
Interactive Blocksworld Application Showcasing
Planning Techniques

Elia Hänggi

2. August 2023

Abstract

Fast Downward is a classical planner using heuristical search. The planner uses many
advanced planning techniques that are not easy to teach, since they usually rely on
complex data structures. To introduce planning techniques to the user an interactive
application is created. This application uses an illustrative example to showcase plan-
ning techniques: Blocksworld
Blocksworld is an easy understandable planning problem which allows a simple rep-
resentation of a state space. It is implemented in the Unreal Engine and provides an
interface to the Fast Downward planner. Users can explore a state space themselves or
have Fast Downward generate plans for them. The concept of heuristics as well as the
state space are explained and made accessible to the user. The user experiences how
the planner explores a state space and which techniques the planner uses.

Chapter 1

Introduction

Fast Downward is a planning system which searches for solutions in problems. In
planning, problems are also called domains. The planner uses different concepts and
algorithms to find solutions in a short time. For people not familiar with computer
science, it is difficult to imagine in which areas a planner is used and what benefits
it has. Concepts used in planning have a mathematical background and are therefore
not always easy to understand. Search algorithms are complex solution methods that
require some programming experience to comprehend how they work. These are all
factors that make the functioning of a planner not easily accessible. The interactive
application explains techniques and functioning of planning. Concepts are presented
with simple representations and additionally explained. Furthermore, an illustrative
example of a planner application is used: the Blocksworld domain.
Blocksworld is a famous planning domain. It consists of a set of blocks that can have
different colors or labels to distinguish them from each other. Blocks can be used to
form stacks. There are 4 fixed stacks available for blocks to be placed. The two moves
possible are picking a block up and placing it on a stack. However, only one block can
be moved at a time. The goal is to convert the initial state to the goal state with the
moves mentioned.
The created interactive tool can be seen as an extension of an already existing project.
For the Fantasy Basel 2019, a demo video was created with an environment containing
the Blocksworld domain. In the video a harbor is used to visualize the domain (Figure
1.1). In the center of this port is a docked cargo ship. In this case, blocks are repre-
sented as containers with different colours and labels. These can be stacked on three
different stacks on the cargo ship. To move the containers between the stacks, a crane
which is located on land can be used. In addition, there is another stack at the port.
This is for unloading containers and changing the order of containers on the ship.
In the video, containers are moved by the crane until a certain stack structure is reached.
The goal of the video was to visualize an application of classical planning for people
who are not familiar with it. There was a fixed camera position which let the user mon-
itor the process.
The procedure in the video is expanded to an interactive application. This is done
while using the same environment as in the video. The user is able to control the crane

1

Figure 1.1: Scene to represent the Blocksworld domain. The scene contains three
container stacks on the ship and one on land. The crane is used to move containers.

and thus move containers by himself. Additionally, the application has an interface to
the Fast Downward planner (Helmert, 2006). The user is able to ask the planner for
specific information about the state space. The planner shows certain states that are in-
teresting candidates to explore further. The planner also makes the discovered solution
available to the user. Another goal is that the planner does not function as black box
but its behaviour is introduced to the user. This is done by explaining the heuristic used
and displaying the created state space to the user.
The application is generated using the Unreal Engine. Unreal Engine is a real-time 3D
creation tool (Epic Games, Inc., 2023). Since the Engine uses C++ as programming
language, this will be the language used in the application. However, Unreal Engine
does provide the scripting system called "Blueprints". Some functionality is also be
implemented in Blueprints.

This thesis starts with an introduction of the Unreal Engine and important concepts
of planning theory. This lays all the foundations that need to be known for other parts.
This includes features of the engine that are used to connect the planner to the applica-
tion. Furthermore, an introduction into the theory of state spaces and classical planning
where basic definitions and concepts are provided. These concepts are conveyed to the
user with the application. The exact usage and functionality of the Fast Downward
planner is stated as well.
After that, the didactic concept of the application is explained. The order in which dif-
ferent concepts are introduced is discussed. We analyze all visualizations of planning
concepts introduced in the application. We justify the choice of specific visualization
methods and compare them with other visualizations.
The implementation of the tool itself is discussed. We elaborate how the Blocksworld
domain is defined to use it as input in Fast Downward. Important design decisions in
the engine are explained.

2

Chapter 2

Background

We first introduce the Unreal Engine. Unreal Engine has its own classes and data struc-
tures, which differ from the C++ standard implementation. We discuss peculiarities of
the engine. We state mathematical definitions of state spaces and heuristics. Further-
more the Fast Downward planner and its usage are introduced. This is important as we
later want to pass our Blocksworld domain to the planner.

