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Abstract

This thesis deals with the algorithm presented in the paper ”Landmark-based Meta Best-

First Search Algorithm: First Parallelization Attempt and Evaluation” by Simon Vernhes,

Guillaume Infantes and Vincent Vidal. [1]

Their idea was to reconsider the approach to landmarks as a tool in automated planning,

but in a markedly different way than previous work had done.

Their result is a meta-search algorithm which explores landmark orderings to find a series of

subproblems that reliably lead to an effective solution. Any complete planner may be used

to solve the subproblems.

While the referenced paper also deals with an attempt to effectively parallelize the Landmark-

based Meta Best-First Search Algorithm (in short referred to as LMBFS), this thesis is con-

cerned mainly with the sequential implementation and evaluation of the LMBFS algorithm

in the Fast Downward planning system [2].
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1
Introduction

Landmark-based methods have been a very popular means for problem solving in automated

planning. Landmarks represent steps that are requirements for every solution. More for-

mally, landmarks are facts that have to be true at some point of every solution plan.

The two main ways in which landmarks have been used in the past are landmark-based

heuristics and landmark-based meta-search. While the approach of using landmarks as part

of heuristic functions has been proven to be successful, such as the LM-count heuristic [3] or

the LM-cut heuristic [4], the approach of splitting the original task into subtasks which aim

to achieve individual landmarks has been lagging behind, suffering from it’s incompleteness

and lack of flexibility in landmark orderings.

The paper ”Landmark-based Meta Best-First Search Algorithm” [1] presents an exploration

of the second approach that is not only complete, but also considerably more flexible and

thus applicable to a broader range of planning problems.
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Body of the Thesis

2.1 STRIPS Planning Model
The STRIPS planning model is represented by states to describe the world and actions to

change the world. A state consists of a set of atoms, each of which can be either true or false.

An action a is a tuple 〈pre(a), add(a), del(a)〉, where pre(a) represents the preconditions of

a, add(a) contains the atoms that are made true by a, and del(a) contains the atoms that

are made false by a.

A planning task is defined as a tuple Π = 〈A,O, I,G〉. A is a finite set of atoms describing

the world, O is a finite set of actions which manipulate atoms, I ⊆ A represents the initial

state and G ⊆ A represents the goal condition.

An action a is applicable to a state s if and only if pre(a) ⊆ s and the resulting state s′ =

(s\del(a)) ∪ add(a). A plan is a sequence of actions 〈a1, . . . , an〉 such that for a sequence of

states 〈s0, . . . , sn〉, for all i ∈ {1, . . . , n}, the intermediate states si = (si−1\del(ai))∪add(ai))

are such that pre(ai)) ⊆ si−1. A solution plan is a plan for which s0 = I and G ⊆ sn. S (Π)

denotes the set of all solution plans of Π. The symbol ◦ represents the concatination of two

plans, i.e. 〈a1, . . . , ai〉 ◦ 〈aj , . . . , an〉 = 〈a1, . . . , ai, aj , . . . , an〉.

2.2 Landmark Graph
Landmarks are facts that have to be true at some point of every solution plan. Because

of this, we can assume that the achievement of landmarks generally brings us closer to the

solution of the task.

While landmark-based heuristics such as the LM-count heuristic [3] do not care about the

order of landmark achievement, the approach of LMBFS is firmly based on ordering the

landmarks in a way that is benefitial to the effectiveness of the algorithm. The landmark

graph represents the space in which we perform the meta-search.

The LMBFS algorithm uses the following Definitions on landmarks and the landmark graph:
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Definition 1. (Causal landmark). [1]

Given a planning task Π = 〈A,O, I,G〉, an atom l is a causal landmark for Π if either l ∈
G or ∀ρ ∈ S(Π),∃α ∈ ρ : l ∈ pre(a).

This means that a causal landmark l is either part of the solution state, or it is a precondi-

tion of at least one action in every solution plan - either way, it is necessary to achieve all

causal landmarks if we are interested in finding a solution.

