
Under-Approximation Refinement
for Timed Automata

Bachelor’s thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Artificial Intelligence

http://ai.cs.unibas.ch/

Examiner: Prof. Dr. Malte Helmert

Supervisor: Dr. Martin Wehrle

Kevin Grimm

kevin.grimm@unibas.ch

12-058-053

12.01.2017

Acknowledgements

I would like to thank my supervisor Dr. Martin Wehrle for all the help and advice

he gave me during the weekly meetings. He also provided me with a lot of useful

background information about Mcta which made an implementation of the algorithm

possible.

Also I would like to thank Prof. Dr. Malte Helmert for providing me with the

opportunity to work on this Bachelor’s thesis.

Abstract

Validating real-time systems is an important and complex task which becomes ex-

ponentially harder with increasing sizes of systems. Therefore finding an automated

approach to check real-time systems for possible errors is crucial. The behaviour of

such real-time systems can be modelled with timed automata.

This thesis adapts and implements the under-approximation refinement algorithm

developed for search based planners proposed by Heusner et al. to find error states

in timed automata via the directed model checking approach. The evaluation com-

pares the algorithm to already existing search methods and shows that a basic

under-approximation refinement algorithm yields a competitive search method for

directed model checking which is both fast and memory efficient. Additionally we

illustrate that with the introduction of some minor alterations the proposed under-

approximation refinement algorithm can be further improved.

Table of Contents

Acknowledgements ii

Abstract iii

1 Introduction 1

2 Preliminaries 3

2.1 Timed Automata . 3

2.1.1 Example . 4

2.1.2 Syntax . 5

2.1.3 State Space . 6

2.2 Greedy Best-First Search . 8

2.2.1 Algorithm . 8

2.2.2 Properties . 8

2.3 Directed Model Checking . 9

2.3.1 Mcta . 9

2.3.2 Duplicates . 10

3 Under-Approximation Refinement 12

3.1 Idea . 12

3.2 Definition . 13

3.3 Algorithm . 13

3.4 Implementation Details . 16

4 Evaluation 17

4.1 Setup . 17

4.2 Results for the hU Heuristic . 18

4.2.1 Error Traces . 18

4.2.2 Allowed Transitions . 19

4.2.3 Heuristic Curves . 21

4.2.4 Verification . 23

4.3 Results for the null Heuristic . 23

Table of Contents v

4.4 Results for the dU Heuristic . 25

4.5 Plateau Guard . 26

5 Conclusion 28

Bibliography 29

Declaration on Scientific Integrity 31

1
Introduction

Real-time systems are often used for safety related tasks. It is crucial that such

systems are validated to contain no errors. For example, the embedded system that

controls an air-bag has to trigger the activation of the air-bag during a small time

frame. It is not possible for the system to fulfil its potentially life-saving purpose

if the explosion of the air-bag is triggered to early or even too late. Searching for

bugs can be done manually for small systems but is often a challenging task for

systems of practical size. To automate the validation the real-time systems have to

be modelled.

Timed automata are an extension of finite automata and can be used to model real-

time systems [1]. To automatically find error states in timed automata the directed

model checking approach can be used [2–4]. With the help of a search algorithm

and heuristics the directed model checking approach expands the state space of a

system to find error states. A major problem of directed model checking is the

state explosion problem [5]. It is caused by the fact that the state space grows

exponentially in size compared to the task. There are many proposed solutions for

this problem and many of them exploit the observation that the used operators to

find an error state are often just a small subset of all available operators [6, 7]. One

of these so called transition-based algorithms is the under-approximation refinement

algorithm by Heusner et al. [8].

To keep the state space small the proposed algorithm restricts the available operators

and iteratively adds more if needed. This approach leads to good results in classical

planning and could therefore also be a viable option to the similar field of directed

model checking.

In this thesis we first cover the background for adapting the under-approximation

refinement algorithm for directed model checking of timed automata. In a second

step we define an under-approximation and describe a basic algorithm which im-

plements the under-approximation refinement idea for concurrent systems of timed

Introduction 2

automata. We then evaluate the algorithm with several benchmark sets and compare

the results to other directed model checking algorithms. In a last part we propose

a small alteration to the previously implemented under-approximation refinement

algorithm and evaluate the results.

2
Preliminaries

This chapter introduces the background needed for this thesis. First, we describe

timed automata and provide a fundamental definition. We also present a greedy

best-first search algorithm which serves as the fundamental structure for the under-

approximation refinement algorithm. In the last part of this chapter we show the

concept of directed model checking and introduce the verification tool Mcta [9] in

which the under-approximation algorithm is later implemented.

2.1 Timed Automata
Timed automata are an extension of finite automata [1]. They are used to model

real-time systems. Like a finite automaton, a timed automaton consists of locations,

edges and a set of inputs. Additionally, a timed automaton is extended with a finite

set of real-valued variables called clocks. This addition allows the modelling of real-

time based systems.

Clock values are initially set to zero when the system is started. All clocks increase

simultaneously at the same speed while the system is running. With the clock

variables also clock constraints are introduced. An edge can only be taken if the

clock values satisfy the clock constraints of the corresponding edge. Additionally,

we use a definition of timed automata extended by bounded integer variables. A

timed automaton features a set of integer variables which have an integer value

and a domain assigned. Each edge can have an integer guard consisting of integer

constraints. An edge can only be taken if the integer constraints and the clock

constraints are satisfied. If an edge is taken, the edge effects are triggered. These

effects can reset a subset of clock values to zero and also assign new integer values

to a subset of the integer variables [1, 10].

Preliminaries 4

2.1.1 Example
In Fig. 2.1a, a timed automaton is initiated with two clock variables x and y. The

automaton also has an integer variable a which is initially set to 0. The automaton

starts in the location start and has two options to proceed. Either it makes a delay

transition and therefore stays in the same location only increasing the clock values

or it takes an edge if the constraints allow it and makes an action transition.

The first action transition can be taken as long as the clock variable x has a value

between 2 and 10. While this constraint is not satisfied the automaton has to make

delay transitions. If the first edge is taken, the values of x and y are set to 0. It

is also possible that none or just a subset of the clock variables are reset as can be

seen in the edge connecting the locations 1 and 2. The edge between the location 2

and start shows an integer constraint which requires that a has the value 1. This

edge also has an integer-assignment effect that sets the integer variable a to 0.

a) Timed Automaton b) Timed Safety Automaton

Figure 2.1: Example of timed automata with two clock variables x and y and one
integer variable a.

It is important to note that both clock constraints and integer constraints are only

enabling and not forcing, thus the automaton could just be idling in any location

while only taking delay transitions. This problem can be solved by introducing

local-timing constraints called location invariants.

For example in Fig. 2.1b, location invariants are introduced. Therefore the timed

automaton is not allowed to idle in any location while only taking delay transitions.

This leads to the invariant conditions that the start location has to be left before x

reaches the value 10 and the location 1 has to be left while the clock variable x is

smaller or equal to the value of 5.

The definition of timed automata with location invariants is often referred to as

timed safety automata [1]. For simplicity we use the term timed automata in this

thesis synonymously for timed automata with location invariants.

Preliminaries 5

2.1.2 Syntax
There are many definitions for timed automata. We use a definition and notation

similar to the one of Bengtsson and Yi [1] extended by integer variables.

