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Abstract

This thesis investigates different implementations of the critical path heuristic h2 in the Fast

Downward planning system. We identify inefficiencies in the existing implementation and

propose several optimizations. These include moving calculations outside the search process

and reusing intermediate results. The improved implementation performs significantly better

in practice, with the vast majority of the solved benchmark problems being solved more than

ten times faster.

We also explore the Πm compilation method, which computes h2 values using the hmax

heuristic on a Π2 compiled task. Although this method consumes more memory, it outper-

forms our optimized h2 implementation. A crucial factor in achieving this performance is the

simplification of the resulting operator set. Detecting duplicate and dominated operators is

essential to reduce redundancy, though this process is only efficient for small precondition

sets.

To enable the reuse of heuristic values, we apply STRIPS duality to simulate regression

search. This leads to faster evaluations but results in weaker heuristic estimates. The

reduced informativeness is mainly caused by how our SAS+ to STRIPS transformation

interacts with the duality mapping, making this approach suboptimal.

Due to the nature of progression search where each heuristic evaluation must estimate the

cost from the current state to a set of atoms independently, it remains difficult to achieve

performance comparable to other informed heuristics such as hmax.
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1
Introduction

The objective of planning is to find suitable sequences of actions that achieve a desired goal

in a given environment. A common strategy is to search through a state space. Since state

spaces can be very large, it is often infeasible to explore them exhaustively. Therefore, a

heuristic is used to guide the search toward a goal more efficiently. A heuristic h is a func-

tion that estimates the cost to reach a defined goal. If the heuristic is admissible, i.e. it

never overestimates the true cost, using it with an admissible search algorithm such as A∗

guarantees finding an optimal solution (Russell and Norvig, 2021).

When designing heuristics for planning tasks, there is always a trade-off between accu-

racy and computational cost. A heuristic that provides less accurate estimates may cause

the search to explore many irrelevant states, while a highly accurate heuristic may be too

expensive to compute. A commonly used approach to simplify heuristic computation is

delete-relaxation, which removes the negative effects of actions. One well-known heuristic

that uses this idea is hmax, which further simplifies the task by considering only the cost of

the most expensive single goal variable. However, this simplification often leads to strong

underestimation (Bonet and Geffner, 2001). For example, if several goal variables can only

be achieved by disjoint sets of actions, hmax might only reflect the cost of one of them.

The critical path heuristic hm aims to improve on this limitation. Instead of considering

just one variable, hm approximates the cost of achieving the most difficult subgoal, where

subgoals are subsets of variables of size at most m. Therefore, hm is a generalization of hmax

as it holds hmax = h1. Typically, larger m-values lead to more accurate estimates and thus

smaller search spaces. However, the computational complexity of hm grows exponentially

with m. In this thesis, we focus on h2 as a practical compromise between accuracy and

efficiency. Since h2 considers interactions between pairs of subgoals, we expect it to produce

more informative estimates than hmax, resulting in significantly smaller search spaces.

Fast Downward is a heuristic-based planning system that supports a wide range of heuristics

and search algorithms (Helmert, 2006). While it provides implementations of both hmax and

hm, the current hm implementation is inefficient. It relies on suboptimal data structures



Introduction 2

with poor worst-case performance and repeatedly performs computations that either are

redundant or could potentially be moved to a preprocessing phase.

The goal of this thesis is to implement h2 more efficiently and compare its performance

with the existing implementation using a variety of benchmark problems. Several promising

techniques motivate this work. The current implementation uses a heuristic table that is

iteratively updated by evaluating operators. Another interesting method is the Πm com-

pilation, which shifts the complexity of computing hm into the planning problem itself.

Applying hmax to this compiled task produces hm values. Additionally, regression search is

worth exploring. Fast Downward currently only supports forward search. Investigating a

backwards search approach in combination with h2 may lead to new insights.

This thesis is structured as follows. Chapter 2 provides the necessary mathematical back-

ground on classical planning, search strategies, and the hm heuristic. Chapter 3 presents the

existing implementation of h2 in Fast Downward, followed by improvements and optimiza-

tions in Chapter 4. Chapter 5 introduces the theoretical foundation of the Πm compilation,

which is then implemented and evaluated in Chapter 6. Chapter 7 explores the use of regres-

sion search via STRIPS duality as an alternative to implementing regression search directly

in Fast Downward. Finally, Chapter 8 concludes the thesis and outlines directions for future

research.
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Background

In the background section, we establish mathematical definitions and knowledge needed in

order to state the definition of the critical path heuristic hm. We begin with the definition

of a planning task. Then we introduce the two main search approaches in a planning task:

progression and regression. We discuss the concept of heuristics and delete relaxation. At

the end we state the definition of the critical path heuristic hm.

2.1 Planning Task
In order to fully define a state space, we need to come up with a representation for states,

including the initial state, the goal states, and the transition system containing those states.

Ideally, this representation should be as compact as possible to describe very complex

systems concisely. To this end, we introduce two types of planning task representations:

STRIPS planning tasks and SAS+ planning tasks.

2.1.1 STRIPS Planning Tasks
The STRIPS planning formalism uses propositional state variables to represent states. A

propositional state variable is a variable that can be assigned either true or false. Let

V denote the finite set of propositional state variables. A state s is a truth assignment

s : V → {true, false}. Therefore, n propositional state variables allow us to express 2n

different states. To simplify state representations, we denote a STRIPS state s as a set of

variables: s = {x ∈ V | x = true}.
Transitions are defined using the concept of an operator o = ⟨pre(o), add(o), del(o), cost(o)⟩,
where:

• pre(o) is a set of variables that must be true to apply the operator,

• add(o) contains variables set to true when the operator is applied,

• del(o) contains variables set to false when the operator is applied, and

• cost(o) ∈ R+
0 is the cost of applying the operator.
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Applying an operator o in a state s results in a state s[o] = (s\del(o))∪add(o). The goal G
of the system is represented as a set of variables that must be true. A planning task based

on propositional state variables is called STRIPS planning task (Fikes and Nilsson, 1971).

Definition 1 (STRIPS Planning Task). A STRIPS planning task is a 4-tuple Π = ⟨V,O, I,G⟩,
where:

• V is a finite set of propositional state variables,

• O is a finite set of operators, each with preconditions pre(o) ⊆ V , add effects add(o) ⊆
V , delete effects del(o) ⊆ V , and cost cost(o) ∈ R+

0 ,

• I ⊆ V is the initial state, and

• G ⊆ V is the set of goal states.

A plan for a STRIPS planning task is a sequence of operators π = ⟨o1, . . . , on⟩, oi ∈ O, such

that I[π] is a goal state. The cost of a plan is cost(π) =
∑n

i=1 cost(oi) where n = |π| . A

plan is optimal if it has minimal cost.

2.1.2 SAS+ Planning Tasks
To enable more compact representations of states, we generalize state variables to finite-

domain variables. We allow a variable to be assigned not only true or false, but a value

from a defined finite set.

Definition 2 (Finite-Domain State Variable). A finite-domain state variable is a variable

v with an associated finite domain dom(v). A state s over V is an assignment such that

s(v) ∈ dom(v) for all v ∈ V .

With these state variables, we are able to define a SAS+ planning task (Bäckström and

Nebel, 1995).

Definition 3 (SAS+ Planning Task). An SAS+ planning task is a 4-tuple Π = ⟨V,O, I,G⟩,
where:

• V is a finite set of finite-domain state variables,

• O is a finite set of operators, where each operator o ∈ O has:

– pre(o): a partial assignment over V specifying the preconditions,

– eff (o): a partial assignment over V specifying how the state changes,

– cost(o) ∈ R+
0 : the cost of applying o,

• I is a full assignment over V specifying the initial state,

• G is a partial assignment over V describing the goal.
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The effects of an operator eff (o) are a set of assignments, where each assignment sets a

variable v to a value d from its domain, i.e. v := d with d ∈ dom(v). It holds that an

operator cannot have two effects assigning the same variable two different values. Operators

with this restriction are referred to as conflict-free operators. Every operator in a SAS+

planning task has to be conflict-free. Fast Downward generally uses a task representation

that is slightly different from SAS+ as it also allows other more general forms of effects.

However, the hm implementation uses exactly this SAS+ formalism which is why we limit

ourselves to SAS+ tasks in this thesis.

SAS+ can be viewed as generalization of STRIPS planning tasks, as each propositional vari-

able in STRIPS corresponds to a finite-domain variable in SAS+ with domain {true, false}.
However, any SAS+ planning task can be translated into an equivalent STRIPS represen-

tation. The core idea behind this translation is to introduce one propositional variable for

each possible domain value of a finite-domain variable. In the translated task it needs to be

ensured that mutual exclusivity between domain values is preserved.

In the following, we introduce key concepts of heuristic search, including the critical path

heuristic, using the STRIPS representation. This choice is motivated by the explicit distinc-

tion between add and delete effects in STRIPS, which allows for more concise and intuitive

definitions. Thus, the critical path heuristic is typically formulated in STRIPS in foun-

dational work. Nonetheless, the theoretical ideas and heuristics presented here are equally

applicable to SAS+ planning tasks. Equivalent SAS+ formulations can be systematically de-

rived using the translation approach described above. The detailed algorithmic translation

between SAS+ and STRIPS will be presented in Section 5.2.

2.1.3 Transition Systems for Planning Tasks
Independent from the specific representations, every planning task Π induces a transition

system T (Π):

Definition 4 (Planning task as transition system). The planning task Π = ⟨V,O, I,G⟩
induces the transition system T (Π) = ⟨S,L, T, s0, S⋆, cost⟩, where

• S is the set of all states over V ,

• L is the set of operators O,

• T = {⟨s, o, s′⟩ | s, s′ ∈ S, s′ = s[o]} is a set of labeled transitions,

• s0 ∈ S is the initial state,

• S⋆ ⊆ S is the set of goal states, and

• cost : L→ R+
0 is the cost function.

In the following, we will use the terminology of transition systems also for planning tasks.

Therefore, when using terms like transitions or graph edges in the context of a planning

task, we refer to the transition system induced by the task.

We now establish different search approaches to find a plan in a planning task.
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2.2 Progression and Regression Search
In this section, we examine two fundamental approaches to exploring the state space in

planning: progression search and regression search.

The first approach, known as progression search or forward search, begins at the initial state

and generates successor states by applying operators that are applicable in the current state.

We formalize this process as STRIPS progression:

Definition 5 (STRIPS progression). The STRIPS progression sprog(s, o) for a state s and

an operator o is defined as:

sprog(s, o) =

(s \ del(o)) ∪ add(o) if pre(o) ⊆ s

undefined otherwise

The search continues until a goal state in G of the planning task is reached. This method

is intuitive as it aligns with the natural flow of the planning problem from the initial state

towards the goal.

In contrast, regression search or backward search takes a different perspective. Rather than

reasoning about individual states, regression operates over sets of states. The search begins

with the set of goal states and works backward by identifying sets of predecessor states

that could lead to the goal. Each expansion step yields a new set of states. We define the

regression operation in the STRIPS framework as follows:

Definition 6 (STRIPS regression). The STRIPS regression sregr(A, o) for a set of states

A and an operator o is defined as:

sregr(A, o) =

(A \ add(o)) ∪ pre(o) if del(o) ∩A = ∅

undefined otherwise

A valid plan is found in regression when the initial state is contained within one of the

regressed sets.

2.3 Heuristic Search
In state space search, we distinguish between uninformed and informed search strategies

(Russell and Norvig, 2021). Uninformed strategies explore the state space by expanding

states in a fixed, problem-independent order until a goal is found. In contrast, informed

strategies make use of knowledge about the problem to guide the search process, and in the

case of A∗ prioritizing states that are more likely to lead to an optimal solution. Heuristics

are cost estimates that help in finding such states.

Definition 7 (Heuristic). A heuristic h for a planning task Π is defined as a function

h : A×B → R+
0 ∪ {∞}

where A,B ⊆ V are sets of variables.

The heuristic h estimates the cost of reaching the set of variables B starting from the set

A. We also define the perfect heuristic h∗, which returns the actual optimal cost to reach
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B from A, or ∞ if B is unreachable from A. This means h∗ is the perfect heuristic since it

perfectly estimates the distance between two sets of variables.

An important property of practical heuristics is admissibility. A heuristic h is admissible if,

for all sets of variables A and B, it holds that h(A,B) ≤ h∗(A,B). In other words, admis-

sible heuristics never overestimate the true cost. When an admissible heuristic is used in

conjunction with an admissible search algorithm such as A∗ (Hart et al., 1968), the resulting

plan is guaranteed to be optimal (Russell and Norvig, 2021).

In the context of progression search, heuristics are often defined as the estimated cost from

a specific state s to the goal G, denoted h(s,G). However, the heuristic definition above is

also applicable in regression search, where we search backward from the goal. In this case,

the heuristic estimate for a set of states S is given by h(I, S), where I is the initial state.

Heuristics in planning are usually derived exclusively from the structure of the planning task

itself, without relying on external knowledge. This makes them broadly applicable across a

wide range of problems. Nevertheless, there is always a trade-off between the accuracy of a

heuristic and the computational effort required to compute it. While the perfect heuristic

h∗ provides the best possible guidance, its computation is NP-hard and thus impractical for

most tasks.

To address this, one common approach is to simplify the planning task by applying relax-

ations that make heuristic computation more tractable while preserving informative guid-

ance.

2.4 Delete Relaxation
Delete relaxation is a widely used technique for simplifying the computation of heuristics in

planning tasks. The central idea is to ignore the delete effects of operators, thereby creating

a relaxed version of the original problem that is easier to solve.

Let o = ⟨pre(o), add(o), del(o), cost(o)⟩ be a STRIPS operator in a planning task. The

corresponding delete-relaxed operator is defined as o+ = ⟨pre(o), add(o), ∅, cost(o)⟩, where
the delete list is removed. For a planning task Π = ⟨V,O, I,G⟩, the delete-relaxed version

is given by

Π+ = ⟨V, {o+ | o ∈ O}, I, G⟩.

