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Abstract
Verifying whether a planning algorithm came to the correct result for a given planning task
is easy if a plan is emitted which solves the problem. But if a task is unsolvable most
planners just state this fact without any explanation or even proof. In this thesis we present
extended versions of the symbolic search algorithms SymPA and symbolic bidirectional
uniform-cost search which, if a given planning task is unsolvable, provide certificates which
prove unsolvability. We also discuss a concrete implementation of this version of SymPA.
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1 Introduction
In planning one aims to find a sequence of actions from an initial situation to some goal.
For example take mail delivering where the initial situation is that all mail is currently at
the post office and the goal is that every letter is at its destination. Possible actions in this
scenario are to load mail into a delivery truck, to drive a truck to some location and to
deliver a letter. This task of course should be quite feasible but imagine that the address
of a letter is not readable. Then this letter cannot be delivered to its destination and the
defined goal cannot be reached.

Such planning problems can be either solvable if an action sequence from start to goal
exists or they can be unsolvable. Accordingly, most planning algorithms return an action
sequence that solves a problem if a solution exists and declare that no solution exists if the
problem is unsolvable. It is of course desirable that planning algorithms work correctly and
have no bugs so that one can rely on their results. However proving correctness of an entire
planning algorithm is not trivial and even more difficult the more complex an algorithm
becomes. This is often the case for efficient or powerful algorithms and thus widely used
algorithms. So a more feasible approach to proving correctness is needed.

Certifying algorithms (McConnell et al., 2011) address this issue. In addition to a
result a certifying algorithm emits a certificate which proves that the planning algorithm
came to the correct conclusion and which can be verified by an external verifier. Most
planners that focus on solvable tasks are already partially certifying algorithms as the action
sequence they output if a task is solvable is such a certificate. Showing that the algorithm
worked properly on a given input with an action sequence as certificate is straightforward.
Beginning from the initial state the actions of the sequence are applied one by one and if
after applying all actions a goal was reached then the action sequence is a solution and
the algorithm worked correctly on this specific input. On the other hand how to verify
whether the algorithm returned a correct result if it only says the problem is unsolvable?
The algorithm returns nothing which could be examined to proof that it came to the correct
result and has no bugs.

Fully certifying algorithms already exist which emit certificates for both solvable and
unsolvable cases. One example is the certifying version of A* with a delete-relaxation
heuristic or with a merge and shrink heuristic with linear merge strategy from Eriksson
(2019b). However no certifying algorithms for symbolic planners exist so far.

The goal of this thesis is to extend the planner SymPA (Torralba, 2016) to a partially
certifying algorithm which provides unsolvability certificates. SymPA is a symbolic bid-
irectional search algorithm which uses abstractions to reduce the complexity of the plan-
ning task. It is related to the quite successful planner SymBA* (Torralba, 2015) but focuses
on unsolvable problems while SymBA* concentrates on solvable tasks.

Before looking at SymPA we look at symbolic bidirectional uniform-cost search (SBU)
which is already a partially certifying algorithm. SBU is very similar but less complic-
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ated than SymBA* and also focuses on solvable cases. We show a version of SBU that
emits a certificate for solvable and unsolvable tasks to give an example of a fully certifying
symbolic planner.

2 Background
The following sections build the groundwork for symbolic planning and for proving un-
solvability. In Section 2.1 we introduce the setting of classical planning and define its
notation. After that we take a closer look at symbolic search in Section 2.2. Finally we fin-
ish with Section 2.3 which explains the proof system and its notation to prove unsolvability
of a planning task.

2.1 Classical Planning
The idea of automated planning is that an agent can alter its environment with actions to
achieve a goal. For example consider an automated vacuum cleaner as agent in a house
with different rooms as its environment and possible actions for the vacuum cleaner are
vacuuming the room it is currently in or moving to another room. The goal of course is that
all rooms are clean. To achieve this the agent must perform a sequence of actions. This
task may sound simple however there are possible instances of this setting where the goal
cannot be reached and thus the problem will be unsolvable. Just think of potential obstacles
that prevent the vacuum cleaner from moving to another (dusty) room.

This model of an agent capable of altering an environment via some actions can vary
greatly in its complexity. In this work only classical planning, the most basic model, is
considered which makes the following assumptions: firstly the environment is static mean-
ing that only the actions of the agent can alter the environment and if it does not perform
any action then the environment will not change. Secondly it is deterministic so the next
state of the environment is fully determined by the current state and what action the agent
will execute. Intuitively this means that every possible future state can be predicted with
certainty. Finally the environment is fully observable which means that the agent knows
every (relevant) aspect of the current state of the environment.

A planning problem can also be regarded as the task of finding a path in a graph. In
such a graph nodes correspond to states and edges between nodes are induced by action ap-
plication. This graph is called search space and can help to intuitively understand planning
problems. Then a solution is a path from the node of the initial state to some goal node.

To formally describe planning problems and be able to input them to planning al-
gorithms there exists an array of problem specification languages. For example there
is STRIPS (Fikes and Nilsson, 1971) which is a very basic and early language. PDDL
(Ghallab et al., 1998) is the current state-of-the-art language which also includes STRIPS
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and describes planning tasks with predicate logic. In the following we will consider the
SAS+ formalism (Bäckström and Nebel, 1995). This is not a restriction because tasks
represented in PDDL can automatically be converted into SAS+ (Helmert, 2009).

Before formally defining planning tasks in SAS+ we introduce the terms state and par-
tial state.

Definition 1. (state and partial state) Given a set of variables V a partial state is a partial
function s : V →

⋃
v∈V dom(v) that assigns variables a value from their corresponding

domain. A state is a total function that assigns all variables in V.
Variables assigned by a partial state sp are described as vars(sp) thus for a state st we

have vars(st) = V .

Partial states (and partial functions) are interpreted as sets of pairs of state variables and
values from their domain. For example given

the set of state variables V = {x, y, z} with

the domains dom(x) = dom(y) = dom(z) = {apple, cherry, peach}

a possible partial state is sp = {x→ cherry, z → peach}

with vars(sp) = {x, z} and

a possible state is st = {x→ peach, y → apple, z → apple}.

Both sp and st are partial states but while (total) state st is a special case of a partial state
and only describes one state, partial state sp can actually describe a set of (total) states. It
represents all states where x = cherry, z = peach and y has any possible value.

A SAS+ task is then defined as follows.

Definition 2. (SAS+ planning task) A SAS+ planning task is defined as the tuple Π =
〈V Π, AΠ, IΠ, GΠ〉, where

• V Π is a finite set of state variables with finite domain dom(v) for all v ∈ V Π,

• AΠ is a set of actions a = 〈pre(a), eff(a)〉 where pre(a) and eff(a) are partial states,

• IΠ is the inital state,

• GΠ is a partial state specifying all goal states.

An action a of the set of actionsAΠ could also be defined as a three tuple instead of as a
pair. Such a three tuple includes next to pre(a) and eff (a) also the cost of an action. But as
action costs do not influence whether a task is solvable or not they are not included in this
definition. pre(a) and eff (a) of an action a both describe sets of states. pre(a) represents
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all states that fulfill the preconditions of action a and thus all states in which action a can
be applied to reach a new state. eff(a) represents all these possible new states and describes
the effects of applying action a to a state that is consistent with pre(a).

Action application enables to traverse from one state of the world to another state. In the
following action application in forward direction (progression) as well as action application
in backward direction (regression) is defined. While the first is reasonable as one tries
to reach a goal state from the initial state one might wonder why backward application
is mentioned here. Trying to reach the initial state from any goal state sounds like the
complete opposite of the problem. However bidirectional search uses regression as well as
progression and is a quite successful approach as can be seen in Section 3.

