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Abstract

Phase Transitions in the Solvability of Sokoban

Sokoban is a computer game where each level consists of a two-dimensional grid of fields.

There are walls as obstacles, moveable boxes and goal fields. The player controls the ware-

house worker (Sokoban in Japanese) to push the boxes to the goal fields. The problem is

very complex and that is why Sokoban has become a domain in planning.

Phase transitions mark a sudden change in solvability when traversing through the problem

space. They occur in the region of hard instances and have been found for many domains.

In this thesis we investigate phase transitions in the Sokoban puzzle. For our investigation

we generate and evaluate random instances. We declare the defining parameters for Sokoban

and measure their influence on the solvability. We show that phase transitions in the solv-

ability of Sokoban can be found and their occurrence is measured. We attempt to unify

the parameters of Sokoban to get a prediction on the solvability and hardness of specific

instances.
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1
Introduction

Sokoban is a computer game in which the agent moves boxes to their destination on a

two-dimensional grid. The boxes can only be pushed, not pulled, and the task is further

complicated by walls that act as obstacles. Because getting boxes stuck happens so quickly,

solving a level is all the more rewarding. Sokoban has become a domain for automated

planning for two reasons: it is di�cult and has a real-life component.

Humans are excellent at recognising patterns and applying intuitive strategies. Computers

often have troubles solving Sokoban levels because they can literally get lost in the over-

whelming amount of possible solution approaches. Problems that occur in real-life often have

many factors and are embedded in a context of interdependent subproblems. Yet, simplifi-

cations can be carried over to the world of automated planning and most standard domains

are based on real world problems. Sokoban has such similarities to real world problems.

When working on a certain problem domain the goal is to get specific knowledge. This

can be done by analysing the theoretical concepts behind the domain, thus reducing and

abstracting the problem or by examining statistical data of problem sets and searches.

A unique way to obtain domain specific knowledge is to investigate phase transitions. Each

domain has its defining parameters. After solving randomly generated sets with varying

parameters, the solvability and the resources required for the search are analysed.

Phase transitions are regions in the traversed problem space for which sudden changes in

required resources and solvability occur. Problems go from being under-constrained, leaving

many liberties to the solver to over-constrained, leaving very little liberties to the solver.

Outside the phase transition problems are either predominantly solvable or unsolvable, while

the phase transition marks the region of abrupt change. Within this region lie the problems

that are the most resource intensive to solve.

This gives a direct link between the problem’s properties and its supposed di�culty. Know-

ing where the hard problems are is interesting because search algorithms and heuristics can

be better optimised and evaluated with hard instances.

Phase transitions were found for many problems, including some that share Sokoban’s com-

plexity class, therefore they can be assumed to also exist for Sokoban. The objective of

this thesis is to investigate phase transitions for the Sokoban puzzle and find descriptive

parameters to predict the hardness of randomly generated Sokoban levels.
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The further structure of this thesis is as follows: Chapter 2 describes the needed concepts and

imparts basic knowledge about search problems, phase transitions and the Sokoban prob-

lem. Chapter 3 explains which decisions were made when investigating phase transitions

and the reasoning behind them. The results from the conducted experiments are presented,

visualised and discussed in Chapter 4. The conclusions and gained insights from this work

are outlined in Chapter 5. It also contains thoughts on possible future work.



2
Preliminaries

Section 2.1 first explains search and planning problems and the corresponding terms. Sec-

ondly, Section 2.2 discusses phase transitions, their origin, meaning and importance in plan-

ning. A special regard is given to the k-SAT problem as the prime example for finding such

phase transitions. Section 2.3 presents Sokoban as the problem for which phase transitions

are investigated. Sokoban’s history, properties and complexity are described, a comparison

to k-SAT is made and the used problem language (PDDL) introduced.

2.1 Planning Problems

Planning problems play a central role in computer science. They are at the heart of artificial

intelligence and many real life problems can be represented by them. Such a real life problem

is for example the optimal distribution of cargo.

A standard way to describe planning problems is by an initial state with its entities and

their conditions, a set of actions by which the world can be altered and a set of final, desired

states with their properties, called the goal states. The task is to discover a sequence of

actions that transforms the initial state to a goal state. A legal sequence that successfully

achieves that is called a plan.

Actions can have di↵erent costs and finding one of the plans with the lowest cost is the so-

called optimisation problem. When declaring a certain plan as optimal, all other plans must

be justifiably deemed more or just as costly and that is what makes optimal planning more

di�cult than planning without optimisation. To each search problem there is a corresponding

decision problem that can be formulated as: Does any plan exist? A problem for which this

question can be answered with yes, is solvable. The ratio of solvable versus unsolvable

problems is called solvability and it increases with more solvable problems.

Programs that solve planning problems are called planners. A broad class of planners is

based on search. When conducting such a search, it is important to get an idea of how good

a regarded state is. Without such a mechanism each state would be seen as equally promising

and following unfavourable paths of actions would be equally likely as pursuing favourable

paths. Heuristics are functions that evaluate states in regard to their distance to a goal

state. Such functions must master the trade-o↵ between fast execution and reliable result,
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between accuracy of estimation and practicality. Therefore, heuristics play a fundamental

role in automated planning.

To improve searches two approaches can be di↵erentiated: the first is to find algorithms and

heuristics that work well for many di↵erent domains and have a good overall performance;

the second is to use domain specific knowledge to optimise the search for certain problems

or classes of problems. Since such specific methods can then be generalised, new ideas for

one domain can be gained by looking at successful techniques for other domains.