A clock constraint is a formula of the form x ∼ n or x − y ∼ n, where {x, y} ∈ C
are clock variables, n ∈ N and ∼∈ {<,≤,==,≥, >}.
An integer constraint is a formula of the form v1 ∼ n or v1 ∼ v2, where {v1, v2} ∈ V
are integer variables, n ∈ N and ∼∈ {<,≤,==,≥, >}.
An integer assignment is an expression of the form v1 := n, where v1 ∈ V is an

integer variable, dom(v1) is the domain of v1 and n ∈ dom(v1) is an integer value.

A clock reset is an expression of the form x := 0, where x ∈ C is a clock variable.

A location invariant is a conjunction of clock constraints of the form x ∼ n, where

x ∈ C is a clock variable, n ∈ N and ∼∈ {<,≤}.
For a set Y , the powerset of Y is denoted with 2Y .

Definition 2.1. A timed automaton is a 7-tuple 〈L,Σ, C, V,E, I, l0〉, where

• L is a finite set of locations,

• Σ is a finite alphabet standing for synchronisation labels,

• C is a finite and real-valued set of variables standing for clocks,

• V is a set of bounded integer variables with a domain dom(vi) for each vi ∈ V ,

• E ⊆ L× Σ×B(C)×B(V)× 2C × IA(V)× L is a set of edges, where

– B(C) is a set of clock constraints,

– B(V) is a set of integer constraints,

– 2C is a set of clock resets and

– IA(V) is a set of integer assignments,

• I : L −→ LV (C) assigns location invariants, where LV (C) is a set of location

invariants, and

• l0 ∈ L is the initial location.

An edge can be written as l
cg,ig,a,i,r−−−−−−→ l′ with a clock guard cg ⊆ B(C), an integer

guard ig ⊆ B(V), an action a ∈ Σ, a set of integer assignments i ⊆ IA(V) and a set

of clock resets r ⊆ 2C .

The synchronisation labels in Σ are used for running concurrent systems of timed

automata as explained later.

Preliminaries 6

2.1.3 State Space
To model the behaviour of timed automata we use state spaces. A state space of a

timed automaton consists of states and two types of transitions. The first transition

is called a delay transition, which has no other effects than increasing the clock

values, and retaining locations and integer values. The other transition type is the

action transition which can have the effect of integer assignments, clock resets and

location changes.

The following definition of the exact state space is based on Bengtsson and Yi’s

definition of the operational semantics [1]. To define the exact state space we need

to first introduce the terms integer valuation and clock assignment.

An integer valuation is of the form IV : V −→dom(V), where dom(V) =
⋃

iv∈V dom(iv).

It maps each integer variable to an integer value of the corresponding domain. With

an integer valuation v we use v ∈ ig to denote that each integer variable in v satisfies

the integer guard ig. For an integer valuation v and a set of integer assignments i,

the application of i to v assigns each variable x in i a new integer value given by i(x)

and retains the other integer variables. The resulting integer valuation is denoted

by [i]v.

A clock assignment maps each clock variable x ∈ C to a positive real. With a clock

assignment u we use u ∈ g to denote that each clock variable in u satisfies the guard

g. A guard g can either be a clock guard cg ⊆ B(C) or an assigned set of location

invariants I(l), where l ∈ L is a location. The assignment where each clock variable

x ∈ C gets increased by d ∈ R+ is denoted by u+ d. For a clock assignment u and

a set of clock resets r, the application of r to u maps all clocks in r to 0 and the

other clock variables remain unchanged. The resulting clock assignment is denoted

by [r]u.

Definition 2.2. (exact state space) Let T = 〈L,Σ, C, V,E, I, l0〉 be a timed au-

tomaton. The state space of T is defined as a transition system where states are

triples 〈l, v, u〉, with l ∈ L, v is an integer valuation and u is a clock assignment.

There are two different transition types:

• 〈l, v, u〉 d−→ 〈l, v, u+ d〉 if u ∈ I(l) and (u+ d) ∈ I(l) for d ∈ R+

• 〈l, v, u〉 a−→ 〈l′, v′, u′〉 if l
cg,ig,a,i,r−−−−−−→ l′, u ∈ I(l), u ∈ cg, v ∈ ig, u′ = [r]u, v′ = [i]v

and u′ ∈ I(l′)

One of the most common questions about a timed automaton is the reachability of

a given final state. This is a difficult task to solve especially for large systems.

Definition 2.3. (reachability) A state 〈l, v, u〉 is reachable for a timed automaton

if there exists a sequence of transitions from the start state 〈l0, v0, u0〉 to a state

〈l, v, φ〉 for the constraint φ ∈ B(C), when u is satisfying φ.

Preliminaries 7

Clock values are real-valued, therefore it may appear that there is an infinite amount

of possible reachable states, which could lead to the assumption that the reachability

problem is undecidable. With the introduction of zones this problem can be solved.

Instead of referring to a state as a triple 〈l, v, u〉 we use zones and define a state as

a triple 〈l, v, z〉. A zone z is a conjunction of constraints that symbolically describes

possible values for all clock variables in u. In other words, a zone provides a zone

constraint for each clock variable. For example, z could be of the form (0 ≤ x ≤
12 ∧ y == 0) and therefore the zone z contains all clock assignments which satisfy

these two zone constraints.

A zone z is a subsumption of a zone z′ if the clock assignments contained by z

are a subset of the clock assignments contained in z′. This is the case if all zone

constraints of z′ are implied by z.

Instead of delay and action transitions the finite state space called zone graph only

uses one transition type, which we call zone transition. A zone transition is a

combination of action and delay transitions applied to a zone graph.

Definition 2.4. (zone graph) Let T = 〈L,Σ, C, V,E, I, l0〉 be a timed automaton.

A zone graph of T is a transition system where states are triples 〈l, v, z〉, with l ∈ L,

v is a integer valuation and z is a zone. A zone transition is defined as:

• 〈l, v, z〉 a−→ 〈l′, v′, z′〉 if l
cg,ig,a,i,r−−−−−−→ l′, z ∈ cg, v ∈ ig, v′ = [i]v, where

– each clock x of z gets its lower bound in z′ by the smallest possible bound

of cg, r and the original lower bound of x in z, and

– each clock x of z gets its upper bound in z′ by I(l′).

We distinguish between two main transition types. The zone transitions refer to

transitions between states of a zone graph. In contrast, structural transitions refer

to the transitions induced by the edges of a concurrent system of timed automata.

We define the structural transitions of a concurrent system as either synchronous

or asynchronous. A synchronous structural transition consists of two edges from

different automata with the same synchronisation labels, whereas an asynchronous

structural transition only consists of one edge with a special void label. The syn-

chronisation labels are given in Σ.

For simplicity we use the term transition for a structural transition and otherwise

use the explicit term zone transition.1

1 In classical state space search and planning, structural transitions correspond to operators,
whereas zone transitions correspond to transitions between states in the state space.

Preliminaries 8

2.2 Greedy Best-First Search
Greedy best-first search (GBFS) is a simple and common search algorithm in plan-

ning, used for finding a trace to a goal state in a state space. It builds the algorith-

mic base of the under-approximation refinement algorithm and is therefore essential.

GBFS always tries to expand the most promising node in our state space graph. In

our case this is a state with best heuristic value [11].

2.2.1 Algorithm
The GBFS algorithm, as seen in Algorithm 1, uses two lists, one to store already

explored states and one to store non-explored states. Since we always want to explore

the most promising state, it is effective to implement the open list as a sorted list,

for example as a priority queue. The algorithm starts in an initial state and always

expands the state with the lowest heuristic value. After a state gets extracted from

the open list (line 5) we check if it is a goal state (line 6–7). This ensures that we

do not unnecessarily expand states which already satisfy our goal. If the state is

not a goal state, we check if we have already explored it (line 8) and if this is not

the case, we expand its successors. If a child state is not contained in the closed list

and therefore not already explored, we insert it into the open list.