In SAS+ planning tasks, delete relaxation is applied by ignoring the effects of operators

that unset variable assignments. Specifically, in the relaxed version of a SAS+ operator, all

effects that remove the value of a variable are omitted, and only value-setting effects are

considered. As a result, once a variable is assigned a value in the relaxed task, it retains

that value permanently.

We denote the perfect heuristic for the relaxed problem by h+. Since removing delete ef-

fects makes the problem easier or at worst equally difficult, h+ is an admissible heuristic.

However, computing h+ remains NP-hard (Bonet and Geffner, 2001), which limits its direct

applicability in practice.
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To obtain tractable approximations of h+, one common approach is to estimate the cost

of achieving each goal variable independently. Summing these individual costs yields the

heuristic hadd, which often provides informative estimates. However, hadd is not admissible,

as it can overestimate the true cost when operators achieve multiple goals simultaneously.1

A more conservative approximation is the hmax heuristic, which estimates the cost of achiev-

ing a set of goal variables as the maximum cost among the individual goal variables. This

avoids overcounting and ensures admissibility.

Definition 8 (hmax Heuristic). Let Π = ⟨V, I,O,G⟩ be a STRIPS planning task. The hmax

heuristic for a state s and a set of variables A is defined as the greatest fixed-point solution

to the following:

hmax(s,A) =


0 if A ⊆ s,

min
⟨B,o⟩∈R(A,O)

[cost(o) + hmax(s,B)] if |A| ≤ 1 and A ̸⊆ s,

max
v∈A

hmax(s, {v}) otherwise,

where R(A,O) = {(B, o) | o ∈ O, B = sregr(A, o), del(o) ∩A = ∅}.

If no operator satisfies the conditions such that R(A,O) is defined, the minimum is taken

to be ∞.

The following inequality holds for all sets of variables A and B:

hmax(A,B) ≤ h+(A,B) ≤ h∗(A,B).

This inequality reflects the increasing informativeness and computational difficulty of the

heuristics. The hmax heuristic simplifies the problem by assuming that achieving the most

expensive subgoal implies that all other subgoals are also satisfied. Although this assumption

is often too optimistic and can result in weak estimates, it leads to an admissible and efficient

heuristic (Bonet and Geffner, 2001).

In the next section, we address the limitations of hmax by introducing the critical path

heuristic hm, which refines the relaxation further.

2.5 Critical Path Heuristic hm

The critical path heuristic hm generalizes the hmax heuristic by considering not just indi-

vidual goal variables but subsets of goal variables of bounded size. Specifically, we define a

parameter m to limit the maximum size of such subsets. The heuristic then estimates the

cost of achieving a set of goals as the cost of the most expensive subset of at most m goal

variables. For m = 1, this reduces to the hmax heuristic.

This generalization leads to a reinterpretation of planning as a shortest-path problem, where

the goal is to find the shortest path from a source node to all other nodes in a graph (Ahuja

1 There might be operators that add 2 or more goal variables simultaneously. In this case, hadd would
count these operator costs multiple times and thus overestimating h+.
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et al., 1993). In this context, the source node corresponds to the initial state I, and the

paths represent plans that achieve intermediate states from I. A heuristic that captures the

true cost of these paths is called the perfect regression heuristic r∗.

Definition 9 (Perfect Regression Heuristic). The perfect regression heuristic r∗ is defined

as the greatest fixed-point solution of

r∗(s,A) =


0 if A ⊆ s,

min
(B,o)∈R(A,O)

[cost(o) + r∗(s,B)] otherwise,

where R(A,O) = {(B, o) | o ∈ O, B = sregr(A, o), del(o) ∩A = ∅}.

Each pair (B, o) ∈ R(A,O) represents a directed edge in the shortest-path graph. Intu-

itively, the operator o can achieve A if B was previously true.

The function r∗ is equivalent to the perfect heuristic h∗, expressed in the form of a shortest-

path problem. However, computing r∗ is exponential in the number of variables (Haslum

and Geffner, 2000). To obtain a tractable approximation, we apply a relaxation where

subsets B ⊆ A with |B| > m are replaced with subsets B′ ⊆ B such that |B′| ≤ m. This

yields the critical path heuristic hm.

Definition 10 (Critical Path Heuristic). The critical path heuristic hm is defined as the

greatest fixed-point solution of

hm(s,A) =


0 if A ⊆ s,

min
(B,o)∈R(A,O)

[cost(o) + hm(s,B)] if |A| ≤ m and A ̸⊆ s,

max
B⊆A,1≤|B|≤m

hm(s,B) otherwise,

where R(A,O) = {(B, o) | o ∈ O, B = sregr(A, o), del(o) ∩A = ∅}.

The heuristic hm approximates r∗ by considering the cost of the most expensive subset

B ⊆ A of size at most m (i.e., the max-case). As m increases, the relaxation becomes less

relevant and hm approaches r∗. For sufficiently large m, hm equals the perfect regression

heuristic r∗. Since achieving a subset of goals can never be more costly than achieving the

full set, hm is admissible.

The computational complexity of evaluating hm grows exponentially with m, as all subsets

of size up to m must be considered. In this thesis, we focus on the case m = 2, for which

h2 can be computed in polynomial time (Haslum and Geffner, 2000).

The critical path heuristic hm can be employed in both progression and regression search.

In progression, the heuristic estimate is hm(s,G), and in regression, it is hm(I, S). In

practice, it can be advantageous to precompute a look up table containing all values hm(s,A)

for sets A with |A| ≤ m. This allows efficient evaluation of the max-case. However, in

progression search, the state s changes for each heuristic evaluation, requiring different

tables. In regression search, a single precomputed table of hm(I, A) values suffices for

all evaluations. Therefore, regression search is theoretically better suited for critical path

heuristics with m = 2.
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Existing Implementation

Fast Downward (Helmert, 2006) offers the critical path heuristic as part of its heuristic search

algorithms. This chapter describes the design and structure of the existing implementation

in the planning system, as well as important processes around it. We first introduce the

general heuristic framework of Fast Downward. We describe how problems are processed

and stored. Then we discuss the existing implementation of hm. Finally, we conduct a

runtime and space complexity analysis of the heuristic computation.

3.1 Heuristic Framework in Fast Downward
Fast Downward translates problem instances into SAS+ representation (Definition 3). The

central object used to store variables in this form is the atom. An atom consists of an

integer, which is the variable identifier (var), and another integer representing the value a

variable can take (value). All information about problems, such as operators, the initial

state, or goal states, is stored in a task object that can be accessed via a task proxy. The

task proxy is the interface for retrieving information about the task during the search

process. The structure of a task proxy is similar to our definition of tasks in SAS+ rep-

resentation (Definition 3).

If the specified search parameter uses a heuristic-based algorithm, states must be continu-

ously evaluated. Each heuristic has an individual class where the implementation is con-

tained. All specific heuristic classes extend a basic heuristic class, which provides the neces-

sary framework to be used in search algorithms. The compute heuristic function is the

main method in each heuristic class. This function takes the current state as an argument

and returns an integer that represents the heuristic value of the state. We now discuss the

existing hm implementation in Fast Downward.

3.2 Structure of the Implementation
The implementation of hm is encapsulated in the hmheuristic class. The heuristic values

are computed by iteratively propagating costs through the relaxed state space. These costs

are maintained in a table that stores entries for all atom sets of size up to m. Since Fast
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Downward performs progression search, the heuristic table is specific to each state and must

be recomputed for every heuristic evaluation.

The algorithms in this chapter and in the ones following are presented in a code-oriented

pseudo code style, closely resembling C++ conventions. This is intentional, as it aligns with

the exact implementation in Fast Downward and helps in understanding the choice of data

structures and the precise order of operations. These play a crucial role in the efficiency of

the heuristic computation.

The primary components of the implementation are the initialization of the heuristic table,

the iterative updates to table entries, and the evaluation of goal subsets (Algorithm 1).

Those three components are sequentially called in the compute heuristic method (lines

3 - 5). In the following, we take a closer look at each of these steps.

Algorithm 1 Compute hm value for given state

Procedure: compute heuristic
Input: State state, task information task proxy
Output: Heuristic value of state

1 if is goal state(task proxy, state) then
2 return 0

3 init hm table(state)
4 update hm table()
5 h ← eval(goals)
6 if h =∞ then
7 return DEAD END

8 return h

3.2.1 Heuristic Table Initialization
The heuristic table initialization begins with the generation of all possible subsets of atoms

up to size m. These subsets are stored in a std::vector data structure. The heuristic

table, called hm table, is initialized with all combinations of atoms of size ≤ m. This is

achieved using a recursive function that first generates all sets of atoms of size 1. These

sets are then recursively extended until size m is reached. The hm table is implemented

using a std::map, which takes atom sets as keys and stores the heuristic value of each set

of atoms. It is therefore important that atom sets are always sorted. Otherwise, the same

set could have different entries in the heuristic table. As soon as new atom sets are created

to use them as table keys, they must be stored in the vector in sorted order.

Once all atom sets of size ≤ m are generated and initialized, the heuristic table is populated

with initial integer values for the given state. A heuristic value of zero is assigned to sets

of atoms fully contained in the state, while all other sets are initialized with infinity.2 To

find table entries contained in the state, the implementation checks if the entry is a subset

of the state.

2 In the implementation, infinity is represented by the largest possible integer value.
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3.2.2 Iterative Updates to the Heuristic Table
The core computation of hm is iteratively propagating heuristic values until no further

improvements are possible (Algorithm 3). Propagation is performed by iterating over all

operators and evaluating its preconditions to determine the current cost of applying the

operator. Evaluating the preconditions of an operator o involves examining all partial pre-

conditions {p ⊆ pre(o) | |p| ≤ m}. This procedure is similar to maxB⊆A,1≤|B|≤m hm(s,B) in

our hm definition for h(s,A) (Definition 10). A sketch of this evaluation method is provided

in Algorithm 2.

Algorithm 2 Evaluate maximum heuristic value of set of atoms

Procedure: eval
Input: Set of atoms atom set, heuristic table hm table
Output: Evaluation for all subsets of atom set

1 partial sets ← generate all partial sets(atom set)
2 max ← 0
3 foreach set in partial sets do
4 h ← hm table[set]
5 if h > max then
6 max ← h

7 return max

If there are no subsets of preconditions where the table entry is infinity, the operator is

applicable. This means that all partial effects of an operator o can be achieved with cost

eval(pre(o)) + cost(o). Entries of effects in the hm table are only updated if the new

value is smaller than the current value.

Algorithm 3 Update heuristic table until fixpoint is reached

Procedure: update hm table
Input: task proxy with operators, integer m
Output: hm table containing correct hm values

1 repeat
2 was updated ← false
3 foreach o in O do
4 c1 ← eval(pre(o))
5 new cost ← c1 + cost(o)
6 if c1 ̸=∞ then
7 partial effs ←generate all partial sets(eff(o))
8 foreach partial eff in partial effs do
9 if hm table.at(partial eff) > new cost then

10 hm table[partial eff] ← new cost
11 was updated ← true

12 if |partial eff| < m then
13 extend entry(partial eff, o)

14 until was updated is false;

We define heuristic values in the table after evaluating the i-th operator as hi. The procedure

iterates over all operators until there are no updates possible. In this case, the was updated
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variable is not set to true (line 11) and the procedure terminates. This is exactly the case

if it holds that hi×|O| = h(i+1)×|O| for i ∈ N0. At this point, the fix-point is reached and

hi×|O| = h(i+1)×|O| = hm.

Algorithm 3 updates the heuristic table for all partial effects of operators of size up to m.

Definition 11 (Updates in update hm table). In Algorithm 3, heuristic values are up-

dated for an operator o ∈ O, atom sets X ⊆ eff (o) and 1 ≤ |X| ≤ m using the rule:

hi+1(X) = min

(
hi(X), max

A⊆pre(o),1≤|A|≤m
hi(A) + cost(o)

)
However, it is also necessary to update entries that only partially contain effects of an

operator. This is enforced by the extend entry function (Algorithm 4).

Algorithm 4 Extend entry and update heuristic table

Procedure: extend entry
Input: Set of atoms atom set and operator o
Output: Updates to all hm table entries partially containing atom set

1 foreach entry in hm table do
2 contradict ← false
3 foreach atom in entry do
4 if contradict effect of(o, atom) then
5 contradict ← true break

6 if not contradict and |entry| > |atom set| and atom set ⊂ entry then
7 pre ← pre(o)
8 foreach atom in entry do
9 if atom not in atom set and atom not in pre then

10 pre.insert(atom)

11 sort(pre)
12 vars ← ∅
13 is valid ← true
14 foreach atom in pre do
15 if atom.var in vars then
16 is valid ← false break

17 vars.insert(atom.var)

18 if is valid then
19 c2 ← eval(pre)
20 if hm table.at(entry) > c2 + cost(o) then
21 hm table[entry] ← c2 + cost(o)
22 was updated ← true

We illustrate the necessity of extend entry with a small example: Let there be a set

of variables V = {a, b} with domains dom(a) = dom(b) = {0, 1} and an operator o where

pre(o) = {a = 1} and eff (o) = {b = 1}. 3 Furthermore, we assume that m = 2.

If o is applicable in the current state, the table entry for [b = 1] might be updated when

3 In Fast Downward, variable names are translated to integer values. For clarity, we use letters in this
example.
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applying Algorithm 3. We therefore need to consider a table update for all sets of atoms

containing b = 1. However, to update these entries, we must ensure that the other elements

in the atom set are also achievable. For example, when considering the entry [a = 0, b = 1],

we evaluate not only the preconditions of o but extend this set with the atoms a = 0 in the

eval function.

Definition 12 (Updates in extend entry). In Algorithm 4, heuristic values are updated

for an operator o ∈ O and an atom set X with 1 ≤ |X| ≤ m if there exists some subset

Y ⊆ X such that Y ⊆ eff (o):

hi+1(X) = min

(
hi(X), max

B⊆(pre(o)∪(X\Y )),|B|≤m
hi(B) + cost(o)

)
There are additional restrictions that must be applied, such as ensuring that the extended

set of atoms does not contradict a precondition or an effect of the operator. In this context,

a contradiction means that two different values are simultaneously assigned to the same

variable. In our example, for the entry [a = 0, b = 1] this would be the case as pre(o) does

not allow the atom a = 0.