2.1 Unreal Engine
Unreal Engine is a game engine developed by Epic Games (Epic Games, Inc., 2023).
It was published in 1998 and is widely used for creating video games and other 3D
applications. The engine is very versatile, it runs on Windows, Unix and MacOS. In
order for the engine to be used across platforms, many modules in the engine have their
own platform-dependent implementation.
The engine is written in C++. Therefore, the default programming language utilized to
create content is C++ as well. However, Unreal Engine includes an additional scripting
system called "Blueprints". The Blueprint system in Unreal Engine is a visual scripting
tool to create game logic and behavior by connecting nodes in a graph-like interface.
It is designed so that no deep programming knowledge is required to use Blueprints.
C++ implementation can be used in Blueprints and vice versa. While C++ represents
the low-level programming approach, Blueprints allow to easily design simple program
parts or to test existing implementations.
Unreal Engine works exclusively object-oriented. Each class inherits from the default
object class UObject. However, there are many already predefined classes that derive
from UObject. A frequently used class is the Actor class. Actors are objects that can
be spawned on a map. The in game character can interact with actors.
The engine also has its own implementations of data structures. This includes custom
array or string structures. These offer additional functionality for manipulation com-
pared to the C++ standard implementation. These structures also ensure that C++ and
Blueprints are consistent and compatible with each other. Thus, for data structures and
types exposed to C++ and Blueprints, Unreal Engine implementations should be used.

3

2.2 Planning Theory
We introduce state spaces, search algorithms and classical planning. All subjects are
necessary to understand the functionality of the Fast Downward planner. The goal of
the application is to convey the introduced definitions and concepts using examples and
illustrative explanations.

2.2.1 State Spaces
State spaces are a way of defining an environment. State spaces contain different states
and actions that can be executed.

Definition 1 (State Space, Russell and Norvig, 2010). A state space S is a tuple
S = ⟨S,A, cost, T, sI , S∗⟩ with

• a finite set of States S,

• a finite set of Actions A,

• action costs cost : A → R+
0 ,

• a transition relation T ⊆ S ×A× S, and

• a set of goal states S∗ ⊆ S.

As we can see there may be multiple goal states but only one initial state. Ad-
ditionally it holds that for every state, if we apply an action, the outcome must be
deterministic. This means that for a state s and an action a, there cannot be transitions
⟨s, a, s1⟩ ∈ T and ⟨s, a, s2⟩ ∈ T with states s1 ̸= s2.
In the following we will focus on the search in a state space. The goal in state space
search is to find a path from the initial state to a goal state. The solution of the search
in a state space S consists of a sequence of actions. Such a sequence is also called a
solution path. We can sum up the cost of the actions in the sequence. This gives us the
total cost to get from start to goal. An optimal solution has the minimal costs of all
solutions that exists.

2.2.2 Search Algorithms
Search algorithms try to find solutions in a given state space using different algorithms
and data structures. Essential algorithms, which are used later in the planner are elab-
orated here.
In state space search, the basic idea is to iteratively generate a search space. The search
space contains all states that were generated in the search process.
The search is started with the initial state. From there, new states are explored by
adding the successors of the state to the search space. We call this procedure an ex-
pansion. The search ends when a goal state is expanded. In this case a solution was
found. The search ends as well if all states in the search space were expanded but no
goal state was found. In this case no solution exists.

4

In order to apply search algorithms on state spaces, data structures to represent the
search space are needed. There are two main classes of state space searches: tree
search and graph search.

Tree Search

In tree search, the structure of a tree is used for the search space representation. Tree
search uses an open list as data structure. The open list contains all states that can be
expanded next. If a state is expanded, its successors are added to the open list. Each
path of the tree represents a single sequence of actions. However, this means that there
can be cases where the same state is expanded twice. This is the case if two different
action sequences lead to the same state. If the state space contains a loop, this can be
problematic. A loop is present if a state a ∈ S is reachable from a state b ∈ S and vice
versa. Tree search could expand states in a loop infinitely many times.
The goal of a search algorithm is usually not only to discover a solution but to output
more information. This might be the solution path or the cost of this path. For this,
the node needs to consist of a special data structure. Besides the state itself, the parent
node and the action used to get to the state should therefore be saved in the node data
structure.

Graph Search

Graph search is the second class of search algorithms. The basic structure of graph
search is the same as tree search. States that are expansion candidates are contained
in the open list. However, another list is used in addition to the open list. This list is
called the closed list. The closed list consists of all nodes that already were expanded.
This ensures that the same state is never expanded twice. Therefore if one node was
expanded, this node is added to the closed list. The result is that each node in the graph
corresponds to one unique state. All edges represent one unique transition of the state
space. Since there is a finite number of states, it is ensured that the search terminates.
All in all, the search space in graph search is much more compact than the tree in tree
search (Figure 2.1). However, the distance from a node to the initial node is not easy
to determine. This is because there are can be multiple paths between the initial node
and all other nodes.
The fact that in graph search, each state is only visited once has a positive effect on the
time complexity. It leads to a fewer number of expansions. However, graph search has
the disadvantage that the closed list must constantly be maintained. Thus, the memory
usage of graph search is higher than that of tree search. If the state space contains many
loop, graph search is more viable.

Heuristics

Both tree and graph search are searching for solutions by expanding nodes one by
one. However, the order in which this is done depends on the used algorithms. To
have an efficient algorithm, states that are on an optimal path should be expanded first.
Heuristics help us in finding such states.

5

I

A B

B I A

I

A B

Figure 2.1: Example of the same search space represented with tree search (left) and
graph search (right). Nodes labeled with the same letter should indicate equal states. I
is the initial node.