Algorithm 1 Greedy Best-First Search

1: procedure (explore())
2: openList = [initialState]
3: closedList = []
4: while NOT openList.isEmpty() do
5: state = openList.popMin()
6: if isGoal(state) then
7: return trace(state)

8: if NOT closedList.contains(state) then
9: closedList.insert(state)

10: for each child ∈ successors(state) do
11: if NOT closedList.contains(state) then
12: openList.insert(child)

2.2.2 Properties
The GBFS algorithm’s properties mainly depend on its heuristic function. If the

heuristic is safe and therefore the heuristic only assigns the infinite value to states

that are unreachable, the algorithm is complete and ensures to find a solution if it

exists. Since we only consider the heuristic value and not the path length the GBFS

algorithm is not optimal. With a good heuristic function the GFBS algorithm leads

to a solution very fast.

Preliminaries 9

GBFS has a problem when it encounters local minima or plateaus. A local minimum

is reached if all successors of an explored state have an heuristic value that is higher

compared to the heuristic value of the explored state. Similar to a local minimum, a

plateau is reached if all successors of an explored state have the same heuristic value

as the explored state itself. In such a case the GBFS algorithm wanders without

any real direction to a goal state and therefore loses a lot of performance.

2.3 Directed Model Checking
The goal of a verification tool is to verify the correctness of a system. This task

grows of importance since systems are increasing in size and complexity. Model

checking can be done manually which is a strenuous task for big systems since the

number of states grows exponentially to the size and complexity of the systems. A

model checker should return the error trace if a bug is found. With the help of this

error trace the bug can be reproduced and fixed.

Directed model checking is an approach to the problem of finding error states. It is

used to find short error traces, in other words to find paths to error states as fast as

possible. To do so we use a search algorithm and a heuristic distance function which

is guided to reachable error states. The heuristic function assigns a value to each

state, which reflects a distance estimation to the closest error states. Therefore states

with a low heuristic value are preferably explored. In principle this is a heuristic

search and therefore we can use algorithms like GBFS and A* [12]. This approach

leads to error states quickly but has a downside: the whole state space has to be

explored to prove the correctness of a system.

Directed model checking has two parameters which determine its effectiveness. One

is the abstraction to compute the distance heuristic and the other one is the search

algorithm. This leads to a lot of similarities with planning algorithms in artificial

intelligence that use heuristics. [5, 6]

2.3.1 Mcta
Mcta is a verification tool for timed automata [9]. It is optimised to find short traces

to error states and therefore to help with bug finding in real-time systems. Mcta

has implemented directed model checking algorithms and heuristics, and is easily

expandable [3]. To find paths to error states it uses the directed model checking

approach. The GBFS algorithm of Mcta is used as a base for the implementation

of the under-approximation refinement algorithm.

One of the implemented algorithms in Mcta besides GBFS is the useless transitions

algorithm (UT) [6, 13]. UT is a transition-based algorithm that tries to estimate

useless transitions with the help of a heuristic function. UT defines a structural

Preliminaries 10

transition t, that induces a zone transition from a state s to its successor state s′,

as relatively useless if the heuristic value in s in an under-approximated system,

where t has been removed, is lower or equal compared to the heuristic value of

s′ in the original system. If s′ is reached by such a relatively useless transition,

the algorithm penalises s′ by adding a penalty value to its heuristic value, leading

to similarities with A*. While UT uses under-approximations adaptively in every

state and dependent on the previously applied transition, the overall search is still

performed on the original zone graph induced by the problem.

Mcta uses the synchronous and asynchronous transitions to generate a zone graph of

a given concurrent system of timed automata on-the-fly. Therefore it is possible to

run concurrent systems without having to build the product of the timed automata.

This is especially useful since building the product of several automata can be very

complex and time consuming due to the state explosion problem.

2.3.2 Duplicates
The duplicate detection in directed model checking used for timed automata does

not only detect states that are exactly the same, but also states with subsumptions

of zones. For example, the expansion of a zone graph of the timed automaton from

Fig. 2.1b is shown in Fig. 2.2. The red marked state represents a subsumption of

the state with the location start and is therefore detected as a duplicate. This is

the case since all the integer valuations and location invariants of the red marked

state are identical to the one of the initial state except for the location invariant

relating to y. The clock variable y in the red marked state has a lower bound with

the value 5 and y in the initial state has a lower bound of 0. This implies that all

the values that y can be assigned to in the red marked state are also possible in the

initial state. Therefore the zone of the red marked state is a subsumption of the

zone given by the initial state.

Preliminaries 11

Figure 2.2: Zone graph of the timed automaton from Fig. 2.1b.

3
Under-Approximation Refinement

This chapter covers the idea behind the under-approximation refinement approach

and shows how under-approximations are defined for concurrent systems of timed

automata. Furthermore, we present a basic under-approximation algorithm which

was implemented for the evaluation.

3.1 Idea
One major problem in planning is the state explosion problem [14]. In other words,

the size of a state space grows exponentially compared to the planning problem

size. A common solution to this problem is to not just evaluate the states but also

evaluate transitions and preferably apply transitions that seem to be guided to a

solution [8, 13, 15]. This approach is based on the observation that in most planning

tasks the amount of used transitions to find a solution is often just a small subset of

all available transitions. Table 3.1 shows that the same observation also applies to

directed model checking for several timed automata case studies. Although almost

75% of the available transitions are needed for the studies N and M , we observe

that the number of needed transitions is very low for the remaining case studies.

The under-approximation refinement approach proposed by Heusner et al. [8] tries

to exploit this observation. The under-approximation algorithm allows only a small

subset of all transitions to be applicable. If more transitions are needed to find

an error state, the so called refinement guard is triggered and more transitions are

added. Eventually if necessary all transitions are applied and therefore the algorithm

stays complete. Since this process only limits the available transitions during the

search process, all found solutions are still valid.

Whilst the algorithm was originally designed for planning tasks we adapt it to di-

rected model checking tasks to find error traces in concurrent systems of timed

automata by implementing it into Mcta.

Under-Approximation Refinement 13

GBFS UT Search

Ø A 12.74% 10.39%

Ø C 16.25% 11.58%

Ø D 11.17% 8.37%

Ø N 74.41% 71.64%

Ø M 75.63% 72.85%

Table 3.1: Overview of the percentage of used transitions in a solution for five
different case studies called A,C,D,N and M . Transitions are denoted by the syn-
chronous and asynchronous transitions of the concurrent system of timed automata.
Both, the greedy best-first search (GBFS) and the useless transitions (UT) algorithm
are shown. UT is a transition-based directed model checking algorithm implemented
in Mcta.

3.2 Definition
An under-approximation of a timed automaton A = 〈L,Σ, C, V,E, I, l0〉 is a timed

automaton UA = 〈L,Σ, C, V,E′, I, l0〉, where E′ is a subset of E. The error trace

of an under-approximation is always an error trace of the original timed automaton

since an under-approximation is at least as strict as the original timed automaton.

This implies that the zone graph of an under-approximation only consists of the

states and transitions of the zone graph of the original timed automaton and is

therefore always lesser or equal in size. If a state is not reachable in an under-

approximation UA, we cannot infer that the same state is also not reachable in

A. Therefore a validation of a timed automaton cannot be done on an under-

approximation of the timed automaton.