2.2 Phase Transitions

Phase transitions in artificial intelligence and planning are derived from phase transitions

in physics. For example, while a small and gradual change of temperature results in a

small and gradual change in behaviour for most of the temperature range, there are regions

where a small change in temperature results in a sudden and dramatic change in behaviour.

These are the regions where materials for example change from solid to liquid and from

liquid to gaseous. Although di↵erent materials have their phase transitions at very di↵erent

temperatures because of their distinct properties, a region of phase transition can be found

for any material [1].

There are other areas in computer science where phase transitions have been investigated,

for example in classification and pattern matching [2]. This thesis is concerned with the

phase transitions that occur in the solvability of a specific problem.

Analogously to physics these phase transitions happen abruptly when traversing steadily

through the defining parameters of a problem. The two phases when observing solvability

are solvable and unsolvable. As in physics, the idea is that such transitions occur in any

problem of certain classes.

2.2.1 Phase Transitions in k-SAT

The most basic kind of variable has only two possible values: true or false. Such variables

are called Booleans. In propositional logic, Booleans can be joined together to form logical

expressions. A disjunction, symbolised by _, is overall true when at least one of the Booleans

is true. The sign for conjunction, the logical “and”, is ^. The negation, ¬, inverts the value

of an expression or Boolean to the opposite.

For the propositional or Boolean satisfiability problem (SAT) a logical expression is investi-

gated for a configuration that makes the expression true. The expressions consist of clauses

that contain Booleans joined by disjunction and the clauses among themselves are joined

by conjunction. The Booleans can either be negated in the formula or not. For instance, a

SAT formula could look like this:

(A _ ¬B _ C) ^ (¬A _D _B)

A satisfying configuration for this problem is that all variables are true. This problem

is under-constrained which means that there are many di↵erent solutions and most vari-

ables can be freely assigned to either true or false without jeopardising the solution. In

over-constrained problems, certain variables appear in many di↵erent clauses, making it im-

possible to find a satisfying configuration and most often rendering the problems unsolvable.

In this example the number of Booleans per clause is three, making it a 3-SAT problem.
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However, the clause length could be random or another fixed value. This is generalised as

k-SAT and is NP-complete. The defining parameters of a k-SAT formula are the size of the

set of all variables N and the total number of clauses L.

When k-SAT problems are randomly generated, the set of Booleans for each clause is picked

randomly from the larger set of all available Booleans. The deciding value whether a certain

problem is solvable has been found to be the ratio of clauses to Booleans L
N [3]. The num-

ber of clauses and that of all Booleans can be seen as adversaries. On the one hand, more

Booleans reduce the likelihood by which a specific Boolean occurs. With a less frequent

appearance the value it can have to satisfy the formula is less restricted. Such free variables

can adjust to those that are restricted and this make the problem under-constrained. On

the other hand, the more clauses a formula has, the more often a specific Boolean is likely

to appear. This leads to fewer free variables and makes the problem over-constrained. Since

these two values work against each other, their ratio is suited to define the hardness of a

problem.

It has been shown and experimentally confirmed [3] that at a certain ratio of number of

clauses to number of total Booleans a phase transition occurs. For 3-SAT this value is 4.24

[4]. The example formula above has a ratio of 2
4 = 1

2 which predicts it to be easily solvable.

A random formula with 34 clauses and 8 di↵erent Booleans would be close to the phase tran-

sitions and therefore it would probably be hard to decide whether or not it has a solution.

In phase transitions, the problems go quickly from under-constrained (and therefore easily

solvable) to over-constrained (and therefore easily determined as unsolvable). In between

these two regions lies the phase transition where the problems are neither over-constrained

nor under-constrained and therefore di�cult to decide. The performance of solving algo-

rithms shows an easy-hard-easy pattern where the interesting and hard instances lie in the

region of the phase transition.

Models of physical problems, namely the diluted spin glass model [5], have been used to

examine the phase transition in 3-SAT.

2.2.2 Related Work and Importance

Investigating phase transitions in the solvability of problems is a way to gain knowledge

about that domain of problems. When the deciding parameters are known, problems can

be analysed and a statement can be made whether the problem is close to the value of the

phase transition and therefore possibly hard or away from this value and most likely easy. A

solver can choose the used algorithm based on such information, using di↵erent approaches

for very hard problems.

Rintanen [6] suggests that because search algorithms are tested on sets of standard problems,

called benchmarks, these sets also define which algorithm is deemed good and which is not.

Insights into phase transitions could therefore be adopted when creating new benchmarks

to obtain sets of hard problems. Such improved benchmarks facilitate the work on better

algorithms.

SAT is NP-complete and phase transitions have been found in other problems of this class, for

example graph colouring [7]. Phase transitions have also been found for QSAT [8] (quantified

satisfiability problems), which is PSPACE-complete. QSAT problems do not simply search

for any satisfying configuration of a formula to exist but for example ask whether or not a

specific variable can have any value to satisfy the formula.
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2.3 Sokoban

Sokoban is a puzzle game that was developed in 1981 by the Japanese programmer Hiroyuki

Imabayashi in the language BASIC and published in the following year by the company

Thinking Rabbit [9]. Today, many versions of Sokoban exist with implementations for many

devices.

Sokoban is Japanese for warehouse worker. This worker is the only agent in the game and

controlled by the player. The warehouse is displayed as a grid of square fields and seen

from an aerial perspective. The agent can move from one free field to another vertically and

horizontally but not diagonally. Each level is di↵erent. The levels are surrounded by walls

and they can also be within the level, usually shaping a maze. They are impassable and

unmovable. Each level contains at least one, usually several boxes, also called stones, and

the same number of goal fields.