3.2.3 Evaluating Goal Subsets
The heuristic value for the current state is computed by evaluating the maximum cost among

all goal subsets. This step uses the eval method, which retrieves precomputed values from

the heuristic table for all partial atom sets of the goal (Algorithm 2). Since this is done after

the termination of Algorithm 3, the hm table contains the final hm values. If any of these

entries still has a value of infinity, the current state is marked as a dead end and is pruned

in the search process.

3.3 Runtime and Space Analysis
Analyzing the runtime and space usage of the existing hm implementation in Fast Downward

can be useful as it highlights potential bottlenecks and inefficiencies. Therefore, we conduct a

worst-case runtime and space complexity analysis. The performance of the heuristic depends

on several parameters, which we will introduce now:

• The total number of variables |V |,

• the largest domain size of all variables d = maxv∈V |dom(v)|,

• the number of operators in the planning task |O|,

• and the maximum subset size of atoms m.

First, we utilize these variables to estimate other quantities. In the following, we will always

indicate the worst-case values for these quantities. The number of different atoms is |V |×d.

This, in turn, means that we can use (|V |×d)m as an upper-bound for the number of entries

in hm table. Actually, it holds that no entry contains the same variable v ∈ V twice. This

corresponds to the number of ways to choose m distinct elements without replacement from
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a set of size |V | which is
(|V |
m

)
. A more precise limit for the number of entries is therefore(|V |

m

)
×dm. However, since we are only carrying out a worst-case estimate, we will not use the

binomial coefficient and instead consider (|V |×d)m as the worst-case number of table entries.

We also need to assess the worst-case number of operator evaluations in Algorithm 3 which

we call imax. We know that all operators are evaluated subsequently. This means that

all entries whose optimal distance from the initial state is exactly one operator are set to

the correct heuristic value after h|O|. Since this must apply to at least one entry, we can

guarantee that one entry is set to the correct value after |O| operator evaluations. Therefore,
in the worst case, we need to evaluate imax = (|V | × d)m × |O| operators.
Other variables cannot be further quantified, as they depend entirely on the planning task

or, in the case of m, on the heuristic.

3.3.1 Runtime Complexity
We divided the implementation into three sequential parts: Table initialization, updating

the heuristic table, and goal state evaluation. Initializing the heuristic table involves gen-

erating all table entries and populating them with the initial heuristic value. The recursive

function generating all atom sets has a complexity of are O(|V |m × dm). The initial value

for an entry is a simple subset check of all state atoms which is O(|V |). Therefore, the total
complexity of the table initialization is O(|V |m+1dm).

Now we examine the evaluation of the goal atom set (Algorithm 2). In there, all precon-

ditions are divided into subsets ≤ m and looked up in the table. Preconditions can have

a maximum length of |V |. This results in |V |m partial preconditions. The hm table is a

map that is implemented as a binary tree. Look ups are possible in logarithmic runtime.

This implies a complexity of O(|V |m)×O(log(|V |m × dm)) = O(|V |m log(|V | × d)).

The table update algorithm consists of looping over all operators until no further updates

are possible (Algorithm 3). The complexity of this loop is imax = O(V m×dm×|O|). In the

inner loop, we iterate over all partial effects of an operator o of size ≤ m. In the worst case,

eff (o) contains each variable once, which results in O(|V |m). This leads to a complexity

of O(|O||V |2m × dm) for the the nested loops. Within the loop, partial effects are updated

which is a table lookup and thus O(log(|V | × d)). Afterward, the extend entry function

is called. Since it holds that extend entry is only called on partial effects < m, the total

complexity of the algorithm is O(|O||V |2m−1dm)×O(extend entry).

The extend entry method consists of a loop over the entire heuristic table. We have al-

ready determined the size of the table as (|V |×d)m. Inside the loop, there are many sequen-

tial operations. First, it is checked for each atom in the entry that it does not contradict an

effect of the given operator (lines 3 - 6), which is O(|V |). Line 6 also checks whether the entry
from the table is actually a superset of the specified atom set. In terms of runtime complex-

ity, this means that we no longer execute the following code for all table entries, but instead
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have a fix subset atom set. Therefore, the complexity is O((|V |×d)m−|atom set|). Because

we have already made the worst-case assumption in algorithm 3 that |atom set| = m− 1,

the resulting complexity is O((|V | × d)m−(m−1)) = O(|V | × d).

Afterwards, the preconditions are searched for contradictions with the current table entry

(lines 8 - 10, 13 - 16) and sorted (line 11). Both operations do not exceed a complexity of

O(|V | log |V |) as the maximum size of preconditions is |V |. The eval function (line 18) with

a complexity of O(|V |m log(|V |×d)) is the most expensive operation within these sequential

steps. Therefore, it holds that O(extend entry) = O(|V | × d)×O(eval).

By multiplying the complexity of Algorithm 2, 3 and 4, we can conclude for the runtime of

O(update hm table):

O(update hm table) = O(|O||V |2m−1dm)×O(extend entry)

= O(|O||V |2m−1dm)×O(|V | × d)×O(eval)

= O(|O||V |2m−1dm)×O(|V | × d)×O(|V |m log(|V | × d))

= O(|O||V |3mdm+1 log(|V | × d))

It holds that updating the heuristic table is more expensive then initializing the table as

well as evaluating the goal set of atoms. The term above therefore is the runtime complexity

of the existing implementation in Fast Downward.

When substituting m = 2 into the complexity expression, it holds that

O(update hm table) = O(|O||V |6d3 log(|V | × d))

The result is a complexity that depends on the sixth power of the number of variables |V |
and the domain size d to the power of three. It is obvious that this runtime is problematic,

especially for larger problem instances with large sets of variables.

3.3.2 Space Complexity
The space complexity is dominated by the storage requirements of the heuristic table. The

table contains one entry for each atom set of size ≤ m. The total space of the map is

the number of entries multiplied by the space required for a single entry. The hm table

contains (|V | × d)m entries. Each entry requires space for the atom set itself and the

associated heuristic integer value. A set of atoms is a vector of atoms, and since atoms

consist of two integer values, the memory complexity of a atom is O(1). Vectors have a

length ≤ m, which results in O(m).

The total space complexity is therefore O((|V | × d)m)×O(m) = O((|V | × d)m). With the

existing implementation approach, saving the entire heuristic table is unavoidable. Since

this is the only data structure that requires a large amount of space, the space usage of the

existing implementation is difficult to improve.
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Optimization of the Existing Implementation

As already seen in Section 3.2, the implementation existing in Fast Downward stores the

heuristic value for each atom set of size ≤ m of a task. The final heuristic value can thus

be calculated by looking up goal subsets in the table. The values in the table must be

recalculated for each evaluation, as the original state has changed. Now, we optimize this

approach by choosing more suitable data structures and saving reusable calculations. Then,

we compare our potential improvements with the original heuristic. To do this, we conduct

an experiment using all problems of the International Planning Competition (IPC) 1998 -

2023.

To better distinguish between the implementations, we call the heuristic computed by the

existing one hm, while we refer to our optimized version as h2.

4.1 Improvements
In this work we are specifically interested in the case m = 2. This specification allows us to

simplify some data structures. We know that all table entries consist of a maximum of two

atoms. Therefore, instead of a std::vector, we can use a pair data structure to store atom

pairs. Entries containing only a single atom are stored with an additional placeholder atom.

For n different atom variables, integers from 0 to n − 1 are used as identifiers. Therefore,

we assign all placeholder atoms the variable −1.
A further optimization involves the generation of all atom sets with size ≤ m. In the existing

implementation, recursive function calls are used to obtain all these sets (Section 3.2.1). In

the case of m = 2, we can generate the pairs iteratively with two for-loops. It still is

important that all generated pairs are correctly ordered so that they can be found in the

hm table.

These changes primarily help to make the implementation clearer. It is not expected to

majorly improve runtime and space complexity of h2. However, the clearer code allows

for faster detection of possible bottlenecks and optimizations. Now, we introduce various

ideas and concepts that speed up the existing implementation. First we introduce new data

structures or modify existing ones, then we optimize specific algorithms.
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4.1.1 Heuristic Table Data Structure
To improve the efficiency, we change the data structure of the heuristic table. In the existing

implementation, a std::map is utilized. This data structure organizes its keys in a sorted

manner and offers logarithmic access time for insertions, look ups and deletions. While the

sorting feature of std::map is advantageous in scenarios requiring ordered traversal, it

introduces unnecessary overhead when fast look ups are required.

In our context, the order of pairs is not as crucial as the ability to quickly find and access

stored values. To this end, we replace std::map with std::unordered map, a hash-

based data structure. An unordered map provides average constant-time complexity for

insertions and look ups. Hash functions are used to determine the location of each element

in the underlying hash table. When we iterate over entries in the table, the order is not

deterministic. Therefore, switching the data structure means no longer having the option

of making improvements by optimizing the traversal order of the table.

To efficiently use an unordered map, a suitable hash function for pairs of atoms must be

defined. A hash function maps a given input (in this case, a pair of atoms) to a numerical

value. Each atom comprises a variable integer and a value integer. Our hash function for a

pair of atoms combines the hash values of the individual atoms as follows:

hash(a1, a2) = (a1.var × p+ a1.value)× p+ (a2.var × p+ a2.value)

Here, p is a large prime number. This function ensures that the hash value of each pair

depends on both its components. Furthermore, choosing a large prime number reduces hash

collisions. The prime number p should be greater than the number of variables as well as

the number of values in a domain.

Default hash functions for unordered map use size t, an unsigned integer type. If values

exceed its limit, they wrap around and start again at zero. To prevent integer overflow, p

should not be too large, as overflows could lead to hash collisions. In our implementation

we choose p = 100003 which meets these requirements.

4.1.2 Operator Caches
To optimize operator handling, several auxiliary data structures, referred to as operator

caches, are initialized and used throughout the implementation. These caches include the

precondition cache, the partial effect cache, and the effect conflict cache. They are all

created before the search process starts as they are independent of the state to evaluate. In

the following, we show how these operator caches are storing and reusing relevant operator

information. Conducted experiments show that all three caches significantly improve the

runtime of h2. Furthermore, we analyze the additional space complexity for each cache.

Note that with these caches, we do not introduce new concepts to the implementation but

rather speed up the retrieval of operator information and reduce sort operations on operator

preconditions and effects.
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Precondition Cache

The precondition cache stores the preconditions of each operator as a sorted vector of atoms.

When evaluating an operator, preconditions must be retrieved from the task proxy. By

caching these preconditions in sorted order, redundant sorting operations are avoided.

Regarding space complexity, the maximum size of preconditions is the number of variables

|V |. Since we store preconditions for all operators, the space complexity is O(|O||V |).

Partial Effect Cache

The partial effect cache is designed to handle all subsets of operator effects with sizes up to

two. For each operator, all pairs of effects are precomputed, sorted, and stored in a vector.

Single effects are saved in the list as well with an atom placeholder at the second position.

In contrast to the preconditions, we directly store effects split up into pairs, as we only need

them for updating the table directly after operator evaluations. This saves us having to

generate effect subsets, but requires more space. Preconditions, on the other hand, are used

as a list in various functions. It therefore makes less sense to store partial preconditions in

a cache.

In the worst case, partial effects have a space complexity of O(|V |2) for m = 2. We can

conclude that the total space complexity is O(|O||V |2).

Effect Conflict Cache

Finally, the effect conflict cache stores a set of all effect variables for each operator. The

cache is used in the extend entry method to detect conflicts between certain atoms and

effects of an operator. For better understanding, we take a look at a quick example:

An operator o has an effect v := d where v ∈ V and d ∈ dom(v). By definition, the

extend entry function tries to update entries containing partial effects of o. Since it

holds that m = 2, those entries consist of an atom ∈ eff (o) and an additional atom a. There

are a few restrictions for a, where table updates can be ruled out:

• If atom a is v = d, it is already guaranteed to be covered when all partial effects of o

are applied.

• If atom a is v = b, where b ∈ (dom(v)\{d}), it directly conflicts with the effect v := d.

This means no table updates are possible in this case.

In both cases, there are guaranteed no table updates when atom a contains v as variable.

The effect conflict cache stores this type information for every operator.

On a programming level, the cache is a two-dimensional boolean vector, where the first

index corresponds to the operator ID and the second index to the atom variable. It holds

that the space complexity is O(|O||V |). The effect conflict cache directly replaces the search

for contradictions in extend entry with a constant-time look up (Algorithm 4, lines 2 -

5).
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4.1.3 Table Initialization
As previously mentioned, the heuristic table is initialized and filled using two nested for-

loops. In the hm heuristic, each table entry requires checking whether the entry is contained

in the state to evaluate. Originally, this involves repeated subset checks, which can be

inefficient.

This overhead is avoided in h2 by first storing the atoms of the state to evaluate into an

unordered set. After creating this set of state atoms, subset checks for each table entry

can be performed in constant time. As a result, the initialization step is reduced to a simple

iteration over the heuristic table, clearly improving the runtime complexity.

4.1.4 Operator Queue
In order to update the heuristic table, all operators are iterated over until no further updates

are possible (Algorithm 3). As a result, operators are constantly being evaluated regardless

if there may be an improvement or not. We introduce an operator queue for h2 that ensures

that operators that bring guaranteed no improvements to the hm table are skipped in the

updating process.

Instead of blindly iterating over all operators, we maintain an operator queue that dynami-

cally tracks operators that might be relevant for updating the table. Whenever a precondi-

tion of an operator is updated in the heuristic table, the operator may be achievable with

lower cost. We therefore insert this operator into the queue. In addition, if entries are

updated that only partially contain preconditions of an operator, this operator is also added

to the queue.