Definition 3. (progression) Given a planning task Π, an action a ∈ AΠ is applicable in
progression in state s if pre(a) ⊆ s. Then

s[a](v) =

{
eff(a)(v), if v ∈ vars(eff(a))

s(v) otherwise

is the successor state of s.

An action a is applicable in progression in a state s if this state is consistent with pre(a).
Intuitively this means that an action is applicable if state s meets all preconditions. Then
all variables mentioned by the effects of action a are assigned according to eff(a) and all
other variables remain unchanged.

Definition 4. (regression) Given a planning task Π, an action a ∈ AΠ is applicable in
regression in partial state s if

• a is relevant to s, vars(s) ∩ vars(eff(a)) 6= ∅ and

• ∀v ∈ vars(s) : (v /∈ vars(eff(a)) or s(v) = eff(a)(v)) and

• ∀v ∈ vars(s) : (v /∈ vars(prv(a)) or s(v) = prv(a)(v)) with prv(a) = {v 7→
d | (v 7→ d) ∈ pre(a) and v /∈ vars(eff(a))}.

The partial predecessor state of s is then defined as follows:

([a]s)(v) =

{
pre(a)(v), if v ∈ vars(pre(a))

s(v), if v 6∈ vars(pre(a)) and v 6∈ vars(eff(a))

To apply an action a in regression in partial state s three conditions must be met. First
the action has to be relevant to s otherwise all actions could be backwardly applied to the
empty set (which is technically a partial state) which is not helpful in solving a planning
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task. Secondly s must comply with eff(a) which means that all variables of s are either
assigned the same value as described in eff(a) or they are not mentioned in eff(a). Finally
s must comply with all prevailing variables which are all variables that appear in pre(a)
but not in eff(a). If these requirements are fulfilled action a can be applied in regression in
s. All variables of partial state [a]s that are mentioned by pre(a) are assigned according to
pre(a) and all variables that are neither mentioned in pre(a) nor in eff(a) are assigned the
same as in s.

Comparing these two definitions it can be seen that backward action application looks
quite different and more complicated than forward action application. One reason for that
is that regression is defined for partial states rather than only for states. That is the case
because later regression will be used to obtain the predecessors of all goal states which are
represented as a partial state GΠ.

Now that action application is defined we can specify what a solution of a planning task
looks like.

Definition 5. (plan) Given a planning task Π, an s-plan solves state s and is a sequence of
actions π = 〈a1, ...., an〉 where a1 is applicable in s, a2 is applicable in s[a1] and so forth
and GΠ ⊆ s[π] = ((s[a1])...)[an]. The length of an s-plan is |π| = n.

The IΠ-plan is just called plan and solves the whole planning task.

To find a plan most planning algorithms maintain an open and a close list. The open
list is usually initialized with the initial state and stores all states that still have to be expan-
ded. The closed list on the other hand stores the states that have already been expanded.
Expanding a state means generating its successors for all actions applicable in the state.
Search algorithms basically expand the states in the open list one by one until a goal state
is found which means the task is solvable or until the open list becomes empty without
finding a goal state which means that the task is unsolvable. In case a goal state was found
the action sequence from the initial state to the goal state is reconstructed and returned as
solution.

2.2 Symbolic Search
While explicit search looks at each state separately symbolic search works with sets of
states. To manipulate sets of states efficiently appropriate data structures are needed. In our
case Binary Decision Diagrams (BDDs) are used (Bryant, 1986). BDDs are rooted, direc-
ted, acyclic graphs that represent logical formulas. A BDD includes terminal nodes which
are either associated with "true" or with "false" and decision nodes which are associated
with the variables of the formula it represents. Although usually the term BDD is used it
often actually refers to the term Reduced Ordered Binary Decision Diagram (ROBDD). We
will keep this notion and use BDD as a synonym for ROBDD. A ROBDD is unique for a
given formula and variable order compared to a BDD.
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Using BDDs states are interpreted as logical formulas where the variables of the state
are also used in the formula. The formula then encodes which values are assigned to which
variables such that it evaluates to true only if all variables are assigned the same as in the
state it represents. When representing a set of states the formula includes all variables of
all states and evaluates to true only if the state belongs to the set. To represent SAS+ states
with BDDs each variable v with finite domain Dv can be represented by dlog2|Dv|e binary
variables in the BDD.

As we are going to work with sets of states we will now define action application for
sets of states and at the same time for sets of actions using the Definitions 3.8 and 3.9 from
Eriksson (2019a).

Definition 6. (progression for sets) Given a planning task Π, state set S ⊆ SΠ and action
a ∈ AΠ, S[a] = {s[a] | s ∈ S, a applicable in s} is the progression of S with a.

For a set of actions A and state set S, the progression of S with A is defined as S[A] =⋃
a∈A S[a]. The progression of S with all actions AΠ of the planning task is also just called

the progression of S.

The progression of a state set S with action set A calculates all successors that can be
reached by a state in S. The regression of a state set S with action set A on the other hand
calculates all predecessors from which a state in S can be reached.

Definition 7. (regression for sets) Given a planning task Π, state set S ⊆ SΠ and action
a ∈ AΠ, [a]S = {s′ | a applicable in s′, s′[a] ∈ S} is the regression of S with a.

For a set of actions A and state set S, the regression of S with A is defined as [A]S =⋃
a∈A[a]S. The regression of S with all actions AΠ of the planning task is also just called

the regression of S.

Using these action applications for sets of states symbolic search algorithms can expand
not only single states but also state sets. This can mean a significant increase of perform-
ance while preserving the core ideas of many explicit search algorithms. Especially for
showing unsolvability of a planning task this is very useful because the whole search space
must be exhaustively explored for this.

2.3 Unsolvability Proof System
Providing a certificate for solvability is usually no problem because most planners emit a
plan if the given task is solvable. Applying this plan then can verify whether the planner
came to the correct conclusion for the given problem. In the following the proof system
from Eriksson (2019a) is presented as a way to provide certificates for unsolvability. The
certificates for unsolvability of SBU and SymPA are based on this proof system.
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The general idea of showing unsolvability with the proof system is to prove that the
initial state IΠ or the goal states GΠ of a planning task Π are dead. Deadness of a state or
a set of states is defined in the following using Definition 5.1 from Eriksson (2019a).

Definition 8. (dead state and dead state set) A state s is dead if no plan traverses s, or
more precisely there is no plan π = 〈a1, ..., an〉 and 0 ≤ i ≤ n with s = I[a1]...[ai]. A set
of states is dead if all its elements are dead.

Showing that the initial state or all goal states are dead then means that the task is
unsolvable because an action sequence must traverse the initial state and at least one goal
state to be a plan.

Regarding notation used by the components of the proof system we keep the grammar
which is used by Eriksson (2019a):

state set variables X := {IΠ} | SΠ
G | ∅ | XR

state set literals L := X | X

state set expressions S := L | (S ∪ S) | (S ∩ S) | S[A] | [A]S

action set expressions A := AΠ | a | (A ∪ A)

set expressions E := S | A

A state set variable X describes either the set containing only the initial state {IΠ}, the
set of all goal states SΠ

G , the empty set ∅ or XR, a state set described by formalism R.
We do not consider different formalisms so R will always stand for BDDs. An exception
to this would be that BDDs with different variable orders are considered to be different
formalisms, however, within the proofs of this thesis all used BDDs have the same variable
order.

An action set expression A represents the whole set of actions AΠ of planning task Π,
a single action a ∈ AΠ or the union of two action sets (A ∪ A).