The objective is to push all boxes onto goal fields. Boxes cannot be pulled and only one box

at the same time can be moved, meaning that the space the box is pushed to must be free

before it is pushed. Thus a field can only be occupied by one box at the same time and the

player cannot be on the same field as a box. It does not matter which box ends up on which

goal field, as long as all boxes are stowed away. Note that boxes can be on a goal field in

the initial state. In man-made levels this most often means thats the box has to be pushed

away to push other boxes through that space and later the first box has to be pushed back

to the goal field. Figure 2.1 shows a man-made Sokoban problem.

Figure 2.1: A man-made Sokoban level. The stars are the goals, the

hatched squares are boxes and the circle is the agent.

To investigate phase transitions for Sokoban, problems are created at random for this thesis.

While man-made problems often consist of elaborate mazes and contain goal areas where

many goal fields are right next to each other, this is very unlikely to happen by chance.

Figure 2.2 shows such a randomly generated Sokoban. Solving man-made levels often comes

down to recognising the creators intent and finding the idea and pattern behind it.

A particular challenge of the game is that the boxes and the player can get stuck easily.

When a box is pushed towards a wall there is no way to move the box back away from the

wall again, unless the wall leads to an open space which possibly frees the box. There is no
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Figure 2.2: A randomly generated Sokoban level.

recovery from such situations except to restart the level. Such states are called deadlocks

and are sometimes hard to identify. Designing challenging, yet solvable levels is the main

task for creators. The game is most popular in Japan where the best level creators are seen

as artists [10]. Collections of such interesting levels can be found online [11].

Sokoban specific solvers have been written, notably Junghanns’ and Schae↵er’s implementa-

tion [12] called Rolling Stone. Published in the year 2000, it uses domain specific knowledge

about Sokoban to improve its search. The most recent work is that of Pereira, Ritt and

Buriol [13] who utilise pattern databases recognising known abstract similarities between

levels.

2.3.1 Generalisation

Dor and Zwick [14] generalised the Sokoban problem by allowing any number of boxes to be

pushed and pulled simultaneously. They called this family the Motion Planning Problems.

This category should not be confused with motion planning in general which is part of

robotics. This family of problems requires one or more agents that interact with a world

of objects, obstacles and goals to transform an initial situation into a desired goal state.

In their notation, Sokoban(k, l) stands for a Sokoban problem where up to k boxes can be

pushed at the same time and l boxes can be pulled at the same time. The normal Sokoban

would be called Sokoban(1, 0) in this notation, since there is no pulling and only one box

can be pushed at the same time.

Instead of being square, fields can have the shape of any regular polygon and the according

number of fields around them (although tessellation can only be reached with triangles,

squares and hexagons). For example, in Hexoban [15] the fields are hexagons and each field

has six neighbours which increases possible moves. In some versions of Hexoban the boxes

are time bombs and the levels have to be solved in time to make the game dramatic.
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2.3.2 Computational Complexity

The reason why Sokoban is not just a puzzle game but also of interest to artificial intelligence

and automated planning is its complexity. Historically, many man-made levels could not be

solved by computers at all. This is true especially for bigger levels. Although this has

changed with domain specific solvers and today’s computing power, the problem remains

demanding. Some levels that would be seen as trivial for humans are di�cult for machines

due to the huge number of possible move sequences.

An impression of Sokoban’s complexity can be gained when reflecting on the possible states

the puzzle can be in. Since walls and goals are fixed, each di↵erent position for the boxes

and the player is a di↵erent state. Because it does not matter which box is on a specific

place, combinations are asked, not permutations. The place for the m boxes can be chosen

out of n non-wall fields. The player then has to be on one of the remaining n � m fields.

The number of states S can be computed by the following formula:

S =

✓
n

m

◆
⇤ (n�m)

For 144 free fields and 10 boxes this gives approximately 1017 states. These reflections are

confirmed by Junghanns’ calculations [10]. The number grows fast with the number of free

fields and is maximized when the number of boxes is half of the number of non-wall fields.

Junghanns deduces 1098 states for the size of 18 and 50 percent boxes. However, a level half

full with boxes is only solvable in the best man-made cases (with some boxes already on

goal fields). So for solvable, randomly generated Sokobans, the number of theoretical states

is about as high as the one for the famous Rubik’s Cube problem which has 4.3 ⇤ 1019 [16]

states.

For the solver not all of these states are relevant because not all are generally reachable

from a given starting state. This number is therefore an overestimation. Finding out which

states can be reached legally in a certain Sokoban is the same as looking for a plan where

the goal state is the investigated state. This means creating the collection of all reachable

states, called the state space, would mean to solve the problem for each theoretically possible

state. In other problems, such as Rubik’s Cube, the state space remains the same for each

problem and can be calculated. Many di↵erent states can be linked to the same abstract

state for symmetric reasons. Even though these states are di↵erent on paper, they can be

progressed to the goal state by using the abstract state they are represented by. In Sokoban

each unique problem has its own unknown state space.

The successor states of a state are called its children. The number of children per state is

called the branching factor. Sokoban has a high average branching factor because in most

states the player can move freely, opening new possible branches that need to be regarded.

Since moving does not add to the total cost, only pushes can be seen as relevant. With 10

boxes that are free and can be pushed in any of up to 4 possible directions, the branching

factor would be 40. This is a maximal estimation for an average problem, but the average

value would be lower and dependent on the specific problem.

