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Abstract

Planning tasks are important and difficult problems in computer science. A widely used

approach is the use of delete relaxation heuristics to which the additive and FF heuristic

belong. Those two heuristics use a graph in their calculation, which only has to be con-

structed once for a planning task but then can be used repeatedly. To solve such a problem

efficiently it is important that the calculation of the heuristics are fast. In this thesis the

idea to achieve a faster calculation is to combine redundant parts of the graph when building

it to reduce the number of edges and therefore speed up the calculation. Here the reduction

of the redundancies is done for each action within a planning task individually, but further

ideas to simplify over all actions are also discussed.
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1
Introduction

Planning problems are important and difficult problem in computer science and its appli-

cation. For example a famous problem is the game Go, which, after there were computers

better in Chess than the best humans, became the next big milestone. And it was only

recent, where a computer beat the best human player with AlphaGo [8], which used a

combination of planning techniques and neural networks to play the game.

A key component in many classical planning algorithms are heuristic searches, where a

heuristic solves a simplified version of the problem to estimate how expedient an action

is. There are many different approaches for such heuristics with different strengths. One

important class of heuristics are the delete relaxation heuristics, in which the additive and

FF heuristics are included.

Since a heuristic value can be calculated millions of times for even small planning tasks, a

fast computation of the heuristic values is crucial for the run time of heuristic based searches

like the Greedy Best-First-Search. This means that even milliseconds can have a significant

impact on the total computation time.

This bachelor thesis focus one exactly this in the classical planning is Fast Downward [2],

which is a domain-independent classical planning tool, which is to most used tool for classical

planning tasks.

The additive and FF heuristic use a graph, which is repeatedly updated to calculate the

heuristic values. This graph has to be constructed only once for a planning task and be used

to calculate the heuristic value of all possible actions in the task, by just resetting the values

of the nodes in the graph and assign different starting values depending on the state of the

search. This means the construction of the graph is allowed to be a bit more computational

intensive, if the updating of the graph becomes less intensive, which is the idea behind this

thesis. The goal is to achieve a faster calculation of the heuristic values by reducing number

of edges within the graph, because they are directly proportional to how many updates are

needed for a change of a value of one node. The basic idea is to reduce redundant parts of

the graph by combining them into fewer nodes.
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Background

This chapter provides the necessary understanding of planning tasks and how to solve them.

2.1 Planning Task
We work with planning tasks in finite-domain representation(FDR)[3]. Therefore we define

a planning task like the following:

Definition 1. A planning task is a 4-tuple Π = ⟨V, sI , O, δ⟩ where

• V is a finite set of variables each with a finite domain dom(V )

• sI is the initial state, which is a total assignment over V ,

• O is a finite set of operators, and

• δ is the goal, which is a partial assignment of the variables v ∈ V .

In our case we only consider cases where all variables in V have a finite domain.

A planning task formally describes different states, the transitions between them, the initial

state as well as the goal states.

A state s is described by an unique assignment of all the variables in V . For example if

a planning task has two variables V = {v1, v2} over the domains dom(vi) = {T, F}, then
there are four possible states: {v1 7→ T, v2 7→ T} , {v1 7→ T, v2 7→ F}, {v1 7→ F, v2 7→ T}
and {v1 7→ F, v2 7→ F}. The size of a set S containing all possible states of a planning task

can be estimated by |S| ≤ k|V |, where k is the domain size of the variable with the biggest

domain.

The possible transitions between different states are defined by operators. Operators have

three aspects: They have a precondition, which are partial assignments of the state variables

which must be identical to the current state for the operator to be applicable. They have

an effect, which says how some state variables change and they have a cost, which says how

expansive this operator is. An effect can also have additional conditions, where the effect is
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called ”conditional effect” and the additional conditions of such an effect are called ”effect

conditions”. If an operator is used, all of its effects without additional conditions are applied

and conditional effects are only applied if their effect conditions are satisfied. Lets define an

operator a bit more formal:

Definition 2. An operator o has three properties:

• Precondition pre(o): A partial assignment a state must have for o to be applicable.

• Effect eff (o): How o effects the assignment of the variables V and

• Cost cost(o): How expensive it is to apply o, where cost(o) ≥ 0.

The applied effect changes the assignment of the state variables therefore the assignment

represents a new state. This means that the operators describe transitions between states.

For all operators oi, which are applicable at a state s, there is a new state s′i which are the

new variable assignments when oi is applied to s. This states s′i are called the successor

states of s.

Planning tasks allow us to represent a lot of complex problems. The goal is to find a plan

π = ⟨o1, ..., on⟩ which is a sequence of operators, which lead from the initial state sI to a

state sG that fulfills the requirements of δ. It is also possible to have additional requirements

to a plan πi for example a requirement could be, that the plan should have a small cost,

where the cost of a plan πi is defined as cost(πi) =
∑

oi∈πi
cost(oi).

One possible approach to solve a planning task is to try to estimate for each successor state

s′ of a current state how good they are, respectively how much it costs to get from those

states to get to a goal state. This leads us to heuristics.