Now follow the derivation rules that can be used by proofs within the unsolvability
proof system to derive judgements. To emphasize that judgements are interpreted on a
purely syntactical level S v S is used instead of S ⊆ S.

Derivation Rules

Empty Dead ∅ dead ED

Union Dead S dead S ′ dead
S ∪ S ′ dead

UD

Subset Dead S ′ dead S v S ′ dead
S dead

SD
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Progression Goal S[AΠ] v S ∪ S ′ S ′ dead S ∩ SΠ
G dead

S dead
PG

Progression Initial S[AΠ] v S ∪ S ′ S ′ dead {IΠ} v S

S dead
PI

Regression Goal [AΠ]S v S ∪ S ′ S ′ dead S ∩ SΠ
G dead

S dead
PG

Regression Initial [AΠ]S v S ∪ S ′ S ′ dead {IΠ} v S

S dead
PI

Conclusion Initial {I
Π} dead

unsolvable
CI

Conclusion Goal SΠ
G dead

unsolvable
CG

Union Right E v (E ∪ E ′) UR

Union Left E v (E ′ ∪ E) UR

Intersection Right (E ∩ E ′) v E IR

Intersection Left (E ′ ∩ E) v E IL

DIstributivity ((E ∪ E ′) ∩ E ′′) v ((E ∩ E ′′) ∪ (E ′ ∩ E ′′)) DI

Subset Union E v E ′′ E ′ v E ′′

(E ∪ E ′) v E ′′
SU

Subset Intersection E v E ′ E v E ′′

E v (E ′ ∩ E ′′)
SI

Subset Transitivity E v E ′ E ′ v E ′′

E v E ′′
SI

Action Transitivity S[A] v S ′ A′ v A

S[A′] v S ′
AT

Action Union S[A] v S ′ S[A′] v S ′

S[A ∪ A′] v S ′
AU

Progression Transitivity S[A] v S ′′ S ′ v S

S ′[A] v S ′′
PT
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Progression Union S[A] v S ′′ S ′[A] v S ′′

(S ∪ S ′)[A] v S ′′
PU

Progression to Regression
S[A] v S ′

[A]S ′ v S
PR

Regression to Progression [A]S ′ v S

S[A] v S ′
RP

These inference rules do not look at the actual semantics of the sets they involve and
depend on judgements that already exist about the sets. So we still need a starting point
from which new judgements can be derived with these rules. To solve this problem an
additional source of judgements is defined in the following that takes the semantics of
the sets into account. These so called basic statements cannot be proven within the proof
system and must be proven separately for every proof.

Basic Statements

B1
⋂

L∈L L ⊆
⋃

L′∈L′ L
′

B2 (
⋂

X∈X X)[A] ∩
⋂

L∈L L ⊆
⋃

L′∈L′ L
′

B3 [A](
⋂

X∈X X) ∩
⋂

L∈L L ⊆
⋃

L′∈L′ L
′

B4 LR ⊆ L′R′

B5 A ⊆ A′

With B1 knowledge about two state sets can be described. It must be stated as a finite
intersection of state set literals being a subset of a finite union of other state set literals.
Both the intersection and the union of course could contain only a single element.

To describe knowledge about a progression B2 is used. It is similar to B1 but includes
the progression of an intersection of state set variables on the left side. Accordingly B3
states knowledge about a regression of an intersection of state set variables.

LR and L′R′ in B4 represent state set literals of two different formalisms R and R′.
However as we will not consider different formalisms not even BDDs with different vari-
able orders B4 is not relevant for the following sections.

B5 can be used to state knowledge about different action setsA andA′ but is not needed
for the proofs of this thesis.
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3 Certifying Symbolic Bidirectional Uniform-Cost Search
Uniform-cost search, also known as Dijkstra’s algorithm, is an algorithm to find shortest
paths in graphs (Dijkstra, 1959). It expands the states with smallest g-value first where g is
the total cost of all actions that have to be applied to get from the initial state to the current
state. Prioritizing small g-values ensures that the found paths to all expanded states are
optimal.

Symbolic uniform-cost search expands all states with smallest g-value at once instead
of one state after another. It represents sets of states with BDDs and operates on them.

Symbolic bidirectional uniform-cost search (SBU for short) interleaves two symbolic
uniform-cost searches. The forward search starts at the initial state and performs progres-
sion toward the goal states and the backward search begins at the set of goal states and
performs regression toward the initial state. When new states are generated it is checked
whether the search of the other direction already reached these states. If this is the case a
solution is found. However to find the optimal (that means cheapest) plan the search has to
be continued until the summed g-values of forward and backward search exceed the total
cost of the best known plan.

Certifying symbolic bidirectional uniform-cost search is the same as symbolic bidirec-
tional uniform-cost search with the extension of generating unsolvability certificates if no
solution was found. In the following section the certifying SBU algorithm is presented and
in Section 3.2 the unsolvability proofs generated by this algorithm will be shown.

3.1 Algorithm
Algorithm 1 shows the pseudo code of certifying SBU which is based on SBU from Tor-
ralba (2015). In addition to the planning task Π it takes the transition relations T as input
which is needed to expand states. T is a set of transition relations Tc. For each action cost
c there exists the transition relation Tc which contains state tuples (s, s′) such that s′ is the
successor of s along an action with cost c. The algorithm begins with the initialization of
the open lists fOpen and bOpen and the closed lists fClosed and bClosed of the forward
and backward directions. They are all sorted by g-value and store states with the same
g-values as one BDD. The closed lists are initialized as empty BDDs while the forward
open list fOpen begins with the initial state at g = 0 and the backward closed list bOpen
begins with the set of goal states at g = 0. gf and gb are initialized with 0 and hold the
costs needed to reach the currently most promising states by forward or backward search
respectively. wtotal is initialized with∞ and keeps the total costs of the current best plan if
a plan was found.

10



Algorithm 1: Certifying Symbolic Bidirectional Uniform-Cost Search
Input: Planning Problem: Π = 〈V Π, AΠ, IΠ, GΠ〉
Input: Transition relations: T
Output: Cost-optimal plan or certificate for unsolvability

1 fOpen0 ← {IΠ}
2 bOpen0 ← GΠ

3 fClosed← bClosed← ⊥
4 gf ← gb ← 0
5 wtotal ←∞
6 π ← "no plan"
7 while gf + gb < wtotal and not fOpen is empty and not bOpen is empty do
8 if NextStepDirection(fOpen, bOpen) = Forward then
9 fOpen, fClosed, gf , π, wtotal ←

Step(fOpen, fClosed, gf , bClosed, T , π, wtotal)
10 else
11 bOpen, bClosed, gb, π, wtotal ←

Step(bOpen, bClosed, gb, fClosed, T −1, π, wtotal)

12 if wtotal <∞ then
13 return π
14 else
15 if fOpen is empty then
16 return GenerateForwardCertificate(fClosed∗, IΠ, GΠ)
17 else
18 return GenerateBackwardCertificate(bClosed∗, IΠ, GΠ)

19 Procedure Step(open, closed, gmin, closed
′, T , π, wtotal)

20 opengmin
← BFS(opengmin

, T0, closed∗, ∅)
21 closedgmin

← opengmin

22 π,wtotal ← UpdatePlan(π,wtotal, opengmin
, gmin, closed

′)
23 for all Tc ∈ T , c > 0 do
24 if gmin + c < wtotal then
25 Succ← image(opengmin

, Tc) ∧ ¬closed∗
26 π,wtotal ← UpdatePlan(π,wtotal, Succ, gmin + c, closed′)
27 opengmin+c ← opengmin+c ∨ (Succ ∧ ¬closed′∗)

28 opengmin
← ⊥

29 gmin ← min{g | openg 6= ⊥}
30 return open, closed, gmin, π, wtotal
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The main loop of SBU continues until the sum of gf and gb becomes greater or equal
than wtotal or until one of the open lists becomes empty (line 7). The former means that
the sum of the path costs to the currently most promising states in both directions is greater
than the cost of the currently known best plan. Because gf and gb can only increase this
means that no better plan can be found and the algorithm can return the current plan as an
optimal plan. If the loop breaks because an open list becomes empty this means that one
search exhaustively explored the search space so the search of the other direction cannot
contribute further and the algorithm can terminate.