A heuristic is a function that assigns a number to a state. This number is supposed to
estimate approximately how far away the state is from the goal. The estimate can be
used to determine the order of state exploration.

Definition 2 (Heuristic). A heuristic h for a state space S is defined as function

h : S → R+
0 ∪ {∞}

In addition, we define the heuristic h∗ as the function that assigns the optimal so-
lution cost to each state and ∞ to states from which the goal cannot be reached. This
means h∗ is the perfect heuristic since it perfectly estimates the distance from the state
to the goal.
There are several properties that are desirable for heuristics, which are now presented.
The first property is goal-awareness. A heuristic h is goal-aware if for all goal states s
it holds that h(s) = 0. Another property is admissibility. For an admissible heuristic
h it holds for every state s that h(s) ≤ h∗(s). In other words, the distance to the goal is
never overestimated in an admissible heuristic. Another key property is consistency. A
heuristic h is consistent if h(s) ≤ cost(a) + h(s′) for all transitions ⟨s, a, s′⟩ ∈ T . For
a heuristic it is advantageous if all three properties hold. We can use these properties
later to show that discovered solutions are optimal for certain heuristic with a suitable
search algorithm. There are connections between the introduced properties (Theorem
1).

Theorem 1. Let h be a goal-aware and consistent heuristic. Then h is an admissible
heuristic.

Therefore, we do not need to prove admissibility if a heuristic is goal-aware and
consistent.

In state space search, heuristics are individually designed for each problem. The
behavior or a structure of the problem is exploited to make a good estimation. This can

6

be problematic since for each problem a new heuristic must be constructed. Further-
more, there may be little or no information available about a problem. Accordingly, it
can be difficult to make an accurate evaluation of the states.

Best-First Search

Heuristics are used to explore promising states early on to reach the goal faster or to
find optimal solutions. In Best-first search, states in the open list are ordered with
respect to an evaluation function f . f assigns each node a numerical value. The lower
the value is the more promising is the node. Therefore, nodes with the smallest f value
in the open list are expanded first. The pseudo code of Best-first search is stated in
Algorithm 1.
If the evaluation function simply equals the heuristic value, the algorithm is called
Greedy-best-first search. In this case, it holds that f(s) = h(s) for a state s. This
strategy is used to find solutions very quickly. However, this algorithm does not take
into account the costs to get to the states with low heuristics. This can result in solutions
with high costs.
Instead, it makes sense to not only look at the heuristic, but also at the cost of the
current path. We call the sum of the costs on the current path g(s) for a state s. Taking
g into account to calculate the value f disadvantages paths that are close to the goal
but very expensive. The result is that discovered solutions tend to have lower costs.
However, this can make the search take a longer time.
The most well-known algorithm that uses both costs g and heuristics h in the evaluation
function is A* (Hart et al., 1968). A* is a search algorithm using the open list evaluation
function f(s) = g(s) + h(s) for a state s, where g denotes the cost of the current path
and h a heuristic. A* and Greedy-best-first search both belong to Best-first-search
algorithms. The only difference is the ordering of the open list.

The quality of the solutions found by A* highly depend on the heuristic used to

Algorithm 1 Best-first Search
1: open := new list ordered by f
2: if h(init)) < ∞ then
3: open.insert(root)
4: closed := new list
5: while not open.isEmpty() do
6: n := open.pop()
7: if n /∈ closed then
8: closed.insert(n)
9: if n is goal then

10: return path
11: for n′ ∈ succ(n) do
12: if h(s′) < ∞ then
13: open.insert(n′)
14: return unsolvable

7

calculate f . It can be proven that A* discovers only optimal solutions if an admissible
and consistent heuristic is used (Theorem 2). For this reason used heuristics in A* are
almost exclusively admissible.

Theorem 2 (Hart et al., 1968). Solutions discovered by A* are optimal if the used
heuristic h is admissible and consistent.

Both Greedy-best-first search and A* are part of the graph search algorithms, using
an additional closed list to detect duplicates.

2.2.3 Classical Planning
Planning is a special field of state space search. In planning, an additional level is
abstracted compared to state space search. Solution methods are independent of the
problem itself, no problem specific knowledge is needed to perform planning. For
planning heuristics, no special properties of the problem are exploited. Instead, the
problem is considered as a black box.
In planning, formalisms are used to define a planning task. The planning task induces
the actual state space. The planning formalism that the Fast Downward planner uses is
the Planning Domain Definition Language.

Planning Domain Definition Language

Planning Domain Definition Language (PDDL) is a standardized language to describe
planning tasks (Ghallab et al., 1998). PDDL uses first order logic to define states. A
state is a set of atoms where each atom is the value true or false assigned. An atom
consists of a predicate that can take objects as parameters. With this definition of states,
it is possible to represent an exponential number of different states with n different
atoms.
PDDL can be separated into two parts, the domain file and the problem file. The
domain file contains all information that hold for all instances of the same problem.
Predicates of the problem are listed there. Predicates are relations to which objects
are assigned. Furthermore, actions are specified in the domain file. Actions consist of
preconditions and effects. Preconditions state which conditions have to be satisfied for
the action to be applicable. Effects are conditions that hold after applying the action.
Actions in PDDL induce transitions in the classical state space definition. The notation
of actions with preconditions and effects allows inducing transitions without listing all
of them. To distinguish and group objects, object types are defined in the domain file.
The problem file contains all instance specific information. Objects are defined here
together with their associated type. Combined with the predicates in the domain file,
objects represent atoms. In the problem file, initial state and goal state are specified.
The initial state consists of a set of atoms assigned either true or false. The goal state
consists of atoms that must hold for the goal to be reached.
The solution of a PDDL problem instance consists of a sequence of actions used to get
from the initial state to the goal state.