2.2 Heuristic
A heuristic h is a function used to estimate how much it costs to get from a state s to a

goal state by solving an approximation of the original problem. This means h maps a state

to a real positive number: h : S 7→ R+
0 ∪∞. Therefore a heuristic can be used to estimate

how well suited a state is to get to any goal state compared to other states [6]. If h(s) = ∞
the heuristic estimates that no goal state is reachable from the state s.

There are different possible ways to implement a heuristic but generally they simplify the

problem by reducing the complexity. One way to achieve this is with a delete relaxation,

this is explained further in the following section.

There are four main characteristics look for in a heuristic:

• Safe: A safe heuristic h does never estimate a state s to not have a path to a goal

state, if a path exists. This guarantees, that no state is estimated to be a dead end, if

it is not.

• Goal-Aware: A heuristic h is goal-aware, if it estimates the cost to reach the nearest

goal to be zero, for all states that are goal states.
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• Admissible: A heuristic is admissible, if its estimation is always smaller or equal to

the true minimal cost to reach the nearest goal from a given state. Therefore h never

overestimates the true minimal cost.

• Consistent: A heuristic h is consistent if its estimation for a state s is less or equal

than the its estimation for all successor states of s plus the cost to reach the successor

state.

2.3 Delete Relaxation Heuristics
A delete relaxation heuristic approximates a problem by assuming that a variable not only

has it current assignment but also all assignments it has had. This means that an operator

never leads to a state, that is further away from the goal state. It can only bring us nearer

or has neither positive nor negative effect besides the cost.

The neat thing about this, is we can solve such a relaxed problem with a directed graph

G = ⟨V,E⟩ with vertices V and edges E, which can be solved in polynomial time [5]. For

each variable v ∈ V ,there is a node nv and for each operator o ∈ O node no. A node no

of an operator has an edge from all effects of the operator to no and has an edge from no

to all variable nodes nv with v ∈ vars(pre(o)), where vars maps a partial assignment ω to

the variables involved in the ω. Additionally, there is a node nI for the initial state sI ,

which has incoming edges from all variable nodes nv with v ∈ sI as well as an goal node nδ,

which has an outgoing edge to all variable nodes nv that need to be true for the goal to be

achieved.

Now it can be tested whether such a relaxed problem is solvable or not with a few simple

rules.

• A variable node becomes true, if any of its outgoing edges goes to a true node.

• A operator node becomes true, if all of its outgoing edges go to true nodes.

• The initial node is always true and all other nodes start with being false.

• The goal node becomes true, if all nodes at its outgoing edges are true.

By applying this rules repeatedly to such a graph, the graph eventually does not change

anymore. If at this point the goal node is true, the problem is solvable, else it is not solvable.

With a few changes, this can also be used to estimate the cost to reach the goal node:

• Instead of using true or false for the value of the nodes, we use integers. If the integer

is equal to −1 the node is false and if the integer is greater or equal to 0 the node is

true.

• The initial node has value 0 and all others start with value −1.

• Variable nodes change there value to the smallest value of nodes of its outgoing edges

that are greater than −1, unless their value smaller than that smallest value, but

bigger than −1.
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• Operator nodes have value -1 if any of the nodes at their outgoing edges has value −1.

If all those values are greater than −1 it uses some function u over all those values

and adds its cost to it.

• The goal node also has value −1 if any of the nodes at its outgoing has value −1. Else

it has the value that is given by a function u over all those values.

With this rules the graph eventually also stops changing and the value of the goal node

represents the estimated cost to achieve the goal state from the initial state. If the value is

equal to −1 the goal state is not reachable.

Regarding the function u used in the operator node and the goal node, there are to com-

monly used alternatives. If u gives us the maximum value of its inputs it is the so called

maximum heuristic hmax, which is admissible and consistent but it generally vastly under

estimates the true cost of the relaxed problem. If u returns the sum of all its inputs it is

the Additive heuristic hadd which is neither admissible nor consistent but generally leads to

better estimates [1]. Also hadd(s) results are always bigger or equal to the optimal solution

cost of the relaxed problem.

Lets make an example:

A planning task Π = ⟨V, sI , O, δ⟩, with the variables V = {P1, P2, P3, P4} with the domains

dom(v) = {T, F}, for all v ∈ V , the initial state sI = {P1 7→ T, P2 7→ T, P3 7→ F, P4 7→ F},
the operators O = {o1, o2}, where cost(o1) = 2, eff (o1) = {P2 7→ T, P3 7→ T}, pre(o1) =

{P1 7→ T}, cost(o2) = 1, eff (o2) = {P4 7→ T} and pre(o2) = {P3 7→ T} and δ = {P2 7→
T, P3 7→ T, P4 7→ T}. The graph for the heuristic of the initial state can be seen in figure

2.1(a). Once the graph looks like figure 2.1(b), it will not change anymore. As no can easily

be seen the Additive heuristic hadd estimates hadd(sI) = 5 for the relaxed task.