The search space increases with each step by the current branching factor. After only five

moves this leads to possibly 405 ⇠ 108 states but this number is greatly reduced during the

search by finding and eliminating identical states that were merely reached in di↵erent ways.

Nevertheless, these considerations and numbers illustrate Sokoban’s di�culty. Sokoban has



Preliminaries 9

been shown to be PSPACE-complete by Culberson [17].

2.3.3 Comparison to k-SAT

There are similarities between Sokoban and the Boolean Satisfiability problem. In k-SAT,

the number of clauses restricts solutions and makes the problem less likely to be solvable for

a fixed set of variables. The same can be said for walls in Sokoban. A level with many walls

that block paths can be seen as over-constrained. The same is true for boxes, but they are

not equal to walls.

On the one hand, we can expect boxes to be worse for the solvability than walls because

they must all be reachable. Walls can be in regions that are irrelevant to the solution of

the problem, because there are neither boxes nor goals there. Unlike the other walls, these

walls have no influence on the solvability. This lets us conclude that the average wall has

less influence than any box.

On the other hand, we can expect them to be not as bad for the solvability as walls, because

they are movable. These thoughts are pursued further in the chapters 3.4 and 4.

2.3.4 Sokoban in PDDL

The notation utilised for this thesis is the Planning Domain Definition Language (PDDL).

This language has been created to standardise the representation of planning problems.

Di↵erent kinds of problems can be defined by specifying their domain. This makes it possible

for planners that understand PDDL as an input to solve problems of many di↵erent domains.

The domain, which is the same for all problems of the same kind, defines the fundamental

properties for problems of this kind. It defines types which can be concrete concepts like

boxes or mere categories like objects which boxes are a part of. For Sokoban these are thing,

object, location, direction, stone and the player.

It further declares the predicates of the domain, which are the di↵erent states that the

types can be in. It also defines which types are required for a predicate. For Sokoban these

predicates are to be clear, to be at a location, to be at a goal, to be a goal or not to be a

goal and for a specific move direction to be available from a particular location to an other.

While “clear” only describes one location, “move direction” describes two locations and a

direction at once.

The actions can be seen as functions that have input parameters, preconditions and an

e↵ect. The entirety of all actions define the rules of the domain and how the world can be

manipulated. In this example the actions are: move, push a box to a non-goal field and push

a box to a goal field. The last two actions need to be di↵erentiated because the goal state is

defined by the boxes having the predicate “at goal” and not by their location (if that was

the case, all possible combinations would have to be enumerated as goal states). Pushing a

box has the precondition that the player is next to the box and that the field behind it is

free. Its e↵ect is that the box’s and the player’s locations are changed respectively and the

total cost is increased by one.

A specific problem conforms to a domain if the domain language is used to describe itself.

It lists which instances of which types occur and gives them a name. For Sokoban these are

the directions, the locations, the boxes and the player. It continues by defining the initial

state by assigning predicates to the types. In Sokoban this means stating which locations

are goals and which are free, where the player and the boxes are and which move directions
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are available from each location. It concludes by defining the goal states and which function

should be minimised or maximised for optimisation. For Sokoban there is always only one

goal state: every box needs the predicate “at goal”.

The following example is the PDDL notation of the smallest Sokoban problem that is not

already solved. Figure 2.3 visualises this level. Note that the box is called “stone” in this

domain. This file is accompanied by the domain file which can be found in the Appendix.

Figure 2.3: The smallest Sokoban level.

(define (problem example-sokoban)

(:domain sokoban-sequential)

(:objects

dir-down - direction

dir-left - direction

dir-right - direction

dir-up - direction

player-01 - player

pos-01-01 - location

pos-02-01 - location

pos-03-01 - location

stone-01 - stone

)

(:init

(IS-GOAL pos-03-01)

(IS-NONGOAL pos-01-01)

(IS-NONGOAL pos-02-01)

(MOVE-DIR pos-01-01 pos-02-01 dir-right)

(MOVE-DIR pos-02-01 pos-01-01 dir-left)

(MOVE-DIR pos-02-01 pos-03-01 dir-right)

(MOVE-DIR pos-03-01 pos-02-01 dir-left)

(at player-01 pos-01-01)

(at stone-01 pos-02-01)

(clear pos-03-01)

(= (total-cost) 0)

)

(:goal (

(at-goal stone-01)

))

(:metric minimize (total-cost))

)

Figure 2.4: PDDL of the smallest Sokoban level.
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Investigating Phase Transitions

Phase transitions have been found for other PSPACE-complete problems [8], which leads

us to the assumption for this work that they can also be found for Sokoban. This chapter

describes how phase transitions are investigated. To get statistical data on the solvability

random problems are generated. Section 3.1 presents the random Sokoban generator in

detail. Section 3.2 elaborates on the decisions for the experiments in which big numbers

of problems are processed. Section 3.3 states the tools and methods for analysing the ex-

periments. Section 3.4 describes the attempt to unify the parameters and the idea behind

it.

3.1 Generating Random Problems

A generator for random Sokoban problems has been written in Java. The deciding inputs

given to the generator are: size, ratio of walls and ratio of boxes. The size can be set by

length and width but for this thesis only square Sokoban are investigated further. The ratios

are seen as how many of the total fields are boxes or walls. The Sokoban is represented by

a matrix of fields, each possessing Boolean values for being a wall or a box or the player

and/or a goal field, while free fields hold all these values false.