In every iteration one search performs a search step. The decision whether forward
or backward search is continued depends on which direction looks more promising which
is mostly based on a time estimation. The Step procedure begins with a breadth first
search to find all states that are reachable with no costs from the current set of states in
the open list with minimal path cost gmin. The found states are added to the states in the
open list that currently have the lowest path cost (line 20). These states with currently
lowest path cost are added to the closed list, used to update the plan and then expanded.
The UpdatePlan procedure compares these states with the closed list of the search of
the opposite direction and checks whether they intersect (line 22). In that case a plan was
found and if this plan is cheaper than the current plan π or if no plan was found until now
then π is updated to hold the new plan and wtotal is updated to hold its cost. After updating
the plan the states with currently lowest path cost are expanded. For every transition with
action cost c > 0 the successors of the current states are generated (line 25) if the cost of
applying the action of this transition does not exceed the path cost of the current best plan
(line 24). If successors were generated then the plan is updated again and the successors
are put into the open list according to their g-value (line 27). After expanding the states
with currently lowest g-value they are removed from the open list and the new minimal
g-value is computed (line 29). This value will be greater or equal than the last because the
states with the last minimal g-value were removed from the open list and the states that
were added to the open list are successors of these states and have greater g-values because
actions with action costs greater zero were applied to reach them.

When the main loop terminates wtotal is used to check whether a solution was found.
This check in line 12 and the following lines until line 18 are the extension such that
SBU becomes certifying SBU. Instead of this check and the certificate generation SBU
just returns π at this point not matter if it contains a plan or is still set to "no plan". If wtotal

is smaller than∞ then a solution was found because wtotal was updated at some point with
the cost of a plan. Then this plan π can be returned. Otherwise no solution was found and
a certificate for unsolvability is generated. Depending on which open list became empty
a certificate for the forward direction or for the backward direction is generated. If the
forward open list fOpen became empty then the forward search expanded all reachable
states without finding a plan and a certificate based on that is generated otherwise the same
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# judgement rule premises
(1) ∅ dead ED
(2) fClosed∗[A

Π] v fClosed∗ B2
(3) fClosed∗ v fClosed∗ ∪ ∅ UR
(4) fClosed∗[A

Π] v fClosed∗ ∪ ∅ ST (2), (3)
(5) fClosed∗ ∩GΠ v ∅ B1
(6) fClosed∗ ∩GΠ dead SD (1), (5)
(7) fClosed∗ dead PG (4), (1), (6)
(8) {IΠ} v fClosed∗ B1
(9) {IΠ} dead SD (7), (8)

(10) task unsolvable CI (9)

Figure 1: SBU unsolvability proof in forward direction (fOpen = ∅)

goes for the backward direction. In the following section we take a closer look at these
proofs.

3.2 Unsolvability certificates
To show unsolvability with the proof system it must be proven that the initial state or all
goal states are dead. This is done mostly on a purely syntactical level and can be regarded
for SBU in Figures 1 and 2. High-level explanations follow shortly. A second part of
unsolvability proofs are basic statements which build the basis for syntactical arguments
and are just stated and then used in Figure 1 and Figure 2. These basic statements have to be
checked by the verifier separately from the proof system for each certificate in practice but
in the following it will be explained why they hold in general if the problem is unsolvable.

Certifying unsolvability of SBU happens in one of two different ways depending on
whether the forward open list fOpen or the backward open list bOpen becomes empty.
The idea behind both unsolvability proofs is to show that the set of states created by the
closed list cannot be left and is dead (it contains no plan).

The proof in forward direction (Figure 1) shows unsolvability by proving that the initial
state is dead. The first considered basic statement claims that the set of states fClosed∗
cannot be left by progression (judgement 2). Where fClosed∗ =

∨
i fClosedi is the dis-

junction of all BDDs in the forward closed list. In other words this states that all successors
of states in fClosed∗ are also in fClosed∗. This is true if fOpen is empty because during
SBU first the initial state is inserted into fOpen and when one entry in fOpen is removed
it is inserted into fClosed and all its successors are inserted into fOpen. So if fOpen
becomes empty (which is a requirement to generate a certificate as can be seen in line 16
of Algorithm 1) all states reachable from the initial state have been inserted into fClosed.
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# judgement rule premises
(1) ∅ dead ED
(2) [AΠ]bClosed∗ v bClosed∗ B3
(3) bClosed∗ v bClosed∗ ∪ ∅ UR
(4) [AΠ]bClosed∗ v bClosed∗ ∪ ∅ ST (2), (3)
(5) {IΠ} v bClosed∗ B1
(6) bClosed∗ dead RI (4), (1), (5)
(7) GΠ v bClosed∗ B1
(8) GΠ dead SD (6), (7)
(9) task unsolvable CG (8)

Figure 2: SBU unsolvability proof in backward direction (bOpen = ∅)

They are still contained in it at the end of the algorithm because the algorithm does not
remove anything from fClosed.

The second basic statement used in the proof says that fClosed∗ contains no goal state
(judgement 5). For syntactical reasons this is stated as the intersection of fClosed∗ and
the goal states SΠ

G being a subset of the empty set. This basic statement is true because
fClosed∗ contains all states reachable from the initial state and if any goal state were
reachable from {IΠ} then the task would be solvable and would return a plan instead of the
unsolvability certificate.

From these two facts that fClosed∗ cannot be left (judgement 2) and that fClosed∗
contains no goal state (judgement 5) it follows (via a syntactical detour) that fClosed∗ is
dead (judgement 7) which makes sense because if fClosed∗ cannot be left and contains
the initial state but no goal state then no plan can ever traverse it.

The last basic statement tells that the initial state is in fClosed∗ (judgement 8) which is
true because at the very beginning of Algorithm 1 it is inserted into fOpen later removed
from fOpen and inserted into fClosed (line 21) and never removed from fClosed. So
because fClosed∗ is dead it follows that the initial state is dead (judgement 9) and thus
that the task is unsolvable (judgement 10). This concludes the proof because the initial
state cannot be part of a plan.

The proof in backward direction (Figure 2) shows that all goal states are dead contrary
to the forward direction where deadness of the initial state was proven. Despite that oppos-
ite aim it works very similar to the proof in forward direction. Its first basic statement says
that bClosed∗ cannot be left by regression (judgement 2) and whose only differences to
the first basic statement in forward direction are that bClosed∗ is used instead of fClosed∗
and regression instead of progression. Therefore bClosed∗ =

∨
i bClosedi is defined ana-

logously to fClosed∗ as the disjunction of all BDDs in the backward closed list and also
the argument why all predecessors of bClosed∗ are contained in bClosed∗ works accord-
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ingly: beginning from the set of goal states all backward reachable states are inserted into
bClosed during Algorithm 1 and none are removed from bClosed.

The next basic statement looks quite different to its counterpart in forward direction
but has an analogous meaning. It states that the initial state is not in bClosed∗ (again for
syntactical reasons) written as {IΠ} being in the complement of bClosed∗ (judgement 5)
and it is true because if {IΠ} were in bClosed∗ the task would be solvable as bClosed∗
contains all states backward reachable from the goal states and thus a goal state would be
(forward) reachable from the initial state.