If the queue is empty we can guarantee that no operator leads to further improvements. In

this case, the fix-point is reached and the correct h2 values are present in the table.

We now establish a sequence of lemmas that characterize how heuristic values in the hm table

evolve throughout the evaluation of operators in an SAS+ planning task. These results cul-

minate in a condition that determines when evaluating an operator does not lead to any

further updates of the heuristic table (Theorem 1).

Lemma 1. Let Π = ⟨V,O, I,G⟩ be an SAS+ planning task, and let h(S) denote the heuristic

values in hm table for an atom set S with 1 ≤ |S| ≤ m. For any two sets of atoms A,B

such that A ⊆ B with 1 ≤ |A| ≤ m and 1 ≤ |B| ≤ m, it holds that h(A) ≤ h(B).

Proof sketch. Since h computes the maximum cost over all subsets of size up to m, and since

achieving atoms in A can always be done by reaching B, h(A) cannot be higher then h(B).

Hence, h(A) ≤ h(B) for A ⊆ B.

This monotonicity property ensures that as atom sets grow, their heuristic estimates do

not decrease. We now turn to the question of whether heuristic values for subsets of the

precondition of an operator can change during its evaluation.

Lemma 2. Let Π = ⟨V,O, I,G⟩ be an SAS+ planning task, and let h(S) denote the heuristic

values in hm table for atom sets S with 1 ≤ |S| ≤ m. Let o ∈ O be an operator, and let
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hi and hi+1 denote the heuristic tables before and after evaluating o. Then it holds that for

all sets B ⊆ pre(o) with 1 ≤ |B| ≤ m, we have

hi+1(B) = hi(B).

Proof. We establish that hi+1(B) = hi(B) by examining the specific methods that update

heuristic values. There are exactly two instances where this occurs.

Procedure new update hm table (Algorithm 5): Heuristic values are updated for

atom sets X ⊆ eff (o) and 1 ≤ |X| ≤ m using the rule:

hi+1(X) = min

(
hi(X), max

A⊆pre(o),1≤|A|≤m
hi(A) + cost(o)

)
In the case that X ⊆ pre(o), we directly see that the left term in the minimum dominates,

therefore:

hi+1(B) = hi(B).

Procedure new extend entry (Algorithm 6): Heuristic values are updated for atom

setsX with 1 ≤ |X| ≤ m such that some subset Y ⊂ X lies in eff (o). Furthermore, note that

hi at this point may contain updated heuristic values by applying Algorithm 5. Therefore

we call heuristic values during evaluation i containing these updates h′
i. The update is:

hi+1(X) = min

(
h′
i(X), max

A⊆(pre(o)∪(X\Y )),1≤|A|≤m
h′
i(A) + cost(o)

)
Since we are interested in the case X ⊆ pre(o) and we know that Algorithm 5 did not update

entries for B ⊆ pre(o), it holds that h′
i(B) = hi(B).

For X ⊆ pre(o), by Lemma 1 and X ⊆ (pre(o)∪ (X \ Y )), it holds that the left term in the

minimum term dominates. We can conclude that:

hi+1(B) = hi(B).

For both update procedures, the values h(B) with B ⊆ pre(o) and 1 ≤ |B| ≤ m remain

unchanged during the evaluation of o.

We have now shown that heuristic values associated with preconditions of an operator remain

stable during its evaluation. This insight allows us to reason about the effect of evaluating

the same operator multiple times consecutively.

Lemma 3. Let Π = ⟨V,O, I,G⟩ be an SAS+ planning task, and let h(S) denote the heuristic

values in hm table for atom sets S with |S| ≤ m. Let o ∈ O be an operator, and suppose

that hi is the heuristic table after evaluating o, and hi+1 is the heuristic table after a second,

consecutive evaluation of the same operator o. Then it holds that hi+1 = hi.

Proof sketch. We show that a second application of operator o does not lead to further

updates in the heuristic table.

From Lemma 2, it follows that the cost of reaching pre(o) has not decreased from hi−1 to

hi. Therefore, re-evaluating o brings no further information to the heuristic table as the

updating terms for new update hm table and new extend entry remain the same for

hi+1. We conclude that hi+1 = hi.
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Having shown that repeated application of the same operator has no effect on the heuristic

values, we now establish a general monotonicity result. Heuristic values never increase across

operator evaluations.

Lemma 4. Let Π = ⟨V,O, I,G⟩ be a SAS+ planning task, and let hi denote the heuristic

values after i operator evaluations in hm table. Then, for any atom set S with 1 ≤ |S| ≤ m,

it holds that hi+1(S) ≤ hi(S).

Proof. We establish that hi+1(S) ≤ hi(S) by examining the algorithm steps responsible for

modifying heuristic values. We verify the statement for both cases.

Procedure new update hm table (Algorithm 5): In Algorithm 5, heuristic updates

are considered for an operator o ∈ O and an atom set X with 1 ≤ |X| ≤ m if X ⊆ eff (o)

(line 10).

hi+1(X) = min

(
hi(X), max

B⊆pre(o),1≤|B|≤m
hi(B) + cost(o)

)
hi+1(X) ≤ hi(X)

Procedure new extend entry (Algorithm 6): In Algorithm 6, heuristic updates are

considered for an operator o ∈ O and an atom set X with 1 ≤ |X| ≤ m if there exists

some subset Y ⊂ X such that Y ⊆ eff (o) (line 15). To make this distinction explicit, we

define X as consisting of two parts: Y , which satisfies Y ⊆ eff (o), and Z, which is given by

Z = X \ Y and contains the remaining elements of X.

Again, we call the table containing by Algorithm 5 updated heuristic values h′
i.

hi+1(X) = min

(
h′
i(X), max

B⊆(pre(o)∪X),1≤|B|≤m
h′
i(B) + cost(o)

)
hi+1(X) ≤ h′

i(X) ≤ hi(X)

Thus, for both procedures that update heuristic values, we conclude that hi+1(S) ≤ hi(S)

for any atom set S with 1 ≤ |S| ≤ m.

With the above results, we are now in a position to precisely characterize when the evaluation

of an operator does not lead to any updates in the heuristic table. This leads us to the central

theorem of this section.

Theorem 1. Let Π = ⟨V,O, I,G⟩ be an SAS+ planning task, and let h(S) denote the

heuristic values in hm table for an atom set S where 1 ≤ |S| ≤ m. Define hi as the

heuristic values after the evaluation of an operator o ∈ O, let hj be the heuristic values

before evaluating o, with i ≤ j, and denote by hj+1 the values after this evaluation. Then,

it holds that hj+1 = hj if for all sets A with 1 ≤ |A| ≤ m and A ∩ pre(o) ̸= ∅, we have

hj(A) = hi(A).

Proof. Lemma 3 already established that evaluating an operator o ∈ O twice in succession

does not bring any updates to the heuristic table. Hence, in the case of i = j, it holds that

hj+1 = hj .
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Thus, we focus on the case i < j, where other operators may have been evaluated between

evaluations of o.

Procedure new update hm table (Algorithm 5): In Algorithm 5, heuristic updates

are considered for an operator o ∈ O and an atom set X with 1 ≤ |X| ≤ m if X ⊆ eff (o).

hj+1(X) = min

(
hj(X), max

B⊆pre(o),1≤|B|≤m
hj(B) + cost(o)

)
By assumption, we have hj(A) = hi(A) for all A ∩ pre(o) ̸= ∅ with 1 ≤ |A| ≤ m.

hj+1(X) = min

(
hj(X), max

B⊆pre(o),1≤|B|≤m
hi(B) + cost(o)

)
It holds that hi+1(X) ≤ maxB⊆pre(o),1≤|B|≤m hi(B) + cost(o). By Lemma 4, heuristic

values cannot decrease after an operator evaluation. It follows that hj(X) ≤ hi+1(X) ≤
maxB⊆pre(o),1≤|B|≤m hi(B) + cost(o).

hj+1(X) = hj(X)

Procedure new extend entry (Algorithm 6): In Algorithm 6, heuristic updates are

considered for an operator o ∈ O and an atom set X with 1 ≤ |X| ≤ m if there exists some

subset Y ⊂ X such that Y ⊆ eff (o). It holds that Z = X \ Y . Since applying Algorithm 5

did not alter the heuristic table, h′
j = hj .

hj+1(X) = min

(
hj(X), max

B⊆(pre(o)∪Z),1≤|B|≤m
hj(B) + cost(o)

)
.

We now consider two cases for the maximization term:

1. B ⊆ Z, containing only elements of Z,

2. B ⊆ (pre(o) ∪ Z) with B ∩ pre(o) ̸= ∅.

Thus, we rewrite the equation as:

hj+1(X) = min

(
hj(X),max

(
max
B⊆Z

hj(B), max
B⊆(pre(o)∪Z),B∩pre(o)̸=∅,1≤|B|≤m

hj(B)

)
+ cost(o)

)
.

Since |Z| < m, there exists a set C = Z ∪ {a} for some a ∈ pre(o) that is included in the

second maximization term. Because Z ⊂ C, it follows that hj(Z) ≤ hj(C), implying that

the second maximization term always dominates. Hence, we obtain:

hj+1(X) = min

(
hj(X), max

B⊆(pre(o)∪Z),B∩pre(o)̸=∅,1≤|B|≤m
hj(B) + cost(o)

)
.

By assumption, for all sets A with 1 ≤ |A| ≤ m and A∩pre(o) ̸= ∅, we have hj(A) = hi(A),

yielding:

hj+1(X) = min

(
hj(X), max

B⊆(pre(o)∪Z),B∩pre(o) ̸=∅,1≤|B|≤m
hi(B) + cost(o)

)
.
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Since hi+1(X) ≤ maxB⊆(pre(o)∪Z),B∩pre(o)̸=∅,1≤|B|≤mhi(B)+ cost(o), and hj(X) ≤ hi+1(X)

(Lemma 1). We conclude that

hj+1(X) = hj(X).

Thus, for both procedures that modify heuristic values, it follows that hj+1 = hj , completing

the proof.

We see that it is not only necessary for subsets of preconditions to remain unchanged but

that each entry containing at least one precondition must have the same heuristic value

to disregard the operator. An operator being reachable with the same costs as in the last

evaluation does not exclude possible updates in the extend entry method.

The operator queue is implemented using a std::deque data structure according to the

first-in-first-out principle. We initialize the queue by inserting operators that are applicable

in the initial state. Meanwhile, we maintain a list that tracks which operators have a given

atom as a precondition. To achieve this, we use an unordered map where atoms serve

as keys, and each key maps to a list of operator IDs. We call this data structure operator

dictionary. When updating a table entry, any operator that has one of the corresponding

atoms in the entry as a precondition is inserted into the queue (Algorithm 5, line 15).

Algorithm 5 Update hm Table

Procedure: new update hm table
Input: task proxy with operators, op queue containing initially applicable operators
Output: hm table containing correct hm values

1 while not op queue.empty() do
2 o ← op queue.pop()
3 op queue set.erase(o)
4 c1 ← eval(precondition cache[o])
5 new cost ← c1 + cost(o))
6 if c1 = op cost[o] then
7 if c1 ̸=∞ then
8 extend changed entry(o)

9 continue

10 changed entries[o] ← {}
11 op cost[o] ← c1
12 foreach partial eff in partial effect cache[o] do
13 if hm table.at(partial eff) > new cost then
14 hm table[partial eff] ← new cost
15 add op to queue(partial eff)

16 if partial eff.second.var = −1 then
17 new extend entry(partial eff.first, o, c1)

We want to avoid an operator being in the queue twice at the same time. However, searching

in the queue can only be done in linear time. As we have to possibly add operators for every

table update, this results in a large overhead. Therefore, in addition to the queue itself, we

maintain an unordered set which contains the IDs of all operators in the queue. This

guarantees constant checks as whether an operator is in the queue. Inserting and deleting
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elements of this set is always done simultaneously with the queue.

An interesting special case are operators without preconditions. These obviously are appli-

cable in the initial state and are therefore added when the queue is initialized. Then, they

would never be added to the queue again during the course of the algorithm, as they are not

affected by any table update. However, there are scenarios where such operators have to be

applied multiple times to ensure a correct algorithm. Let us consider the following example

of a SAS+ planning task Π = ⟨V, {o1, o2}, I, G⟩ with

V ={a, b}, dom(a) = dom(b) = {0, 1},

o1 =⟨{}, {a = 1}, 1⟩,

o2 =⟨{a = 1}, {a = 0, b = 1}, 1⟩,

I ={a = 0, b = 0}, and

G ={a = 1, b = 1}.

The operator o1 is initially added to the queue. After it has been applied, o2 is also added

to the queue and subsequently applied. In order to set the goal entry a = 1, b = 1 to a finite

value, o1 must be reconsidered again which does not occur under current rules. We solve

this problem by adding all precondition-free operators by default to the operator dictionary

entry of every atom. This does entail a certain overhead, however, precondition-free opera-

tors are generally very rare.

From a theoretical perspective, the operator queue approach does not guarantee an im-

provement in the worst case. If every operator depends on every atom, then all operators

are enqueued and processed in each iteration, leading to a similar procedure as the naive

approach. However, such worst-case scenarios are uncommon in practical planning tasks.

By focusing only on operators that are actually affected by changes in the heuristic table,

several redundant operator evaluations are avoided.

4.1.5 Extend Entry Function
The extend entry function is responsible for updating the heuristic table by extending

effects of operators. The existing implementation iterates over all entries in the heuristic

table and checks if such an extendable entry is present (Algorithm 4). Since it holds that

m = 2, we know that entries we are searching for consist of one atom that corresponds to

an operator effect and another atom, which we call extend atom. Instead of iterating over

the whole table we directly loop over all possible extend atom (Algorithm 6).

It is also essential to stop the extend entry process as early as possible if it is clear that

no improvements can be achieved with the current operator effect. There are two cases in

particular that realize this in the optimized implementation:

• The extend atom is unreachable in the current table. Thus, there will not be any

updates of entries containing this atom (line 8).