After checking the input for legality (at least one box, enough space for walls and boxes,

legal size etc.), the corresponding number of walls, boxes, the same number of goals and one

player is randomly placed within the Sokoban. The output is then transformed into PDDL

and written into a file. The file starts with a visualisation of the level [18] using ASCII

characters as graphic representation. While the planner only cares for the actual PDDL

part, humans can use it to understand the properties of the level in one glance and make

spot tests for found plans.

3.1.1 Eliminating Trivially Unsolvable Problems

An additional property for the Sokoban generator makes it possible to prevent trivially un-

solvable problems. Even wall-less instances can be unsolvable because boxes are placed on

the edge of the field. These boxes cannot be moved and thus the problem is only solvable if

there happens to be a goal placed on the same edge.
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To normalise the solvability, all the easiest problems are made solvable by preventing boxes

from being placed on the initial edges. These are called fair Sokoban problems. The solv-

ability for fair Sokobans ranges from one to zero with the easiest problems being always

solvable and after a certain point of di�culty none of the problems being solvable.

Discarding such trivially unsolvable instances is in accordance to previous work on phase

transitions for PSPACE-complete problems. Gent and Walsh [8] conclude in their work on

QSAT (quantified satisfiability) that such flawed problems, as they call them, should be

disallowed.

Note that fair Sokobans can still be unsolvable due to boxes that are unmovable because of

inner walls but for a wall ratio of zero, fair problems will be solvable, unless they contain

so many boxes that it is possible for them to be completely blocked by each other. Many

boxes that are next to inner walls can be moved to few fields. Checking each of them on its

ability to reach a goal field would already mean in parts to solve the problem and could not

be treated independently from all other boxes. These unsolvable instances are therefore not

deemed trivial.

3.2 Designing Experiments

To reduce random noise, large numbers of random problems with the same properties are

created. An experiment is a set of problems for which two of the three parameters (size,

wall ratio, box ratio) are fixed and one is iterated through sensible values. For each iteration

point a number of problems is generated with the same parameters. The standard error on

early experiments shows that a thousand instances for each set of parameters give reliable

data. Experiments that all iterate the same first parameter through the same values are

collectively a series of experiments. Within the series a second parameter is iterated while

the last one remains fixed for the entire series. For example, a series of experiments has the

constant problem size of 11 and goes from a box ratio of 0.2 to 0.9 in steps of 0.1. Within

each experiment the ratio of walls runs from 0 to 0.48 in steps of 0.04. Such and other

series give an insight into the e↵ect of boxes and walls on the solvability of problems. Other

experiments and series of experiments kept di↵erent values fixed while iterating others.

The set of all possible combinations of parameters for Sokoban can be seen as the problem

space. It is stretched by the axes size, ratio of walls and ratio of boxes. Keeping one value

fixed leaves a plane in this space that can be investigated in interesting regions. Series of

experiments are lines on such planes.

The problems are solved by the planning system Fast Downward [19]. Since the thesis is

focussed on solvability and not optimisation, the Fast Downward’s greedy search algorithm

is used with the hFF - Heuristic. For scripting the experiments the python library Lab [20] is

utilised. To maintain a stable and invariant test environment the experiments are conducted

on the Maia grid of the Universitätsrechenzentrum Basel.

3.3 Recognizing Phase Transitions

Lab captures the outcome of each experiment into a file. The data from these JSON files

is extracted, analysed and visualised using Python scripts with the libraries NumPy, SciPy

and Matplotlib. The investigated qualities for phase transitions are: coverage of finished

and the average search time.



Investigating Phase Transitions 13

While solvability is the theoretical value for the ratio of solvable problems to all problems,

coverage is the measured value for actually solved problems. This is not necessarily identical

since not all theoretically solvable problems might actually be solved.

When analysing the coverage of any number of problems with the same parameters there

is a di↵erence between the coverage of total runs and the coverage of finished runs. While

the coverage of total gives the ratio of solved problems relative to all problems given to

the planner, the coverage of finished only considers runs whose searches came to an end.

The coverage of total therefore counts unfinished runs as unsolvable where the coverage of

finished simply ignores them. Both decisions can slightly distort the outcome.

On the one hand, the coverage relative to all searches counts problems whose searches did

not finish in time as unsolvable. But some of these problems might have been solvable

given enough time. On the other hand, the coverage relative to finished searches discards

unfinished problems. However, for the discarded, unfinished problems the probability to

be solvable is below the average probability of the rest, because the longer a search is, the

less likely it will come to a positive end. This is confirmed in this work by comparing

solvability graphs with increased maximal search time limitations. Therefore, the coverage

of all runs slightly underestimates the actual solvability and the coverage of finished runs

slightly overestimates it.

In the best case there are no unfinished runs and while the goal of extending the maximal

search time to 30 minutes per problem is to achieve just that, it cannot be guaranteed in

all cases. However, only finished searches are considered for the detection of possible phase

transitions.

The standard errors in coverage and search time are calculated with the statistical package

in NumPy. This gives an insight into how volatile the results are due to the random creation

of the problems.

The data is illustrated by creating graphs that show the coverage on one axis and the

iterated parameter on the other. To find exact values that lie between the experimentally

found values, linear interpolation is applied. Phase transitions from solvable to unsolvable

occur in regions, rather than exact points, yet the point of fifty percent coverage is found to

be the most stable choice in defining a phase transition. Hence, it will also be referred to

as the transition point. Other ideas like considering the steepest or the inflection point are

rejected because they lack stability due to the statistical noise.