8

2.3 Fast Downward Planner
The Fast Downward planner is a planning system based on heuristical search (Helmert,
2006). The planner supports many different planning heuristics as well as search al-
gorithms. This includes Greedy-best-first search as well as A*. To start the planner,
the Python file fast-downward.py needs to be called. Additionally, the domain file is
specified followed by the problem file. The "--search" flag is used to set the search
algorithm and heuristic to be used. At first, the planner translates the problem into a
different problem representation. From there, the search starts. Finally, the planner
returns a plan containing the sequence of actions leading to the goal state. The solu-
tion also includes the total cost of the solution. With an additional flag it is possible to
specify the destination folder of the solution.

9

Chapter 3

Didactive Concept

The goal of the application is to introduce the planner and its functionality to the user.
Therefore, the concept of state spaces, heuristic and state space search are presented in
the application. However, no previous knowledge should be necessary to be able to use
the application.
The application can be divided into two different modes: the tutorial and the free play
mode. The structure and purpose of both modes will now be discussed from an user
perspective.

3.1 Tutorial Mode
The tutorial is used to show and explain the functions available in the application to the
user. This is done by means of displayed texts. Game mechanics and functionalites are
explained one by one. The goal is that the user understands all functionalities and vi-
sualizations that the application offers and can start with the free play mode afterwards.

First of all, the game controls are introduced. It is possible for the in game character
to move with the W, A, S and D keys. Furthermore, the mouse can be used to control
the field of view. This is shown to the user in a graphic that displays all controls. Now
the user can look around and move. The user sees a ship at a harbor at first. On the
ship there are 3 stacks with a total of 9 containers. Containers are distinguishable by
their color and numbering. The user is now introduced to the problem by an overlay.
The containers have to be brought into a given structure with the help of a crane. Sub-
sequently, the container move mechanic is explained. This is done by highlighting the
stacks to be clicked on. Meanwhile, the user is shown the stack located on land, on
which containers can also be placed. With additional text the maximum height of each
stack is specified. These are all controls that are available to the user to change the
scene with the help of the crane.
After that, the clipboard is introduced. The clipboard is a surface that the in game
player carries. When the C key is pressed, the clipboard can be picked up or put aside.
The clipboard consists of 3 different pages, which are introduced one after the other in

10

the tutorial. The first page is the states page. Both the current state and the goal state
are depicted. The tutorial explains here that the game is successfully completed when
current and goal states are equal. Additionally, the concept of a heuristic is explained
on this page.

3.1.1 Blocksworld Heuristic
To illustrate the concept of a heuristic, the heuristic used in the application serves as
an example. The selection of a heuristic depends on a number of attributes that should
hold for the heuristic in the application. It is important that the calculation process of
the heuristic is easy understandable. As soon as complex data structures are necessary
to calculate the heuristic, programming knowledge is required. The heuristic should
also be a good estimate of the actual distance to the goal. This reduces the planning
time and thus leads to a lower waiting time for the user. Another goal is that the heuris-
tic is both admissible and consistent. This leads to the fact that only optimal solutions
are discovered when using A*. This is desirable, because this means that the Planner’s
capabilities are not fully exploited. Otherwise the user might find better solutions than
the planner.
The vast majority of good planning heuristics are based on complicated calculation
procedures. Most of them use a slightly adjusted state space. This should simplify the
calculation of the heuristic (e.g. delete relaxation). There are often multiple calculation
steps needed until the heuristic value is found. This makes explaining how the value
is obtained very difficult. Moreover, planning heuristics are based on abstract concepts
that are difficult to teach. It is easier to explain the heuristics using a Blocksworld spe-
cific example.
Therefore, a heuristic is defined specifically for Blocksworld. This simplifies the ex-
planation of the heuristic, since no additional concepts are needed.

Heuristic Definition

We define a heuristic on our own trying to design it with the attributes mentioned. For
this we use the concept of a wrongly placed container. A container is wrongly placed
if it is not at its goal location. In this case, the container itself and all containers above
it are considered wrongly placed. Furthermore, we define for our state space that in a
goal state there is no container attached to the crane. The self designed heuristic for
this task is stated in Definition 3:

Definition 3 (Blocksworld heuristic). We define a heuristic hBlocks(s) for a Blocksworld
state s with

hBlocks(s) = 2 · |c′|+ d

where c′ is the set of all wrongly placed containers in s and

d =

{
1 if a container is attached to the crane
0 else.

11

The heuristic takes advantage of the fact that at least two actions must be performed
if a container is placed incorrectly on a stack. If a container is attached to the crane, at
least one action must be performed.
Now we check which of the defined properties apply to the heuristic.

