would therefore have to be the size of the input layer.
Regarding the encoding, 19 different tiles which can each have one of 12 meeple
placements and can have one of four rotations would have to be represented
numerically, which would be infeasible and exceed the scope of this paper. Ad-
ditionally, in regard to training the network, the team behind AlphaGo could
utilise a database with millions of previously played games (Silver et al., 2016).
For us this would be impossible, since no such database exists for Carcassonne.

As an outlook, if an efficient representation of the board, as well as an
efficient way of training a network on Carcassonne should be found in some
later work, it is likely that using neural networks in a similar way would further
improve our implementation.

3.6 Additional Tweaks
Apart from the tree policy and default policy, there are some further tweaks to
MCTS which we will be evaluating in regard to their performance on Carcas-
sonne.

3.6.1 Decaying Exploration Constant

Many tree policies encourage exploration in the early stages of training, when
the game tree is still small, and increasingly discourage exploration as the state
space is expanded and thus more information on the quality of states is available,
e.g. Decaying ε-Greedy with ε = 1/t (Section 3.3.2) and UCT-Tuned (Section
3.3.4). This effect can be simulated for any tree policy by using an exploration
constant c′ = c/t, where c represents a fixed constant and t denotes the current

3One network outputs the probability of winning given the current state, the other network
outputs a probability distribution over the possible actions in regard to winning when choosing
each action (Silver et al., 2016).
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training iteration. Thereby exploration is increasingly discouraged, such that
after extensively exploring during the early stages of training, the later stages
concern themselves with exploiting the generated knowledge.

3.6.2 Dynamic Backpropagation Weight

Intuitively, later playouts generate more accurate approximations of the value
of a game state, since the state space is better known. Consequently, one could
argue that the outcomes of those decisions should be weighted higher, since
they are more representative of the strategy which preceded the decision. This
was observed by Xie and Liu (2009), who claim to have achieved a performance
increase on the domain of Go when weighting later decisions more highly using
an exponentially growing weight.
We suggest the term 2 t

k as a weight to ∆ during the Backpropagation step,
whereby t denotes the current iteration and k is a constant. For higher values
of k, the term grows slower and for lower values of k it grows faster.

4 Evaluation
4.1 Setup
We conducted all mentioned experiments at the sciCORE4 scientific computing
core facility at the University of Basel using the generic experimentation package
Lab (Seipp et al., 2017). We thereby used Intel Xeon E5-2660 CPUs running on
a clock speed of 2.2 GHz. We didn’t impose a time limit. Our implementation
was written in Java 11.

In these experiments, if not stated otherwise, we evaluated the performance
of a single parameter per experiment. We tested each parameter using the
same MCTS benchmark player. The MCTS benchmark player for a given tree
policy uses a random playout as a default policy with the corresponding meeple
placement probability evaluated in Section 4.2.5, the corresponding exploration
constant evaluated in Section 4.2.1, trains for 1000 iterations and has no further
tweaks. The amount of training iterations was chosen due to the fact that it is
the minimum number of iterations which allows for the maximum performance
from the benchmark players (see Figure 5).

Each tested variant had the same preconditions, i.e., the same deck permu-
tation and random seeds for all random decisions being made. Additionally, all
the generated scores are averages over at least 10 games, whereby both imple-
mentations switched sides after half of the games in all test scenarios. Thereby
each implementation gets tested both as player 1 and player 2 for each deck
permutation.

Whenever we henceforth consider a Random player, it implies a player who
picks a random legal move at every turn. Whenever we henceforth consider a
Heuristic player, it implies a player who picks the legal move which maximises
the heuristic function at every move. The Heuristic player is not to be confused
with the Heuristic MCTS player, which uses MCTS with the heuristic function
as a tree policy, as introduced in Section 3.4.