Almost identical to the step in forward direction the derivation that bClosed∗ is dead
(judgement 6) follows from that bClosed∗ cannot be left by regression (judgement 2) and
that the initial state is not in bClosed∗ (judgement 5). This holds because all states back-
ward reachable from any goal state are in bClosed∗ but the initial state is not in this set
therefore no plan can traverse bClosed∗ and it is dead.

The third basic statement claims that all goal states are in bClosed∗ (judgement 7)
which is true because the set of goal states is at the beginning of Algorithm 1 put into
bOpen and later into bClosed (because all entries from bOpen must have been inserted
into bClosed if bOpen is empty) from where it is never removed. From this it follows
directly that all goal states are dead (judgement 8) and thus that the task is unsolvable
(judgement 9) because no goal can be part of a plan.

4 Certifying SymPA
The name SymPA stands for symbolic perimeter abstractions and just like symbolic bidirec-
tional uniform-cost search SymPA is a symbolic bidirectional search algorithm. However
it uses breadth first searches instead of uniform-cost searches and makes use of perimeter
abstractions. The focus of SymPA is to show unsolvability as fast as possible. Thus aspects
like action costs are neglected which improves the algorithm’s efficiency in most cases.

The idea of SymPA is to start a forward or backward search in the original search space
depending on which directions looks more promising and as soon as this search becomes
too costly a new forward or backward search is started in an abstract search space where
fewer states have to be considered. This strategy is not helpful for showing solvability
because a problem could be solvable in an abstract search space but not in the original
search space. For showing unsolvability however this is no problem at all because a task
which is unsolvable in an abstract search space is also unsolvable in the original search
space. Even if such a search in an abstract state space does not show unsolvability it can
simplify the original search in the other direction by removing unreachable states from the
open list of the other direction.

In the following a description of the certifying version of SymPA is given and then in
Section 4.2 we explain how unsolvability is proven with SymPA.
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4.1 Algorithm
Given a planning task Π certifying SymPA detects whether Π is solvable and in case the
problem is deemed not solvable certifying SymPA provides a proof which can be verified
by an external verifier (Eriksson, 2019b).

Firstly regarding notation of Algorithm 2, T X
u is a breadth first search in search space

X in direction u and T X
¬u is a breadth first search in the same search space but in opposite

direction. Search direction u is either fw or bw and accordingly ¬u is then the other one. X
represents either the original search space (X = Π) or it describes an abstract search space
(X 6= Π).

Every search T X
u consists of an open list T X

u .open which stores the states of the current
search frontier that are not yet expanded and a closed list T X

u .closed which stores the states
that have already been expanded. Both lists are sets of states and are each stored as a single
BDD.

Certifying SymPA maintains a set of ongoing searches, SearchPoolwhich is initialized
with the forward and backward searches in the original state space. The forward search T Π

fw

begins with the set containing only the initial state and performs progression in every step.
The backward search T Π

bw begins with the set of all goal states and performs regression in
every step.

Furthermore Dfw and Dbw the sets of dead ends that were found by finished searches
are maintained for both directions and are initialized with the empty set. The open list as
well as the closed list of a search are each represented by a single BDD. The found dead end
states are pruned from all searches of the corresponding direction to speed up the following
search steps.

Until the problem is decided to be solvable or unsolvable the algorithm loops. First in
every iteration it is examined whether SearchPool contains a search T X

u that is feasible.
A search is considered feasible if its search frontier consists of less than M states. M
is a parameter of the algorithm (not mentioned in the pseudocode of Algorithm 2) and is
adjusted dynamically. Beginning with a small M few states are allowed in the frontier
so abstract searches are favored, increasing M lets the algorithm perform searches in less
relaxed state spaces. Initialising M with infinity thus causes the algorithm to never start
searches in abstract state spaces because T Π

fw and T Π
bw are always deemed feasible.

If SearchPool contains feasible searches the easiest (according to a time estimation
based on previous steps and the number of nodes representing the frontier) is chosen and
it performs one step, expanding the search frontier (line 6). This means that the states of
the current frontier are moved from the open list to the closed list and all their successors
except those that are already known to be dead ends are put into the open list as the next
frontier.

Otherwise if SearchPool does not contain any feasible searches then one of the searches
in the original search space is randomly selected as current search T X

u and removed from
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the pool of searches (line 8). While T X
u is not finished it either performs one search step

if it is a feasible search (which is of course not the case in the first iteration because no
feasible searches are in SearchPool and thus the searches in the original state space are
also not feasible) or T X

u is put back into SearchPool to be continued later if it becomes
feasible. In this case the current frontier of T X

u is relaxed (line 14) to create a new current
search T X

u in a new abstract search space X 6= Π.
For relaxation symbolic perimeter pattern databases are used. Roughly speaking with

this abstraction strategy states that share the same values for some of the variables are
considered one state although they might have different values for the other variables. This
reduces the amount of states the search has to consider when expanding the search frontier.
For more details about the abstractions used in SymPA we refer to Torralba (2016).

After performing a step of any search or finishing a space in an abstract space it is
checked whether the algorithm can terminate. If the current search T X

u is finished and no
solution was found then the task is unsolvable and a certificate for unsolvability can be
returned. Depending on the direction of the current search a different proof is generated
and emitted (line 18 and line 20).

If the current search is finished, found a solution and is in the original search space the
task is solvable and the algorithm terminates with "Solvable" as its result (line 22).

Otherwise the current search is finished and found a solution but is in an abstract state
space. So the task is solvable in this simplified search space X but we do not know yet
whether it is solvable in the original search space. Therefore the current finished search is
removed from SearchPool (line 23) and all states it did not reach are put into the set of
dead ends of the opposite direction D¬u (line 24). Then these new dead ends are removed
from all searches in direction ¬u (line 25). Doing this does not remove any state which
could be part of a plan from the searches. All abstract states reachable by the current
search T X

u were collected and this set of states must contain the initial state and at least one
goal state because a plan was found. Thus all states that could be part of a plan are collected
this way which means on the other hand that all states not collected this way cannot be part
of a plan.
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Algorithm 2: Certifying SymPA
Input: Planning Problem: Π = 〈V Π, AΠ, IΠ, GΠ〉
Output: "Solvable" or certificate for unsolvability

1 SearchPool ← {T Π
fw, T Π

bw}
2 Dfw, Dbw ← ∅, ∅
3 Loop
4 if ∃T X

u ∈ SearchPool s.t. IsFeasible(T X
u ) then

5 T X
u ← Easiest-Search(SearchPool)

6 ExpandFrontier(T X
u , Du)

7 else
8 T X

u ←RandomSelection(T Π
fw, T Π

bw)

9 while T X
u is not finished do

10 if IsFeasible(T X
u ) then

11 ExpandFrontier(T X
u , Du)

12 else
13 SearchPool ← SearchPool ∪ {T X

u }
14 T X

u ← RelaxFrontier(T X
u )

15 if T X
u is finished then

16 if not FoundSolution(T X
u ) then

17 if u = fw then
18 return GenerateForwardCertificate(T X

u , Dfw)
19 else
20 return GenerateBackwardCertificate(T X

u , Dbw)

21 if X = V then
22 return "Solvable"