• The current heuristic value of an entry is lower than the cost to achieve the given
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operator o. Since the evaluation of the set of entries pre(o) ∪ extend atom cannot

be lower than the preconditions itself there are guaranteed no table updates (line 11).

In both cases, extend atom can be discarded before evaluating any entries.

Algorithm 6 Extend entry and update heuristic table

Procedure: new extend entry
Input: Operator effect atom, operator o, precondition evaluation eval
Output: Updated hm table with extended fact pairs

1 pre ← precondition cache[o.get id()]
2 num variables ← task proxy.get variables().size()
3 for i in V do
4 if effect conflict cache[o][i] then
5 continue

6 for j in dom(i) do
7 extend atom ← atom(i, j)
8 if hm table.at(extend atom) =∞ then
9 continue

10 hm pair ← (atom, extend atom)
11 if hm table.at(hm pair) ≤ eval then
12 continue

13 c2 ← extend eval(extend atom, pre, eval)
14 if hm table.at(hm pair) > c2 + cost(o) then
15 hm table[hm pair] ← c2 + cost(o)
16 add op to queue(hm pair)

The evaluation in new extend entry can also be optimized. Preconditions of passed op-

erators are evaluated in the new update hm table function (Algorithm 5, line 4). Instead

of re-evaluating the preconditions pre(o), we store the result of their first evaluation. This

means that we only have to focus on all entries containing extend atom and take the

maximum of these entries and the stored evaluation of the preconditions. For better dif-

ferentiation, we call this function extend eval as opposed to the original eval function

given in Algorithm 2. The pseudo code for extend eval is given in Algorithm 7.

Once again, there are a few cases where we can abort the evaluation process in extend eval.

If extend atom contradicts a precondition, we return infinity (line 6). If extend atom is

an element of the preconditions, we simply return the evaluation result of the preconditions

(line 7).

The extend eval method changes the theoretical runtime. In the worst case, the eval-

uation now takes place in linear time compared to the quadratic runtime of Algorithm 2.

Another advantage involves the input of the extend eval function. Instead of adding the

extend atom to the preconditions and sorting the resulting vector (Algorithm 4, lines 10

and 11), we pass both separately as arguments to the evaluation function. The sorting is

done by preserving the correct order when creating the atom pair at line 8. This reduces

processing overhead in the new extend entry method of h2.
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Algorithm 7 Compute evaluation for extended entries

Procedure: extend eval
Input: Atom extend atom, operator preconditions pre, precondition evaluation eval
Output: Evaluation result for extended entries

1 atom eval ← hm table[extend atom]
2 max eval ← max(eval, atom eval)
3 foreach p in pre do
4 if p.var = extend atom.var then
5 if p.value ̸= extend atom.value then
6 return ∞
7 return eval

8 key ← (extend atom, p)
9 h ← hm table[key]

10 if h > max eval then
11 if h == ∞ then
12 return ∞
13 max eval ← h

14 return max eval

4.1.6 Storage of Changed Entries
Although new extend entry improves the existing method, we still need to iterate over

all possible extend atom. Therefore, it might be interesting to reduce the number of atoms

we need to consider.

Previously we stated that even if the costs of achieving operator o have not improved since

the last evaluation of o, we cannot rule out updates. We take a closer look at which updates

are possible in this scenario. Since the operation itself is not cheaper, there are no updates

for its partial effects. However, the same does not hold for new extend entry

Consider a pair of atoms a, b where a ∈ pre(o) and b /∈ pre(o) for an operator o ∈ O. If a

different operator o′ ∈ O updates the table entry for [a, b], it might lead to another update

containing the atom b when reconsidering o, as the preconditions of o in combination with

b might be cheaper to reach. Therefore, for each operator we store all atoms that were

updated since its last evaluation. We call these changed entries of o.

Instead of iterating over all possible extend atom, we only consider changed entries in the

case that the cost to achieve an operator stayed the same. This requires besides the storage

of the changed entries also saving previous operator costs for comparisons with the current

evaluation. We call this data structure operator cost. Since in the worst case, all atoms

could be stored as changed entries, the space complexity of changed entries is O(|O||V |×d).

The concept of changed entries is implemented in the extend changed entry method.

The algorithm is similar to new extend entry with the difference of iterating over all

changed entries for a given operator as extend atom. If the costs for an operator decreased

since the last evaluation, we cannot make assumptions about changed entries as the new costs

could potentially update all extend atom. In this case we delete the changed entry list and

set the new cost to reach the operator in the operator cost data structure (Algorithm 5).
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4.2 Comparison
We now compare both implementations with each other. First, we calculate the theoretical

runtime and space complexity of the optimized version. Then we make comparisons with

the complexity of the existing implementation, calculated in Section 3.3. We perform an

experiment where we solve different problem instances with both implementations. The

quality of both implementations can be tracked using metrics such as the total search time,

the memory used or whether a solution was found at all.

4.2.1 Theoretical Analysis
In the following, we derive the runtime and space complexity of h2. We use the same

variables and terminology as when analyzing the existing implementation (Section 3.3). For

example, we continue to use (|V | × d)2 as upper bound for the number of table entries.

Runtime Complexity

Like the existing implementation, h2 can be separated into different, sequential parts. The

initialization of the table, the table updating and the evaluation of the goal state are still

part of the implementation. An additional step is the initialization of various auxiliary data

structures such as operator caches or the operator queue. As information about the opera-

tors does not change during the entire search, it is sufficient to set up operator caches once

before the search starts. We therefore disregard their initialization in this analysis. What

needs to be considered, however, is setting up the operator queue and thus, inserting the

initially applicable operators into the queue. This requires iterating over all preconditions

of each operator which results in a worst-case runtime of O(|O||V |).

The generation of table entries has been made a little clearer by using an iterative approach

instead of recursive functions. For each entry, we make a constant look up if it is contained

in the initial state. Therefore, the complexity is reduced to O((|V | × d)2).

The evaluation of the goal state now uses an unordered map which provides constant look

up time. The eval method itself does not change. It holds that the runtime complexity for

goal subset look ups is O((|V | × d)2).

Now we look at updating the table entries. We start with the new update hm table

method (Algorithm 5). The most notable change there is the introduction of the operator

queue. As already mentioned, this does not offer any improvements in runtime complexity.

In the worst case, all operators in O are added to the queue and only after each operator

has been considered, exactly one entry is set to its final value. For each operator, either

the new extend entry or the extend changed entry function is called on at most

|V | single effects. In the worst case, the cost of reaching an operator becomes more fa-

vorable with each evaluation, which is why only new extend entry would be used. The

extend entry method must therefore be called just as often as for hm. We can conclude that

O(new update hm table) = O(|O||V |3 × d2)×O(new extend entry).
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In new extend entry, we iterate over each extend atom (Algorithm 6). Therefore, we

call the extend eval method O(|V | × d)-times. In Algorithm 7, we have reduced the

quadratic complexity to linear by storing the evaluation of the operator preconditions. The

efficient look up in the heuristic table eliminates the logarithmic time required to find en-

tries. It holds that O(extend eval) = O(|V |).

We now combine the results of the individual algorithms to compute new update hm table:

O(new update hm table) = O(|O||V |3d2)×O(new extend entry)

= O(|O||V |3 × d2)×O(|V | × d)×O(extend eval)

= O(|O||V |3 × d2)×O(|V | × d)×O(|V |)

= O(|O||V |5 × d2)

The improved implementation has a runtime complexity of |V |5, while for hm, it is |V |6. The
maximum domain size is quadratic for h2, whereas it is cubic for the existing implementation

(Table 4.1). Conceptually, two main reasons contribute to the improved runtime complexity:

• The caching of the evaluation result in new update hm table that can be re used

in extend eval.

• Using an unordered map and a suitable hash function, for table look ups in constant

time.

All other improvements also reduce runtime performance, but either do not affect the worst-

case complexity or become negligible under strict worst-case assumptions, such as the op-

erator queue. From a practical standpoint, all described improvements lead to noticeable

execution speed ups.

Part of Implementation hm (for m = 2) h2

Table Initialization |V |3 × d2 |V |2 × d2

Queue Initialization - |O||V |
Table Updating |O||V |6 × d3 log(|V | × d) |O||V |5 × d2

Goal Evaluation |V |2 log(|V | × d) |V |2

Table 4.1: Worst case runtime complexity overview of sequential parts in hm and h2. Note
that the initialization of operator caches is excluded as this is done in a preprocessing step
before the search process.

Space Complexity

Several new data structures have been added for h2 compared to the original implemen-

tation. The heuristic table remains unchanged with a space complexity of O(|V | × d)2.

The space complexity for the three operator caches has already been discussed. The partial

effect cache requires the most memory with O(|O||V |2). Additional structures include the

operator queue and operator set, both of which store only integer IDs of operators, resulting
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in a space complexity of O(|O|).
Other relevant structure are the operator dictionary and the changed entries data structure

which both are implemented as unordered map. The operator dictionary maps atoms to

a vector of operators while changed entries maps operators to atoms. The worst-case space

complexity of both data structures is O(|O||V | × d).

It is difficult to determine definitively which structure requires the most space (Table 4.2).

However, it can be concluded that the average space complexity of h2 exceeds that of the

original hm implementation. The worst-case space complexity for h2 is O(|V |2 × d2 +

|O||V |2 + |O||V | × d).

Data Structure hm h2

Heuristic Table |V |2 × d2 |V |2 × d2

Precondition Cache - |O||V |
Partial Effect Cache - |O||V |2
Effect Conflict Cache - |O||V |
Operator Queue - |O|
Operator Set - |O|
Operator Dictionary - |O||V | × d
Operator Cost - |O|
Changed Entries - |O||V | × d

Table 4.2: Overview of worst case space complexities of data structures used in hm and h2.

4.2.2 Experiments
To validate our theoretical improvements, we conduct empirical evaluations using the Fast

Downward planning system (Helmert, 2006). In Fast Downward, problem instances are

passed as arguments in the Planning Domain Definition Language (PDDL). PDDL is a

standardized language used to describe planning tasks (Ghallab et al., 1998). Fast Down-

ward takes a problem instance as argument, along with an additional search parameter that

specifies the search algorithm and the heuristic. If we want to use the A∗ search algorithm

(Hart et al., 1968) together with the critical path heuristic hm, the corresponding search

parameter is astar(hm()). When using the optimized implementation, the search parameter

is astar(h2()). We carry out the experiment with Downward Lab (Seipp et al., 2017). This

is a Python package that implements the package Lab specifically for Fast Downward. It

takes care of assembling input calls and summarizing the results.

For the experiment we use benchmarks from the optimal track of the International Planning

Competition (IPC).4 In total, we utilize 65 problem domains that sum up to 1827 tasks.

Each domain has various instances, which differ in their size. We set a time limit of 30

minutes for each problem and a memory limit of 3947 MB. The results are illustrated in

Figure 4.1. The left scatter plot compares the total execution time for the original and

4 https://github.com/aibasel/downward-benchmarks/
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Figure 4.1: Total time and memory usage comparison between existing (A∗ with hm) and
optimized implementation (A∗ with h2). Unsolved tasks are displayed on the edges of the
plot, depending on which implementation solved the task.

optimized implementation in seconds. The right side represents memory consumption dif-

ferences in mega-bytes. In both plots, diagonals are drawn as auxiliary lines to increase the

comparability of the results. Points on the main diagonal, shown in black, indicate that

both implementations yield the same result. Further diagonals in gray show a difference of

an order of magnitude.

The resulting plot in Figure 4.1 confirms the runtime complexity analysis. As we can see,

the optimized implementation solves problem instances faster than the existing one. This

can be recognized by the fact that all data points in the left plot are located below the main

diagonal. For very small problems, the difference is relatively small. This can be explained

by the fact that for smaller problems the search takes up a smaller part of the entire planning

process compared to i.e. task preprocessing steps. With larger instances, h2 finds solutions

faster by a factor of 10 or more. Problems that have only been solved by h2 in the specified

time limit can be found on the right-hand side of the plot. What is striking is that no task

could be solved by hm, but not by our optimized version.5

There are also significant differences between the two implementations in terms of memory.

While the space for hm remains much lower then for h2. The memory consumption is only

similar for individual, smaller instances. However, this difference in memory utilization does

not result in the existing implementation being able to solve a problem, whereas h2 is not.

There were isolated errors due to memory consumption for h2, but only for instances that

exceeded the time limit for hm. Therefore, although the memory space is large for h2, this

does not lead to practical disadvantages compared to the existing implementation.

5 This is visible by the absence of data points at the top of the plot. Points in the top-right corner belong
to tasks unsolved by both implementations.
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Figure 4.2: Number of solved instances after given amount of time for total of 1827 tasks.
Existing implementation is labeled with A∗ with hm, optimized version as A∗ with h2.

To put these results more into the context of solved problems in general, we now look at the

total number of tasks solved. To do this, we depict how many problems are solved after a

given amount of time. The results are shown in Figure 4.2. Once again we see the improved

results of h2. However even with a time limit of 30 minutes, only just under 25% of problem

instances are solved by h2. This shows that although the runtime was reduced by a factor

of more than ten, the optimized implementation is still unsuitable for solving very large

planning tasks.



5
Theory of Πm Compilation

In this chapter, we investigate an approach that shifts much of the computational effort

involved in heuristic evaluation to a preprocessing phase before the actual search begins.

Specifically, we focus on the Πm compilation, a method that transforms the original planning

task into a new form in where the computation complexity lies in the planning task itself,

not the heuristic evaluation. The compiled task can be computed in the search initialization

and then be re-used in each evaluation.

We state the theoretical foundations of the Πm compilation, explaining its purpose and

how it captures variable interactions in the original task through the introduction of meta-

variables. Afterwards, we describe an algorithm that allows transforming a planning task

in SAS+ representation into STRIPS. This is necessary as the Πm compilation is originally

defined on STRIPS planning tasks (Haslum, 2009).