3.4 Unifying Parameters

When investigating phase transitions for SAT, Gent and Walsh [3] put the defining properties

of such a problem, the number of clauses and the number of literals, into relation to one

another (see chapter 2.2.1). The major insight is that regardless of the size of the problem

or the number of variables, the probability to create a solvable instance only depends on the

ratio between them. The phase transition and therefore the hard problems occur at a specific

value for this ratio. Problems with a higher ratio are predominantly easy and unsolvable

and those with a lower ratio predominantly easy and solvable. To find such a defining value

for randomly generated Sokoban, a unifying formula for all parameters is constructed.



4
Results

This chapter presents the results that are relevant for the conclusions. Section 4.1 shows

experiments in which the ratio of walls is the iterated parameter. The visualisation of an

entire series of experiments with varied box ratios follows. Section 4.2 presents the results

of measuring the di↵erence between the influence of boxes and that of walls and present the

formula for the combined ratio. Section 4.3 then shows how this formula is used. Section

4.4 presents an experiment in which the size was iterated.

4.1 Varying the Ratios of Walls

Figure 4.1 shows an experiment with Sokoban problems of size 10 with 4 boxes (which in

this case is the same as 4 percent of boxes). The percentage of walls is raised in steps of 4

from 0 to 48 and for each value 1000 instances are given to the planner. The coverage graph

Figure 4.1: An experiment with an iterated wall ratio. The solid line represents the coverage of

finished searches, the dotted line represents the average search time.
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represents the ratio of problems for which the planner has found a solution relative to all

problems with finished searches. The search time graph represents the arithmetic mean of

the time the planner needed to finish these searches. The scale on the left is for the coverage

which is between 0 and 1. The scale on the right is for the average search time in seconds.

The coverage graph starts at 1 for no walls and decreases with increasing ratios of walls.

The graph shows only a small decline in the beginning but then drops fast. Its steepest

decrease is in the region of about 12 to 20 percent walls. 50 percent coverage is reached at

a wall ratio of 0.172. After this region the coverage soon goes below 15 percent where the

graph flattens. It approaches 0 at about 35 percent walls. For higher ratios of walls the rare,

solvable instances that occur have most boxes already on a goal field at the beginning.

At the same time, the average search time peaks at 20 percent walls. There are two important

things to note about the search time. Firstly, the highest average search time occurs at the

end of the region with the steepest decline in coverage. Problems after that region (for

example for 24 percent walls) have a higher average search time than those right within that

region. The second interesting thing is that the average search time is high for a wall ratio

of 0 and first declines up to the point of 12 percent walls where the steep decline in coverage

begins.

4.1.1 Increasing the Boxes

Figure 4.2 shows a plot of a series of experiments for which the number of boxes is raised

from experiment to experiment. They all have a problem size of 10 but di↵er in the number

of boxes to each other.

Figure 4.2: A series of experiments with iterated boxes. Each of the lines represents one

experiment. The one on the right has 1 box. The number of boxes increases for each

graph going left. The one on the left represents an experiment with 7 boxes.

What can be seen is that the coverage curve is shifted for each additional box. For more

boxes the region with the steepest decline occurs at lower wall ratios.

The point of 50 percent coverage occurs at 24.2 percent walls for 1 box. For 2 boxes the

point jumps to 19.5 percent walls and from there on the decline per box is approximately
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constant. The exact value of the average decline of wall ratio per additional box ratio is

important and calculated later.

There are two things to take from this that are very important. The first insight is that

increasing the boxes causes an approximately even shift of the steep region and the point of

50 percent coverage to lower ratios of walls. The second insight is that the graph for 1 box

gets out of line with the others. The di↵erence from 1 to 2 boxes is unlike any other step

and does not show a uniform pattern which applies for the rest.

4.2 Di↵erence in Influences

Since both the ratio of boxes and the ratio of walls are constraints the basic idea is to sum

them up to a combined ratio. Each ratio is di↵erently influential on the solvability, as was

to be expected. But surprisingly a linear correlation of their influences can be detected

empirically within certain boundaries. Figure 4.3 shows the points with 50 percent coverage

for a series of experiments. The values are taken from the first discussed series which had

a fixed size of 10, an iterated wall ratio within the experiments and an iterated box ratio

within the series.

Figure 4.3: Points with 50 percent coverage for a series of experiments. Each cross marks one

experiment. The x-axis shows the box ratio of the experiments and the y-axis shows

the measured wall ratios at their points of 50 percent coverage.

The value for 1 box gets out of line with rest and therefore we ignore it. The rest of the

points show a linear connection. They are seen as samples of a linear function and a line is

interpolated through them. Figure 4.4 shows the linear interpolation of the previous values.

The gradient of this graph is the negative value of the constant which is discussed below.

This value describes how much more negative influence boxes have on the coverage than

walls. Its absolute value is greater than 1 which means that boxes are more damaging for

the coverage than walls for random Sokoban problems of size 10.
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Figure 4.4: Linear interpolation is conducted for the points with a box ratio form 0.02 to 0.07.

4.2.1 The Unifying Formula

The unifying formula is designed as a linear combination of the ratios. This means that one

of the two ratios is multiplied with a constant and then added to the other resulting in the

norm. The box ratio was chosen to be multiplied by the constant, because it was the one

that had to lie within given limits and therefore was easier to be chosen first.

The constant describes the di↵erence in the influence of the wall ratio versus the box ratio.