Theorem 3. The heuristic hBlocks(s) is goal-aware.

Proof. We prove that hBlocks is a goal-aware heuristic. A heuristic is goal-aware iff
hBlocks(s) = 0 for all goal states s.
Since s is a goal state, it holds that all containers are correctly placed. This implies
that |c′| = 0. We also know that in a goal state there are no containers attached to
the crane. Therefore d = 0. We can conclude that for all goal states s it holds that
hBlocks(s) = 0. Thus, hBlocks is goal-aware.

Theorem 4. The heuristic hBlocks(s) is consistent.

Proof. We want to show that h is consistent. For all transitions ⟨s, a, s′⟩ ∈ T of a con-
sistent heuristic h, it applies that h(s) ≤ cost(a) + h(s′). We know that cost(a) = 1
for all actions a. To prove consistency we make a case distinction between both actions:

Case 1: a = unstack:
If a is an unstack action, it means that at first the crane is empty and after the ac-
tion a container is attached. If this container is in c′ at the beginning, it holds that
the cardinality of c′ decreases by 1, however the d value increases by 1 because of
the non-empty crane. We can say for the new heuristic hBlocks(s

′) = hBlocks(s) −
2 + 1 = hBlocks(s) − 1. If the container is not in c′, this implies that hBlocks(s

′) =
hBlocks(s) + 1.
For Case 1 we can conclude that hBlocks(s) ≤ hBlocks(s

′) + 1.

Case 2: a = stack:
In this case it holds that the crane is not empty before the action and is empty after the
action. If the container is stacked correctly, the cardinality of c′ stays the same. This
implies that hBlocks(s

′) = hBlocks(s) − 1. Otherwise, the cardinality of c′ increases
by 1. Then it holds that hBlocks(s

′) = hBlocks(s) + 2− 1 = hBlocks(s) + 1.
This means for Case 2, hBlocks(s) ≤ hBlocks(s

′) + 1.

Since the condition hBlocks(s) ≤ hBlocks(s
′)+1 holds for both cases, we can conclude

that hBlocks is consistent.

We now have proven that the heuristic hBlocks is goal-aware and consistent. To-
gether with Theorem 1, this implies that hBlocks is admissible. If we use A* as search
algorithm and the Blocksworld heuristic hBlocks, discovered solutions are optimal.
Another important fact is that this heuristic can be implemented efficiently. Incorrectly
placed containers can be counted by simply going through the stacks from bottom to
top. Thus, the run time of the heuristic calculation is linear to the number of containers.

12

Figure 3.1: Cut-out of the clipboard state page. The current state and the goal state
are displayed. Colors indicate which containers are correctly placed and which not.
Heuristic value and legend button are located between the two states.

Visualization of the Heuristic

The state page of the clipboard contains everything that is needed to understand the
calculation of the heuristic. It shows the current state as well as the goal state. Fur-
thermore, the heuristic value is displayed. In the current state, different colors indicate
which containers are correctly placed and which are not. Containers with red edges
are wrongly placed. This corresponds to an increase of the heuristic by 2. A container
attached to the crane is marked yellow. This increases the heuristic hBlocks by 1. Cor-
rectly placed containers are indicated in green (Figure 3.1). In addition to the colored
container borders, the page contains a legend button. If the user hovers over this button,
the meaning of the colors as well as the purpose of a heuristic is explained. All in all,
the state page can be used for two purposes: as an overview over the current and goal
state, and as an introduction into the heuristic.

3.1.2 Visualization of the Plan
Next in the tutorial, the planner is introduced. This is done on the second page of the
clipboard: the action page. The user has the possibility to call Fast Downward with the
current state to generate a plan. All actions performed so far are listed in a scroll box
(Figure 3.2). In addition, actions in the scroll box are clickable buttons. The click on
an action restores the state where the selected action was executed. On the right side of
the clipboard is the plan and the solution button. The plan button executes the planner
command. When a plan is found, the entire action sequence is added to the scroll box.
The solution button executes the plan in the scene. When the button is pressed, the next
action of the plan is applied.

13

Figure 3.2: Action page of the clipboard. The sequence of actions discovered by the
planner is shown. Additionally, the plan and the solution button are on the right side of
the page.

Both buttons can be used on all pages of the clipboard. However, the action page is
specifically responsible for visualizing the plan. Therefore, the tutorial introduces the
planner at this point.