(a) Initial graph (b) Fixpoint of graph

Figure 2.1: The initial and final state of the graph for the Additive heuristic for the
described planning task. The variables are round nodes and the operators and the nodes
for the goal and for the initial state are square nodes.
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Since hadd generally overestimates the cost by quite a lot, there is a post processing which

reduces the estimate by only taking the sum of all operator costs directly involved in making

the goal true. This can be done by keeping track of which operator set the value of each

variable node. At the end it is possible to backtrack from the goal state to the initial state

over all operator used in the transitions. This heuristic is called FF heuristic hFF [4] and

is also neither admissible nor consistent and isn’t even deterministic, since the order of the

updates in the graph is not defined. But it is generally much closer to the optimal solution

cost of the relaxed problem than the result of hadd.

In this thesis only the Additive and FF heuristic are looked at.

2.4 Operator Domination
The Fast Downward implementation introduces operator domination [2]. An operator o1 is

dominated by an other operator o2 if:

1. eff (o1) = eff (o2), and

2. pre(o2) ⊆ pre(o1), and

3. cost(o2) ≤ cost(o1), and either

4. a) 2. or 3. is strict, or

b) id(o2) < id(o1), with id(oi) being a index of the operator oi in a vector holding a

references to all operators.

This means, that if o1 can be applied also o2 can be applied and it is generally a better

option, since it has a smaller cost or a smaller set of preconditions or both in case of 4a, in

case of 4b the operator o1 is not actually dominated, but it is equivalent to the operator o2.

In both cases it is sufficient to look at the dominating operator and the dominated operator

can be removed. This allows us to reduce the number of updates that have to be done,

without losing any precision of the calculation at least in a delete relaxation heuristic. But

this means for all operator nodes it has to be checked if they are dominated.

2.5 Greedy Best-First-Search
A simple but quite powerful algorithm to find a solution for a planning task is the Greedy

Best-First-Search (GBFS) [6]. GBFS uses a heuristic h to estimate how much it costs to get

from the given initial state sI to the closest goal state. From a given state s it calculates

the heuristic value h(s′) for all successor states s′ from s and stores those states together

with the operator used to reach it, as well as s in a priority queue open sorted by their

heuristic value and stores si in a List closed to indicate, that all s′ have been added to

open. It then repeatedly pops the element smin with the smallest heuristic value, inserts all

reachable states, which are directly reachable from smin and are not already in closed, to

open and adds smin to closed until either a newly reached state is a goal state (rendering

the problem solved) or there are no more states in open (rendering the problem unsolvable).

The algorithm is shown in figure 2.2.
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Greedy Best-First-Search:
open = PriorityQueue ordered by h
if h(init()) < ∞:

open.insert(<h(init()), init(), None>)
closed = HashSet of states
while open is not empty():

<h, state, op> = open.pop()
if state is not in closed:

closed.insert(state)
if state is goal:

return path to state
for each <state’, op> in succ(state):

if h(state’) < ∞:
open.insert(<h(state’), state’, op>)

return unsolvable

Figure 2.2: Pseudocode of the Greedy Best-First-Search algorithm. init() returns the
initial state sI of the planning task and succ(s) returns all pairs of successor states of a
given state s and the operator used to get to the the successor state from s.

GBFS is often very fast and if the heuristic used is safe it is even complete, meaning that it

always terminates and if a solution exists it will always find one. But GBFS is suboptimal

which means the found solution must not necessarily be the best possible solution and can

even be arbitrarily bad.



3
Implementation

In this chapter the goal is to show, what changes were made in the implementation and

where there were problems and how they were solved.

3.1 Status Quo
In the original implementation of Fast Downward there is a straight forward approach to

generating the graph for solving the relaxed problem. It splits the operator nodes into multi-

ple similar nodes. One for each effect of the operator as a C++ class called UnaryOperator.

This has some significant advantages: the overhead of building the graph is small and condi-

tional effects can just have additional edges from its operator node to the effect conditions.

But it also has some major disadvantages. If a variable node (implemented as a C++ class

called Proposition) updates its value, not only has there to be a check for all operators which

depend on that variable, but all effects that depend on that variable. This is not a big deal,

if every operator has on average one effect, but the number of nodes, that have to check if

they have to update their value on average is directly proportional to the average number

of effects per operator. This promises better run times if we can combine such nodes. For

example let there be v state variables and o operators with an average number of e effects

and an average number of p preconditions. With this implementation this means that every

time a Proposition updates its value on average
p× o× e

v
UnaryOperator have to be update

with the new Propositions value and for each effected UnaryOperator it has to be checked,

if they now have all there preconditions fulfilled and if so update their effects of them.

For example lets look at an operator O with pre(O) = {P1} and the effects eff (O) =

{eff 1, eff 2, eff 3} with eff 1 = {P3}, eff 2 = {P4} and eff 3 = {P5},with effect condition P2.

The graph generated for this operator (with other elements of the graph ignored) would

look like the figure 3.1.