The constant depends on the size of the problem and while not all sizes were investigated,

we can assume that there is a function that links each size to its designated constant. This

hypothetical function f has the size s as input and provides the corresponding constant c.

It is multiplied with the ratio of boxes b and added to the ratio of walls w resulting in the

norm N . This norm for randomly generated Sokoban problems makes a direct prediction

on the instance’s solvability.

N = f(s) ⇤ b+ w

The generator has been updated to allow the creation of problems with a combined ratio.

This is the norm for an empirically determined constant. The values for the two ratios

are chosen randomly but in a way that they add up to the desired combined ratio. The

restriction is that the ratio of boxes must result in at least two and at most seven boxes.

This is because linearity did not occur for one box and was not empirically verified for more

than seven boxes. With this combined ratio we can make experiments that have neither a

fixed ratio of walls nor of boxes.

4.2.2 Constant and Norm Values

Three di↵erent series of experiments have been conducted for problems of the size of 10.

The constant is calculated as the (negated) slope of the interpolation previously shown. The

found values are: 1.280, 1.271 and 1.294. This shows that the empirical value is not exact
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but we can say that the actual value is close to these values. For the size of 9 the value from

one series is 1.064.

When we substitute the points of 50 percent coverage back into the formula we get the norm

value for which we can expect 50 percent coverage which is 0.22. This value is the same as

the y-intercept of the interpolated line. We can expect a higher coverage if the problem’s

norm is below this value and a lower coverage for problems that have a norm above this

value. The prediction on the hardness of a random Sokoban is that the problem is hard if

its norm is close to 0.22 and easy if its norm is away from this value.

4.3 Applying the Combined Ratio

Figure 4.5 shows the coverage of an experiment with an iterated combined ratio for problems

of the size 10. The used constant was 1.27.

Figure 4.5: An experiment with an iterated combined ratio and a size of 10. The solid line

represents the coverage of finished searches and the dotted line the average search time.

The coverage shows a region of steep decline between 15 and 25 combined percent. The

average search time graph has peaks at 12 and 18 combined percent but also has a local

minimum at 15 combined percent. Note that while the standard error for all shown coverage

values is very low, it is very high for these values for the average search time.

The predicted value for the point of 50 percent coverage is not quite confirmed empirically.

We expect this point to be at a combined ratio of 0.22 but the measured value is 0.195.

However the graph shows great similarities to graphs with fixed boxes. This shows that the

formula works in combining the ratios and reducing the parameters. If the constant was

known for all sizes we could create problems for which the size is also random. The constant

would then be chosen according to the size and the only input would be the norm.
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4.4 Varying the Size

The idea for this is to set the value for the constant to 1.27 and use a fixed combined ratio of

0.22. These values have been found for Sokobans of size 10 and we now apply them blindly for

Sokoban problems of other sizes. If the result was that coverage is always approximately 50

percent then this would mean the value of 1.27 is universal and independent of the problem

size. We show that this is not the case.

Figure 4.6 shows an experiment with a fixed combined ratio of 0.22 and an iterated size.

The size goes from 5 (meaning 5 x 5 Sokoban problems) to 32 in steps of 3.

Figure 4.6: An experiment with a combined ratio of 0.22 and an iterated size. The solid line

represents the coverage of finished searches.

Applying the constant for size 10 on smaller problems leads to more than 50 percent covered

problems. For sizes close to 10 it leads to about 50 percent coverage. If random Sokoban

problems that are bigger than size 10 are created with the constant found for size 10, then

less than 50 percent coverage results. The point of 50 percent coverage lies at an interpolated

value of 10.4 which further confirms the prediction of the norm.

This means that for smaller Sokoban problems the constant must actually be lower. Through

the combined ratio the constant of 1.27 leads to more than 50 percent solvable problems.

Therefore the influence of boxes is overestimated for smaller sizes and the actual value for the

constant would be below 1.27. It might even be below 1 since the found value for size 9 was

already 1.06. A value lower than 1 would mean boxes are less damaging for the solvability

than walls.

The opposite is true for problems with a bigger size than 10. The constant of 1.27 leads

to less than 50 percent covered problems. This means that the influence of boxes on the

solvability is underestimated and the actual value for the constant would be above 1.27.

The graph of this experiment gives an idea of how the constant adjusts to an iterated size.

It is a conjecture of how the described function f that transforms a size into its respective

constant could look like.
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Conclusions

Figure 4.1 shows a phase transition from solvable to unsolvable instances at a wall ratio of

about 0.172 for Sokoban problems with a length and width of 10 and 4 boxes. The ratio

of walls per fields was iterated and the phase transition occurs in the region from about 12

to 20 percent walls. The average search time has its maximum at 20 percent walls which

suggests that the hardest problems lie there.

An open question is how steep and narrow a region of fast decline has to be to qualify as a

phase transition. This graph is not as steep as the one for SAT [3]. However this might be

because Sokoban is PSPACE-complete. The found phase transition for QSAT [8], which is

PSPACE-complete itself, is also not as narrow and steep as the one for SAT. The correlation

with the peak in average search times lets us conclude that the shown behaviour actually

qualifies as a phase transition.

Figure 4.2 shows that, aside from the first box, adding boxes causes an even shift of the

phase transition to lower wall ratios. Therefore boxes have a similar influence as walls and

the connection between them is approximately linear.

Figure 4.4 shows the transition points for a series of experiments with an iterated ratio of

boxes and a size of 10. The wall ratio of the points declines evenly with increasing box ratio.

Linear interpolation gives a gradient of -1.28 and a y-intercept of 0.22.

