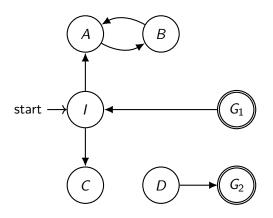

Extending SymPA with Unsolvability Certificates Bachelor Thesis

Claudia Grundke


University of Basel
Departement of Mathematics and Computer Science

18 September, 2020

Classical Planning

Classical Planning

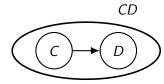
Correctness

How can we be sure that the planner gave the correct result?

Certifying Algorithms

- > emit certificate alongside result
- > certificate justifies result and can be verified independently

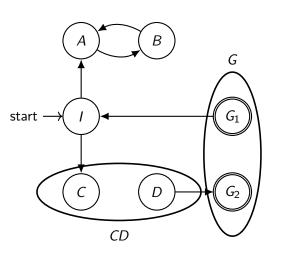
Certifying Algorithms


- > emit certificate alongside result
- > certificate justifies result and can be verified independently

- > partially and fully certifying algorithms
- > plan can serve as certificate

SymPA (Álvaro Torralba)

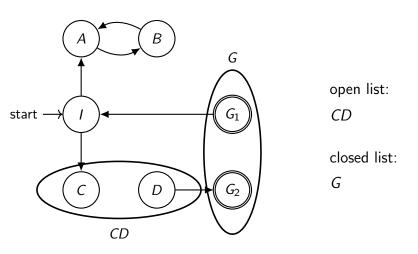
- > Symbolic Perimeter Abstractions
- > forward and backward breadth first searches

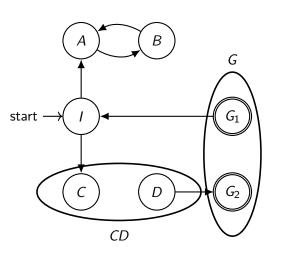

- > returns "solvable"
- or "unsolvable"

Certifying SymPA

- > Symbolic Perimeter Abstractions
- > forward and backward breadth first searches

- > returns plan
- > or unsolvability certificate

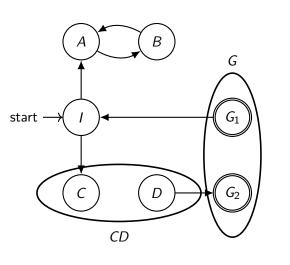



open list:

G

closed list:

-

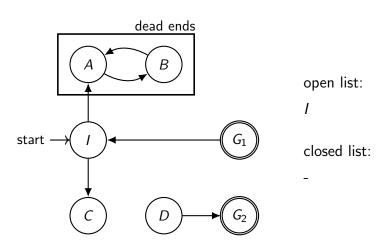


open list:

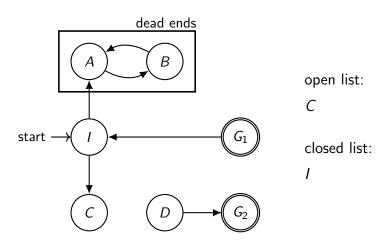
1

closed list:

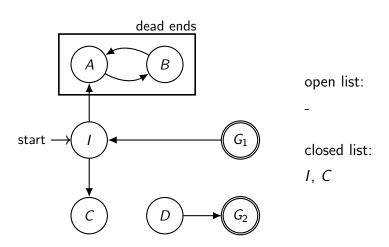
G, CD


open list:

_


closed list:

 $G,\ CD,\ I$


Forward Search

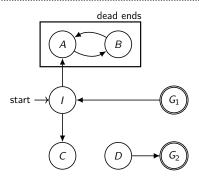
Forward Search

Forward Search

Unsolvability Proof System (Salomé Eriksson)

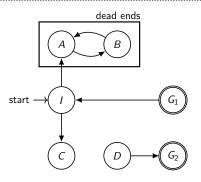
- > proofs serve as unsolvability certificates
- > core concept: dead states

Unsolvability Proof System (Salomé Eriksson)

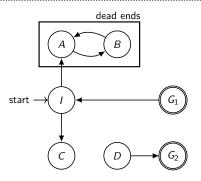

- > proofs serve as unsolvability certificates
- > core concept: dead states
- > initial state or all goal states dead ⇒ task unsolvable

- **D** is dead
 - ,
- > CL is dead
 - >
- > initial state is in **CL**

 $\mathbf{D} = \mathsf{set} \ \mathsf{of} \ \mathsf{dead} \ \mathsf{ends}, \ \mathbf{CL} = \mathsf{closed} \ \mathsf{list}$