Definition 2. (Precedence relation <L). [1]

<L can be defined on a set of landmarks L. For two landmarks (l, l′) ∈ L2, l <L l′ if l

becomes true before l′ becomes true during the execution of every solution plan.

Roughly speaking, the precedence relation orders a set of landmarks according to their order

of achievement in S (Π).

Definition 3. (Landmark graph Γ). [1]

Given a set of landmarks L and a precedence relation <L, we define Γ = (V, E), the

corresponding directed landmark graph where the set of vertices V = L and the set of edges

E is the transitive reduction of the graph (V, {(l, l′) ∈ L2 | l <L l′}).

We build the landmark graph following the precedence relations between landmarks, so that

following the landmark graph already yields an ordering of landmarks that is helpful with

respect to achieving the goal.

Definition 4. (Relatives of a landmark l). [1]

According to the landmark graph Γ, we denote PaΓ(l) the set of parents of l, ChΓ(l) the set

of children of l, and PΓ(l) the set of ancestors of l.

Definition 5. (Root landmark set). [1]

Let Γ = (V, E) be a landmark graph. We define roots(Γ) = {l ∈ V | PaΓ(l) = ∅}.

Root landmarks of a landmark graph Γ are landmarks that have no parents. Because Γ is

built following the precedence relations, this means that the root landmarks of Γ are likely

to appear early in every solution plan, which makes them a good starting point for a meta-

search on the landmark graph.

Definition 6. (Landmark subgraph). [1]

Let Γ = (V, E) be a landmark graph and A be a set of landmarks. The landmark subgraph

is defined as follows: Γ\A = (V\A, {(v, v′) ∈ E | v /∈ A ∧ v′ /∈ A}).
A ∈ L is the set of achieved landmarks.

This subgraph is obtained by removing from the landmark graph all vertices associated to

achieved landmarks, as well as all edges that are incident to at least one such vertex.

In other words, we remove all achieved landmarks and connections to them from the land-

mark graph.
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This is a transformation of the landmark graph that we will apply regularly in order to

reduce the size of the landmark graph. It is important to note that not all landmarks that

have been added to the set of achieved landmarks have actually been achieved. This is

because the final algorithm will terminate only if the landmark graph is empty, as no more

metanodes will be generated at that point. However, we do not always want to achieve all

landmarks - sometimes it is benefitial to skip single landmarks, especially if their achieve-

ment would make more important steps of a solution plan impossible. We skip landmarks

by adding them to the set of achieved landmarks.

2.3 Metanode and Associated Planning Task
Definition 7. (Metanode). [1]

A metanode is a tuple m = 〈s, h,A, l, ρ〉 where:

• s is a state of the planning task Π

• h is a heuristic evaluation of the node

• A is a set of landmarks (A ⊆ L)

• l is a landmark (l ∈ L)

• ρ is a plan yielding the state s from the initial state I.

In a metanode, s is the state we are currently in, ρ is how we got to that state, A is the set

of already achieved landmarks, and l is the landmark we wish to achieve in the planning

task associated with this metanode.

Definition 8. (Metanode-associated planning task). [1]

The planning task associated to a metanode m = 〈s, h,A, l, ρ〉 is defined as Πm = 〈A, opsΓ(l,A), s, {l}〉.
opsΓ(l,A) is a subset of O defined as follows:

Let m = 〈s, h,A, l, ρ〉 be a metanode. opsΓ(l,A) = {a ∈ O | (l ∈ add(a)) ∨ (add(a) ∩
roots(Γ\A) = ∅)}.

In such a planning task, we consider s the initial state, and the achievement of {l} the goal.

A is the set of atoms of Π, and opsΓ(l,A) is a subset of the actionsO of Π. The actions that

remain allowed are all actions that either achieve the landmark l, or that do not achieve any

root landmarks. This action restriction focuses the search on l.

In this algorithm, a metanode-associated planning task will usually represent only a part of

the original planning task, which we will refer to as subtask.