The gradient expresses the relation between the influences of boxes and walls. We can say

that adding a box is about 28 percent more damaging to the solvability than adding a wall

for random Sokoban problems of size 10. Its negated value is the constant by which the box

ratio has to be multiplied to adjust it to the wall ratio.

Since the two constraining ratios have a linear connection, the formula for the Sokoban norm

is a linear combination as described in Section 4.2.1. This norm unifies the parameters for

a Sokoban problem (size, wall ratio and box ratio) to one value. This value defines the

solvability of randomly generated problems.

When substituting the transition points back into this formula, we get the transition norm,

which is 0.22. Problems with a norm lower than 0.22 are predominantly solvable and prob-

lems with a higher norm predominantly unsolvable.

Figure 4.5 shows a phase transition for an experiment with an iterated combined ratio. The

values for the box and wall ratio are random but add up to the desired norm. This is done
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with the above mentioned formula and empirically measured values for the constant. The

phase transition occurs in a region close to a combined ratio of 0.195. The formula for the

norm can therefore be applied.

Figure 4.6 shows an experiment with a fixed combined ratio of 0.22 and an iterated size.

The used constant was 1.27. These values give 50 percent solvable problems for the size 10.

Blindly applying it to di↵erent sizes has the following e↵ect: For problems smaller than 10 a

coverage greater than 50 percent was measured and for problems bigger than 10 a coverage

of below 50 percent was measured. This lets us conclude that the constant is indeed depen-

dent on the size. We assume that it is below 1.27 for smaller problems and above 1.27 for

bigger problems.

An important thing to note about this work is that there is no standard way to investigate

phase transitions that can be applied blindly to every domain. Each domain must be ap-

proached di↵erently and while ideas and methods from other phase transition investigations

can be used, they need to be adapted to the domain.

5.1 Future Work

The most interesting question to answer would be whether the found linear connection be-

tween the influences of boxes and walls really occurs for all sizes. The searched region of the

problem space consists of problems that are 9 by 9, 10 by 10 or 11 by 11 and a ratio of boxes

from 0.02 to 0.09. Can we confirm that the assumed linearity between walls and boxes also

occurs outside of this region? More series of experiments would be required to confirm and

test or possibly falsify the found values and concepts.

Another possibility would be to discard the idea of using the ratio of boxes and walls com-

pletely. This concept does not directly reflect that each level is surrounded by walls. This

means small levels are more restricted. Not only because they have fewer fields overall but

because they have more walls per field. The number of edge fields grows linear (4 ⇤ n � 4)

but the number of inner fields grows quadratic (n � 2)2. This means that the bigger the

level the fewer implicit walls per field there are.

Problems could also be defined by their number of total free fields and their boxes. However

this idea has the disadvantage that there is no measurement of how narrow the spaces are

within the Sokoban. A level with 100 free fields and no walls is solvable while a level with

100 free fields and 100 walls most likely is not. The narrowness could be measured by the

average number of neighbouring fields that are a wall. This would then lead to three alter-

native defining parameters: the number of free fields, the number of boxes and the average

number of neighbouring walls per field. This would account for the surrounding walls each

level has.

Investigating measurements for the use of resources other than the search time would also

be interesting. We could use the found norm to create sets of problems that are predicted to

be hard. Those sets that are cleaned from unsolvable instances could be used as benchmarks

for planners.

Finally, a possible future work would be to investigate phase transitions for other PSPACE-

complete problems aside from Sokoban and draw a comparison to this work.
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Appendix

The Sokoban domain in PDDL.

(define (domain sokoban-sequential)

(:requirements :typing :action-costs)

(:types thing location direction - object

player stone - thing)

(:predicates (clear ?l - location)

(at ?t - thing ?l - location)

(at-goal ?s - stone)

(IS-GOAL ?l - location)

(IS-NONGOAL ?l - location)

(MOVE-DIR ?from ?to - location ?dir - direction))

(:functions (total-cost) - number)

(:action move

:parameters (?p - player ?from ?to - location ?dir - direction)

:precondition (and (at ?p ?from)

(clear ?to)

(MOVE-DIR ?from ?to ?dir)

)

:effect (and (not (at ?p ?from))

(not (clear ?to))

(at ?p ?to)

(clear ?from)

)

)

(:action push-to-nongoal

:parameters (?p - player ?s - stone

?ppos ?from ?to - location

?dir - direction)

:precondition (and (at ?p ?ppos)

(at ?s ?from)

(clear ?to)

(MOVE-DIR ?ppos ?from ?dir)

(MOVE-DIR ?from ?to ?dir)

(IS-NONGOAL ?to)

)

:effect (and (not (at ?p ?ppos))
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(not (at ?s ?from))

(not (clear ?to))

(at ?p ?from)

(at ?s ?to)

(clear ?ppos)

(not (at-goal ?s))

(increase (total-cost) 1)

)

)

(:action push-to-goal

:parameters (?p - player ?s - stone

?ppos ?from ?to - location

?dir - direction)

:precondition (and (at ?p ?ppos)

(at ?s ?from)

(clear ?to)

(MOVE-DIR ?ppos ?from ?dir)

(MOVE-DIR ?from ?to ?dir)

(IS-GOAL ?to)

)

:effect (and (not (at ?p ?ppos))

(not (at ?s ?from))

(not (clear ?to))

(at ?p ?from)

(at ?s ?to)

(clear ?ppos)

(at-goal ?s)

(increase (total-cost) 1)

)

)

)
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