5.1 Definition of Πm

In the critical path heuristic for m = 1, we only consider the costs of single atoms. This is

equivalent to the hmax heuristic. Since the complexity of hm increases exponentially with

m, a heuristic evaluation with hmax is much faster than with h2. Haslum (2009) introduced

a method that constructs for a given STRIPS planning task Π a modified task Πm, such

that hmax(Πm) = hm(Π). This approach allows us to apply the hmax heuristic to a modified

task in order to obtain hm evaluations.

The core idea of the Πm compilation is to capture interactions between variables in a STRIPS

task by introducing meta-variables. A meta-variable v{a,b} represents the states in the

original task Π where both propositional variables a and b are true. As we aim to capture

interactions involving at most m variables, it holds for all meta-variables vC in Πm that

|C| ≤ m. The cost to reach variable vC now corresponds to the cost of reaching atoms in C

simultaneously. We define the Πm compilation formally:

Definition 13 (Πm Compilation). The problem Πm of a STRIPS planning task Π =

⟨V,O, I,G⟩ is the STRIPS planning task ⟨V m, Om, Im, Gm⟩, where:
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• V m = {vC | C ⊆ V, |C| ≤ m},

• Im = {vC | C ⊆ I, |C| ≤ m},

• Om = {ao,S | o ∈ O,S ⊆ V, |S| < m,S ∩ (add(o) ∪ del(o)) = ∅} with
pre(ao,S) = {vC | C ⊆ (pre(o) ∪ S), |C| ≤ m},
add(ao,S) = {vC | C ⊆ (add(o) ∪ S), C ∩ add(o) ̸= ∅, |C| ≤ m},
del(ao,S) = ∅,
cost(ao,S) = cost(o), and

• Gm = {vC | C ⊆ G, |C| ≤ m}.

We call operators in Om meta-operators. Each meta-operator ao,S corresponds to the exe-

cution of operator o in Π while preserving all variables in S. Note that S can be the empty

set which means that there are no variables preserved during the application of ao,∅.

Applying hmax on the compiled task Πm yields hm(Π). Therefore, applying hmax on Πm is

admissible.

5.2 SAS+ Task to STRIPS Translation
The definition of the Πm compilation requires a STRIPS planning task. In Fast Downward,

tasks are by default translated into tasks with finite-domain variables. We previously stated

the idea of translating an SAS+ task into STRIPS by introducing a propositional state

variable for each element in the domain of a finite-domain state variable.

Another difference between both task definitions is that SAS+ does not distinguish between

positive and negative effects. Consider an SAS+ planning task Π with a state s where a = 0,

with a ∈ V and 0 ∈ dom(a). Let us assume there exists an operator o that is applicable in

s and it holds a := 1 ∈ eff (o) with 1 ∈ dom(a). Therefore, in the state s′ = s[o], we have

a = 1. Thus, the atomic effect a := 1 behaves in the same way as an add effect a = 1 and

delete effects for every domain value in dom(a) other than 1. These add and delete effects

always occur together, otherwise the variable a would either have no value or multiple values

in the new STRIPS state. With these concepts, we define a translation algorithm:

Definition 14 (SAS+ Task into STRIPS form). Let Π = ⟨V,O, I,G⟩ be a SAS+ task. The

task Π′ = ⟨V ′, O′, I ′, G′⟩ is the equivalent task in STRIPS form with

• V ′ = {pv=d | v ∈ V, d ∈ dom(v)}, with dom(pv=d) = {true, false},

• Each operator o ∈ O is mapped to a STRIPS operator o′ = ⟨pre(o′), add(o′), del(o′), cost(o′)⟩,
where:

– pre(o′) = {pv=d | (v = d) ∈ pre(o)},

– add(o′) = {pv=d | (v := d) ∈ eff(o)},

– del(o′) = {pv=d | (v = d′) ∈ add(o′), d ∈ (dom(v) \ {d′})}, and

– cost(o′) = cost(o),

• I ′ = {pv=d | (v = d) ∈ I},
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• G′ = {pv=d | (v = d) ∈ G}.

The SAS+ task Π and its translated STRIPS task Π′ represent the same planning task

because they encode the same reachable transition system. In SAS+, a variable v can take

multiple values from a finite domain, whereas in STRIPS, each possible value d of v is rep-

resented by a separate propositional variable pv=d. This ensures that each state in Π has a

corresponding state in Π′, where exactly one proposition pv=d is true for each v. Operators

in Π are translated such that applying an operator in Π corresponds intuitively to applying

its counterpart in Π′, producing analogous effects. Assigning v := d in Π corresponds to

adding pv=d in Π′ while deleting all other propositions pv=d′ for d′ ̸= d. The initial and goal

states are transformed in the same way.

Since every valid sequence of operators in Π has an equivalent sequence in Π′ and vice versa,

the two tasks describe the same problem, just in different formal representations.

With the translation in Definition 14, we are able to use the Πm compilation on SAS+

planning tasks. For a SAS+ task Π, we compile the translated STRIPS task Π′. The

resulting heuristic values hmax((Π′)2) are equivalent to h2(Π).



6
Πm Compilation in Fast Downward

In this section, we discuss an implementation of the h2 heuristic using the Πm compilation

approach. First, we describe the details of the Πm compilation in Fast Downward. Then,

we examine the existing implementation of the hmax heuristic in Fast Downward. Finally,

we present both a theoretical analysis and experimental results, comparing them to the h2

implementation described in Chapter 4.

6.1 Implementation of the Πm Compilation
Fast Downward already provides a framework for modifying a planning task before the search

process starts. The DelegatingTask class offers an interface to modify the original task

and is used, for instance, to perform domain abstractions. The core of our compilation is the

PiMCompiledTask class, which implements DelegatingTask. This class is responsible

for transforming a given planning task into Π2 by introducing meta-variables and meta-

operators.

We define a mapping from atom pairs a1, a2 to the corresponding meta-variable v{a1,a2}
referred to as meta atom map (Figure 6.1). This allows us to bypass converting the task

from SAS+ to STRIPS by directly building the meta-variables from atoms in SAS+. Each

meta-variable has a domain of {0, 1}. A value of 1 represents the truth value true for a

propositional state variable. The initial state and goal of the compiled task are built ac-

cording to Definition 13.

Meta-operators are generated by iterating over all original operators o ∈ O. According to

Definition 13, S is a set of STRIPS variables. Since our STRIPS variables are essentially

atoms of Π and it holds that m = 2, S either consists of the empty set or one atom v = d,

where v ∈ V and d ∈ dom(v). For each operator o ∈ O, we store precondition meta-variables

pre(ao,∅) and add effect meta-variables add(ao,∅). Since it holds that pre(ao,∅) is a subset

of pre(ao,S), and likewise for the add effects, it is sufficient to extend these stored meta-

variables by iterating over all allowed atoms in S.

Meta operators are stored in a separate struct MetaOperators and contain the precondi-

tions, effects, cost of the new operator, the ID of the original operator and the corresponding
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Figure 6.1: Illustration of meta atom map, showing atom sets mapped to meta-variable
ids with annotated meta-variables. The example is limited to the first seven entries for
clarity.

meta-variable in S.

The Πm compilation is applied before the search begins, while the search uses hmax. During

the heuristic evaluation, however, the original state must be continuously translated into its

compiled form. This is done using Algorithm 8:

Algorithm 8 Convert State into Compiled State

Procedure: compile state
Input: State values from original task values
Output: Transformed values in Π2 representation

1 new values ← vector of size |meta atom map|, initialized to 0
2 new values[0] ← 1
3 foreach i in indices of values do
4 atom ← (i, values[i])
5 meta index ← meta atom map[atom]
6 new values[meta index] ← 1
7 foreach j in indices after i do
8 second atom ← (j, values[j])
9 meta index ← meta atom map[(atom, second atom)]

10 new values[meta index] ← 1

11 values ← new values

The algorithm iterates over all atom pairs in the original state and sets the meta-variables vC

to true if all atoms a ∈ C are present in the state. The first meta-variable in new values

represents v∅ and is always set to true (line 2). Although this variable could be omitted

without affecting correctness, it is included to to comply with the definition of Π2.

With this, the compilation process is complete. We construct the Π2 task and provide a

method to convert states from the original representation to the compiled one.

6.2 hmax Heuristic in Fast Downward
The hmax heuristic is a relaxation heuristic that estimates the cost of achieving each goal

atom in a planning task by considering the maximum cost among its contributing precon-

ditions (Definition 8). We use this heuristic to estimate the goal distance in the compiled

task representation.
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The existing implementation is provided in the HSPMaxHeuristic class. This implemen-

tation assigns cost values to atoms and operators, representing the cost of reaching them or

its effects respectively. A priority queue containing atoms sorted by this cost value is used

to propagate their cost values. The heuristic computation follows three main steps:

• Initialization: The algorithm sets all atom costs to −1. This marks them as unvisited.

Atoms of the initial state are inserted into the priority queue with a cost of zero.

Effects of precondition-free operators are inserted with the operator cost.

• Exploration: The implementation processes elements from the queue one by one.

When all preconditions of an operator have been reached, the operator can fire, and

its effects are added to the queue. This process continues until the goal is reachable.

The exploration step is shown in Algorithm 9.

• Heuristic evaluation: Once all reachable atoms have been assigned their final cost, the

heuristic value is determined. It is the maximum cost among all goal atoms. If a goal

atoms remains unvisited (cost −1), the problem is unsolvable in the relaxed space,

and the heuristic returns infinity.

Algorithm 9 Relaxed graph Exploration

Procedure: relaxed exploration
Input: queue with initial state atoms and precondition-free operator effects
Output: Goal atoms with final cost value

1 unsolved goals← |G|
2 while queue not empty do
3 (atom, distance)← queue.pop()
4 if atom.cost < distance then
5 continue

6 if atom.is goal then
7 unsolved goals← unsolved goals− 1
8 if unsolved goals = 0 then
9 return

10 foreach op in ops with atom as pre do
11 op.cost ← max(op.cost,op.base cost+ atom.cost)
12 op.unsatisfied pre ← op.unsatisfied pre −1
13 if op.unsatisfied pre = 0 then
14 if op.effect.cost > op.cost then
15 op.effect.cost ← op.cost
16 queue.insert(op.effect, op.cost)

The implementation of hmax uses modified operators known as unary operators, each having

only one effect. For each original operator o, one unary operator is generated per effect, i.e.,

|eff (o)| unary operators in total.

This division into unary operators often results in duplicate or dominated operators. An

operator o1 dominates another operator o2 if eff (o1) = eff (o2) and pre(o1) ⊆ pre(o2), and

cost(o1) ≤ cost(o2). If both the preconditions and the costs relation are not strict, it is a
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duplicate. We are interested in removing both duplicates and dominated operators. The cur-

rent Fast Downward implementation of hmax checks this for all operators o where |pre(o)| ≤ 5

holds. This is a compromise since checking for dominated operators is not efficient. However,

we will also experimentally test the heuristic where none and all duplicates or dominated

operators are eliminated. We call this heuristic hmax
k (Π2), where k indicates the maximum

precondition size for which dominated operator pruning and duplicate detection were ap-

plied. If we omit the subscript in the notation, we mean the Fast Downward standard k = 5.

A distinction is made between base cost and total cost of a unary operator. The base

cost (op.base cost) corresponds to the original operator cost cost(o). The total cost

(op.cost) includes the base cost plus the costs of satisfying preconditions of o. The prior-

ity queue ensures that each atom is evaluated only when its cost has been fully determined.

There is no possibility of a cost decrease as atoms are processed through the priority queue

in ascending cost order. We can therefore be sure that as soon as the goal is achievable, the

cost of the goal is final and cannot decrease further.

The priority queue is implemented as an adaptive data structure. Initially, it uses a bucket-

based queue, where keys represent cost values and atoms are stored in corresponding buckets.

This allows constant-time insertions and deletions. If the keys become large, the bucket-

based approach becomes inefficient (Hopcroft et al., 1983). In this case, the queue automati-

cally converts into a heap-based queue using a binary heap, which supports logarithmic-time

operations.

6.3 Theoretical and Experimental Results
We now compare hmax(Π2) with our h2 implementation. To do so, we first derive the

theoretical runtime and space complexity of hmax(Π2). We then conduct an experiment

using the same evaluation metrics as for the experiment in Section 4.2.2. A key difference

to this experiment is the amount of preprocessing required before the actual search begins.

While the hm and h2 heuristics only require moderate precomputation, the compilation into

Π2 is a fundamental part of the heuristic computation. This additional effort must be taken

into account both in the runtime analysis and in the experimental evaluation.

6.3.1 Runtime and Space Complexity
We analyze the runtime and space complexity of hmax(Π2). In this theoretical analysis,

we use the same variables as in previous sections, such as the number of variables |V | and
the maximum domain size d. These quantities refer to the original task in SAS+ form,

not the STRIPS version or the compiled Π2 task. To avoid confusion between the original

task in SAS+ and the compiled Π2 task, we introduce subscripts instead of superscripts to

denote the components of the compiled task. Thus, the notation for the compiled task is

Π2 = ⟨V2, O2, I2, G2⟩.
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Runtime Complexity

We separate the analysis into two parts: the compilation step and the actual search. We

begin by analyzing the compilation process itself, as described in Section 6.1.

In the first step of the compilation, we iterate over all pairs of atoms to construct meta-

variables. This leads to a worst-case runtime of O(|V |2 × d2). Next, we generate meta-

operators. For each operator o ∈ O, we determine which atoms (denoted as S in Definition

13) are applicable for o. Since m = 2, S consists of at most one of |V | × d atoms. As a

result, the total runtime complexity of the Πm compilation is O(|O||V | × d+ |V |2 × d2).

During the search, hmax is applied to the compiled task. Therefore, we need to express

the number of variables and operators in Π2 in terms of the parameters of Π in order to

perform runtime comparisons. Since each meta-variable is formed from a pair of atoms, we

have |V2| = |V |2 × d2. For the number of operators, each operator o ∈ O is combined with

the corresponding S atom, resulting in |O2| = |O| × |V | × d. The hmax implementation

uses unary operators, which have only one effect. There are |V |2 effects per operator in the

worst-case. This is a consequence from our STRIPS translation, as each operator can assign

only one domain value per SAS+ variable. It means |V |2 unary operators are generated in

the worst-case for one meta-operator in O2. For the number of unary Operators Ou, it holds

|Ou| = |V |2 × |O2| = |O| × |V |3 × d

We use these values to determine the runtime complexity of the hmax computation on the

compiled task.