- **D** is dead
 - **D** contains no goal state
 - D cannot be left
- > CL is dead

> initial state is in CL


open list: closed list: 1. C

- > D is dead
 - > D contains no goal state
 - > D cannot be left
- > CL is dead
 - > CL contains no goal state
 - all successors of CL either in CL itself or in D
- > initial state is in CL

open list: closed list: - I, C

- > **D** is dead
 - > D contains no goal state
 - > D cannot be left
- > CL is dead
 - > CL contains no goal state
 - all successors of CL either in CL itself or in D
- > initial state is in CL

open list: closed list: - I, C

- D is dead
 - > D contains no goal state
 - > D cannot be left
- > CL is dead
 - > CL contains no goal state
 - all successors of CL either in CL itself or in D
- > initial state is in CL
- ⇒ initial state dead

- D is dead
 - > D contains no goal state
 - > D cannot be left
- > CL is dead
 - > CL contains no goal state
 - all successors of CL either in CL itself or in D
- > initial state is in CL
- ⇒ initial state dead
- ⇒ task unsolvable

 $\mathbf{D} = \mathsf{set}$ of dead ends, $\mathbf{CL} = \mathsf{closed}$ list

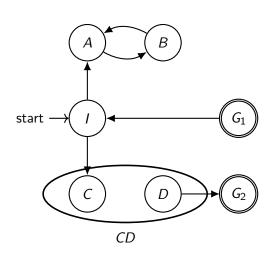
Evaluation

average time

total number of tasks	352	search	1.11s
returned "unsolvable"	104	certificate	2.74s
valid certificates	83	generation	
		verification	33.80s

Remaining Errors

- **D** is dead
 - > D contains no goal state D cannot be left
- CL is dead
 - > **CL** contains no goal state
 - all successors of CL either
 - in **CL** itself or in **D**
- initial state is in CL
- ⇒ initial state dead
- ⇒ task unsolvable

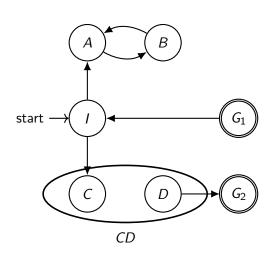

Summary

- > fully certifying version of SymPA
- > verifiable unsolvability proofs

Questions?

Comments?

Discussion!

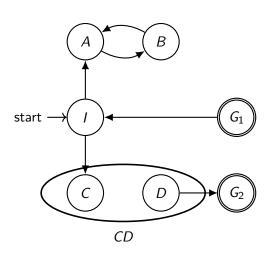


abstract forward search

open list: / closed list: - D_{bw} : -

abstract backward search

open list: G_1 , G_2 closed list: - D_{fw} : -



abstract forward search

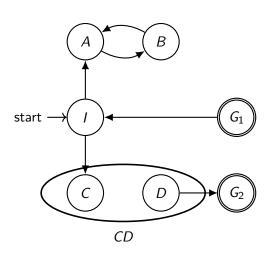
open list: A, CD closed list: I D_{bw} : -

abstract backward search

open list: G_1 , G_2 closed list: - D_{fw} : -

abstract forward search

open list: B, CD closed list: I, A


 D_{bw} : -

abstract backward search

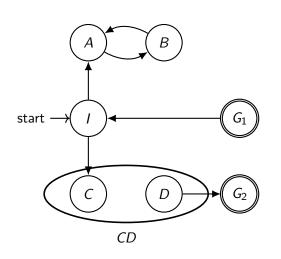
open list: G_1 , G_2 closed list: -

n .

 D_{fw} : -

abstract forward search

open list: CD closed list: I, A, B


 D_{bw} : -

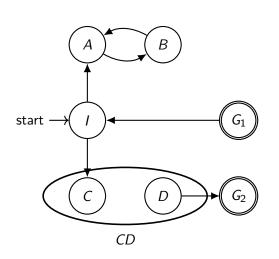
abstract backward search

open list: G_1 , G_2

closed list: -

 D_{fw} : -

abstract forward search

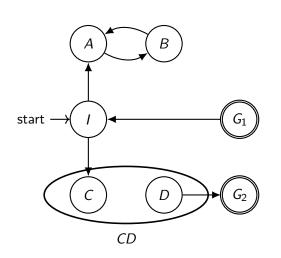

open list: G_2 I, A, B, closed list: CD

 D_{bw} :

abstract backward search

open list: G_1 , G_2 closed list: -

 D_{fw} :