4http://scicore.unibas.ch/
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We visualised the results of many experiments using box plots. Each entry in
a box plot consists of a box with a horizontal line, as well as two vertical lines
extending out of the box (i.e., the whiskers). The lower boundary of the box
denotes the first quantile Q1 (the median value of the lower half of the values),
the upper boundary denotes the third quantile Q3 (the median value of the
upper half of the values), the horizontal line inside the box denotes the median
value of all values. The whiskers extend towards the smallest and the largest
value overall. The circles denote statistical outliers.

4.2 Experiments
4.2.1 Exploration Constant

In order to evaluate a good exploration constant, we had benchmark variants
using UCT, UCT-Tuned and ε-Greedy as tree policies with different exploration
constants play against a Random player in order to evaluate which exploration
constants allowed the tree policies to score the most points. The results have
been visualised in Figure 4.

(a) UCT-Tuned. (b) UCT.

(c) ε-Greedy.

Figure 4: Performance of tree policies with different exploration constants
against a Random player.

These results suggest that the choice of exploration constant does not seem
to make a significant difference in performance for the tested tree policies.
Nonetheless, we can observe that ε = 0.3 for ε-Greedy, c = 4 for UCT and
c = 2 for UCT-Tuned lead to the highest mean payoff by a slight margin. These
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results demonstrate clearly that the performance drops very significantly as the
constant takes on a value of 0. This corresponds to the algorithm seizing to
explore, which leads to drastically worse results than if it explores.

The presented results correspond to the implementations playing against a
single type of opponent. One must consider that optimal exploration terms can
vary depending on the opponent and their strategy. Nonetheless, due to the fact
that we observed such an insignificant performance difference for all constants
larger than 0, we will henceforth be using the values which yielded the largest
mean payoff for their respective experiment.

4.2.2 Tree Policies

For comparing the performance of the tree policies, we let a MCTS benchmark
variant for each of them compete against a MCTS benchmark variant of every
other tree policy. Each pair played 20 games. Table 1 shows the average score
of each match together with the standard deviation (denoted by the number
following the ± symbol). Table 2 shows the corresponding win percentages. For
each pair, the higher average score and the higher win percentage are printed
in bold face, in order to make the outcome more clearly visible.

Measured
Opponent UCT UCT-Tuned Boltzmann ε-Greedy Dec. ε-G. Heur. MCTS Heuristic Random

UCT – 100.2 ± 16.7 113.7 ± 15.7 98.2 ± 14.8 93.2 ± 18.9 76.5 ± 19.5 71.5 ± 11.1 94.5 ± 17.6
UCT-Tuned 109.0 ± 14.9 – 110.8 ± 20.4 103.5 ± 20.8 94.8 ± 11.4 74.3 ± 13.8 79.9 ± 23.7 91.3 ± 23.7
Boltzmann 83.0 ± 31.7 89.8 ± 20.8 – 75.0 ± 33.0 84.1 ± 7.6 70.3 ± 23.5 68.7 ± 14.8 76.4 ± 9.8
ε-Greedy 101.2 ± 16.1 90.2 ± 31.8 97.6 ± 17.9 – 99.9 ± 20.2 73.9 ± 13.3 75.7 ± 21.3 103.0 ± 10.8
Decaying ε-Greedy 62.6 ± 21.9 62.0 ± 19.9 59.2 ± 23.4 56.8 ± 25.0 – 38.1 ± 17.8 38.9 ± 12.0 46.0 ± 9.8
Heuristic MCTS 53.6 ± 25.3 57.5 ± 21.2 56.5 ± 14.6 46.8 ± 20.5 41.1 ± 13.5 – 39.8 ± 15.2 44.1 ± 15.7
Heuristic 54.9 ± 24.9 51.9 ± 22.7 61.1 ± 33.7 48.9 ± 21.2 34.7 ± 12.7 52.4 ± 23.5 – 36.2 ± 30.3
Random 27.6 ± 14.1 23.5 ± 15.0 25.0 ± 14.9 24.6 ± 18.8 12.6 ± 11.2 11.1 ± 4.9 10.7 ± 5.0 –

Table 1: Average score and standard deviation in the matches between tree
policies.