The removal of dominated effects is done with method simplify. Regarding the simplifying

of dominated effects the original implementation removes dominated effects individually,

by just looking at each UnaryOperator individually. It Iterates over all UnaryOperators

adding them to a hashmap and uses the preconditions as well as the effect as the key and
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Figure 3.1: Graph of an operator with two effect and one conditional effect, which would
be generated by the original implementation. The state variables are represented by circles
and the UnaryOperators by squares.

the cost and the index of the UnaryOperator as the value. If there already exists an element

in the hashmap with that key, it checks if the cost is smaller than the cost of the already

inserted element and if so it replaces the value with the cost and the UnaryOperator index

of the cheaper. After this first iteration it iterates a second time over the UnaryOperator

and first checks, if the entry in the hashmap with the key generated from this operator

has the same operator index, if not, this means there is an other UnaryOperator which has

the same precondition but cheaper cost or equal cost but smaller index, so the operator is

dominated and can be removed. If it is not dominated at this point, it checks for all subsets

of the UnaryOperator in the same way, this reveals if there is a dominating operator with a

smaller subset of the preconditions. But since the number of subsets grows exponentially to

the elements of the set, this check is only done, for precondition sets with at most 5 elements.

The removal of dominated effects can have an effect on the result of the FF heuristic, since

a dominated UnaryOperator o1 can be applied before its dominating UnaryOperator o2 and

stay in the result when cost(o1) = cost(o2), leading to a different backtracking path of used

operators. Also since we remove effects that are not dominated but equivalent with a higher

index and this index is not strictly defined this can lead to different results depending on

the implementation. This simplifying has only to be done once for each planning task, since

the operators and whether they are dominated or not does not depend on a state, but on

the task.

In the original implementation a data structure ArrayPools is used, which is basically a long

vector. The idea is, that an UnaryOperator does not have to store its preconditions itself,

but it holds only two pieces of information about it, the rest is stored in the ArrayPool.

The UnaryOperator only knows, at which index of the ArrayPool it has its first entry and

how many elements in the ArrayPool it has. So instead of each UnaryOperator having

its own vector with its preconditions, the ArrayPool holds this data as one segment in its

vector. This allows all UnaryOperators to have the same size, because the data that can be
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of different size is outsourced. It also seems to have a positive impact on the memory, but

to that later more (Section 3.7). The ArrayPools are also used for the Propositions to safe

the UnaryOperators dependent on the Proposition.

3.2 Optimization Idea
A relatively easy attempt to make such an optimization is to bundle all effects of an operator

except of the conditional effects in the same node nOp. Conditional effects can treat nOp as

a variable node, since the function u used in an operator node can be applied transitively for

hadd (as well as for hmax) if the cost is added separately: Let Ao be the set of preconditions

of an operator o (Ao = pre(o)) and Bo be the set of effect conditions of an effect of o. With

∆ = Ao ∩Bo and B̂o = Bo \∆, than:

cost(o) +
∑

v∈{Ao∪Bo}

nv.value = cost(o) +
∑
v∈Ao

nv.value+
∑
v∈B̂o

nv.value

This reduces the number of updates needed, when a variable node updates.

For example let there be v state variables and o operators with an average number of e

effects without effect conditions and an average number of p preconditions. Also let ec be

the average number of conditional effects with pc preconditions on average. With the op-

timization idea the average number of OperatorNodes that have to be updated for every

Proposition that updates is
p× o× (1 + ec)

v
+

pc × ec × o

v
. Which seems bigger than the

number of updates described in section 3.1 and it can be depending on the planning task.

But often the number of conditional effects ec is very small or even zero, but the number of

effect e can be big. The number of updates under the assumption that ec is zero would be
p× o

v
which then would be significantly smaller than

p× o× e

v
.

For example the same operator as described in section 3.1 for an operator O with pre(O) =

{P1} and the effects eff (O) = {eff 1, eff 2, eff 3} with eff 1 = {P3}, eff 2 = {P4} and eff 3 =

{P5},with effect condition P2. The graph generated for this operator (with other elements

of the graph ignored) would look like the figure 3.2.

As can be seen the optimization idea generally reduces the number of nodes and edges in

the graph.

An even more advanced idea would be to search for common subsets of preconditions and

use them likewise as intermediate nodes with no direct effects them self. This could further

reduce the number of edges in the graph and therefore the number of updates significantly.

Here is a small example: an operator O1 with pre(O1) = {P1, P2, P3, P4} and the effect

eff (O1) = {P5} and an operator O2 with the pre(O2) = {P2, P3, P4} and the effect eff (O2) =

{P6}. These two operators have an overlapping in there precondition pre(O1) ∩ pre(O2) =

{P2, P3, P4}, therefor the graph can be simplified. As shown in figure 3.3.

The reduction of the edges of the graph can increase rapidly with more operators and

promises even further speed up in the computation. This however is not part of this thesis

and remains as future work.



Implementation 11

Figure 3.2: Graph of an operator with two effect and one conditional effect, which would
be generated by an implementation with the optimization idea. The state variables are
represented by circles and the UnaryOperators by squares.

(a) with current implementation (b) further optimization

Figure 3.3: The graphs of two operators with overlapping preconditions. In (a) it is shown
as the graph would look like in the original implementation as well as with the adaptation
of this thesis. In (b) the graph is build with the discussed further reduction of edges.