An under-approximation of a concurrent system of timed automata M = {A1, A2,

..., An}, where each Ai with i ∈ n denotes a timed automaton, is a concurrent

system of timed automata UM = {UA1, UA2, ..., UAn}, where each UAi with i ∈ n
denotes an under-approximation of a timed automatonAi. A zone graph of an under-

approximation of a concurrent system of timed automata has the same properties

as a zone graph of an under-approximation of timed automata.

3.3 Algorithm
It is possible to implement the idea behind the under-approximation refinement

algorithm in many different ways. There are three basic components for an under-

approximation refinement algorithm: a search algorithm, a refinement guard and

a refinement strategy. The search algorithm expands the zone graph of an under-

approximation of a concurrent system. The refinement guard determines when a

refinement step has to be done. Lastly, the refinement strategy evaluates and adds

transitions to the transition set of the last under-approximation therefore creating

a new under-approximation.

Under-Approximation Refinement 14

The following Algorithm 2 is easy to implement and uses greedy best-first search

as its base search algorithm. The refinement strategy utilises relaxed plans to find

possibly useful transitions.

The initially allowed transitions are given by making a relaxed plan of the initial

state and allowing all used transitions in the trace of the relaxed plan (line 4). The

refinement guard is triggered if the algorithm reaches a plateau or local minimum.

This is the case if no states with a lower heuristic value are inserted into the open

list. It is also triggered if the open list gets empty, this is needed such that the

algorithm stays complete (line 14).

As a refinement strategy the algorithm makes a relaxed plan of each state in the

closed list with a minimal heuristic value and allowing the transitions used in the

trace of each relaxed solution (line 20–24). If no new transitions are found in such

a refinement step, we continue by making relaxed plans of each state in the closed

list with a minimal heuristic value plus 1 (line 28–29). This gets repeated until a

refined transition subset is found or the closed list is scanned completely.

If a refined transition subset is found, we reopen all states of the closed list which

have a newly allowed transition (line 25–27). If no new transitions are allowed and

the open list is not empty, we continue the search without a refined subset.

If the open list is empty and no new transitions were found, we restart the refinement

process (line 16–17) but this time adding all applicable transitions instead of only

adding transitions used in relaxed plans (line 31–40). This also ensures that in

the worst case we add all transitions to the subset and the algorithm hence stays

complete.

Each refinement step only adds more transitions, therefore the already expanded

zone graph can be further used for a less strict under-approximation and is not

needed to be expanded again.

The use of relaxed plans in the refinement strategy is based on the assumption that

the traces of relaxed plans contain mostly transitions which also lead to an error

state in the real zone graph.

Under-Approximation Refinement 15

Algorithm 2 Basic implementation of the under-approximation refinement idea
using GBFS as a base algorithm.

1: procedure (explore())
2: openList = []
3: closedList = [initialState]
4: refineOperators(initialState.heurValue())
5: while NOT openList.isEmpty() do
6: state = openList.popMin()
7: if isGoal(state) then
8: return trace(state)

9: if NOT closedList.contains(state) then
10: closedList.insert(state)
11: for each child ∈ successors(state) do
12: if NOT closedList.contains(state) then
13: openList.insert(child)

14: if openList.IsEmpty() OR NOT openList.betterStateInserted() then
15: refineOperators(closed.minHeurValue())

16: if openList.IsEmpty() then
17: addApplicableOperators(closed.minHeurValue())

18:

19: procedure (refineOperators(heurValue))
20: newOperators = FALSE
21: stateSubset = openList.getStates(heurValue)
22: for each state ∈ stateSubset do
23: relaxedPlan = relaxedPlan(state)
24: if addNewOperators(relaxedPlan) then
25: openList.insert(state)
26: closedList.remove(state)
27: newOperators = TRUE

28: if NOT newOperators AND heurValue != closedList.maxHeurValue() then
29: refineOperators(heurValue++)

30:

31: procedure (addApplicableOperators(heurValue))
32: newOperators = FALSE
33: stateSubset = openList.getStates(heurValue)
34: for each state ∈ stateSubset do
35: if addNewOperators(state) then
36: openList.insert(state)
37: closedList.remove(state)
38: newOperators = TRUE

39: if NOT newOperators AND heurValue != closedList.maxHeurValue() then
40: addApplicableOperators(heurValue++)

Under-Approximation Refinement 16

3.4 Implementation Details
For the implementation of the greedy best-first search algorithm usually a priority

queue is used as an open list and a hash list is used for the closed list. This has

the advantage that inserting duplicates into the closed list can be easily avoided by

calculating the hash value of a state and comparing it with the hash values in the

closed list. Thus no iteration of the closed list is needed, since the hash values can

be stored in an order.

For the under-approximation algorithm proposed in the previous section we have to

be able to reinsert states of the closed list into the open list and therefore also to

remove states from the closed list. Doing this efficiently with a hash list is a difficult

task since we only store the hash values and not the states themselves.

To have the efficiency of a hash list and still being able to get states back out of the

list, we introduce a second priority queue ”notComputed”. It stores all generated

states that have not been used yet in a refinement step to allow the transitions

of their relaxed plans. For the refinement we now only have to iterate through the

”notComputed”list, create relaxed plans of the states with the desired heuristic value

and remove those from the ”notComputed”list. This ”notComputed”list allows us

to create relaxed plans of states in the closed list and also has the benefit that we do

not need to iterate through the closed list to search states with a desired heuristic

value.

As a last step of the refinement we need to reinsert all the states of the closed

list which have a newly applicable transition available into the open list. Since we

cannot do this with our hash list, we introduce a new list ”permittedStates”. It

contains all the states which were successors of explored states from the open list

but were not yet allowed, since the generating transition was not part of the allowed

transition subset. Instead of reinserting states of the closed list into the open list,

we now iterate at the end of each refinement through the ”permittedStates”list and

reinsert those states into the open list, which have a newly allowed transition from

its predecessor to the state itself.

4
Evaluation

To evaluate the under-approximation refinement algorithm (UA) we implemented

it into the Mcta tool [3]. It is compared to the already implemented algorithms

greedy best-first search (GBFS) and useless transitions (UT) [6, 13] with the pro-

vided benchmark set of Mcta’s website [16]. The comparison with GBFS shows the

differences to a simple algorithm and the comparison with UT leads to interesting

insights since UT is a fast transition-based algorithm.

4.1 Setup
The evaluation system is a 64-bit virtual machine running Ubuntu with a 4GB

memory bound, 6 logical processing cores of an Intel Core i7-4770k CPU with 3.5GHz

and a timeout of 30 minutes. All tests run on the same system. To reduce noise

each test is conducted three times and the shown test results are the logs of the tests

with the median in time.

The number of explored states of the under-approximation refinement algorithm is

given by the states which have been extracted of the open list. It is not taken into

account if such an extracted state has any allowed successors. Each state is counted

at most once as explored.

The algorithms are tested on six different test sets which each contain several tests

themselves. The test sets C, D and E are all from the same industrial case study,

where a real-time controller system of tram tracks was examined. Test set E only

contains systems without any reachable error states. The set D is a harder version

of the systems in test set C. The sets M and N model a real-time communication

protocol with the test set N being a harder version of M. Test set A is a toy set

which models arbiter trees.

The results were obtained using the command line option −c2 which enables cashing

for the discrete part of states. This option leads to better runtimes since the heuristic

values of similar states do not have to be recomputed.