Measured
Opponent UCT UCT-Tuned Boltzmann ε-Greedy Dec. ε-G. Heur. MCTS Heuristic Random

UCT – 38.2% 63.9% 44.4% 72.2% 83.3% 81.1% 100.0%
UCT-Tuned 61.8% – 70.3% 51.4% 80.6% 86.1% 77.8% 100.0%
Boltzmann 36.1% 29.7% – 27.8% 81.1% 63.9% 62.9% 100.0%
ε-Greedy 55.6% 48.6% 72.2% – 86.5% 83.8% 78.4% 100.0%
Decaying ε-Greedy 27.8% 19.4% 18.9% 13.5% – 31.4% 51.4% 89.2%
Heuristic MCTS 16.7% 13.9% 36.1% 16.2% 68.6% – 59.5% 100.0%
Heuristic 18.9% 22.2% 37.1% 21.6% 48.6% 40.5% – 100.0%
Random 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 8.6% –

Table 2: Win percentage of the matches between tree policies.

These results suggest that UCT-Tuned, Boltzmann and ε-Greedy are the most
powerful tree policies, with UCT coming in close behind. With the exception
of Decaying ε-Greedy beating UCT-Tuned, none of the three tree policies lost
against any other player. Decaying ε-Greedy was noticeably outperformed by
all other MCTS variants. We assume this is due to the exploration constant ε
converging towards 0 at a fast rate, such that for the 1000 training iterations,
at iterations 500 ε already takes on a value of ε = 1/500 = 0.002. Considering
how unprofitable the results in Section 4.2.1 turned out to be when exploration
constants took on a value of 0, this seems to correlate quite strongly and further
demonstrates the importance of the exploration constant.
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Heuristic MCTS was noticeably outperformed by all other MCTS variants, with
the exception of Decaying ε-Greedy. This demonstrates how important a good
tree policy is for MCTS to perform well, since, with the exception of the tree
policy, all other aspects of the compared MCTS variants are identical. Other
than the mentioned exception, the Random player and the Heuristic player were
remarkably outperformed by all the MCTS variants, losing against all other
opponents on average. Thereby the MCTS variants all needed, on average,
around 10 seconds to compute each move, depending on how computationally
expensive the corresponding tree policy function is. The Heuristic player, on
the other hand, needed around 0.02 seconds, while the Random player required
around 10−5 seconds.

Another interesting conclusion from these results is that worse players, i.e.,
the Heuristic MCTS-, Heuristic- and Random players, achieved better scores
against better players. For instance, the Random player achieved an average
of 24 points against the best four policies, yet only an average of 11 against
the other players. This goes against the notion of Minimax, which operates
under the assumption that a high quality strategy minimises the opponent’s
score, while maximising ones own. We assume this comes down to the fact
that in Carcassonne a high quality strategy usually involves constructing a large
amount of cities. Consequently, the opponent’s field meeples will generate points
for additionally built cities. As such, their score will increase if their opponent
plays with a profitable strategy.

A strange observation is the surprisingly high standard deviation in the
experiments. We assume that the high deviation appears due to the fact that
small decisions can lead to large differences in the score. For example, placing
a single meeple on a field can easily lead to an increase of 21 points if it borders
on 7 cities. The results also suggest that the deviation increases proportionally
to profitability, which makes sense considering the higher absolute numbers
involved.

4.2.3 Training Iterations

We tested the relation between the amount of training iterations and perfor-
mance by having multiple MCTS benchmark variants play against a Random
player with different numbers of training iterations. The results have been
plotted in Figure 5. The intuitive notion in regard to the amount of training
iterations is that an increase in the number of training iterations leads to an
increase in performance. Our results suggest that this holds up to a certain
point.