3.3 Problem 1: Graph nodes
With the original implementation of UnaryOperators and Propositions the graph was simple,

every Proposition knew about which UnaryOperators were dependent on it. And every

UnaryOperator knew which Proposition it changes as well as all propositions, it had as

preconditions (This part is relevant for the FF backtracking).

For the optimization idea, this was not ideal, since now an operator node could have Propo-

sitions as well as an operator as precondition and it could have not only multiple effects,

but also multiple conditional effects depending on it. Therefore it would be more useful
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to have a class GraphNode with subclasses PropositionNode and OperatorNode. With this

the preconditions of an OperatorNode can just be a GraphNode and it must not care about

whether its an OperatorNode or a PropositionNode. But this lead to the first problem,

which took a while to identify:

The preconditions of a OperatorNodes are saved in a vector which holds a pointer to each

GraphNode. The Problem was, that the OperatorNodes were also saved in a vector, which

grew while all the OperatorNodes were build. But when that vector grew over its allocated

size, it had to allocate a new and bigger space in the memory and move all its entries there.

This rendered all pointers in the preconditions vector as useless, since the pointers in it now

pointed somewhere in the memory, where the GraphNodes used to be, but not anymore.

As solution the OperatorNodes were not longer saved in a vector, but randomly allocated

with the C++ command new. This meant that the pointers remind valid, regardless of

how many OperatorNodes were added. To still be able to iterate over all OperatorNodes

as well as releasing the allocated memory at the end, the vector which originally held the

UnaryOperators was used to now hold pointers to the OperatorNodes.

The updating of the nodes is implemented as a recursive function of those nodes, but the

problem with that is that the ArrayPool can not be accessed directly from the nodes, since

the ArrayPools are object variables of the class RelaxationHeuristic, which is independent

of the GraphNodes, and the effect was no longer just one Proposition index, but could be

multiple pointers to propositions and other operators. So the ArrayPools were ignored for

the moment and the preconditions and effects were given to the nodes as vectors. But this

has a major effect on the calculation speed as discussed later (Section 3.7).

3.4 Problem 2: To high costs in conditional effects
In the original implementation the cost of an operator cost(o) was just used as the default

cost value of the UnaryOperator. And after each updated precondition the cost value of

that precondition was added to the cost value of the UnaryOperator until all preconditions

were updated. Then it used this sum of all precondition cost values as well as cost(o) to

update the effect of the precondition.

In my implementation I first naively used the same approach. But this lead to wrong

results. The problem being conditional effects. Conditional effects nodes added the cost of

the operator themselves, but the cost has already been added in the OperatorNode it uses

as precondition, therefore the cost has been added twice. An idea to solve this, would be to

just add the cost in the first operator node and ignore the operator cost in all succeeding

operator nodes (conditional effect nodes). But with future compatibility in mind, there

is the possibility, that an OperatorNode is a precondition for multiple different operators,

therefore it is not possible to just add a operator cost to its cost counter, since it is not given,

that all operators depending on this node have the same cost. But since all OperatorNodes

already hold the operator cost in a separate variable, to allow the graph to be reset easily, it

is possible to just ignore the operator cost in the cost counter, and only apply the operator

cost directly to update a state variable. This allows the counter in the OperatorNode to be

used freely for all operator that depend on the node.
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3.5 Problem 3: simplify had to be changed
The simplify method also had to be changed. In the original version each UnaryOperator

corresponded to an effect, so if an effect was dominated the whole node was dominated and

could been removed. In the optimized version, an OperatorNode can hold more than one

effect and be the precondition of other effects. So each effect must be check individually if it

is dominated. And if all effects are dominated, and the OperatorNode is not a precondition

of a conditional effect, then the operator node is fully dominated and could been removed.

For this, it was useful, how the vector operator nodes that holds all pointers to all operator

nodes was constructed. The order of the entries in operator nodes corresponds not only

to the order of how the operators were defined in the planning task but also all Opera-

torNodes of conditional effects are later in the vector, than the OperatorNode they use as

precondition. This allows to iterate backwards over the vector and checking for each entry,

if the effects in the OperatorNode where dominated. If all effects where dominated and

no other OperatorNode uses it as precondition, the node can be deleted (remove all edges

from preconditions to the node, delete the node from operator nodes and free the allocated

memory). At any point in simplify, if an OperatorNode No is checked, all OperatorNodes,

that uses No as precondition already have been checked, since we iterate over the vector

backwards and those nodes are later in the vector than No. So at no point the removal of

No has an impact to any already checked node.

The implementation of this also lead to a lot of bugs. For example, it is highly relevant to

be mindful when checking the effects of an OperatorNode. Since if an effect is dominated

and therefore removed from the vector of effects, the index of all effects in the vector after

the removed effect are decreased by one. If the iteration over the effects happens by just

simply increasing the index, the first element after the removed effect is overlooked. Instead

of keeping track of this, it is much more simple to iterate backwards over the effects, since

this way the removal of an effect does not change the indexes of unchecked effects.

3.6 Problem 4: Correctness of the FF heuristic
To verify that the implementation of FF heuristic hFF was correct there were to main

possibilities: formally show that the implementation is correct or have the same results as

in the base implementation for all test cases. To formally show that the implementation

labor-intensive, but it is much easier to show that the results are equivalent to the already

thought to be correct original implementation. This is not a proof, that the implementation

is correct, but if the results are equal in all 2742 test cases there is a high probability.