23 SearchPool ← SearchPool \ {T X
u }

24 D¬u ← D¬u ∪ UnreachableStates(T X
u )

25 RemoveDeadEnds(D¬u, T X
¬u)

Compared to certifying SBU certifying SymPA is only partially certifying, it does not
provide a certificate if it deems a problem solvable. Though it is not extremely difficult to
further extend SymPA such that it becomes fully certifying. Instead of returning "Solvable"
(line 22) a plan could be extracted using the closed list of the search that proved the task
solvable. Then this plan can be emitted as certificate for solvability. In this work, however,
we only consider the unsolvability certificates as they are more difficult. Also SymPA is
most often used for tasks that are expected to be unsolvable so unsolvability certificates are
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# judgement rule premises
(1) ∅ dead ED
(2) Dfw ∩GΠ v ∅ B1
(3) Dfw ∩GΠ dead SD (1), (2)
(4) Dfw[AΠ] v Dfw ∪ ∅ B2
(5) Dfw dead PG (4), (1), (3)
(6) T X

fw.closed ∩GΠ v ∅ B1
(7) T X

fw.closed ∩GΠ dead SD (1), (6)
(8) T X

fw.closed[AΠ] v T X
fw.closed ∪Dfw B2

(9) T X
fw.closed dead PG (8), (5), (7)

(10) {IΠ} v T X
fw.closed B1

(11) {IΠ} dead SD (9), (10)
(12) task unsolvable CI (11)

Figure 3: SymPA unsolvability proof in forward direction

of more use than those for solvable tasks. Therefore certifying SymPA lines up with most
other planners and provides a certificate only in the case it can solve more efficiently.

4.2 Unsolvability certificates
Showing unsolvability based on SymPA is essentially the same as for SBU. The proofs in
both directions just integrate the dead ends found by SymPA as well. Again the goal of
the proof in forward direction is to show that the initial state (or rather the set containing
only the initial state) {IΠ} is dead. This proof is used if the current search is finished (its
open list is empty), it searched in forward direction and no solution was found. It does not
matter whether this search T X

fw is in the original search space (X = Π) or an abstract search
space (X 6= Π) because if the problem is unsolvable in an abstract search space it will also
be unsolvable in the original search space. A search in an abstract search space generates
and expands abstract states which can be interpreted as sets of states of the original search
space. So if an abstract forward search cannot reach any abstract state which contains a
goal state from the abstract state containing the initial state then also in the original search
space no goal can be reached from the initial state. The argument for abstract backward
searches is analogous.

The following descriptions of the unsolvability proofs focus on explaining why the
basic statements hold and give a high-level view of the proofs. First we will take a look
at the unsolvability proof of the forward direction. For the syntactical details of this proof
refer to Figure 3.

The first basic statement of the forward proof claims that the intersection between the
dead ends of the forward searches Dfw found by the algorithm and the goal states GΠ is
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empty (judgement 2). Dfw are states that the backward searches could not reach (Algorithm
2, line 24). As all backward searches start from the goal states their unreachable states are
dead ends for forward searches and thus cannot contain any goal state. Hence the basic
statement holds. Because the empty set is dead (judgement 1) it then directly follows that
this intersection is also dead (judgement 3).

The next basic statement declares that the set of dead ends Dfw cannot be left by pro-
gression (judgement 4). The argument why this is true is based on that Dfw is the set of
states which the finished backward searches discovered as definitively unreachable by re-
gression. This holds because if an abstract state is unreachable by a backward search then
all states that are represented by this abstract state must be unreachable by regression. Oth-
erwise if one state which is represented by the abstract state were reachable by regression
then the whole abstract state would be reachable by regression. Thus all other states not
in Dfw are considered possibly reachable from the goal states by regression because they
were reached by any backward search or because they are part of abstract states that were
reached by any backward search.

So if there existed a state that was not included in Dfw but was reachable from Dfw

by progression it would be a state that is possibly reachable by a backward search. But all
states that are still considered possibly reachable by regression were reached by a backward
search at some point. Then this backward search could have reached inside Dfw via this
state andDfw would not contain only states unreachable by all finished backward searches.
Therefore all states that can be reached from Dfw are also included in this set and Dfw

cannot be left by progression.
From combining that Dfw cannot be left (judgement 4) and that Dfw does not contain

any goal state (judgement 3) it follows thatDfw is dead (judgement 5). Which makes sense
becauseDfw cannot be part of any plan if it neither contains a goal state nor can a goal state
be reached from it.

Before using this information though we first look at the closed list of T X
fw. Similar to

the dead ends Dfw it also does not contain any goal state (judgement 6). Because T X
fw is

finished T X
fw.closed contains all states reachable from the initial state by progression that

were not pruned. That holds because all forward searches begin with the initial state as the
first search frontier and insert the successors of the current frontier into the open list as the
next search frontier. The states of the old search frontier then are put into the closed list.
If any goal state were put into the open list and then into the closed list this way it would
be reachable from the initial state by progression because all forward searches start from
the initial state. But if this had happened then the task would have been solvable and the
algorithm would not have been generating the unsolvability proof. Hence no goal state was
reached during this forward search and no goal state is in T X

fw.closed.
This means that the intersection of the closed list and the goal states is empty (again

judgement 6). From that it directly follows that this intersection is dead (judgement 7)
because the empty set is dead (judgement 1).
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# judgement rule premises
(1) ∅ dead ED
(2) [AΠ]Dbw v Dbw ∪ ∅ B3
(3) {IΠ} v Dbw B1
(4) Dbw dead RI (2), (1), (3)
(5) [AΠ]T X

bw .closed v T X
bw .closed ∪Dbw B3

(6) {IΠ} v T X
bw .closed B1

(7) T X
bw .closed dead RI (5), (4), (6)

(8) GΠ v T X
bw .closed B1

(9) GΠ dead SD (7), (8)
(10) task unsolvable CG (9)

Figure 4: SymPA unsolvability proof in backward direction

The next basic statement claims that all successor states of T X
fw.closed are either in the

closed list itself or in the set of dead ends of the forward direction Dfw (judgement 8). If
no pruning was used then all successors of the closed list would only be in the closed list.
That is because as explained earlier the closed list T X

fw.closed contains all states reachable
from the initial state by progression. However dead ends of the forward direction found
by previously finished searches are removed from the open lists of all forward searches
(Algorithm 2, line 25) and thus are not put into T X

fw.closed. But these pruned states are
exactly the set Dfw. So all successor states of T X

fw.closed are either in the closed list itself
because they were reached and were moved from the open to the closed list or they are in
the set of forward dead ends Dfw because they were pruned from the open list. Hence this
basic statement holds.

It then follows that the closed list is dead (judgement 9) because all successors of
T X
fw.closed are either in T X

fw.closed or in Dfw (judgement 8), Dfw is dead (judgement
5) and no goal state is in T X

fw.closed (judgement 6 / 7). In other words because no goal
state is in T X

fw.closed or Dfw and no goal state can be reached from the closed list it cannot
be part of any plan.

It is trivial that the initial state is in the closed list (judgement 10) as every forward
search starts at the initial state and all visited states are put into the closed list. But with
this information and the fact that the closed list is dead (judgement 9) it now follows that
the initial state is dead (judgement 11). This directly leads to the conclusion of the proof.
The task is unsolvable (judgement 12) because the initial state cannot be part of a plan and
therefore no plan can exist at all.

Proving unsolvability for the backward direction is done by showing that the set of
goal states cannot be part of a plan and is thus dead. Again in the following a high-level
description of the proof is given. For the syntactical details refer to Figure 4.
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The first basic statement tells that the set of dead ends of the backward direction Dbw

cannot be left by regression (judgement 2). The argument why this holds is similar to the
argument for progression in the proof of the forward direction.