Once again we observed that Decaying ε-Greedy performed worst by far.
Interestingly, it does not follow the growth of the other three tree policies, which
all behave very similarly in relation to the amount of training iterations. Its
relative performance didn’t grow as significantly with more training iterations
than it was the case with the other tree policies. We will therefore only be
considering UCT, UCT-Tuned, ε-Greedy and Boltzmann in this section.
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Figure 5: Mean performance of dif-
ferent tree policies against a Random
player over the number of training it-
erations.

Figure 6: The runtimes of the different
tree policies over the number of train-
ing iterations.

In Figure 5 we plotted the number of points each amount of training iterations
achieved against a Random player on average. We observed that while the
number of training iterations increases the performance, the performance gain
decreases with a higher number of training iterations. For n ≤ 1000 training
iterations, the amount of points achieved very closely follows the function f(n) =
35 log10(n). It follows that for n ≤ 1000 the performance grows logarithmically
over the number of training iterations. For n > 1000 training iterations, the
payoff follows the function g(n) = 105. It follows that the performance of our
benchmark implementation reaches its maximum performance when training for
n ≥ 1000 iterations. We plotted f(n) and g(n) next to the mean amounts of
points scored for various tree policies in Figure 5.

In regard to Figure 5 it must be considered that these increases were evalu-
ated playing against a Random player. This was done such that the algorithms
have comparable opponents, yet a Random player is an atypical opponent to
play against, since its performance is terrible. Nonetheless, we present these re-
sults under the assumption that the tendency in regard to the relation between
the number of training iterations and performance remains the same when play-
ing against more advanced players.

In addition, during these experiments, we observed that our implementation
has a linear time complexity of Θ(n), as defined by Knuth (1976) in Definition
1.

Definition 1. Θ(f(n)) denotes the set of all g(n) such that there exist positive
constants C, C ′ and n0 with Cf(n) ≤ g(n) ≤ C ′f(n) for all n ≥ n0.

In Figure 6 we can see that the runtimes over the amount of training iterations
closely correspond to the function g(n) = 1

124 n. For constants C = 1
170 , C ′ =

1
100 , n0 = 500 and function f(n) = n we can observe that Cf(n) ≤ g(n) ≤
C ′f(n) holds for all n ≥ n0 in Figure 6. We therefore conclude by Definition 1
that g(n) ∈ Θ(n) holds. Since g(n) corresponds very closely to the runtime of
our implementation over the number of training iterations, it follows that the
runtime of our implementation is in Θ(n), for n training iterations.
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4.2.4 Default Policies

As previously mentioned, the default policy defines how the leaf nodes are val-
ued during the Simulation step. We mentioned in Section 3.5 that the default
policy mostly consists of a playout (i.e., a simulation of the game until the end)
whereby random moves are selected. We also mentioned that it can be improved
by guiding the selection using a heuristic function, or using either a heuristic
function or a neural network to directly value the leaf nodes, without performing
a playout.

We tested the profitability of using a playout guided by the heuristic function
by having two MCTS benchmark implementations, whereby one of them played
using a heuristic playout as a default policy, play against each other. We found
that for UCT and UCT-Tuned, using a heuristic playout lead to a noticeably
improved performance. This is demonstrated in Figure 7.

Figure 7: The results of benchmark
implementations playing against their
corresponding counterparts using a
heuristic playout and 100 training it-
erations.

Figure 8: The results of a match be-
tween MCTS benchmark variants us-
ing 3000 training iterations against a
corresponding implementation using a
heuristic playout and 100 training it-
erations.

From Figure 7, we conclude that the performance difference invoked by using a
heuristic playout is significant enough for there to exist a correlation between
the heuristic playout and the performance increase.

It is important to thereby note that the runtime of the heuristic players
was significantly higher, by a factor of 30. We were interested in testing the
heuristic playout against an opponent with a similar runtime. We did this
by having implementations with 100 training iterations and a heuristic default
policy compete against implementations with 3000 iterations and a random
default policy. This leads to comparable runtimes. The resulting average scores
can be seen in Figure 8.

