

Compilability between Generalized Representations for Classical Planning

Claudia S. Grundke <claudia.grundke@unibas.ch>

Departement of Mathematics and Computer Science, University of Basel

25 January, 2023

Generalized Planning

Overview

Generalized Potential Heuristics

Features	Weights
$f_i: S o \mathbb{Z}$	$w_i:\mathcal{F} ightarrow\mathbb{R}$

 f_1 number of balls in target room f_2 number of carried balls

$$w_1 = -10$$
$$w_2 = -1$$

Generalized Potential Heuristics

Features	Weights
$f_i: S o \mathbb{Z}$	$w_i:\mathcal{F} ightarrow\mathbb{R}$

 f_1 number of balls in target room f_2 number of carried balls

GP Heuristic $h^{GP}(s) = \sum_{i} w_{i} \cdot f_{i}(s)$

 $w_1 = -10$

$$w_2 = -1$$

$$h^{GP}(s) = -10 \cdot f_1(s) - f_2(s)$$

Policy Sketches

Features	Conditions	Effects	<i>n</i> number of balls in target room
$n:S ightarrow\mathbb{N}$	n = 0, n > 0	$n \downarrow, n \uparrow, n?$	
$p: \mathcal{S} \to \{\perp, \top\}$	$oldsymbol{ ho}, eg oldsymbol{ ho}$	$oldsymbol{ ho}, eg oldsymbol{ ho},oldsymbol{ ho},oldsymbol{ ho}?$	<i>p</i> robot carries a ball?

Policy Sketches

Features	Conditions	Effects	<i>n</i> number of balls in
$n:S ightarrow\mathbb{N}$	n = 0, n > 0	$n \downarrow, n \uparrow, n?$	target room
$p: S \to \{\perp, \top\}$	$oldsymbol{ ho}, eg oldsymbol{ ho}$	$p, \neg p, p?$	p robot carries a ball?
			$r_1 = \{\neg p\} \rightarrow \{p\}$
Sketch Rules		Policy Sketch	$r_2 = \{p\} ightarrow \{p?, n\uparrow\}$
$r_i = \{conditions\} \rightarrow \{effects\}$	$R = \{r_1, r_2,\}$	Policy Sketch	
			$R = \{r_1, r_2\}$

Action Schema Networks

Sam Toyer, Sylvie Thiébaux, Felipe Trevizan, and Lexing Xie. Asnets: Deep learning for generalised planning. Journal of Artificial Intelligence Research, 68:1–68, 2020.

Subgoals

Given a state s

Generalized Potential Heuristics:

All states s' with $h^{GP}(s) > h^{GP}(s')$ are subgoals of s

Policy Sketches:

For all sketch rules r_i applicable to s, all s' satisfying the effects of the r_i are subgoals of s

Action Schema Networks:

All successors s' chosen by π are subgoals of s

Overview

Features

p, q

Overview

Overview

GP Heuristics into Policy Sketches

Generalized Potential Heuristic h^{GP}

Sketch Feature h^{GP}

Policy Sketch $R = \{\{\} \rightarrow \{h^{GP}\downarrow\}\}$

Summary

Summary

Questions?

claudia.grundke@unibas.ch

ASNets into GP Heuristics

GP Heuristics into ASNets

Task P

Propositions: $X(o_1), X(o_2), Y(o_1), Y(o_2)$

Goal: make all propositions true

Actions: a_1, a_2, b_1, b_2 Each action makes one proposition true General structure of an ASNet initialized for task P

$$u_{a_{1}}^{1} \longrightarrow a_{1} \longrightarrow X(o_{1}) \longrightarrow \cdots \longrightarrow a_{1} \longrightarrow \pi(a_{1}|s)$$

$$u_{a_{2}}^{1} \longrightarrow a_{2} \longrightarrow X(o_{2}) \longrightarrow \cdots \longrightarrow a_{2} \longrightarrow \pi(a_{2}|s)$$

$$u_{b_{1}}^{1} \longrightarrow b_{1} \longrightarrow Y(o_{1}) \longrightarrow \cdots \longrightarrow b_{1} \longrightarrow \pi(b_{1}|s)$$

$$u_{b_{2}}^{1} \longrightarrow b_{2} \longrightarrow Y(o_{2}) \longrightarrow \cdots \longrightarrow b_{2} \longrightarrow \pi(b_{2}|s)$$

ASNets into GP Heuristics (Complete ASNet Structure)

General structure of an ASNet initialized for task P with independent subproblems