3.1.3 Visualization of the Search Space
The last concept introduced in the tutorial is the search space. The search space is
visualized on the graph page of the clipboard. The graph is the last page that the
tutorial deals with. Therefore the concept of a heuristic and how it is calculated was
already introduced to the user. There are two possibilities how a search space can
be represented: tree search and graph search. For this application, graph search was
selected as visualization method. Graph search allows a more compact and clearer
representation. Graph search also is the more intuitive way to explain a state space since
each state corresponds to exactly one node. In a tree search graph, many duplicates of
the same state would coexist at different places. This is becoming increasingly difficult
to display in large state spaces. Another advantage is that the search space matches the
state space, since in graph search each node can be assigned exactly one state.
The search algorithm used in the search space is A* search. This has the advantage that
all discovered solutions are optimal. Another advantage is that the concept of g values
is introduced. It shows the user that it does not always make sense to expand the node
with the lowest heuristic but also to consider the costs of the current path.
The idea of the graph is that the user steadily explores the state space by applying

14

Figure 3.3: Search space visualization on the clipboard. Additional information about
a state is displayed. Nodes in the open list are indicated with white color. The initial
state is marked with a horizontal arrow. The search button is at the bottom of the page.

actions. In the graph each node corresponds to a state the user has generated and each
edge to a transition the user has applied. The initial state is indicated by an arrow
pointing towards the initial node. Additionally, all candidates of the current search
space which could be expanded next are displayed. These candidates are the equivalent
to states in the open list.
Since the space where the graph is displayed is rather small, it is difficult to directly
represent the state in the node. Instead the node consists of a small circle. If the user
hovers over the circle, an illustration of the corresponding state is displayed (Figure
3.3).

A colored circle is surrounding each node. The color of the circle stands for the f
value of the state. Since we are using A* as search algorithm, f is the sum of the
heuristic and the path length from the initial state. Another legend button explains
how the evaluation function f is calculated. The calculation of the f value for each
state is visible if the user hovers over the node. The search button at the bottom of
the clipboard offers the functionality to simulate a search. The node with the lowest f
value is expanded.
The tutorial uses an initial state that is close to the goal state. In the tutorial, it is
possible to fully simulate a search until the goal is found. For other initial states this
may not be possible since the number of states to expand might be too large.
We now want to compare our graph representation with other examples of search space

15

visualizations.

Comparison with other Visualization

There are also other tools that visualize search spaces. We compare the visualization
in the application with another visualization tool called Web Planner (Magnaguagno
et al., 2017). The purpose of Web Planner is very similar to the goal of our graph
representation. Major differences are that Web planner uses tree search instead of
graph search. An advantage of tree structure is that although more nodes are needed,
the distance from the initial state can be better represented. The reason for this is that
there is exactly one path from the initial node to each other node. Another difference
is that Web Planner is using Greedy-best-first search as algorithm. This simplifies
the evaluation function f(s) calculation since it holds that f(s) = h(s) for a state
s. Therefore, the concept of the g value does not have to be introduced. However,
found plans with Greedy-best-first search are not optimal. Despite using another color
scheme, the usage of color in both visualization tools are very similar.

3.2 Free Play Mode
The load mode provides all introduced functionality to the user from start to end. The
one and only goal is to reach the goal state. It is possible to save the current state and to
play on later. When saving, the current state can be given a name. This state is stored
externally. When starting the mode, either a new game state can be created or a saved
game state can be selected. In this case the saved state corresponds to the new initial
state. The default initial state was chosen in such a way that solving the problem is a
challenge, but the planning duration is not too high. It is possible to create very difficult
initial states where the planning time is accordingly high. The goal of this function is
that the level of difficulty can be adjusted to the user. The aim of the mode is that the
user utilizes the available functions to find the goal without any guidance.

16

Chapter 4

Implementation in Unreal
Engine

This chapter discusses the implementation in the Unreal Engine. The implementation
of the Blocksworld domain presented. Furthermore, the division between C++ and
Blueprints is described. Furthermore, the integration of the Planner into the application
is reported.

4.1 Blocksworld Implementation
We discuss the implementation of Blocksworld in PDDL. As stated earlier, PDDL can
be separated into a domain file and a problem file. The domain file stays the same for
every problem instance while the problem file changes for different instances. We first
state the implementation of the PDDL domain file for Blocksworld (Listing 4.1).

1 (define (domain BLOCKS)
2 (:requirements :strips)
3 (:types block height)
4 (:predicates (on ?x ?y - container)
5 (clear ?x - container)
6 (craneempty)
7 (holding ?x - container)
8 (on-height ?x - container ?y - height)
9 (SUCC ?hx ?hy - height))

10

11 (:action stack
12 :parameters (?x ?y - container ?hx ?hy - height)
13 :precondition (and (holding ?x) (clear ?y)
14 (on-height ?y ?hy) (SUCC ?hy ?hx))
15 :effect
16 (and (not (holding ?x))
17 (not (clear ?y))
18 (clear ?x)
19 (handempty)
20 (on ?x ?y)
21 (on-height ?x ?hx)))

17

22 (:action unstack
23 :parameters (?x ?y - container ?hx - height)
24 :precondition (and (on ?x ?y) (clear ?x)
25 (craneempty) (on-height ?x ?hx))
26 :effect
27 (and (holding ?x)
28 (clear ?y)
29 (not (clear ?x))
30 (not (craneempty))
31 (not (on ?x ?y))
32 (not (on-height ?x ?hx)))))