2.4 Expansion of Metanodes
At the core of the LMBFS algorithm are the metanode generation methods - they work

as successor functions that determine the way the algorithm moves through the landmark
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graph, and thus are very much make-or-break for the efficiency and usefulness of this algo-

rithm.

As the planning task associated to a metanode m focuses on reaching a landmark l, we also

call m the metanode associated to the landmark l.

All metanode generation methods take a metanode m as input and add new metanodes to

the open list.

Definition 9. (nextLM metanode generation). [1]

Let m = 〈s, h,A, l, ρ〉 be a metanode. If Πm has a solution ρ′, then nextLM(m) = {〈s′, h′,A∪
{l}, l′, (ρ ◦ ρ′)〉 | l′ ∈ roots(Γ\(A ∪ {l}))}. If Πm has no solution, then nextLM(m) = ∅.

nextLM is straight-forward: it tries to achieve the landmark l. If that is possible, it adds

l to the set of achieved landmarks, updates the plan accordingly and generates metanodes

corresponding to all root landmarks of the landmark graph. This means that the search

stays focused on root landmarks. If l cannot be reached, nextLM generates no metanodes.

By using only nextLM in our algorithm, we follow the landmark graph as closely as possible.

But with this approach the algorithm is incomplete, as it is possible to run into dead ends in

situations where achievement of one landmark renders the achievement of another landmark

impossible. Therefore three other successor functions have been defined alongside nextLM,

which allow to skip landmarks in various ways. This addition makes the algorithm complete.

Definition 10. (deleteLM metanode generation). [1]

Let m = 〈s, h,A, l, ρ〉 be a metanode. nextLM(m) = {〈s, h′,A∪{l}, l′, ρ〉 | l′ ∈ roots(Γ\(A∪
{l}))}.

deleteLM removes a landmark from the landmark graph and focuses the search on the other

root landmarks.

Definition 11. (cutParents metanode generation). [1]

Let m = 〈s, h,A, l, ρ〉 be a metanode. If Πm has a solution ρ′, then cutParents(m) =

{〈s′, h′,A∪PΓ(l′), l′, (ρ ◦ ρ′)〉 | l′ ∈ ChΓ(l)} where s′ is the state obtained by applying ρ′ to

s. If Πm has no solution, then cutParents(m) = ∅.

cutParents first checks if l can be achieved and if it cannot, cutParents generates no metan-

odes. However if l can be reached, cutParents does not only achieve l, but it also marks all

of it’s ancestor nodes as achieved, and generates a new metanode for every child of l. Note

that the ancestors are not actually achieved - they are added to the set of achieved land-

marks just so that they are ignored. This focuses the search on the children of l, skipping

all ancestor nodes of l.

Definition 12. (restartCutParents metanode generation). [1]

Let m = 〈s, h,A, l, ρ〉 be a metanode. restartCutParents(m) = {〈I, h′,A∪PΓ(l′), l′, ∅〉 | l′ ∈
ChΓ(l)} where I is the initial state of the original planning task.
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restartCutParents is similar to cutParents, with the only difference being that the metanodes

created by restartCutParents start at the initial state of the original planning task. The

differences to the original planning task are that all ancestors of the metanode l will be

ignored, and that the search now focuses on the achievement of deeper landmarks, namely

the children of l.

2.5 The LMBFS Algorithm
LMBFS is a meta-search algorithm that operates on metanodes. Metanodes are associated

to landmark nodes of the landmark graph, and represent subtasks with the goal of achiev-

ing their associated landmark. The metanodes are chosen in a best-first approach based on

a heuristic evaluation of the metanode. The subtasks can be solved using any embedded

planner as subplanner.