Evaluation 18

4.2 Results for the hU Heuristic
To evaluate the UA algorithm, we compare it to GBFS and UT. In this section we

use the hU heuristic which is the most informed heuristic of Mcta that the current

implementation of UA supports. Therefore using the hU heuristic should show the

best performing results. The hU heuristic is an adaptation of the FF heuristic for

timed automata and based on relaxed plans which has the downside of a lot of

computational effort to compute the heuristic values of states [4].

4.2.1 Error Traces
We compare the ability to find error traces by testing the three algorithms (GBFS,

UT and UA) on the test sets A, C, D, N and M, which all contain systems with

reachable error states.

Table 4.1 leads to the observation that UA almost always returns an error trace

while not exceeding the memory bound, with the exception being test D9. The

runtimes of UA are reproducable and overall seem to be competitive compared to

the runtimes of UT. Only the test set D leads to some inconsistencies where the

runtime does not seem to be dependent on the difficulty of the problems.

The comparison with GBFS shows that in almost every test UA leads to a better

runtime, only the two tests D7 and D8 are completed faster by the GBFS algorithm.

In those tests GBFS also outperforms UT which illustrates that GBFS can deliver

good results if the heuristic values lead to a relatively straight path to an error state

without many plateaus or local minima.

The runtimes of UT are similar to ones of UA, although in most tests UA leads to

even better runtimes than UT. This can seem a bit strange since UA almost always

explores far more states than UT but can be explained with a less time intensive

computation of useful transitions of UA compared to UT. Both algorithms have

some difficulties to find error states in the test set D, where they have inconsistent

runtimes compared to the difficulty of the tests. This might be due to the GBFS

base algorithm which both UA and UT use and also due to difficulties in finding

transitions that lead to a close and reachable error state.

The used memory and the number of explored states always have a strong resem-

blance since most of the memory is used for storing states. The memory consumption

of UA is similar to the memory consumption of UT since both restrain the usage

of transitions and therefore the zone graph is kept rather small. The fact that UA

is most of the time exploring far more states than UT and still manages to keep

a similar memory consumption shows that UT needs to store more data than UA.

The used memory of UA is almost in all tests far less than the one of GBFS since

UA finds an error state with much less explored states.

The trace lengths of UA are in most of the tests a bit longer than the ones of UT

Evaluation 19

but in all tests show an improvement over the trace lengths of GBFS.

runtime in s used memory in MB explored states trace length

GBFS UT UA GBFS UT UA GBFS UT UA GBFS UT UA

A2 0.0 0.0 0.0 60 60 60 25 20 20 21 18 18

A3 0.0 0.01 0.0 61 61 61 82 27 46 18 17 17

A4 0.01 0.04 0.01 62 62 62 39 34 131 28 22 23

A5 0.48 0.17 0.08 72 68 72 4027 42 586 47 27 29

A6 - 1.0 1.89 - 91 254 - 50 5564 - 32 35

C1 0.01 0.01 0.01 61 61 61 429 243 239 67 54 55

C2 0.01 0.02 0.01 61 61 61 828 212 239 83 54 55

C3 0.01 0.02 0.01 61 61 61 1033 198 239 79 54 55

C4 0.15 0.02 0.03 64 61 61 12k 174 1117 112 55 64

C5 0.86 0.03 0.04 78 61 61 65k 147 1493 176 61 75

C6 5.46 0.03 0.05 166 61 62 453k 147 1493 432 61 75

C7 45.42 0.04 0.05 974 61 62 4230k 143 1493 924 61 75

C8 31.46 0.32 0.09 758 62 63 3403k 1466 2875 2221 56 161

C9 - 0.36 0.2 - 62 66 - 1575 6119 - 69 169

D1 0.05 0.11 0.02 61 61 61 1344 939 292 96 88 89

D2 3.03 0.15 0.65 98 62 67 112k 843 14k 220 89 203

D3 0.91 0.13 0.06 75 62 62 44k 717 1228 241 89 95

D4 6.36 0.15 3.31 138 62 94 259k 615 83k 410 89 262

D5 0.22 11.76 0.06 64 125 62 4455 87k 720 115 107 108

D6 0.52 - 0.59 67 - 67 12k - 7490 301 - 206

D7 0.82 4.8 2.49 70 80 85 20k 18k 34k 154 109 128

D8 1.01 0.63 121.53 72 64 1186 23k 1883 1808k 259 109 253

D9 - 0.59 - - 64 - - 1533 - - 110 -

M1 0.02 0.06 0.01 61 61 61 7668 4366 1529 71 73 66

M2 0.06 0.05 0.02 63 61 61 18k 2018 3852 119 81 105

M3 0.06 0.39 0.02 63 64 61 19k 17k 4794 124 163 93

M4 0.14 0.5 0.05 68 66 63 46k 15k 12k 160 91 148

N1 0.05 0.09 0.02 62 62 61 9117 5191 1880 99 80 68

N2 0.14 0.09 0.06 66 62 63 23k 3260 8106 154 136 103

N3 0.27 0.41 0.06 69 65 63 43k 19k 7117 147 149 87

N4 1.08 0.46 0.19 88 67 67 152k 15k 25k 314 377 185

Table 4.1: Overview of runtime, used memory, explored states and trace length of
the test sets which contain error states. A ”-” indicates that the test ran out of
memory. The best result per test is presented in bold.

4.2.2 Allowed Transitions
It is important for the UA algorithm to find useful transitions early and efficiently.

In the best case the algorithm only allows transitions that are used in the trace of

an error state to avoid exploring states which make no progress to an error state.

Table 4.2 shows that UA allows only around a third of all transition in almost all

of the tests. This obviously leads to a smaller explored zone graph than the one

of GBFS. In the test sets N and M the UA algorithm allows significantly more

transitions than in the other test sets. This is caused by the fact that the test sets

N and M need over 50% of all transitions in the error trace of a state. This is not

only the case for the UA algorithm but also for GBFS and UT as shown in Table

3.1.

Evaluation 20

allowed used all allowed in % used in %

A2 21 15 73 28.77% 20.55%

A3 32 17 161 19.88% 10.56%

A4 43 23 337 12.76% 6.82%

A5 55 29 689 7.98% 4.21%

A6 82 35 1393 5.89% 2.51%

C1 80 30 240 33.33% 12.5%

C2 80 30 242 33.06% 12.4%

C3 80 30 242 33.06% 12.4%

C4 110 32 278 39.57% 11.51%

C5 92 34 314 29.3% 10.83%

C6 92 34 322 28.57% 10.56%

C7 92 34 330 27.88% 10.3%

C8 124 44 340 36.47% 12.94%

C9 128 46 358 35.75% 12.85%

D1 104 41 478 21.76% 8.58%

D2 220 53 490 44.9% 10.82%

D3 146 44 490 29.8% 8.98%

D4 244 59 500 48.8% 11.8%

D5 128 49 724 17.68% 6.77%

D6 218 65 730 29.86% 8.9%

D7 218 56 736 29.62% 7.61%

D8 356 72 746 47.72% 9.65%

M1 27 24 41 65.85% 58.54%

M2 31 26 44 70.45% 59.09%

M3 30 27 44 68.18% 61.36%

M4 34 29 47 72.34% 61.7%

N1 27 24 41 65.85% 58.54%

N2 32 26 44 72.73% 59.09%

N3 30 27 44 68.18% 61.36%

N4 34 29 47 72.34% 61.7%

Ø 96.42 34.94 340.77 41.88% 25.98%

Table 4.2: This table shows an overiew of the number of allowed transitions from
the under-approximation refinement algorithm. It also presents the number of used
transition in the trace of the found error state.