The problem with this approach is that hFF is not deterministic in its definition. So to

have the same results, all updates of all operators must be in the exact same order as in

the original implementation. The update order directly corresponds to the order in the

vector operator nodes and the order in which the effects are saved within a node. So in the

original version, where every node holds one effect, the order of updates was the same as in

the planning task, but in the optimized version, there are multiple effects in each node, the

order in the node is generally the same, except for conditional effects, since they are in a

different node, which is updated after all effects inside the first node. To counter this, the
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simplest fix was to changed the order in the original implementation and for each operator

first append all normal effects as UnaryOperators to the list and than add the conditional

effects to the list before going to the next operator. With this change the update order is

the same. But the results for hFF were still different.

The next assumption was, that the reason for the difference was the implementation of the

queue which holds all nodes that had a change in their precondition and maybe need to be

updated.

The original implementation uses a class AdaptiveQueue for this queue. AdaptiveQueues

start of as a bucket queue which is efficient as long as the keys are small and a limited

number of elements per key. But if there is are big keys or a large number of keys, it

becomes inefficient and the AdaptiveQueues change to a heap queue which is more efficient

for such keys. The problem with this is, that the switch from bucket to heap queue can

effect the order within the queue and therefore lead to a different order in the updating of

nodes and therefore lead to different non deterministic heuristic values for the FF heuristic.

To solve this both the original implementation and the new one were changed to only use

the bucket queue.

But this also did not solve the difference in the hFF results. So the code had to be debugged

very carefully which showed multiple bugs and details which had an effect on the hFF re-

sults. One of those details is here further explained:

In the simplify method there is a hashmap used, to determine for each effect with the

same preconditions the cheapest operator. To achieve this the hashmap uses as key a pair

with the first entry being the preconditions of the effect and the second entry being the

effect. The values of the hashmap also were a pair, with the first entry being the cost of

the cheapest found such key pair and the second entry being the operator. In the original

implementation, the operator was represented by the index of the UnaryOperator in the

list of all UnaryOperators and in the new implementation the operator is represented by a

pointer to the OperatorNode. When the hashmap is build, it is iterated over all operator

nodes and over all their effects, a key is generated and if there is no entry with this key, the

key along with the value is inserted in the hashmap. If there already exists a entry with

this key, the value of the entry in the hashmap valueold is compared with the value of the

operator which is to be inserted valuenew. In the original original implementation this looks

like the following:

if (valuenew < valueold) { hashmap.insert(key, valuenew);}

Since the compared variables are of type pair C++ uses the overwritten implementation of

the binary operator ”<”, which compares the second element of the pair if the first element

of the pairs are equal. In the original implementation the index of the UnaryOperators are

deterministic so the hashmap will look always the same for the same input. This achieved

that operators with smaller indexes dominated operators with bigger indexes. But in the

new implementation pointers are used to identify an OperatorNode and those pointers are

not deterministically assigned. This means, that for a given key in the hashmap the value
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can differ to the original implementation for effects with the same precondition and cost.

This can lead to different hFF results, since the operator that set the value of a state variable

differs the backtracking of hFF can return a different set of operators with a different sum

of costs.

To achieve the hashmap entries deterministically and equal to the original implementation

the fact that the effects are in the same order in the list of all operators in both the original

and the new implementation could be used. Since the filling of the hashmap was done by

iterating forwards over the list of operators the index in each iteration grew monotonically.

So in the original implementation the hashmap will always contain the operator with the

lowest index of all operators with the smallest cost and with this the requirement that the

operator with the lowest index dominates other equal good operators is achieved. So if we

iterate over the list of operators and just compare the first element of the value pair, and

only replace the value if the new cost is smaller than the old cost, we get the same result as

in the original implementation.

After a lot of debugging, the hFF results were the same in all 2742 test cases. With this

showing that the implementation is very likely to be correct, all measures to achieve the

same results but which were not necessary for a correct algorithm could be removed, for

efficiency sake.

3.7 Problem 5: Speed
The calculation times with this new implementation have shown to be much slower, than

the original implementation. The first idea to combat this was to remove the recursive part

in the code introduced to update nodes in the graph.

The updating of the graph in the code follows a simple logic. At the start, all operators

that do not require any precondition are processed, meaning all proposition nodes that are

effected by such a operator updates its cost and is added to a queue.

After the first element of the queue is removed and all OperatorNodes that use this Proposi-

tionNode as a precondition are informed, that the proposition has a new cost. The effected

OperatorNodes then check, if all preconditions are fulfilled, if so it updates all its effects and

add them to the queue. After which it is repeated for the new first element of the queue.

This is repeated until all goal state variables are fulfilled or there are no more elements in

the queue.