Our results suggest that an implementation using a random default policy
with 3000 training iterations noticeably outperforms an implementation using
a heuristic default policy using 100 iterations for all tree policies, whereby both
implementations have a similar runtime. From the premises established in Sec-
tion 4.2.3, we can deduce that an implementation using 1000 training iterations
and a random playout as a default policy would perform very similarly as the
first implementation, i.e., beating the implementation using the heuristic default
policy, with a third of the runtime.
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As such, we conclude that it is more beneficial to increase the number of training
iterations with a random default policy instead of using a heuristic default policy,
in order to maximise performance under consideration of a feasible runtime.

We achieved slightly worse results using a direct heuristic default policy
(see Section 3.5.3). This approach reduces the runtime by a factor of 30 when
compared to a random playout given the same amount of training iterations.
But even when accounting for the difference in runtime by allowing the variant
with the direct heuristic default policy thirty times as many training iterations,
using a random playout proves to be more effective. This has been visualised in
Figure 9.

Figure 9: The results of a direct heuristic default policy using 3000 training
iterations facing a random playout using 100 training iterations.

Of all the tested tree policies, Boltzmann performed best with a direct heuristic
default policy. But even in that match it only won 4 out of 10 games with
one draw. In summary, we conclude that using a random playout is the most
beneficial default policy out of all the variants we tested in this section.

4.2.5 Meeple Placement Probability during Simulation

A random playout such as the default policy implies random moves being se-
lected. Those random moves include placing a meeple. Yet placing a meeple
during the first 7 turns and then having none left is not necessarily the only ap-
proach to playing the game randomly. As such, we tested different probabilities
of placing meeples during a random playout.

Figure 10 shows visualisations of the performance with different probabilities
against a Random player.
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(a) UCT-Tuned. (b) UCT.

(c) ε-Greedy. (d) Boltzmann.

Figure 10: Average amount of points achieved by benchmark implementations
playing against a Random player using different meeple placement probabilities
during the playout.

These results suggest that the probability of placing a meeple during a random
playout slightly influences the performance. We do observe that a placement
probability of around 0.6 for Boltzmann, 0.8 for ε-Greedy, 0.5 for UCT and 0.3
for UCT-Tuned seem to have performed best in our experiments.

4.2.6 Decaying Exploration Constant

For testing the profitability of iteratively decreasing the exploration constant
(and thereby increasing exploitation) as the training progresses, we had MCTS
benchmark variants play against each other, whereby one variant had a de-
creasing exploration constant as defined in Section 3.6.1 (i.e., c′ = c/t for a
fixed constant c and training iteration t). We visualised the results in Figure
11. The different fixed constants c we tested are denoted on the x-axis of Figure
11.
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(a) UCT-Tuned. (b) UCT.

Figure 11: Average results of benchmark implementations with a decreasing
exploration constant against a corresponding benchmark implementation.

For UCT, we conclude that iteratively decreasing the exploration constant leads
to slightly worse results for all values c except for c = 128 and c = 256. For
c = 128 UCT with a decaying exploration constant won 55% of the games, while
for c = 256 it won 50% of the games. Additionally, our results suggest that
for UCT, the standard deviation tends to be smaller when using a decreasing
exploration constant.

For UCT-Tuned, we observed that while when considering the mean score
a decreasing constant produced worse results, a decreasing constant with an
initial value of c = 512 won 53% of the games.

4.2.7 Dynamic Backpropagation Weight

We evaluated the profitability of using a backpropagation weight of 2 t
k as defined

in Section 3.6.2. The setup was similar to other results, i.e., two benchmark
variants playing multiple games against each other, whereby one of the variants
has a decreasing backpropagation weight for different values of k. Figure 12
shows the results of these experiments.
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(a) UCT-Tuned. (b) UCT.