Before the hmax evaluation starts, the current state must be translated into the compiled

state (Algorithm 8). In the algorithm, we iterate over all meta-variables, which leads to

O(|V2|) = O(|V |2 × d2).

The main part of the hmax implementation is the exploration with the queue (Algorithm 9).

In the worst case, the goal can only be reached by exploring all possible V2 meta variables.

For each atom a from the queue, all unary operators ou where a ∈ pre(ou) applies are

iterated over. The effect of a newly applicable ou is added to the queue (line 14). Since

insertions can be done in logarithmic time we can conclude for the runtime complexity

O(hmax):

O(hmax) = O(|V2| × |Ou| × log(|V2|)) = O(|O| × |V |5 × d3 × log(|V | × d))

This clearly exceeds the complexity of compiling the current state and is therefore also the

final result for hmax(Π2). Furthermore, from a theoretical perspective, the hmax heuristic

evaluation on Π2 is clearly more time consuming than compiling the task itself.

Space Complexity

The space consumption comes from two sources: the compiled, larger task and the priority

queue used in hmax. In the worst case, the queue holds all meta-variables, resulting in a
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Heuristic Runtime Space

hm(Π) |O||V |6 × d3 log(|V | × d) |V |2 × d2

h2(Π) |O||V |5 × d2 |V |2 × d2 + |O||V |2 + |O||V | × d
hmax(Π2) |O||V |5 × d3 × log(|V | × d)) |O||V |5 × d

Table 6.1: Overview of worst case runtime and space complexities for the analyzed
heuristics so far.
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Figure 6.2: Total time and memory usage comparison between h2 and hmax on Π2

compiled task. Unsolved tasks are displayed on the edges of the plot, depending on which
implementation solved the task.

complexity of O(|V2|) = O(|V |2 × d2).

The more significant factor is the compiled task itself. In the hmax heuristic, operators in O2

is transformed into |Ou| unary operators. Each unary operator can require up to O(|V |2)
space, as it may store up to |V |2 preconditions. We conclude for the space complexity that

O(hmax(Π2)) = O(|Ou| × |V |2) = O(|O| × |V |5 × d)

Table 6.1 summarizes the runtime and space complexities of the existing hm heuristic, our

optimized h2 heuristic, and the hmax heuristic applied to the compiled task. The runtime

of the Πm compilation approach is slightly higher than that of the optimized h2, but still

lower than the original hm implementation. Since the number of variables |V | is typically

much larger than the domain size d, the overall runtime complexity remains comparable to

h2. In terms of memory usage, hmax(Π2) consumes significantly more space than the other

two heuristics. This is mainly due to the increased size of the compiled task, particularly

the creation of numerous unary operators.

6.3.2 Experimental Results
We conduct an experiment comparing the performance of the Πm compilation approach

with the h2 heuristic. The experimental setup is the same as described in Section 4.2.2.

The time limit is 30 minutes and the memory limit is 3947 MB. Figure 6.2 shows the total
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time and peak memory consumption for Π2 compilation and h2. The main diagonal in

black indicates same performance for both heuristics. The adjacent diagonals, shaded in

gray, represent differences by successive powers of ten (10, 100, 1000, ...).

The Πm compilation approach solves the majority of problem instances faster than h2,

particularly for larger tasks. However, there are a few smaller instances where h2 achieves

better performance. On average, hmax(Π2) solves tasks approximately four times faster than

h2(Π). This result may seem counterintuitive, given that the theoretical analysis predicted

a runtime advantage for h2. The difference arises because the worst-case assumption of

having |Ou| unary operators in total rarely holds in practice. As previously discussed, hmax

performs internal optimizations, such as detecting and eliminating duplicate or dominated

operators up to a certain size, which significantly reduces the actual complexity of heuristic

evaluations.

The memory plot looks very different. The memory difference for small problem sizes is

almost identical. For larger problems, hmax(Π2) requires over 10 times more memory.

We now take a closer look at the total time metric. To do this, we split the total time into

a preprocessing time and a search time. It holds that tpreprocessing + tsearch = ttotal. We

can see the results of this in Figure 6.3.
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Figure 6.3: Preprocessing time and search time comparison between h2 and hmax on Π2

compiled task. Unsolved tasks are displayed on the edges of the plot, depending on which
implementation solved the task.

The preprocessing time for the Π2 compilation is much longer than for h2. This is to be

expected, as the main task compilation takes place there. Our h2 implementation, on the

other hand, only performs a few calculations concerning operator caches before the search.

It should also be noted that the translation of the task from PDDL to SAS+ also falls within

the preprocessing time.

The results of the pure search time are very similar to the total time. In general, the search



Πm Compilation in Fast Downward 43

Search Result h2(Π) hmax
0 (Π2) hmax

5 (Π2) hmax
∞ (Π2) h2

bin(Π)

Solution found 431 404 493 371 461
Problem Unsolvable 11 7 7 4 7
Memory error 31 873 530 505 284
Time Error 1341 530 784 934 1062
Other Errors 13 13 13 13 13

Table 6.2: Search results for all 1827 tasks. h2(Π) and h2
bin(Π) refer to the standard and

binary operator versions of h2 heuristic. The hmax
k (Π2) heuristics are based on hmax

applied to the Π2 compilation, where k indicates the maximum precondition size for which
dominated operator pruning and duplicate detection were applied (0 = none, 5 = up to
size 5, ∞ = all).

with the Π2 compilation takes significantly less time. The main calculations of h2 take place

during the search and must be performed for each heuristic evaluation individually.

In general, preprocessing accounts for a much smaller part than the actual search. For this

reason, better search results should be weighted more strongly than the preprocessing time.

Now, let us analyze the total number of solved instances. Table 6.2 presents the number

of solved and unsolved instances for each heuristic. As already observed in the previous

figure, hmax(Π2) solves significantly more instances compared to h2. The reasons for failing

to solve instances are also noteworthy. The primary limitation for h2 is the 30-minute time

limit, while memory corruption is exceptionally rare. In contrast, with the Πm compilation,

both memory and runtime constraints pose similarly significant challenges. This shows that

we have achieved a good trade-off between runtime and space complexity for the Πm com-

pilation.

Additionally, we see why Fast Downward limits to duplicate and dominated operator detec-

tion to precondition sets of a maximum of 5. The performance of hmax
0 (Π2) and hmax

∞ (Π2) is

clearly worse then for hmax
5 (Π2) and h2(Π). In general, it can be seen that the Π2 compilation

approach strongly depends on the extent to which the set of unary operators is simplified.

Putting too much computational effort into this simplification also has a negative effect.

6.4 Connections between h2 and Π2 compiled hmax

The results demonstrate that the Πm compilation method outperforms the iterative calcu-

lation of the h2 heuristic table. This improvement is due to the fact that the complexity

of h2 is effectively precomputed in the compilation step by considering atom pairs as basic

components. The improvement becomes particularly clear when comparing meta-operators

with the extend entry function used in the h2 implementation. A meta-operator ao,S

consists of a base operator o from the original task and a set of atoms S that is preserved

during its execution. For m = 2, it holds that |S| ≤ 1. Such a meta-operator mirrors the

behavior of extend entry with operator o and an extend atom that is contained in S.

The key difference lies in when these combinations are processed. While the h2 imple-

mentation checks potential extend atom combinations continuously during search, the Π2

compilation computes this information once during preprocessing. As a result, significantly
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more structural information is incorporated before the search begins, reducing the compu-

tational effort required during individual heuristic evaluations.

This idea of task compilation can also be applied to the h2 implementation by introducing

the concept of binary operators. A binary operator has at most two effects and is concep-

tually related to a unary operator. In a binary operator h2 version, all original operators

are decomposed into binary operators. Additionally, as in extend entry, new binary op-

erators are created by combining original effects with specific extend atom. Technically,

binary operators serve the same role as meta-operators in Π2, but they operate over original

atoms rather than compiled meta-variables.

The heuristic values can then be computed using the same algorithmic structure as hmax,

employing a priority queue. Instead of meta-variables, the queue contains atom pairs. In

the end, both approaches are structurally equivalent.

Experimental results using binary operators h2
bin show performance slightly below that of

the Πm compiled heuristic, but significantly better than the original h2 implementation

(Table 6.2). This outcome is expected, as our binary operator version omits duplicate

elimination. Aside from this, the algorithmic procedure is essentially identical to the other

Π2 compiled approaches.



7
Regression Search and STRIPS Duality

We have observed that for all our methods implementing the h2 heuristic, the majority of

our benchmark problem instances remain unsolved in the defined time and memory con-

straints. A closer look reveals that we are approaching a fundamental limitation. Instances

for which memory limits are exceeded and those where time limits are reached largely over-

lap. Consequently, adjusting the amount of preprocessing by increasing or decreasing tends

to worsen the outcome, as we quickly encounter both memory and time constraints.

This motivates us to consider an alternative approach that differs from those previously

explored. Earlier, we mentioned that the h2 heuristic is particularly well-suited for regres-

sion search. This is because regression search evaluates heuristic values of the form h2(I, A),

where I is the fixed initial state and A is the current state under evaluation. Since I remains

constant throughout the search process, the heuristic table needs to be computed only once.

In contrast, progression search typically requires the recomputation of heuristic estimates

for atom sets in each state evaluation.

However, implementing regression search in practice presents significant challenges. In re-

gression, states are represented as partial assignments, which correspond to sets of concrete

states in progression. This leads to a larger transition system and increases the number of

explored states. In addition, checking the applicability of measures is more complex due to

the prevailing conditions and the need to maintain consistency with partial states. Efficient

pruning requires reasoning about state subsumption, a technique where a partial state is

discarded if it is subsumed by another previously expanded state (Alcázar et al., 2013).

Since Fast Downward only supports progression-based search, implementing a regression

framework from scratch is beyond the scope of this thesis.

What we aim for instead is a heuristic table that can be reused in a progression search

without the need for repeated recomputation. One promising idea is to reverse the planning

task itself, compute the heuristic table on this reversed task, and then use the resulting

evaluations in the original progression search. This idea is based on the concept of a duality

task.
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7.1 STRIPS Duality Task
Suda (2013) showed that for every STRIPS planning task, there exists a corresponding dual

task that effectively transforms progression search into regression search. This transforma-

tion is defined by a mapping that swaps the initial state and goal by taking their comple-

ments. Additionally, preconditions of operators are exchanged with their delete effects and

vice versa.

Definition 15 (Dual task). The dual task Πd of a STRIPS planning task Π = ⟨V,O, I,G⟩
is defined as

Πd = ⟨V, {od | o ∈ O}, V \G,V \ I⟩

where for each operator o ∈ O, its dual operator od is given by

od = ⟨del(o), add(o), pre(o), cost(o)⟩.

We refer to the operators od as dual operators. For every planning task Π, the dual task Πd

has a solution if and only if Π does. Moreover, a sequence π = ⟨o1, . . . , on⟩ is a plan for Π

if and only if ⟨odn, . . . , od1⟩ is a plan for Πd (Suda, 2013). Applying the dual transformation

twice yields the original planning task again, i.e., (Πd)d = Π. This property is the reason

the term duality is used in this context.

It is important to note that the duality definition applies to planning tasks in STRIPS form.

To apply this transformation to SAS+ tasks in Fast Downward, we first convert them into

STRIPS tasks using the transformation described in Definition 14.

To construct the heuristic table, we apply our h2 implementation to the dual task Πd. Since

we are still performing progression search, we evaluate the dual initial state as we want

distance estimates to the original goal. Therefore, we compute h2 values starting from the

dual initial state Id = V \G.

During search, each encountered state s in the original SAS+ task must be transformed into

a corresponding dual state sd to enable heuristic look ups. This transformation proceeds in

two steps. First, the SAS+ state s is translated into its equivalent STRIPS representation

s′, as defined by the translation in Definition 14. Then, we compute the dual state sd by

identifying the set of STRIPS variables not present in s′. Formally, this corresponds to

sd = V \ s′, where V denotes the full set of STRIPS variables resulting from the translation

of Π. The look up is performed using the eval function (Algorithm 2).

Finally, the heuristic values for a SAS+ state s are of the form h2(Id, sd). In Figure 7.1, we

see an illustration of the transformation process to retrieve a state evaluation.

It is important to understand that the heuristic values obtained in this way are not equivalent

to the actual h2 values by Definition 10. Recall that h2 evaluates the cost of reaching the

most expensive subset of atoms of size ≤ 2 in a given state. In the dual approach, we evaluate

the complement of the state, so the atom sets under consideration are inherently different.

Thus, this is a method for deriving heuristic estimates using h2 in the process, although the

resulting values generally differ from the true h2 values as defined in Definition 10.
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Figure 7.1: Overview of the transformation steps used to evaluate a state s in the original
SAS+ task Π. Preprocessing steps performed before the search are shown in black, while
state-specific transformations applied during the search are shown in blue.

7.2 Comparison with Other Heuristics
We refer to the heuristic that simulates regression search using the dual task as h2(Πd).

First, we analyze this approach from a theoretical perspective. Afterwards, we evaluate

h2(Πd) experimentally by comparing it with other heuristics.

7.2.1 Theoretical Complexity
Since this approach transforms the original planning task, we need to redefine the relevant

task parameters. We begin by translating the planning task Π = ⟨V,O, I,G⟩ into STRIPS

form. This transformation has |V | × d new binary variables in the worst case. Next, we

construct the dual task Πd. Note that this transformation does not increase the size of

the planning task. In particular, the number of operators remains unchanged as it holds

|O| = |Od|.

Runtime Complexity

For the runtime analysis, we distinguish between the preprocessing time and the time re-

quired for a single heuristic evaluation during the search.