Algorithm 1: LMBFS [1]

Input : STRIPS planning task Π = 〈A,O, I,G〉, landmark graph Γ, metanode successor

function succ

Output: solution plan or ⊥
1 open ← ∅;
2 closed ← ∅;
3 ∀l ∈ roots(Γ) : add metanode 〈I, h, ∅, l, ∅〉 to open;

4 while open 6= ∅ do

5 m ← arg min〈s,h,A,l,ρ〉∈openh;

6 open ← open \{m};
7 if m /∈ closed then

8 closed← closed ∪ {m};
9 ρ′ ← subplanner(Πm);

10 if ρ′ 6= ⊥ then

11 s′ ← result of executing ρ′ in s;

12 if G ⊂ s′ then

13 return ρ ◦ ρ′;

14 open← open ∪ succ(m);

15 return ⊥

The algorithm starts by adding the metanodes corresponding to the root landmarks of Γ to

the open list. Then the algorithm iterates until either the open list is empty or a solution

plan to the planning task has been found, with each iteration including the best-first selec-

tion of a metanode m from the open list and the solution of the subtask associated to the

metanode m. If the subtask has a solution, m is expanded by adding it’s successors to the

open list.

succ refers to the successor function, which uses the metanode generation methods intro-

duced in section 2.4 to generate new metanodes. Two successor functions have been imple-

mented [1]:
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• succDel(m) = nextLM(m) ∪ deleteLM(m)

• succDel(m) = nextLM(m) ∪ cutParents(m) ∪ restartCutParents(m)

Theorem 1. [1]

The LMBFS algorithm using succCut or succDel as successor function is sound and complete

if the subplanner is sound and complete.

2.6 Heuristic functions
There are two places in which heuristic functions are used in LMBFS - in the meta-search

for the metanode open list, and in the subplanner (if applicable). This paragraph focuses

on the first place.

As Vernhes et al. [1] showed, the heuristic functions hadd [5] and hff [6] are of good use

in LMBFS, but hLleft , which was inspired by the LM-count heuristic [3] can be even more

effective.

Definition 13. (hLleft) [1]

For a metanodem = 〈s, h,A, l, ρ〉 and an associated landmark graph Γ = (V, E), the heuristic

hLleft(m) = |V\A|.

This heuristic counts the landmarks that have not yet been added to the set of achieved

landmarks A.

2.7 Lazy Metanode Generation
The deleteLM metanode generator can lead to a very hight amount of metanodes for some

tasks, which results in a considerably increased search time on these tasks. This problem

does not affect succCut, as succCut does not use the deleteLM metanode generator.

To solve this problem, Vernhes et al. [1] introduced an alternative strategy for LMBFS re-

garding the open list that involves de-prioritizing deleteLM via a secondary open list: While

there are metanodes in the primary open list, only nextLM is used for metanode genera-

tion. Every metanode that is pushed into the closed list is also pushed into the secondary

open list. Only when the primary open list is empty do we generate new metanodes with

deleteLM by popping a metanode from the secondary open list and applying deleteLM to

it.

This means that, instead of using nextLM and deleteLM equally often, we use only nextLM

until the primary open list is empty.

2.8 Evaluation
2.8.1 Test Environment
The tested implementation of LMBFS was done in the Fast Downward planning system [2],

with a modified version of Fast Downward’s EagerGreedy search as subplanner. For land-
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mark generation the method of Zhu and Givan [? ] was used. This implementation does not

support axioms or conditional effects and lacks a few features that could positively impact

the algorithm’s runtime and general effectiveness.

These features include the transitive reduction of the landmark graph introduced in 3, the

lazy metanode generation introduced in 2.7, and the usage of deferred heuristic evalua-

tion [7]. This does not impact the algorithm’s completeness in principle, but it very well

might do so in practice as there might be planning tasks that terminate within the time and

memory limits with these optimizations, but not without them.

This implementation uses as heuristic for the meta-search hLleft . As for the sub-search,

we refrain from using landmark-based heuristics in the spirit of Vernhes et al. [1]and use

the popular heuristic hff [6]. The aforementioned EagerGreedy search was used with the

heuristic hff [6] in the experiments as comparison. In instances where LMBFS is compared

with EagerGreedy, LMBFS was used with the succCut successor function, as it is the bet-

ter performing successor function in this implementation due to the lack of Lazy metanode

generation.