The sets N and M illustrate that UA is still a viable option if a larger amount of

transitions is needed to find an error state. It is possible to say that UA outperforms

UT in the test sets N and M because a lot of transitions are needed. But this

conclusion can not clearly be drawn since both test sets are from the same case

study and do not deliver enough diverse systems for a reliable conclusion. Fig. 4.1

illustrates that the UA algorithm is able to find almost only useful transition in the

test M4. UA is able to add most of the needed transitions for the error trace in the

first few refinement steps, which is not only typical for the M and N test sets but

Evaluation 21

also for almost all tests in which UA performed really well.

In the tests D2, D4 and D8 the UA algorithm allows over 44% of all transitions. This

explains why the UA algorithm has unusually big runtimes in those tests compared

to their intended difficulty. This is due to a difficulty in finding useful transitions

with relaxed plans as can be seen in Fig. 4.2. Most of the added transitions during

the refinement steps are not used in the trace of the found error state.

Figure 4.1: This diagram shows at which refinement step how many transitions were
added in the test M4 and if they were used in the trace of the found error state.
The transitions are combined in bins of the size 16 to make a visualization possible.
Therefore each bar represents the added transitions of 16 refinement steps.

Figure 4.2: This diagram shows at which refinement step how many transitions were
added in the test D4 and if they were used in the trace of the found error state. The
transitions are combined in bins of the size 150 to make a visualization possible.
Therefore each bar represents the added transitions of 150 refinement steps.

4.2.3 Heuristic Curves
To analyse the heuristic behaviour of the algorithms we examine their heuristic

curves. Fig. 4.3 shows a typical heuristic graph for all tested algorithms. We observe

that the GBFS algorithm can easily get stuck at a plateau and has some difficulty

to find a better state. UT finds a solution without expanding a lot of states but

Evaluation 22

UA is still able to outperform UT in terms of runtime since the calculation of useful

transitions is faster. In most tests this is the reason why UA has good runtimes

even though the algorithm expands more than 10 times more states than UT.

Figure 4.3: A graph that shows the heuristic value of each explored state in a time-
line. The results of the algorithms GBFS, UT and UA are plotted for the test
A5.

Figure 4.4: A graph that shows the heuristic value of each explored state in a time-
line. Only the algorithms UT and UA are plotted for the test A6. In this test GBFS
was not able to find an error state in the given memory bound of 4GB.

In Fig. 4.4 we plot a typical graph of a test where UT performs better than UA.

UT again finds a solution very quickly while UA gets stuck in a local minimum

and needs repeated refinement steps until a way out of the local minimum is found.

This shows that the UA algorithm can still have a problem with plateaus and local

minima if the relaxed plans use similar transitions or even the same transitions that

are already allowed. Therefore it is possible that no useful transitions which lead

out of an plateau are computed and added to the transition set. This observation

causes the assumption that UA could benefit from a different refinement strategy,

for example a strategy similar to the estimation of useless transitions in UT.

Evaluation 23

4.2.4 Verification
To check the ability of using the UA algorithm as a verification tool, we test the

algorithm with the set E. This set of tests contains timed automata which have no

reachable error state. In order to conclude that a timed automaton has no error

states, a algorithm needs to explore the whole state space.

runtime in s used memory in MB explored states

GBFS UT UA GBFS UT UA GBFS UT UA

E1 0.2 0.67 0.39 65 66 66 17k 17k 17k

E2 86.3 296.55 205.9 1409 1879 1567 4659k 4675k 4206k

E3 - - - - - - - - -

E4 - - - - - - - - -

Table 4.3: Overview of runtime, used memory and explored states of the test set E
which only contains systems without any error states.

The test results in Table 4.3 show that neither of the tested algorithms is optimised

for verification purposes. All the algorithms take a lot of time and especially memory

to explore the whole state space and are only able to solve the tests E1 and E2

without running out of memory. GBFS shows the best results in both used memory

and runtime. This is due to the fact that the transition-based search methods UT

and UA use a lot of computational time to calculate the allowed transitions. They

both also need more memory than the GBFS algorithm since they have to store data

for the calculation of useful transition. UA shows a slight improvement over UT in

the runtime which is probably due to a faster way of calculating useful transitions.

UA also needs less memory than UT since the number of explored states is smaller

for the UA algorithm.

It is important to note that all algorithms explore the whole state space in the tests

E1 and E2. The difference in the number of explored and generated states is due to

the zone abstraction. If we have two states s = 〈l, v, z〉 and s′ = 〈l, v, z′〉, where z is

a subsumption of the zone z′ and we encounter s before s′, the state s is explored.

A later encounter of s′ would also lead to an exploration of s′. But in the case that

s′ is encountered before s, we only explore s′ since s represents a subset of the states

of the exact state space represented by s′.

4.3 Results for the null Heuristic
The null heuristic assigns the value 0 to each state. This alters the UA algorithm

because each encountered state is now part of a plateau. Therefore the UA algorithm

always makes a refinement step after exploring each state and allows the transitions

of the relaxed plans of every explored state.

When the GBFS algorithm is used with the null heuristic it basically resembles a

Evaluation 24

blind search. Unfortunately, the UT algorithm does not support the null heuristic

since it is not possible for UT to find useful transitions without a guided heuristic. It

is important to note that UA has an unfair advantage over GBFS in this comparison

since UA still uses the hU heuristic to make relaxed plans of states during the

refinement steps. We still provide this comparison to investigate the pruning power

of UA when no further heuristic guidance for the states is used.

runtime in s used memory in MB explored states trace length

GBFS UA GBFS UA GBFS UA GBFS UA

A2 0.0 0.0 60 60 115 24 102 22

A3 0.02 0.01 64 61 13k 639 2046 266

A4 - 0.6 - 102 - 29k - 1380

A5 - 1075.44 - 3630 - 792k - 46123

A6 - - - - - - - -

C1 0.02 0.01 63 61 12k 637 922 465

C2 0.06 0.01 67 61 38k 637 1386 465

C3 0.09 0.01 70 61 54k 637 1524 465

C4 0.97 0.03 146 62 519k 1752 7725 1033

C5 10.05 0.07 786 64 4763k 4820 25647 2490

C6 - 0.09 - 65 - 4820 - 2490

C7 - 0.09 - 67 - 4820 - 2490

C8 - 0.04 - 63 - 2189 - 542

C9 - 0.07 - 65 - 4827 - 541

D1 7.23 0.1 497 64 2493k 11k 4981 9719

D2 - 0.21 - 67 - 21k - 431

D3 12.56 0.23 836 68 4337k 13k 494 10083

D4 - 7.82 - 260 - 754k - 647

D5 - 0.51 - 72 - 27k - 22022

D6 - 1.38 - 88 - 55k - 44673

D7 - 20.58 - 354 - 553k - 48759

D8 - 106.71 - 1640 - 3573k - 833

D9 - - - - - - - -

M1 0.04 0.02 62 61 12k 4700 2787 1094

M2 0.21 0.04 67 62 50k 10k 13709 3034

M3 0.29 0.09 68 63 72k 25k 11524 2192

M4 1.05 0.43 92 74 235k 115k 52634 11977

N1 0.12 0.05 64 62 15k 6599 3576 804

N2 0.93 0.11 74 64 102k 16k 15894 2541

N3 1.12 0.45 76 69 107k 52k 20086 2778

N4 10.38 3.81 138 100 743k 357k 86236 22863

Table 4.4: Overview of all test sets which contain error states, tested with both the
UA and GBFS algorithm using the null heuristic.