Listing 4.1: Blocksworld PDDL Domain File

There are in total 6 predicates in the Blocksworld domain. Predicates on and clear set
the stack structure. on(x,y) states that a container x is positioned on another container
y. clear marks if the container is the top of a stack. craneempty specifies if the crane is
currently empty and holding states which container is currently attached to the crane.
The last two predicates on-height and SUCC enforce the height constraints for each
stack. Classical planning does not allow the use of numerical values. Therefore we
cannot just define heights as integers. Instead we regard heights as discrete objects.
The on-height predicate assigns a container the corresponding height object. SUCC
defines which heights follow each other. According to this definition, the height limit
is reached if there exists no height object for the container to be placed.
A difficulty we have to address in PDDL is that we want to have a fixed number of 4
stacks. We ensure the fixed stack size with the definition of the stack action. The stack
as well as the unstack action require two block objects: The container that is moved
and the container underneath. With this definition, it is not possible to create new
stacks since there is no block underneath. However, this would mean that unstacking
the lowest container is not possible. Since there is no block underneath, unstack would
not be an applicable action. We can address this problem in the PDDL problem file
(Listing 4.2). To keep the file clearer, we will use an example instance only containing
4 containers.

1 (define (problem BLOCKS)
2 (:domain BLOCKS)
3 (:objects stackland stack2 stack1 stack3 c0 c1 c2 c3 - container h0 h1

h2 h3 n0 n1 n2 n3 n4 - height)
4

5 (:INIT (craneempty) (SUCC h0 h1) (SUCC h1 h2) (SUCC h2 h3) (SUCC n0 n1)
(SUCC n1 n2) (SUCC n2 n3) (SUCC n3 n4)

6 (on-height stackland h0) (on-height stack1 h0) (on-height stack2 h0
) (on-height stack3 h0)

7 (clear c0) (on c0 c3) (on-height c0 n2) (on c3 c7) (on-height c3 n1
)

8 (clear c2) (on c2 c1) (on-height c2 n2) (on c1 c6) (on-height c1 n1
)

9 (clear stack3)
10 (clear stackland))
11

12 (:goal (and (on c0 c1) (on c1 stack1)
13 (on c2 c3) (on c3 stack2))))

Listing 4.2: Blocksworld PDDL Problem File

18

We defined several objects for this problem including 4 containers. Additionally, we
did introduce 4 other containers. These containers represent the base of each existing
stack. Since our actions do not allow the movement of the lowest containers, these
4 containers are stationary. All other containers can now be moved on top of those
stationary bases. Therefore, we have our 4 fixed stacks (Figure 4.1).
Furthermore, we defined different height objects that allow us to enforce the height
constraint. Objects starting with the letter h represent the height on the land while
objects starting with n correspond to the height on the ship. This distinction allows us
to define different heights for land and ship. On the land the maximal height is 3 since
h3 is the highest height object. The maximal ship height is 4 with the maximal height
object being n4.
Like mentioned before, the problem file varies depending in which state the scene is.
However, the object definition stays the same for every instance. A sketch of the initial
state in Listing 4.2. is displayed in Figure 4.1
We now use both the domain and the problem file as input to Fast Downward. The

Figure 4.1: Sketch of the initial state in Listing 4.2. Containers with dashed lines
symbolize stationary base blocks. Assigned height objects are marked on the sides of
land and ship stacks.

output is a file stating the sequence of actions as well as the total cost to reach the goal.
Since we did not provide any cost for the stack and unstack action, a default cost of 1
for each action is assumed.

4.2 Division in Blueprints and C++
Blueprints are the visual scripting system that allows programming with less coding
experience. Due to the visual representation, no knowledge about the syntax of C++ is
necessary.
All in all, it can be said that code written in C++ is clearer and allows program-
ming on a deeper level. Therefore as rule of thumb, default implementations are in

19

Figure 4.2: Diagram showing interactions of components in the project. The separating
line indicates the division in C++ and Blueprints.

C++. Furthermore, frequent changes between languages were avoided. Blueprint and
C++ components should be as decoupled from each other as possible. This makes a
clear project structure possible, since Blueprints and C++ classes are stored at different
places. However, some components are implemented in Blueprints. A component is a
group of classes that interact with each other to provide one or more functionalities.
One component where Blueprints are used is at the creation of graphical user inter-
faces. The Blueprint system does have a specific user interface object called user wid-
get. Those objects allow the design of custom user interfaces with a specific editor. The
creation of graphical user interfaces is thus simplified and also easier to modify com-
pared to a text-based design editor. All graphical user interfaces were therefore written
in Blueprints. Inputs of the user are registered and handled in user widgets. From there,
those inputs are handled in Blueprints and afterwards forwarded to the corresponding
C++ classes. The application contains a class specifically for connecting C++ imple-
mentations with user interfaces (Figure 4.2). This class is called UserInputManager.
In this structure, Blueprints can be seen as the frontend where everything exposed to
the user is managed. C++ can be seen as the backend where all other calculations were
made.
The C++ components contain data structures to manage states and plans. Furthermore,
the planner component is also written in C++.