(c) ε-Greedy.

Figure 12: Results of benchmark variants playing against corresponding variants
using a weighted backpropagation.

Our results suggest that it is not profitable to iteratively increase the back-
propagation weight for all tested values of k. The results also suggest that a
variant’s performance grows roughly in proportion to the value of k. This further
suggests that a growing backpropagation weight does not benefit performance,
since limk→∞ e

t
k = 1 holds, whereby having no weight corresponds to having a

constant weight of 1.
The results couldn’t be tested for Boltzmann exploration, due to the fact

that for a linear increase of X̄, the term e
X̄
τ increases exponentially. E.g., for

X̄ = 180 and τ = 7, the term takes on the value e
X̄
τ = 147086357068. If the

increasing backpropagation-weight ends up increasing the Q-Value by a factor
of only 2, we end up with X̄ = 360 and e

X̄
τ ≈ 2.16 · 1022, which is several orders

of magnitude larger. Considering that the maximum value a variable of the
type Double can take on in Java5 is approximately 9.22 ·1018, we can see that it
becomes a challenge to compute the probabilities of the Boltzmann distribution
for larger Q-values than normal. It would be possible to adapt the value of τ ,
yet considering the similar results of an increasing backpropagation weight for
the other tree policies, we do not expect a significantly different result to emerge
for Boltzmann.

5According to the official documentation: https://docs.oracle.com/javase/specs/jls/
se7/html/jls-4.html#jls-4.2.3
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4.2.8 Ensemble MCTS

We tested the performance of Ensemble MCTS (Section 3.1.2) by letting MCTS
benchmark variants play against each other, whereby one of the variants used
Ensemble MCTS. The variant using Ensemble MCTS was then tested using
different amounts of game trees. In the first experiment, the variant using
Ensemble MCTS trained each of the k trees with 1000/k training iterations.
With this approach, both variants had a similar runtime of around 10 seconds
per move. These results have been visualised in Figure 13.

(a) UCT-Tuned. (b) UCT.

(c) ε-Greedy. (d) Boltzmann.

Figure 13: Results of benchmark variants playing against their corresponding
Ensemble MCTS variants. Ensemble MCTS played with 1000/k training itera-
tions for each of its k trees, resulting in a similar runtime for both players.

The results in Figure 13 suggest that Ensemble MCTS can match the payoff of
a MCTS variant using a single game tree. Since we previously observed that we
reach a performance limit at 1000 training iteration for the strongest variants
using a single game tree, we decided to test if variants using Ensemble MCTS
with 3000/k training iteration for each of the k trees would outperform the
respective MCTS benchmark implementation. This entails a higher runtime for
the variant using Ensemble MCTS. The results of this experiment have been
visualised in Figure 14.
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(a) UCT-Tuned. (b) UCT.

(c) ε-Greedy. (d) Boltzmann.

Figure 14: Results of benchmark variants playing against their corresponding
Ensemble MCTS variants. Ensemble MCTS played with 3000/k training it-
erations for each of its k trees, resulting in a runtime three times higher for
Ensemble MCTS.

The results in Figure 14 suggest that for UCT-Tuned, using Ensemble MCTS
with k = 4 game trees, each training with 750 iterations, outperforms our
MCTS benchmark implementation. It won 90% of the games it played against
its corresponding MCTS benchmark variant. As we have noted, this comes at
the cost of a higher runtime. The variant using Ensemble MCTS with 3000/k
training iterations needs, on average, around 25 seconds to compute each move,
compared to around 10 seconds for our MCTS benchmark implementations.
Nonetheless, we consider 25 seconds to be within the limits of a feasible runtime,
since a human can be expected to contemplate a move for 25 seconds.