Dbw is the set of discovered dead ends for backward searches and this is exactly the
set of states that were found to be unreachable by the finished forward searches. All states
not in Dbw are still considered possibly reachable by a forward search because they were
reached by a forward search or because they are part of an abstract state that was reached
by a forward search. If there was a state not included in Dbw but reachable from Dbw by
regression it would be a state considered possibly reachable by a forward search. Hence it
would have been reached by a forward search at some point and then this forward search
could have reached inside Dbw with progression via this state. But then Dbw would not
anymore include only states unreachable by progression. Therefore no state can exist that
is reachable from Dbw by regression and not in Dbw so the basic statement holds.

For the first deduction a second basic statement is needed. It says that the initial state is
not part of Dbw (judgement 3). Considering the argumentation for the last basic statement
this is true because Dbw includes states not reachable by any forward search but the initial
state is the starting point of all forward searches. So it will never be part of Dbw and thus
the basic statement holds.

Using these two basic statement it can be concluded that Dbw is dead (judgement 4).
Dbw cannot be left by regression and the initial state is not part of this set hence Dbw can
never reach the initial state and so it cannot be part of any plan.

The next basic statement claims that the predecessors of the closed list of the current
search T X

bw are either in the closed list T X
bw .closed itself or in the set of dead ends Dbw

(judgement 5). Without pruning all predecessors of T X
bw .closed would be in this set only.

That is the case because starting from the set of goal states as the first search frontier all
backward searches move the current search frontier from the open list to the closed list
and put its predecessors in the open list as the new frontier during one search step. This
means that all states reachable by regression would be in T X

bw .closed. However Dbw is used
to prune all states that were detected to be dead ends for backward searches. So all states
removed this way are in Dbw and hence the predecessors of T X

bw .closed are either in the
closed list itself if they were not detected to be dead ends or they are in Dbw if they were
detected as dead ends.

Before deriving the next step another basic statement is needed. The initial state is not
included in T X

bw .closed (judgement 6). If it were in the closed list of the current backward
search then the task would be solvable because the closed list contains all states that are
reachable from the goal states by the current backward search. But if the task were solvable
then the algorithm would not generate an unsolvability proof. Therefore the initial state
cannot be in T X

bw .closed.
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Knowing that Dbw is dead, that the initial state is not in T X
bw .closed and that all prede-

cessors of this closed list are either in itself or in Dbw it can be concluded that T X
bw .closed

is dead (judgement 7).
With this information the last basic statement needed to finish the proof is that the set

of all goal states is part of T X
bw .closed (judgement 8). This holds because all backward

searches have the set of all goal states as their starting points. So the goal states are moved
from the open list of a backward search to the closed list during a search step.

It now follows that the set of all goal states is dead (judgement 9) because it is part of
T X
bw .closed which is dead itself. Therefore to finish the proof this information is used to

conclude that the task is unsolvable (judgement 10) because no goal state can be part of a
plan.

5 Implementation
The extension of SymPA was fully implemented in C++ on top of SymPA. SymPA itself
is build on the Fast Downward Planning System (Helmert, 2006). Because of this SymPA
and also the added generation of unsolvability certificates can handle tasks written in PDDL
(Ghallab et al., 1998) as well as SAS+ (Bäckström and Nebel, 1995).

To integrate certificate generation in SymPA no big changes had to be made. Certificate
generation is called after the search finished and no solution was found right before the
algorithm terminates. In the case of SymPA one advantage of the used proof system is
that all needed information is available when the planner finished its search. Nothing of
the actual search had to be altered which also means that the runtime of the search is
not influenced by certificate generation. The overall runtime however does increase for
unsolvable problems because certificate generation is appended.

One important aspect of extending SymPA was to make sure that the generated certi-
ficates are compatible with the verifier that checks the certificates. Three files have to be
created for an unsolvability certificate when using the verifier of Eriksson (2019b). The
first file stores the BDDs which are used in the proof. In our case it stores the BDD of
the closed list and if dead ends were found they are stored as a second BDD in this file.
Next a text file is needed which holds a description of the planning task that was given to
SymPA. The original task description cannot be used here because the task file needs to be
in a specific format such that the verifier can process it. Finally a text file with the actual
proof has to be created. This file lists the judgements of Proof 3 or 4 in a format that the
verifier can process.

One difficulty of generating these components was that BDDs store binary variables
but in the original task the domains of the variables could include more than two values.
To overcome this a conversion of the original variables to binary variables is made. Every
variable v with domain Dv is represented in the BDDs with dlog2|Dv|e binary variables
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which can encode all values from Dv. This conversion is reflected in the task file. The
description of the initial state lists all binary variables that have to be true in the initial
state. The goal description is split into positive and negative goals where the former lists
all binary variables that have to be true and the later lists all binary variables that have to
be false in any goal state. The description of preconditions and effects of the actions work
accordingly.

Furthermore the BDDs in SymPA store for every binary variable a second binary vari-
able which is needed for the computation of state expansions. These so called primed
variables are not part of the actual task and are not needed for certificate generation but
they cannot be ignored because they still exist in the BDDs so the verifier sees them as part
of the task. One way to handle this could be to modify the BDDs and remove the primed
variables. The method we chose however alters the task description for the verifier. Instead
of listing only the binary variables needed, the task description lists the primed variables
interleaved with the needed binary variables. This causes no problems because the primed
variables are not actually used in the BDDs or the task description. But this allows us to
use SymPAs BDDs without modification.

6 Experiments
For the experimental evaluation of certifying SymPA we used the same planning tasks as
were used in the Unsolvability IPC 20161. The experiments were run on a cluster consist-
ing of Xeon E5-2660 (2.2 GHz) processors. A total time limit of 30 minutes and a total
memory limit of 3584MiB was used. Additionally 2GB were set as memory limit for each
translation and search. For SymPA the maximal number of nodes a search frontier may
include was set to 10000 and mutexes were disabled. The Downward Lab toolkit (Seipp
et al., 2017) was used as framework for running the experiments.

For the 352 tasks that were examined SymPA successfully finished its search and the
certificate generation in 105 cases where it correctly deemed all tasks as unsolvable. Of
these 105 runs where unsolvability certificates were generated 79% (83) of the certificates
were valid. The average size of a certificate including all three files (task description, BDDs
and proof) is 5560KB and the largest certificate was in the over-nomystery-uns16 domain
with 101567KB. The geometric mean of the time the planner needed is 3.29 seconds of
which 0.40 seconds were needed for the search. The geometric mean of the time the verifier
needed is 45.32 seconds and the average of the total memory needed by all runs is 372MiB.

247 runs did not finish the search and thus were not verified for various reasons. 70%
(174) of these runs terminated due to timeouts and another 10% (25) because they went
out of memory. The remaining 20% (48) of the runs terminated because of other kinds of

1https://unsolve-ipc.eng.unimelb.edu.au/ (last accessed 05.09.2020)
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errors. All runs of the over-tpp-uns16 domain which contains 30 tasks terminated because
of a problem with the domain definition. The remaining 18 runs that terminated because
of an error are mostly from the bag-gripper-uns16 domain and are also related to memory
problems.

For the 22 certificates that could not be verified one of the following three judgements
does not hold:

Proof 3, judgement 2: Dfw ∩GΠ v ∅

Proof 3, judgement 4: Dfw[AΠ] v Dfw ∪ ∅

Proof 4, judgement 2: [AΠ]Dbw v Dbw ∪ ∅

All three judgements make a statement about the set of dead ends. This leads to the as-
sumption that the same reason could prevent the certificates from being valid. At least for
the two later judgements it probably is one source that causes them not to be true.