In the original implementation each UnaryOperator directly updates its effect, but in the

new implementation this is no strictly true, since there could be other OperatorNodes de-

pending on this OperatorNode. In the recursive implementation this is solved, well recursive,

when an OperatorNode is updated, it updates its cost counter and calls, in its update func-

tion, the update function of all nodes it effects (whether they are an OperatorNode or

PropositionNode). If it is also a OperatorNode it does exactly the same thing, but if it is

a PropositionNode, it updates its self, adds itself to the queue and returns. This is a neat

solution of the problem but recursion adds its own overhead, since there are many function

calls.

A iterative implementation does not have this overhead and should be faster. So in a new
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implementation instead of calling the update function recursively there is an additional

queue of OperatorNodes and the effects are separated into effected PropositionNodes and

OperatorNodes. First it updates all the PropositionNodes directly depending on the current

OperatorNode after which all OperatorNodes directly depending on the current OperatorN-

ode are updated and if they are fulfilled are added to the secondary queue. Then it iterates

over the secondary queue with the same logic, until it is empty. This has the same effect as

the recursive solution but removes the recursive function calls.

But this made the calculation time even longer. So the next idea was that the problem was

the cache. Since there could be a lot of nodes, not all are held in the cache at all times

and they needed to be loaded from the memory, which adds additional time. Therefore

the ArrayPools where reintroduced to hold all the data previously held by vectors in the

GraphNodes. This has the effects, that a node is much smaller in memory space, all nodes

of the same type have the same size and the ArrayPool can be hold in the memory reducing

the loading time. The iterative solution allowed to implement the ArrayPools again without

major redesign, since the update function was no longer part of the graph nodes, but was

achieved in the relaxation heuristic class. Just the usage of ArrayPools sped up the calcu-

lation time, but it was still significantly slower than to original or even the first recursive

implementation. Only when the size of the nodes where reduced the times came close to

the original implementation.

After this, I also reimplemented the recursive variant to make use of the ArrayPools. To

allow the update function access to the ArrayPools of the heuristic class, I reimplemented

the function as part of the heuristic class instead of as part of the GraphNodes, which takes

the needed nodes as inputs. This however only had very minor positive effect to the normal

recursive implementation and still being way slower than the iterative solution.



4
Results

In this chapter the results gathered are presented. All compared implementations and their

pseudonyms are listed here:

base: The original implementation as of March the 21th 2022.

recursive-base: A recursive implementation, where the neighbours of each node is stored

in the node with vectors.

recursive-reduced: A recursive implementation, where the size of each node was reduced

by using ArrayPools.

iterative-reduced: A iterative implementation, where the size of each node was reduced

by using the ArrayPools.

Some implementations are not included, like a recursive implementation without the use of

ArrayPools, to make the data less cluttered, and they were generally strictly worse than the

shown ones. To compare the implementations three main characteristics are compared:

Coverage: The number of tasks an implementation solved within the time and memory

limit.

Search Time: The time needed for the GBFS for a planning task without the construction

of the graph.

Total Time: The time needed to build the delete relaxation heuristic graph plus the

search time plus any time needed for clean up at the end like free reserved memory.

To test the different implementations the benchmark environment of Fast Downward [7]

was used, which allowed to run searches in 76 different domains of planning tasks in a total

of 2’742 different tasks for each of the implementation for both hadd and hFF . To avoid

extremely long test runs, a search was terminated if it took longer than 30 minutes. This can

generate a bias, when comparing different implementations. Since some implementations

that are faster and solve a task within the time limit with high search and total time,

and a slower implementation did not finish within the limit. When comparing the two
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the additional data points of the faster implementation can have a significant effect on the

average. Therefore when comparing the implementations, only the planning task solved by

both are considered.

Further hardware resource limitation were 40 minutes with 3.6GB of RAM on a single core

of an Intel Xeon E5-2600 processor, for each task.

4.1 Overall Comparison
To compare the different implementations the geometric mean over the search times and

total times is calculated (see figure 4.1). But since not all domains have the same number

of tasks in the test environment, the geometric mean is first calculated over all the tasks

within a domain and in a second step the geometric mean over all those domain means is

calculated. This gives a better approximation for a random task, when all domains have the

same probability.

Implementation Coverage R̃S R̃T

a
d
d

base 1817 1.000 1.000
iterative-reduced 1810 1.008 1.057
recursive-reduced 1793 1.202 1.237
recursive-base 1787 1.212 1.234

F
F

base 1760 1.000 1.000
iterative-reduced 1771 0.958 1.005
recursive-reduced 1754 1.119 1.154
recursive-base 1741 1.155 1.181

Table 4.1: Different implementations compared with the base. R̃S and R̃T are the
geometric mean of the relative Search time, respective Total time over all tasks solved by
every implementation. The Coverage is out of the 2742 different planning tasks. The
subset of tasks which were solved from all implementations and therefore used to calculated
the means has 1781 entries for the Additive heuristic and 1732 for the FF heuristic.

The coverage is close for all implementations which already indicates, that no implemen-

tation is significantly better than the other over all. But the iterative-reduced seems to

be better than the both recursive variants and even better than the base implementation

for the FF heuristic. But the three new implementations are already strictly ordered with

the iterative solution being better than the recursive implementations and the recursive-

reduced being better than the recursive-base implementation in both the Additive and the

FF heuristic.