Table 4.4 shows that UA outperforms GBFS in every test. Both in used memory

and runtime UA has always the better values, since the restriction in transitions

leads to a smaller zone graph. The trace lengths of UA and GBFS are both big

especially compared to the ones with the hU heuristic. The tests show that even

Evaluation 25

with an unguided search method UA is still able to deliver almost the same runtimes

as with the hU heuristic. In the test D8 the test of UA with the null heuristic can

even outperform UA with the hU heuristic as a search heuristic. This is probably due

to the fact that the calculation of the null heuristic does not need any considerable

time whilst the hU heuristic is a relatively runtime consuming heuristic to calculate.

Therefore the exploration of states is a lot faster with the null heuristic.

4.4 Results for the dU Heuristic
To verify the performance of UA with a less informed heuristic we test all algorithms

with the dU heuristic, also called graph distance sum heuristic. It is based on local

graph distances in the timed automata system and is faster to calculate than the

hU heuristic.

runtime in s used memory in MB explored states trace length

GBFS UT UA GBFS UT UA GBFS UT UA GBFS UT UA

A2 0.0 0.0 0.0 60 60 60 23 24 21 13 13 13

A3 0.0 0.0 0.0 61 61 61 296 297 53 39 39 24

A4 0.06 0.17 0.01 68 74 62 19k 19k 121 129 129 35

A5 - - 0.03 - - 69 - - 194 - - 48

A6 - - 0.09 - - 96 - - 283 - - 63

C1 0.02 0.06 0.02 62 63 61 11k 9796 1177 823 842 785

C2 0.06 0.16 0.01 67 68 61 33k 31k 1177 1229 1105 785

C3 0.11 0.25 0.02 70 72 61 51k 52k 1177 1032 1144 785

C4 0.96 2.49 0.04 138 159 62 465k 504k 2029 3132 5364 915

C5 10.33 23.38 0.09 765 865 64 4617k 4617k 4960 14034 14000 1931

C6 - - 0.1 - - 65 - - 4960 - - 1931

C7 - - 0.1 - - 66 - - 4960 - - 1931

C8 - - 0.06 - - 64 - - 3198 - - 525

C9 - - 0.14 - - 67 - - 7618 - - 681

D1 7.18 14.36 0.11 499 720 64 2558k 2337k 11k 1908 8198 9719

D2 56.58 - 0.24 3708 - 68 17807k - 21k 15366 - 431

D3 11.63 18.26 0.26 841 774 68 4439k 2989k 13k 494 502 10083

D4 - - 8.77 - - 272 - - 728k - - 647

D5 - - 0.57 - - 73 - - 27k - - 22022

D6 - - 3.66 - - 117 - - 106k - - 43571

D7 - - 36.51 - - 528 - - 849k - - 41852

D8 - - 118.47 - - 1760 - - 3573k - - 833

D9 - - - - - - - - - - - -

M1 2.14 0.04 0.02 101 61 61 185k 7557 3629 106224 923 311

M2 0.23 7.48 0.07 69 95 63 56k 294k 19k 13952 51541 310

M3 121.72 0.15 0.08 223 64 63 869k 26k 23k 337857 1280 993

M4 38.47 0.53 0.43 207 71 71 726k 100k 126k 290937 4436 855

N1 0.08 0.21 0.03 63 65 62 10k 19k 4386 2669 1855 260

N2 92.66 1.37 0.22 313 75 65 642k 96k 29k 415585 8986 205

N3 966.33 0.34 111.75 393 66 203 1155k 29k 478k 262642 784 93206

N4 4.23 4.2 2.49 114 88 84 330k 239k 239k 51642 1969 537

Table 4.5: Overview of all test sets which contain error states, tested with the UA,
UT and GBFS algorithm using the graph distance sum heuristic also called dU

heuristic.

The table 4.5 shows that both UT and GBFS have a lot of problems finding an

error state in the given memory bound in most tests since the dU heuristic leads

Evaluation 26

to a relatively inaccurate prediction of the distance to an error state. Because UT

calculates the usefulness of transitions with the search heuristic, the algorithm is

mislead and rates useless transitions as useful, hence achieving in most tests even

worse runtimes than GBFS.

UA is almost unaffected by the not so informed heuristic since it still uses the

hU heuristic to calculate relaxed plans for the allowed transitions. Therefore UA

obviously has an unfair advantage over UT and GBFS. The performance in the test

set A is very surprising since UA with the dU heuristic performs even better than

UA with the hU heuristic. This is probably caused by finding useful transitions

earlier due to a bit of luck with the states used in the refinement steps.

4.5 Plateau Guard
The tested UA algorithm is a basic algorithm which shows the potential of an under-

approximation for directed model checking. For the UA algorithm the two most im-

portant factors are the refinement guard and the refinement strategy. The previous

tests have shown that relaxed plans often lead to useful transitions without allowing

too many useless transitions.

of refinements

Ø A 1076

Ø C 938

Ø D 97934

Ø M 3493

Ø N 7273

Table 4.6: Shows the average times a refinement guard was triggered for each test
set using the hU heuristic. The tests that run out of memory or time are not used
to calculate the average.

Table 4.6 shows that the proposed refinement guard of encountering a plateau or

local minimum is triggered very often especially in the more difficult test sets. A

possible easy way to improve the UA algorithm is introducing a plateau guard to

the refinement guard and therefore not refining the transition set every time when a

plateau or local minimum is encountered but only after a certain repeated encounters

of states which have no better heuristic value. The idea behind this is that small

local minima, where just a few states have worse heuristic values, should not lead

to a refined transition set.

To test this theory we implemented a plateau guard option and tested it with dif-

ferent values. Table 4.7 shows the average times a refinement guard with a plateau

guard was triggered in a test set. We can observe that the number of refinements

almost always gets smaller with an increasing plateau guard but fewer refinements

Evaluation 27

do not have to lead to a faster runtime.

Table 4.8 shows that a plateau guard can have positive effects on the runtime. In

every average time of the test sets the best time is achieved by a UA variant that

uses a plateau guard. Interestingly, large plateau guard values have an especially

positive effect on the test set D where the basic UA algorithm has problems. A

plateau guard bigger than 1000 even leads to an error trace in the test D9 where the

basic UA algorithm runs out of memory. But the test sets C, M and N show that a

large plateau guard can also lead to worse runtimes than the original algorithm. It

is important to note that tests like D8, where the runtime is especially large without

a plateau guard, have a big impact on the average runtime if such a test can be

solved quickly.

of refinements

Guard 0 5 10 25 50 100 150 500 1k 1.5k 2k 2.5k 5k

ØA 1076 182 100 43 23 13 9 4 3 2 2 2 2

ØC 938 151 83 26 16 11 10 9 9 9 9 9 10

ØD 97934 16392 8801 3183 77 30 15 14 13 14 14 14 14

ØM 3493 643 339 146 67 43 27 14 12 12 12 11 11

ØN 7273 1250 674 283 137 65 48 20 15 13 12 11 11

Table 4.7: Comparison of the average number of refinement steps until an error state
was found per test set from the UA algorithm with different plateau guards. In the
shown tests the hU heuristic was used.

runtime in s

Guard 0 5 10 25 50 100 150 500 1k 1.5k 2k 2.5k 5k

ØA 0.4 0.35 0.37 0.39 0.35 0.36 0.37 0.4 0.37 0.33 0.28 0.25 0.47

ØC 0.05 0.05 0.05 0.04 0.04 0.05 0.06 0.1 0.1 0.14 0.13 0.14 0.18

ØD 16.09 16.47 15.62 13.81 0.52 0.42 0.21 0.32 0.34 0.54 0.46 0.78 0.6

ØM 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.04 0.04 0.04 0.05 0.05 0.06

ØN 0.08 0.07 0.08 0.08 0.07 0.06 0.07 0.08 0.09 0.1 0.12 0.14 0.19

D8 121.53 124.97 120.03 106.4 0.06 0.37 0.13 0.3 0.46 0.72 0.73 1.98 0.9

D9 - - - - - - - - 2.18 3.63 18.61 5.69 9.46

Table 4.8: Comparison of average runtimes of each test set resulting from the UA
algorithm with different plateau guards and the hU heuristic. The best result per
test is presented in bold. Also the tests D8 and D9 are attached since they show
some interesting data.