Another component that only consists of Blueprints is the crane component. This
has to do with the history of the project. As it was stated before, this implementation
is built on top of an existing project. The goal of this project was to create a video
that shows different crane moves. It was used to represent different states of a state
space. The project contained the whole map where the scene takes place including the
harbor, crane and containers. Another preexisting part is the component responsible
for moving the crane and containers. This whole component was written in Blueprints

20

only. Apart from a few changes, all existing functionality could be embedded in the
newly created application. To keep the dependency between Blueprints and C++ low,
extensions of this component were also written in Blueprints. One such extension is
that the user can manually move containers.
Another possibility would have been to translate the entire crane component into C++.
The biggest advantage of this would have been that calculations of the crane position
or movement would all take place in C++. Especially arithmetic calculations can be
represented better in text based form. However, this would be associated with a certain
effort. In addition there are some auxiliary functions in Blueprints, which facilitate the
representation of movements (in this case of the crane). For future extensions, it may
be helpful to translate this part into C++. The user interfaces would then be the last
remaining Blueprints component. This would further decouple the two languages, as
all the game logic would then be contained in the C++ backend.

4.3 Integration of the Planner
In the application, the user can call the Fast Downward planner which returns an ex-
ecutable plan for the current state. In order to use Fast Downward, it needs to be
downloaded externally. To connect the planner, the user has to enter the paths to the
installed Python interpreter as well as to the fast-downward.py file. Both strings are
stored in a configuration file in yaml format. Python and Fast Downward are additional
dependencies which allow the usage of the planner in the application. Otherwise, call-
ing the planner automatically fails.
When the user calls the planner by pressing the plan button, the first thing that is done
is the creation of the PDDL domain and problem file. The domain file is a fixed string
that is written into a temporary directory. The current state is translated into PDDL
and written afterwards together with the remaining problem file into the same direc-
tory. Then the planner command is called. We use A* as search algorithm and our
constructed heuristic hBlocks as search parameters. A* is already part of the planner.
The heuristic had to be added manually to the planner by extending the source code.
The output of the planner is again saved in the temporary directory. From there, the
plan is read, parsed and made accessible to the user.
There are two possible errors that can occur while planning. The first one is a time limit
exceeded error. The planner component does have an integrated timer which measures
the total planning time. The maximal time is set to 90 seconds. After those 90 seconds,
the planning is stopped and reset. This does not happen in the vast majority of cases.
The time limit is only exceeded in the absolute worst case. The worst case is that the
distance from initial state to goal state is near to the maximum. The second error occurs
if the arguments in the planning command are incorrect. This is exactly the case if the
specified data in the configuration file is missing or wrong.
From an implementation perspective, the planner component was designed to work
completely independently of Blocksworld. Thus, the component can be used for any
planning domain. The component must be connected to an actor for this purpose. The
actor has to set the domain and problem file correctly when calling the component.
When the planning is finished, different events are triggered. These events can be man-

21

aged in the actor. Thus, for example, it is possible to react differently to errors during
planning.

22

Chapter 5

Conclusion

Our goal was to introduce concepts and techniques of planning with the application
to people with no programming knowledge. At the same time the application should
describe the functionality of the Fast Downward planner and illustrate an application
area of the planner.
Planning techniques were taught using the Blocksworld domain. Blocksworld repre-
sents a real-world problem that is easy to understand and yet cannot be solved straight
forward. Concepts explained with the application are heuristics, state spaces and asso-
ciated search spaces. For explanations colored illustrations were used which adapt to
the current state. The application uses a heuristic that can be derived from the state.
Legends are used to convey additional information in short sentences.

There are goals that could not be implemented. The self-defined heuristic is simple
to present and explain, but it has been constructed specifically for Blocksworld. Thus,
it is not a planning heuristic. A possible extension for the application would be that
planning heuristics are also part of the application. Potential planning heuristics could
be for example hadd and hmax. Those heuristics could possibly replace the current
heuristic. However, since these heuristics are more difficult to explain, it would be a
harder challenge to introduce them to the user.
Further extensions could be the implementation of additional search algorithms such
as Greedy-best-first search. It would also be conceivable to choose an algorithm that
does not use heuristics such as uniform cost search. Thus, the improvement of using a
heuristic could be worked out.
Besides adding more functionality to the existing application, there is also the possi-
bility to reuse parts of the current implementation in other projects. This is especially
true for the planner component. The component was designed so that it runs inde-
pendently of Blocksworld. Other projects that use other problem domains can use the
planning component as interface to the Fast Downward planner. The implementation
of the graph can also be reused. However, the visualization of the individual states
would then have to be adapted.

23

Bibliography

Epic Games, Inc. (2023). Unreal Engine. https://www.unrealengine.com/.
Version 5.1.1; accessed: 2023-05-30.

Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld,
D., Wilkins, D., et al. (1998). PDDL — the planning domain definition language.
Technical Report CVC TR-98-003/DCS TR-1165. Yale Center for Computational
Vision and Control.

Hart, P. E., Nilsson, N. J., and Bertram, R. (1968). A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107.

Helmert, M. (2006). The Fast Downward planning system. Journal of Artificial Intel-
ligence Research, 26:191–246.

Magnaguagno, M. C., Fraga Pereira, R., Móre, M. D., and Meneguzzi, F. (2017). Web
planner: A tool to develop classical planning domains and visualize heuristic state-
space search. In Workshop on User Interfaces and Scheduling and Planning (UISP
@ ICAPS).

Russell, S. and Norvig, P. (2010). Artificial intelligence a modern approach. Pearson
Education, third edition.

24