The average relative search time for the Additive heuristic is best for the base implemen-

tation, but the iterative-reduced implementation is not far behind with only 0.8%, so it is

almost as fast. The recursive-reduced and recursive-base implementations are significantly

slower in average with 20.2% and 21.2% more search time needed in average.

For the average search time for the FF heuristic the iterative-reduced implementation is

even faster than for the base implementation by 4.2%. But the iterative implementations

are again significantly slower than the base implementation.

The average relative total times are a big bigger compared to the relative search times.
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This is expected, since the overhead in building the graph is bigger than for the base imple-

mentation. But in the FF case its only 0.5% for the iterative-reduced, so it has about the

same time needed as the base implementation. But again the recursive implementations are

significantly slower.

This overview is however a strongly reduced impression of the data and it makes sense to also

compare the implementations on a finer level, namely the domains, since different domains

can vary strongly in there composition which can have a strong impact on how efficient the

different implementations solve them.

4.2 Comparison by Domain
A data point in the figures 4.1, 4.2, 4.3, 4.4 corresponds to the following formula:

xdomain, implementation = log10(
X̄domain, implementation

X̄domain, base
)

, where X̄ corresponds to the arithmetic mean of the search or total time of a given domain

and implementation. The recursive-base implementation is no longer included, since it is

generally worse than the other two new implementations.

The figure 4.1 like the others shows how strongly the search time can vary between the

different domains and the implementations. As can be easily seen both the iterative-reduced

and the recursive-reduced implementation are in many domains significantly faster than the

base implementation. Also the iterative-reduced implementation seems to almost always

has a smaller average search time than the recursive-reduced version.

The figure 4.2 shows the average relative total times. The difference seem to be generally

a bit smaller, so there seems to be less variation between the implementations. The values

in the different domains seem to be similar to the ones in the figure 4.1 which makes sense,

since the main time consumption of solving a task should lay in the search and not in the

construction. Non the less already the first line shows that agricola-sat18-strips has a slower

total time than the base but it had a faster faster search times. This means the solving took

for all tasks in this domain longer with the new implementations than with the old one

even thou the search was faster. But since the search growth faster than the building of the

graph for more complex tasks, there comes a point at which it is probably more sensible to

use the new implementation than the base with growing complexity even thou for this set it

took in average more time to solve. This assumption seems to be reflected in the test data.

The most complex task in this domain solved by both the base and the iterative-reduced

implementation took about 1555 seconds with the base implementation but only about 789

seconds with the iterative implementation.

For the FF heuristic search times (figure 4.3) are similar to the Additive heuristic times,

but the extreme cases are less extreme and the times are generally closer to the base than

with the Additive heuristic.

The average relative total times in figure 4.4 are generally slightly left shifted to the ones in

the Additive heuristic. This means that total time relative to the the base are a bit faster

for the FF heuristic than for the Additive. Therefore the optimization has a bigger positive

effect for the FF heuristic than for the Additive heuristic.
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Figure 4.1: The search time of different implementations of the Additive heuristic relative
to the original implementation (”base:add”) compared on a logarithmic scale, split up into
different domains of experiments it was tested in.

Over all implementations it shows that the iterative-reduced is generally better than the

recursive-reduced. Also whether it makes sense to use the new implementation is highly

deepened on the domain and the complexity of the task. For small tasks it often makes

sense to use the base implementation but in many domains, it makes sense to use the

iterative-reduced implementation, even if it has a longer average total time, if the search

time is faster with growing complexity. Also overall the average positive effect seems to be

bigger for the FF heuristic than the Additive heuristic.
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Figure 4.2: The total time of different implementations of the Additive heuristic relative to
the original implementation (”base:add”) compared on a logarithmic scale, split up into
different domains of experiments it was tested in.
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Figure 4.3: The search time of different implementations of the FF heuristic relative to the
original implementation (”base:ff”) compared on a logarithmic scale, split up into different
domains of experiments it was tested in.
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Figure 4.4: The total time of different implementations of FF heuristic relative to the
original implementation (”base:ff”) compared on a logarithmic scale, split up into different
domains of experiments it was tested in.
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Conclusion

The implementations with the optimization idea are not strictly better compared to the

original implementation, but there are many domains for which it is definitely the better

choice and more so with increased complexity of the task.

During the implementation I realized how optimized the implementation already was. Even

thou the base used an approach for building the graph which leads to a generally more

computationally expansive search, than the one used for the new implementation, it was

quit difficult to come near its speed with the more promising idea, since the base was quit

well implemented in terms of memory use, etc.

To continue the optimization the idea discussed in section 3.2 seems to be promising, es-

pecially for more complex problems, since it has additional complexity in the construction

of the graph but it has the possibility to significantly speed up the search. And since this

optimization is over more than one operator at the time, it is also expected to have a positive

effect in even more domains.

I have learned a lot in the course of this work, not only about planning tasks and in partic-

ular about Additive and FF heuristics, but also about C++ and optimizing the run time of

code written in C++.. And although the results are not quite as positive as I had hoped at

the beginning, I am happy with the outcome and with the experience as a whole.
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