4.2.9 Multiple Playouts

We tested the profitability of performing multiple random playouts per round
of training by evaluating the results of two MCTS benchmark variants playing
against each other, whereby one variant used multiple playouts per training it-
eration during the Simulation step. Both implementations played with the same
number of training iterations (i.e., 1000, as stated in Section 4.1). For a small
number of playouts the runtime difference is negligible. For example, a variant
using 16 random playouts during the Simulation step only requires around 2
seconds more to compute each move on average compared to a corresponding
MCTS benchmark variant. For larger numbers of playouts, the difference be-
comes more noticeable. For example, a variant using 512 playouts needed more
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than a minute to compute each move, compared to the 10 seconds of its op-
ponent. This must be considered for the results, which have been plotted in
Figure 15.

(a) UCT-Tuned. (b) UCT.

(c) ε-Greedy. (d) Boltzmann.

Figure 15: Performance of different tree policies against benchmark implemen-
tations using different amounts of playouts for each training iteration.

The results in Figure 15 suggest that it is not profitable to increase the number
of random playouts past a single playout per training iteration. Especially for
a larger number of playouts the performance dropped significantly, while the
increase standard deviation suggests that those variants performed less consis-
tently. This may be the result of overfitting, since the explored parts of the tree
get evaluated much more extensively.

An alternative approach, instead of simply adding more sampling, is to dy-
namically increase the number of playouts during the training process. This
corresponds to the previously mentioned assumption that later decisions during
the training process should be weighted higher, since more information regard-
ing the state space is available. We tested this by having two corresponding
benchmark variants play against each other, whereby one of them performed t
playouts for training iteration t. The results are visualised in Figure 16.
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Figure 16: The results of a benchmark implementation executing t playouts for
iteration t of the training process against a corresponding benchmark imple-
mentation.

Our results suggest that increasing the number of playouts linearly during the
training process is not more profitable than consistently executing a single ran-
dom playout.

4.2.10 Bonus: What happens if MCTS knows the deck configura-
tion?

In our final evaluation, we tested how MCTS would perform if it had per-
fect knowledge of the game state, i.e., would know the deck configuration and
therefore cheat. We used an implementation with only one placement node per
chance node, whereby the placement node corresponds to the tile which MCTS
now knows it will draw when reaching the given point in the game. The results
of these experiments have been visualised in Figure 17.

Figure 17: The results of matches between two MCTS benchmark variants,
whereby one implementation knows the state of the deck.

Our results suggest that MCTS benchmark variants using Boltzmann, UCT and
UCT-Tuned profit from this added knowledge slightly, while the MCTS bench-
mark variant using ε-Greedy seems to have not profited at all. Although this
does not correspond to intuition, we suggest a possible explanation. Consider-
ing the large branching factor of the game tree, our experiments, run with 1000
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training iterations each, only generate a tree which considers around 3 tiles to
be drawn from the deck. As such, MCTS cannot fully profit from the increased
knowledge, except in the Simulation step, where it does not seem to make a big
difference.

4.3 Qualitative Evaluation of how MCTS plays Carcas-
sonne

We played six games, switching sides after three games, against the most prof-
itable MCTS variant we found in order to evaluate if it performs better than
an average human player. We used an implementation with UCT-Tuned as a
tree policy and a random playout as a default policy with a decaying explo-
ration constant of c = 512 and a meeple placement probability of 30%. It uses
Ensemble MCTS with 4 game trees, each training on 750 training iterations.

The algorithm often played such as to force us to play moves which were to
its own advantage. Examples include placing a meeple on a road which we would
necessarily need to complete if we wanted finish our monastery, or building its
monasteries next to our monasteries, such that it would necessarily benefit if
we were to complete our monastery.

It also tended to steal cities, i.e., build cities next to ours, such that we had
to attach our city to its newly built city in order to finish it. It also often placed
tiles such that it manoeuvred us into awkward positions which only a single
type of tile could solve.

It was also noticeable that after a few rounds, it would never have more than
one meeple remaining. It would try to place them as broadly as possible, such
that, at times, every city was occupied by one of its meeples.