Preprocessing Complexity: Before starting the search, we first transform the task into

STRIPS form and then compute the heuristic table for Πd. First, we iterate over all atoms

to create STRIPS variables, which takes O(|V | × d) time. The same holds for encoding the

dual initial state and dual goal.

Next, we construct the dual operators. For efficiency reasons, the transformation to STRIPS

operators and the subsequent translation to dual operators are performed in a single com-

bined step. For each operator o ∈ O, we create a corresponding dual operator od as defined

in Definition 14 and Definition 15. This process involves identifying and swapping the delete

effects and preconditions for each operator in STRIPS form. The worst case size of delete

effects for STRIPS operators is |V | × d . As a result, constructing all dual operators has a

runtime complexity of O(|O| × |V | × d).

After constructing the dual task, we compute the heuristic table using our optimized version

of h2. The complexity of computing the full h2 table is O(|Od|× |V d|5), as we disregard the

constant domain size of 2 (Section 4.2.1). When using the redefined parameter |V d| = |V |×d,
we obtain a final complexity of O(|O| × |V |5 × d5). This dominates the complexity of the
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earlier task transformation steps.

Evaluation Complexity: During the search, we evaluate individual states by first map-

ping the state to the dual task via negation of all STRIPS variables. We then obtain the

heuristic value using the eval function (Algorithm 2). The runtime of this look up de-

pends on the size of the state itself, which is O(|V d|2) = O(|V |2 × d2). As expected, this is

significantly faster than the computation of the entire heuristic table.

Space Complexity

For the space complexity, we rely on the results from Section 4.2.1. However, these results

hold for SAS+ task. Note that in our STRIPS task we have |V |×d variables and a constant

domain size of 2. The resulting space complexity becomes

O(|V |2 × d2 + |O| × |V |2 × d2 + |O| × |V | × d).

This accounts for the storage of heuristic values and further operator data structures used

in the h2 implementation.

7.2.2 Experimental Comparison
We now present an experimental analysis of h2(Πd). As a baseline, we compare it against

our h2 heuristic. From a theoretical standpoint, using the precomputed heuristic table of

the dual task allows for significantly faster evaluations. However, unlike previous experi-

ments, the use of different heuristic values results in different search spaces. This makes it

interesting to compare not only the total time but also the number of expanded states.

Figure 7.2 presents two scatter plots depicting the total time for solving problem instances

and the number of state expansions.

The first plot clearly shows that most instances are solved faster when using the duality task

approach. Although there are a few problem instances where h2(Π) performs better, the

majority of tasks massively benefit from using h2(Πd) in terms of total runtime. However,

the picture changes when considering the number of expanded states. The dual task heuris-

tic typically requires significantly more expansions. On average, there are about ten times

more than for h2(Π). This indicates that h2(Πd) leads to larger search spaces compared to

h2. Nevertheless, due to the fast evaluation time of each state, the overall runtime is still

lower in most cases.

Overall, h2(Πd) is a heuristic that is computationally cheaper to evaluate but also signifi-

cantly less informative. To further characterize its performance, we compare it with doing a

blind search which does not incorporate any knowledge about the current state in the plan-

ning task. Together with A∗, this corresponds to a uniform-cost search. In Fast Downward,

we can simulate a blind search by using the blind heuristic hblind. This heuristic assigns a

heuristic value of zero to all states that are a goal, i.e. hblind(s,G) = 0 if s ∈ G. For other

states it holds that hblind(s,G) = mino∈Ocost(o). The heuristic evaluation can be done
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Figure 7.2: Total time and number of state evaluations for h2 (A∗ with h2(Π)) and h2 on
the dual task (A∗ with h2(Πd)). Unsolved tasks are shown at the plot boundaries,
depending on which heuristic solved the task.

in constant time while lack of any heuristical accuracy usually results in very large search

spaces.

It is important to note that we still use A∗ as the search algorithm when employing hblind.

Thus, the search still prioritizes states that are closer to the initial state based on path cost.

Figure 7.3 presents a comparison between h2(Πd) and hblind.

The results show that h2(Πd) solves problems more slowly than hblind(Π). This can be

attributed to the heuristic evaluation required for a single state which is significantly faster

for hblind(Π). The second plot, which displays the total number of state expansions, pro-

vides additional insight. It shows that both heuristics are relatively similar in terms of the

number of expanded states. While the number of expansions for dual h2 is generally lower,

the average difference is significantly less than one order of magnitude. This indicates that

h2(Πd) is only slightly more informative than hblind. Given that the blind heuristic, by

definition, provides almost no information about the planning task, this implies that the

informational quality of our dual h2 heuristic is very low.

More problem instances are solved with the dual version than with the original h2 heuristic.

However, this advantage is not due to the informativeness of the heuristic but rather due to

the really fast computation of heuristic values. This is not necessarily desirable, especially

in the case of h2. The critical path heuristic hm for m ≥ 2 is specifically designed to be

more informative as hmax for example. The goal of h2 is to exploit more properties of the

planning task to reduce the number of state expansions. In contrast, the dual h2 heuristic

exhibits the opposite behavior, massively increasing the number of expansions while reduc-

ing informativeness.

This raises the question of why h2(Πd) contains significantly less information than the orig-
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Figure 7.3: Total time and state evaluations of the dual h2 (A∗ with h2(Πd)) and hblind

(A∗ with hblind(Π)). Unsolved tasks are displayed on the edges of the plot, depending on
which heuristic solved the task.

inal h2 heuristic. A look at the heuristic table computed before the search process reveals

consistently low heuristic values. The heuristic value of the initial state is typically much

lower than the actual cost of the optimal solution.

For admissible heuristics, it holds that the heuristic value must be less than or equal to the

actual distance to the goal. Higher heuristic values are generally more desirable as they offer

better guidance during search.

One likely cause of the low heuristic values lies in the interaction between the STRIPS

transformation and the dual translation. When converting from SAS+ to STRIPS, many

new variables are introduced, each representing a single atom in the SAS+ task. Because

each SAS+ variable can only assume a single value, most of the STRIPS variables are set to

false. Therefore, only a small subset of STRIPS variables must be true to reach the goal.

In the dual task, the initial state is the complement of the original goal (Definition 15). As

a result, many of the STRIPS variables are set to true in the dual initial state.

This can be problematic for h2. The critical path heuristic for m = 2 evaluates the most

expensive subset of atoms of size ≤ 2. If most variables are already present in the initial

state, the heuristic values tend to be low as small subsets are easily reachable. This does

not mean that the dual problem itself is easy to solve. According to the dual task definition,

the optimal solution length remains the same. The challenge in the dual task often lies in

reaching larger subsets of variables, a type of complexity that h2 cannot capture effectively

since it only considers subsets of size two or less.

In summary, our transformation from SAS+ to STRIPS, combined with the duality trans-

formation, results in a significantly less informative h2 heuristic. Although the total time

to solve problem instances is lower, h2(Πd) does not fulfill the typical goals associated with

the h2 heuristic, namely providing informative estimates.
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Conclusions

In this thesis, we explored different implementations of the critical path heuristic hm for

m = 2 in the context of the Fast Downward planning system. We began by analyzing the

existing implementation of hm in Fast Downward. In doing so, we identified several short-

comings, including the use of a map data structure with logarithmic-time access and redun-

dant computations repeated across multiple heuristic evaluations. Furthermore, we showed

that the runtime complexity of hm is O(|O||V |3mdm+1 log (|V | × d)), while the space com-

plexity remains low due to the fact that only the heuristic table is stored during computation.

We then proposed a series of optimizations that preserve the core idea of iterative table

updates while significantly improving the efficiency of the implementation. Most of these

optimizations either shift invariant computations to the preprocessing phase or cache inter-

mediate results during the update steps to avoid redundant work. Additionally, we more

precisely characterized when an operator can contribute to improving heuristic estimates

and introduced an operator queue that excludes those with no effect.

While these optimizations offer limited theoretical improvement in the worst case, our em-

pirical evaluation shows substantial gains. In particular, our optimized implementation of

h2 solves most of the solved problems more than ten times faster than the original. The

increased space requirements proved unproblematic, as memory limits were rarely reached.

We then turned our attention to a Πm compilation approach. In this method, the planning

task is compiled to Π2 such that computing the hmax heuristic on the compiled task yields

h2 values. Originally proposed by Haslum (2009) for STRIPS tasks, we adapted the method

to SAS+ tasks by implementing a translation from SAS+ to STRIPS before applying the

Π2 compilation.

While this method performs similarly or slightly worse in theory, in practice it outper-

forms our optimized h2 implementation. However, the compiled task requires significantly

more memory. As a result, the number of instances where either memory or time limits

are exceeded are similar. Additionally, we observed that the effectiveness of the compiled

task approach heavily relies on identifying and removing duplicate or dominated operators.

While checking for small precondition sets significantly increases performance, the results
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decrease if the checks are performed on operators with larger preconditions sets.

We have also shown that the concept of encoding the complexity of h2 in the task can be

applied to our h2 implementation by introducing binary operators.

Despite the performance improvements achieved, fewer than one-third of the benchmark

problems were solved. The core issue lies in the inherent mismatch between hm and pro-

gression search. Computing a single heuristic value requires computing costs for reaching

many redundant atom sets of size ≤ 2. In contrast, regression search allows for the reuse

of atom set costs across evaluations, since we estimate the distance to the constant initial

state instead of the goal.

As Fast Downward currently supports only progression-based search algorithms, we utilized

STRIPS duality to simulate regression. By transforming the original task into its dual, we

enabled the reuse of heuristic table results across different state evaluations. Although the

resulting heuristic values no longer match the original h2 values, they can be computed

significantly faster.

However, our experiments revealed that this approach results in extremely low heuristic

values and thus yields a weakly informative heuristic. The root cause likely stems from

the interaction between the SAS+ to STRIPS translation and the dual task transformation,

which leads to an oversimplification of the planning problem for h2.

8.1 Future Work
This section outlines possible directions for future research that could build upon the work

presented in this thesis. While some ideas further explore the critical path heuristic, others

extend into related areas. We begin with topics most closely related to the goals of this

thesis and then discuss broader extensions.

8.1.1 Regression Search in Fast Downward
As discussed earlier, Fast Downward currently only supports progression search algorithms.

However, the critical path heuristic theoretically performs better in combination with regres-

sion search. A natural extension of this work would be to implement regression-based search

algorithms in Fast Downward. Promising steps in this direction already exist. For instance,

Thüring (2015) explored the challenges of regression search in Fast Downward, and Alcázar

et al. (2013) introduced a regression planner based on the Fast Downward planning sys-

tem. In that setting, heuristics such as hadd showed strong performance. Moreover, Haslum

(2006) demonstrated that h2 in a regression framework can achieve results comparable to

state-of-the-art pattern database heuristics.

Structurally, a regression-based h2 heuristic would resemble the duality task approach de-

scribed in Chapter 7. Using our h2 implementation, heuristic values for all atom sets of

size ≤ 2 could be computed once in a preprocessing step. Our Π2 compilation approach is

not suitable for this purpose, as the hmax evaluation terminates as soon as all goal subsets



Conclusions 53

become reachable. This means the resulting atom costs contain accurate values for subsets

related to the goal, but not for arbitrary sets that may be encountered during search.

8.1.2 Optimizations for hm with m > 2

This thesis focused specifically on h2, since increasing m leads to exponential growth in the

size of the planning task. While this often makes hm for m > 2 impractical (Haslum, 2006),

Fast Downward does support arbitrary values of m in its existing implementation. Given

that the original implementation of hm already is rather inefficient for m = 2, and theoreti-

cally becomes increasingly inefficient for larger m, optimizing h3 could be worthwhile.

One potential approach would be to generalize our Π2 compilation to Πm. This requires

only changing the task compilation process, while hmax still performs the heuristic evaluation

normally. Since the Π2 compilation already yielded the best practical results in this thesis,

generalizing to higher m values could offer similar advantages for h3 in comparison to the

hm implementation.

8.1.3 Further Generalization of Πm

In Chapter 5, we defined the Πm compilation, which allows computing h2 values using hmax

on a Π2-compiled task. However, the Πm compilation itself does not preserve admissibility.

This is because, by definition, a meta-operator ao,S in Πm adds at mostm−1 meta-variables,

whereas in the original task, no such limit exists. As a result, multiple meta-operators in

Πm may be needed to simulate the effect of a single operator in Π. Consequently, using an

admissible heuristic on Πm does not guarantee optimality.

The ΠC compilation, introduced by Haslum (2012), provides an alternative to Πm by al-

lowing the selection of a custom set C of relevant conjunctions, which can be of any size.

Each conjunction in C is represented by a new meta-variable indicating whether it holds in a

state. This helps focus computational resources on the most informative atom combinations.

Furthermore, each subset of meta-variables gets its own operator copy, ensuring that the

ΠC compilation is an admissibility preserving transformation. However, the introduction of

these operator copies let the size of the compiled task grow exponentially with |C|.
To address this, Keyder et al. (2014) proposed ΠC

CE , which introduces conditional effects for

meta-operators. Conditional effects are effects that are triggered only if a specified condition

holds. The introduction of conditional effects reduces the task size to grow linearly with

|C|.
Like our dual h2 variant, using hmax on ΠC or ΠC

CE does not lead to h2 values. However,

these compilations support other admissible heuristics, opening the door to further explo-

ration by adjusting either the heuristic or the set C. The usage of conditional effects is no

further challenge in Fast Downward, as they are already supported by the planner.
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Andreas Thüring. Evaluation of Regression Search and State Subsumption in Classical

Planning. Bachelor’s Thesis, University of Basel, 2015.

https://doi.org/10.5281/zenodo.790461


A
Appendix

Use of Language Models
During the preparation of this thesis, I used large language models as a tool to support

language refinement. Specifically, I employed the model to assist with rephrasing, grammar

correction, and stylistic improvements of text that I had written myself.

At no point was any technical, conceptual, or scientific content generated by the language

model. All ideas, results, formulations of arguments, and interpretations presented in this

work are my own. The LLM was used solely as a writing aid and not as a source of original

content.

https://chatgpt.com/
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