The shown results illustrate that a plateau guard can have both positive and negative

effects on the runtime. This simple approach of a plateau guard does not lead

to an algorithm that achieves significant better values in every single test. The

main conclusion is that it is possible to further improve the proposed UA algorithm

with minor changes. A more sophisticated procedure for a plateau guard could

probably outperform the basic algorithm in every test but since there are just a few

benchmarks available, the probability to over-fit the algorithm to the available tasks

is high.

5
Conclusion

We have adapted and implemented the under-approximation refinement algorithm

by Heusner et al. [8] for directed model checking in concurrent systems of timed

automata. In addition we proposed a simple improvement to the algorithm by

introducing a different refinement guard and tested the approach with different

parameters.

The evaluation shows that under-approximation refinement is a fast and memory effi-

cient algorithm that can compete in directed model checking. It clearly outperforms

the greedy best-first search algorithm and is able to achieve a similar performance

as the useless transition algorithm implemented in Mcta.

The proposed addition of a plateau guard shows that the under-approximation re-

finement algorithm can be improved with some minor changes. With different ap-

proaches to the refinement guard and different refinement strategies further improve-

ments are imaginable. Even a combination of the useless transitions algorithm with

the under-approximation refinement algorithm, where the allowed transitions of an

under-approximation are further evaluated by the useless transitions approach, is

possible.

Additionally an evaluation of the algorithm with a range of more diverse benchmark

sets could lead to more conclusive insights into the behaviour of the algorithm in

directed model checking.

Bibliography

[1] Bengtsson, J. and Yi, W. Timed Automata: Semantics, Algorithms and Tools.

In Lecture Notes on Concurrency and Petri Nets: LNCS 3098 , pages 87–124.

Springer-Verlag (2004).

[2] Dräger, K., Finkbeiner, B., and Podelski, A. Directed Model Checking with

Distance-Preserving Abstractions. In SPIN , pages 19–34 (2006).

[3] Wehrle, M. and Kupferschmid, S. Mcta: Heuristics and Search for Timed

Systems. In FORMATS , pages 252–266 (2012).

[4] Kupferschmid, S., Hoffmann, J., Dierks, H., and Behrmann, G. Adapting an AI

Planning Heuristic for Directed Model Checking. In SPIN , pages 35–51 (2006).

[5] Wehrle, M. and Kupferschmid, S. Context-Enhanced Directed Model Checking.

In SPIN , pages 88–105 (2010).

[6] Wehrle, M., Kupferschmid, S., and Podelski, A. Transition-based Directed

Model Checking. In TACAS , pages 186–200 (2009).

[7] Richter, S. and Helmert, M. Preferred Operators and Deferred Evaluation in

Satisficing Planning. In ICAPS , pages 273–280 (2009).

[8] Heusner, M., Wehrle, M., Pommerening, F., and Helmert, M. Under-

Approximation Refinement for Classical Planning. In ICAPS , pages 365–369

(2014).

[9] Kupferschmid, S., Wehrle, M., Nebel, B., and Podelski, A. Faster than UP-

PAAL? In CAV , pages 552–555 (2008).

[10] Alur, R. and Dill, D. L. A Theory of Timed Automata. In Theoretical Computer

Science, volume 126, pages 183–235. Elsevier Science (1994).

[11] Pearl, J. Heuristics: Intelligent Search Strategies for Computer Problem Solv-

ing. pages I–XVII, 1–382. Addison-Wesley Longman Publishing Co., Inc.

(1984).

Bibliography 30

[12] Hart, P. E., Nilsson, N. J., and Raphael, B. A Formal Basis for the Heuristic

Determination of Minimum Cost Paths. In IEEE Transactions on Systems,

Science and Cybernetics, volume SSC-4, pages 100–107 (1968).

[13] Wehrle, M., Kupferschmid, S., and Podelski, A. Useless Actions are Useful. In

ICAPS , pages 388–395 (2008).

[14] Clarke, E. M., Klieber, W., Nováček, M., and Zuliani, P. Model Checking and

the State Explosion Problem. In LASER: LNCS 7682 , pages 1–30. Springer-

Verlag (2012).

[15] Wehrle, M. Transition-Based Directed Model Checking . Ph.D. thesis (2011).

[16] Wehrle, M. and Kupferschmid, S. Mcta Directed Model Checking for Real-

time Systems (2016). URL http://gki.informatik.uni-freiburg.de/tools/mcta/.

Accessed: 09.01.2017.

http://gki.informatik.uni-freiburg.de/tools/mcta/

Declaration on Scientific lntegrity
Erklärung zur wissenschaftlichen

Redlichkeit

includes Declaration on Plagiarism and Fraud

beinhaltet Erkldrung zu Plagiat und Betrug

Author - Autor

Kevin Grimm

Matriculation number - Matrikelnummer

12-05&053

Title ol work - Titel der Arbeit

Under-Approximation Reflnement for Timed Automata

Type ot work - Typ der Arbeit

Bachelor's thesis

Declaration - Erklärung

I hereby declare that this submission is my own work and that I have fully ac-

knowledged the assi.stance received in completing this work and that it contains

no material that has not been formally acknowledged. I have mentioned all source

materials used and have cited these in accordance with recognised scientific rules.

Hiermit erkldre ich, dass mir bei der Abfassung dieser Arbeit nur die darin angegebene

Hilfe zuteil wurde und dass ich sie nur mit den in der Arbeit angegebenen Hilfsmit-
teln verfasst habe. Ich habe sämtliche verwendeten Quellen erwähnt und gemäss

anerkannten wissenschaftlichen Regeln zitiert.

Basel, L2.07.2A77

Signature - Unterschrift

	Acknowledgements
	Abstract
	Table of Contents
	1 Introduction
	2 Preliminaries
	2.1 Timed Automata
	2.1.1 Example
	2.1.2 Syntax
	2.1.3 State Space

	2.2 Greedy Best-First Search
	2.2.1 Algorithm
	2.2.2 Properties

	2.3 Directed Model Checking
	2.3.1 Mcta
	2.3.2 Duplicates

	3 Under-Approximation Refinement
	3.1 Idea
	3.2 Definition
	3.3 Algorithm
	3.4 Implementation Details

	4 Evaluation
	4.1 Setup
	4.2 Results for the hU Heuristic
	4.2.1 Error Traces
	4.2.2 Allowed Transitions
	4.2.3 Heuristic Curves
	4.2.4 Verification

	4.3 Results for the null Heuristic
	4.4 Results for the dU Heuristic
	4.5 Plateau Guard

	5 Conclusion
	Bibliography
	 Declaration on Scientific Integrity