In general, it felt as if the algorithm managed to anticipate our moves fre-
quently, which suggests a capability of not only considering its opponent’s short
term moves, but also their long term strategy. We often felt as though all our
decisions could only lead to greedily harvesting points from small roads and
cities, while the algorithm managed to harvest a huge amount of points from
field meeples. Indeed, this observation underpins the conclusion of Ameneyro et
al. (2020) that MCTS is capable of developing a profitable long term strategy
for Carcassonne.

The algorithm won 83% of the games it played against us. The average
score was 95.3 ± 18.1 to 88.3 ± 22.1 in favour of the algorithm. Under the
assumption that we are average human players, we can conclude that a good
implementation of the algorithm is capable of consistently beating an average
human player at Carcassonne.

5 Conclusion
We have shown that that certain implementations of MCTS achieve good results
on Carcassonne, whereby the quality of the results and the runtime to achieve
them are highly dependant on how MCTS is implemented. Profitable variants
using a good tree policy (such as UCT-Tuned) consistently beat both other
benchmark players and human players on average.

We found that implementations using UCT-Tuned with c ̸= 0 as a tree policy
produced the best results on average, while implementations using UCT with
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c ̸= 0, Boltzmann exploration and ε-Greedy with ε = 0.3 also performed well.
A surprising result was that for UCT and UCT-Tuned with a non-decaying
exploration constant the value of the constant didn’t influence the runtime
significantly, with the exception of c = 0, which caused a significant drop in
performance as MCTS stopped exploring during the Selection step.

While a heuristic playout as a default policy was shown to produce better
results compared to a random default policy for the same amount of training it-
erations, the increased runtime of the heuristic playout can be compensated with
a random playout using more training iterations, which then produces better
results. Additionally, the heuristic playout increases runtime by a factor of 30
compared to using a random playout, which renders the runtime infeasible when
increasing the amount of training iterations to the degree where performance is
maximised.

Using the heuristic function directly showed promising results and decreased
the runtime by a factor of 30 compared to using a random playout. Despite this,
we managed to achieve better results using a random playout instead of a direct
heuristic default policy. Using a backpropagation weight proved to be highly
unprofitable, while a decreasing exploration constant over the course of the
training process proved to slightly increase performance for certain constants,
such as c = 512 for UCT-Tuned. Performing multiple playouts didn’t improve
the performance.

Ensemble MCTS produced similar results to using a single game tree given
a similar runtime, yet it emerged as a method of increasing the performance
past the performance cap of 1000 training iterations per tree. As such, multiple
well-trained trees “vote” on the best move, which produced better results than
when using a single game tree.

These results have confirmed the pre-established notion that MCTS is capa-
ble of handling large state spaces and traversing the corresponding game trees
in order to find good solutions. We managed to implement MCTS such that it
consistently outperforms an average human player. Thereby the strongest im-
plementation within the time limitation of playing against a human has shown
to use Ensemble MCTS with four trees, each using 750 training iterations with
UCT-Tuned as a tree policy, whereby each training iteration t uses the explo-
ration constant c′ = 512/t. The default policy is thereby a random playout with
a meeple placement probability of 30%.

Overall, the most interesting part of these results was what turned out to
be the best variant of MCTS; rather unexpectedly, the best variant ended up
being an uninformed variant, i.e., a variant which does not utilise domain specific
knowledge. Simply through reinforcement learning it can acquire the skills to
beat the people who implemented it.

With this conclusion we suggest that improvements of our implementation,
e.g., by incorporating neural networks into the Simulation step, would be an in-
teresting area of future research. Other improvements could concern themselves
with more accurately modelling the randomness as part of the game tree, e.g.,
by adding a placement node for each individual tile in the deck, or with the per-
formance of a bounded heuristic playout. Developing a more advanced heuristic
function may also increase the performance of the direct heuristic default policy.
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