The experiments were executed on the Maia Cluster at the University of Basel, consist-

ing of machines with Intel Xeon E5-2660 CPUs running at 2.2 GHz. In order to run the

experiments, downward-lab [8] was used.

2.8.2 LMBFS(succCut) vs LMBFS(succDel)
In Figure 2.1, we can see that LMBFS expands fewer nodes for a considerable amount of

tasks using succCut. As we can see in the table further below, this results in a 146% increase

from succCut expansions to succDel expansions in total.
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Figure 2.1: Node expansions - LMBFS(succCut) vs LMBFS(succDel)

In Figure 2.2 we can see the length of the solution plans that both LMBFS implementations

produce. While there are instances where only one implementation cannot produce a plan,

the two implementations are very similar for most tasks and domains.
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Figure 2.2: Plan length - LMBFS(succCut) vs LMBFS(succDel)

Figure 2.3 shows a comparison between the two LMBFS alternatives in search time. Again,

succDel performs significantly worse, with the geometric mean across all domains and tasks

being 125% higher than for succCut.
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Figure 2.3: Search time - LMBFS(succCut) vs LMBFS(succDel)

As we can see in the table further below, succCut outperforms succDel significantly in eval-

uated nodes, expanded nodes, generated nodes and search time. In coverage, and especially

in cost and plan length, the two LMBFS alternatives are quite similar. This strength-

ens the suspicion that the main reason for the difference between the two is the lack of

Lazy Metanode Generation, which is a lot more detrimental for deleteLM than it is for

(restart)cutParents.

2.8.3 LMBFS(succCut) vs EagerGreedy(ff)
In Figure [? ], we can see a comparison in the number of node expansions between eager-

Greedy(ff) and LMBFS(succCut). While the searches perform similarly well in a decent

amount of tasks, eagerGreedy clearl outperforms LMBFS, with the mean of all node expan-

sions being a factor of 10 lower for eagerGreedy.
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Figure 2.4: Node expansions - LMBFS(succCut) vs eagerGreedy(ff)

In Figure [? ] we can see that the plan lengths of LMBFS and eagerGreedy are roughly

similar for most instances, with only a marginal difference in the sum across all domains

and tasks.
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Figure 2.5: Plan length - LMBFS(succCut) vs eagerGreedy(ff)

The comparison in search time is almost as clearly in eagerGreedy’s favour as the comparison

in expanded states - the geometric mean for search time for eagerGreedy makes up only 16%

of the geometric mean of search time for LMBFS.
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Figure 2.6: Search time - LMBFS(succCut) vs eagerGreedy(ff)

2.8.4 Overview
Overall we can see that this implementation of LMBFS is at least a number of optimizations

away from being competitive with eagerGreedy(ff), as can be seen prominently in the halved

coverage of LMBFS when compared to eagerGreedy, as well as the roughly 10-times increased

evaluated, expanded, generated and search time values. This implementation of LMBFS is

competitive, in aggregated statistics, only in summed plan length and plan cost.
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Summary greedy ff lm meta(succCut) lm meta(succDel)

Cost - Sum 5784772.00 5794109.00 5794379.00

Coverage - Sum 1438 878 801

Evaluated - Sum 30785444 318829794 927036208

Expansions - Geometric mean 147.76 1527.58 3729.37

Generated - Geometric mean 1567.10 10317.14 24509.36

Plan length - Sum 32469 35848 36605

Search time - Geometric mean 0.65 3.97 8.92

This table shows a summary of the experiments, aggregated across all domains.
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Conclusion

Landmark meta best first search is a rather unexplored and potentially very promising area

in problem solving in automated planning. The appeal of meta-searches are their immense

potential in flexibility, and therefore in my opinion this is one of the most interesting leads

in landmark meta-search is the exploration of a number of new successor generators, as well

as attempts to effectively alternate between different successor functions.

While the experiments in this thesis have, due to implementations issues, not been able to

back up the findings of Vernhes et al. that LMBFS is competitive with the state of the art

of landmark-based methods in automated planning, this is still very much the case and one

should not forget that.

I’m looking forward to future work in this area.
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