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Why Monte Carlo Tree Search?

Monte Carlo Tree Search (MCTS) has been successfully applied to:

Hex
Lines of Action
Settlers of Catan
Go

Hayden (2009) and Ameneyro et al. (2020) have suggested that MCTS produces
good results on Carcassonne.

They don’t consider different variants.
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Research Objectives

Evaluating different variants of Monte Carlo Tree Search in regard to their
performance on Carcassonne.

Evaluating if the most powerful variant is capable of beating a human player.

Monte Carlo Tree Search for Carcassonne 4 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Carcassonne

Carcassonne is a tile-based board
game for between two and five players.

The board is iteratively built by
placing tiles over the course of 72
rounds.

Points are made by placing meeples
strategically.

Large state space with at least 5 · 1040
reachable positions and a game tree
with around 10192 terminal nodes
(Heyden, 2009).

Source: https://www.dadsgamingaddiction.com/carcassonne/

(23.06.2022)
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Monte Carlo Tree Search

MCTS is a method for finding optimal decisions in a given domain.

It “combines the precision of tree search with the generality of random sampling”
(Browne et al., 2012, p. 1).

This is achieved by taking random samples in the state space and building a search
tree according to the results.
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Training

During training, a game tree is iteratively built.

Each node has a visit count N and an expected score Q, which get updated during
training.

Each training iteration consists of four steps.
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Step 1: Selection

Traverse the game tree according to the tree
policy, which maps each node to one of its
children.

Do this until an expandable node is reached.

Image Source: James et al. (2017), p. 2
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Step 2: Expansion

Add at least one child node and visit that child.

Image Source: James et al. (2017), p. 2
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Step 3: Simulation

Simulate the game until the end with moves
decided by the default policy.

Thereby sample a score R.

The simulation can be replaced by a function
with domain-specific knowledge.

Image Source: James et al. (2017), p. 2

Monte Carlo Tree Search for Carcassonne 10 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Step 4: Backpropagation

The sampled score R is propagated back up the cho-
sen path. For each node:

N ← N + 1

Q ← Q + R−Q
N

Image Source: James et al. (2017), p. 2
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Practical Steps

1. Implementing Carcassonne.

2. Implementing the MCTS framework.

3. Testing and evaluating different MCTS configurations.
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Implementation of Carcassonne

Implemented in Java.

Allows for MCTS variants and
humans to play Carcassonne.

The repository is publicly accessible
under https://github.com/
maxjappert/mcts_carcassonne
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Implementation: Game Tree

Chance nodes: Randomly drawing a tile

Placement nodes: Placing a tile

Meeple nodes: Placing a meeple
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Implementation: Ensemble MCTS

Alternative way of modelling randomness.

k trees are built, whereby each assumes a fixed deck permutation.

After training all trees “vote” on which move to pick.
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Evaluation: Single Game Tree vs. Ensemble MCTS

⇝ Certain Ensemble MCTS configurations lead to performance increase.
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Implementation: Degree of Exploration

All “useful” tree policies are a function of the children’s Q-value, because the game
tree should be expanded in profitable directions.

All “useful” tree policies must balance this exploitation with a degree of exploration.

⇝ Most tree policies have an exploration parameter, which determines the degree
of exploration.
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Evaluation: Degree of Exploration

⇝ Severe performance drop when exploration seizes.
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Evaluation: Tree Policies

Measured
Opponent

UCT UCT-Tuned Boltzmann ε-Greedy Dec. ε-G. Heur. MCTS Heuristic Random

UCT – 38.2% 63.9% 44.4% 72.2% 83.3% 81.1% 100.0%
UCT-Tuned 61.8% – 70.3% 51.4% 80.6% 86.1% 77.8% 100.0%
Boltzmann 36.1% 29.7% – 27.8% 81.1% 63.9% 62.9% 100.0%
ε-Greedy 55.6% 48.6% 72.2% – 86.5% 83.8% 78.4% 100.0%
Decaying ε-Greedy 27.8% 19.4% 18.9% 13.5% – 31.4% 51.4% 89.2%
Heuristic MCTS 16.7% 13.9% 36.1% 16.2% 68.6% – 59.5% 100.0%
Heuristic 18.9% 22.2% 37.1% 21.6% 48.6% 40.5% – 100.0%
Random 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 8.6% –

⇝ UCT-Tuned performed best.

Monte Carlo Tree Search for Carcassonne 19 / 25



Introduction Monte Carlo Tree Search Implementation and Evaluation Conclusion

Implementation: Simulation Step

Usually consists of randomly selecting moves.

Adding domain-specific knowledge can potentially improve performance.

We tested two alternatives:

Heuristic default policy
Direct heuristic evaluation
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Evaluation: Heuristic Default Policy

⇝ A heuristic-guided playout increases performance slightly, but also increases the
runtime by a factor of 30.
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Evaluation: Direct-Heuristic Evaluation

Decreases runtime per training iteration by a factor of 30 compared to using
random sampling.

Performed slightly worse than a random playout when considering a similar runtime.
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Evaluation: Playing against MCTS

We played six games against the strongest implementation.

It won five of those games with an average score of 95.3 to 88.3.
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Conclusion

MCTS produces good results on the domain of Carcassonne.

We found a variant which can outperform an average human player. This variant
has the following properties:

UCT-Tuned as a tree policy.
Decaying exploration parameter of c = 512/t for t training iterations.
Simulation with a random default policy.
Ensemble MCTS with four trees, 750 training iterations each.

Interesting for further research:

Considering probability distribution over the deck in the game tree.
Optimising the heuristic functions.
Training a neural network to approximate the score given a state.
Bounding the simulation.
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Thank you
for your attention.
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