First we look at judgement 2 from Proof 3. If this judgement does not hold then an
abstract backward search must not have been able to reach at least one of the goal states.
This is the only possibility for Dfw to contain a goal state and thus for the intersection
between Dfw and GΠ to be empty. It must be an abstract backward search because only
abstract searches can expand the dead ends. Furthermore forward searches cannot modify
the dead ends of the forward direction because the dead ends of one direction are always
discovered by a search of the other direction (Algorithm 2, line 24). We could already
detect inside SymPA that this intersection is not empty. Thus we can rule out a faulty task
description for this issue.

The cause of this probably is connected with the initialization of new abstract searches.
The backward search in the original search space is initialized with the goal states and thus
after the first expansion its closed list contains the goal states. Before a new abstract search
however inherits the open and closed list from the last search of the same direction they are
relaxed. This relaxation might lead to forgetting some of the goal states in the new closed
list and if these forgotten goal states are unreachable for the new abstract search then they
are put into the set of dead ends of the forward direction. These forgotten goal states are
unreachable by regression for this particular abstract search but as they are goal states this
is not relevant. They have to be reachable by progression which might still be possible
but cannot be detected by this abstract backward search. A forward search could in theory
reach into Dfw with progression, thus if the forgotten goal states are in Dfw this search
might be able to reach one of these goal states. This possibility is not discovered though
because all states in Dfw are pruned.

Hence a possible plan could be overlooked. This is no problem however for the experi-
ments that were run because no solvable tasks were part of the benchmarks. A solution for
this issue could be to manually remove all goal states from Dfw after all states unreachable
by regression were put into it.
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The following two judgements are counterparts and presumably have the same cause
that leads them to not being true. Judgement 4 of Proof 3 states that the set of discovered
dead ends of the forward direction cannot be left by progression. Judgement 2 of Proof
4 accordingly describes that the set of discovered dead ends for the backward direction
cannot be left by regression.

We suspect that the reason that these two judgements do not hold is related to how the
unreachable states are computed. When an abstract search finishes, the union of its own
closed list is build with the closed lists of all searches in the same direction u that started
before the current search. The negation of this union is returned as unreachable states in
direction u. These previous searches are not all finished though. At least the search in the
original search space in the same direction cannot be finished. Otherwise it would have
found a plan or found out that no plan exists and terminated the algorithm. So at least
one closed list of a not finished search is used to find all reachable states. But this closed
list might not contain all reachable states and if none of the following abstract searches
in this direction reaches those missing states then they are in no closed list of direction
u. Therefore they must be in the negation of the union of all closed lists of this direction.
This negation however is used as set of unreachable states in direction u and furthermore
as D¬u, the set of dead ends for the other direction. This means that D¬u might contain
states that are reachable in direction u but then these states are no dead ends in direction
¬u. Hence Dfw could possibly be left by progression and Dbw could possibly be left by
regression which means that the above judgements indeed do not hold in general.

Similar to the previously discussed issue these results cause no further problems for the
experiments. Again states that might lead to a plan are pruned. So potentially solvable
tasks might be declared unsolvable which could not have happened in our experiments
because no solvable tasks were used. One option to fix this could be to only use the states
unreachable by the current abstract search. With this perhaps less dead ends are pruned
which could impact performance but no solvable tasks would be overlooked.

7 Related Work
In the context of correctness guarantees model checking can be seen as a complement to
planning. Model checking tries to verify correctness of a hardware or software system in
the sense that a system is correct if from the initial state no "erroneous" state can be reached.
Take for example an elevator which should never have opened doors and be moving at the
same time. To ensure the passengers safety this error state must never be reached. So
compared to planning where we try to find a path from the initial state to a goal state model
checking tries to show that no path from the initial state to any error state exists.

Even similar methods to handle the state explosion problem which is present in both
areas can be used. For symbolic search which we discussed earlier there exists symbolic
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model checking as an equivalent. Similar to SymPA symbolic model checking as presented
by Burch et al. (1992) also uses BDDs to represent the state space. An approach even more
similar to SymPA is presented by Coudert et al. (1989) which uses BDDs for symbolic
breadth first traversal of states of a machine.

8 Future Work
Our version of SymPA gives correctness guarantees for its result if it detects a task to be
unsolvable. There is still room for improvement however. For example SymPA could be
extended further to a fully certifying algorithm which generates plans for solvable tasks
and the presented certificates for unsolvable tasks.

Besides SymPA the unsolvability proof system could be applied to other planning al-
gorithms to make them partially or even fully certifying. The theoretical proofs for SBU
which we covered in Section 3.2 could be used to implement an extension for SBU to make
it a fully certifying algorithm. With that in mind also SymBA* (Torralba, 2015) could be
extended to a fully certifying algorithm. Considering the similarities between SymBA* and
SymPA and especially between SymBA* and SBU the theoretical unsolvability proofs for
SymBA* should not be quite difficult to obtain.

9 Conclusion
Certifying SymPA combines SymPA’s ability to efficiently detect tasks as unsolvable with
certificate generation to verify the planners results. In addition to the theory behind certi-
fying SymPA we presented an implementation of certifying SymPA, its experimental eval-
uation and unsolvability proofs for a possible extension of symbolic bidirectional uniform-
cost search.

Certifying algorithms provide a quite feasible option to give correctness guarantees
at least for specific inputs. Most planning algorithms emit a plan for solvable tasks and
are thus already partially certifying. Applying the unsolvability proof system to these al-
gorithms can enhance them to give correctness guarantees for all valid planning tasks and
not only solvable ones. It is more impactful however if the proof system is applied to al-
gorithms that are not certifying at all. As can be seen with certifying SymPA this enables
these algorithms to give at least some correctness guarantees which is a big difference to
giving no correctness guarantees at all.

27



References
Bäckström, C. and Nebel, B. (1995). Complexity results for SAS+ planning. Computa-

tional Intelligence, 11(4):625–655.

Bryant, R. E. (1986). Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691.

Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., and Hwang, L.-J. (1992).
Symbolic model checking: 1020 states and beyond. Information and Computation,
98(2):142–170.

Coudert, O., Berthet, C., and Madre, J. C. (1989). Verification of synchronous sequential
machines based on symbolic execution. In International Conference on Computer Aided
Verification, pages 365–373. Springer.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271.

Eriksson, S. (2019a). Certifying planning systems: witnesses for unsolvability. PhD thesis,
University of Basel.

Eriksson, S. (2019b). Code from the PhD thesis "Certifying planning systems: witnesses
for unsolvability". https://doi.org/10.5281/zenodo.3355459.

Fikes, R. E. and Nilsson, N. J. (1971). STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2(3-4):189–208.

Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld, D.,
and Wilkins, D. (1998). PDDL—The Planning Domain Definition Language Version
1.2. Yale Center for Computational Vision and Control, Technical Report CVC TR-98-
003/DCS TR-1165.

Helmert, M. (2006). The fast downward planning system. Journal of Artificial Intelligence
Research, 26:191–246.

Helmert, M. (2009). Concise finite-domain representations for PDDL planning tasks. Ar-
tificial Intelligence, 173(5-6):503–535.

McConnell, R. M., Mehlhorn, K., Näher, S., and Schweitzer, P. (2011). Certifying al-
gorithms. Computer Science Review, 5(2):119–161.

Seipp, J., Pommerening, F., Sievers, S., and Helmert, M. (2017). Downward lab. https:
//doi.org/10.5281/zenodo.399255.

28



Torralba, Á. (2015). Symbolic Search and Abstraction Heuristics for Cost-Optimal Plan-
ning. PhD thesis, Universidad Carlos III de Madrid.

Torralba, Á. (2016). SymPA: Symbolic perimeter abstractions for proving unsolvability.
Unsolvability International Planning Competition 2016 planner abstracts, pages 8–11.

29