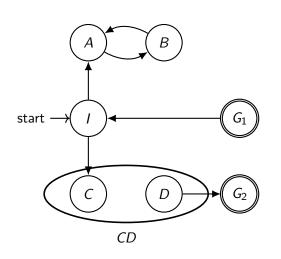

abstract forward search

open list: - I, A, B, CD, G_2

 D_{bw} : -

abstract backward search

open list: G_1 , G_2 closed list: - D_{fw} : -

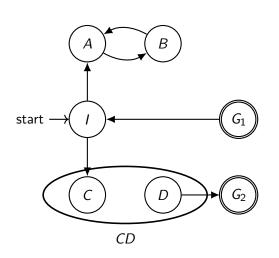


abstract forward search

open list: - I, A, B, CD, G_2 D_{bw} : G_1

abstract backward search

open list: G_1 , G_2 closed list: - D_{fw} : -


abstract forward search

open list: - I, A, B, CD, G_2

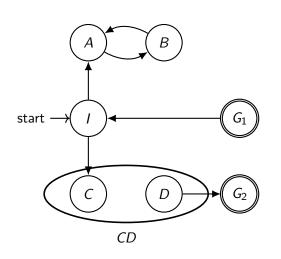
 D_{bw} : G_1

abstract backward search

open list: G_2 closed list: - D_{fw} : -

abstract forward search

open list:

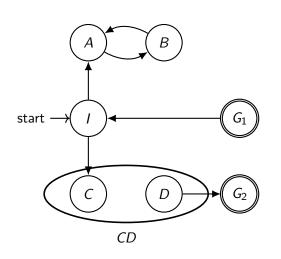

I, A, B, closed list: CD, G_2

 D_{bw} :

abstract backward search

open list: closed list: G_2

 D_{fw} :

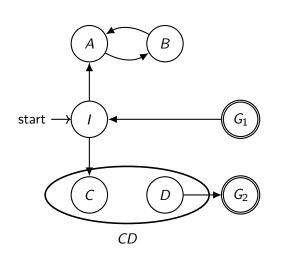


abstract forward search

open list: - I, A, B, CD, G_2 D_{bw} : G_1

abstract backward search

open list: I closed list: G_2 , CD D_{fw} : -



abstract forward search

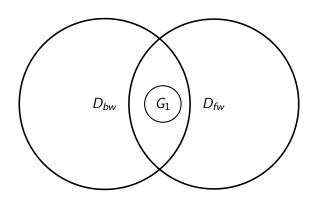
open list: - I, A, B, CD, G_2 D_{bw} : G_1

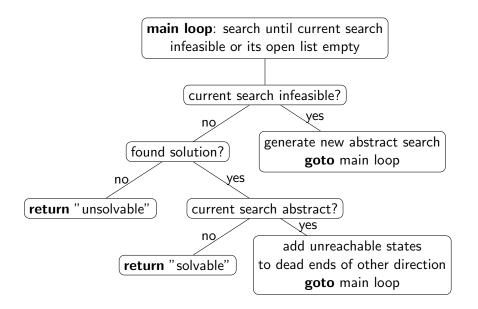
abstract backward search

open list: - closed list: G_2 , CD, I D_{f_W} : -

abstract forward search

open list: - I, A, B, CD, G_2

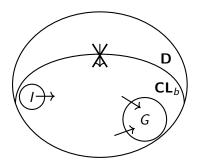

 D_{bw} : G_1


abstract backward search

open list:

closed list: G_2 , CD, I

 D_{fw} : A, B, G_1


SymPA Algorithm

- 1. search until current search infeasible or its open list empty
- if current search infeasible:
- start new abstract search
- 4. **goto** 1.
- 5. **if** found no solution:
- return "unsolvable"
- 7. **if** search is not abstract:
- return "solvable"
- 9. add unreachable states to dead ends of other direction
- 10. goto 1.

Certifying SymPA

- 1. search until current search infeasible or its open list empty
- if current search infeasible:
- 3. start new abstract search
- 4. **goto** 1.
- 5. **if** found no solution:
- 6. **return** "unsolvable" generate unsolvability certificate
- 7. **if** search is not abstract:
- 8. **return** "solvable" generate plan
- 9. add unreachable states to dead ends of other direction
- 10. **goto** 1.

Forward Dead Ends

Implementation

- > only unsolvability certificates
- > certificate consists of three files
- > conversion multivalued variables to binary variables