Learning Heuristic Functions in Classical Planning

Master Thesis

Cedric Geissmann

March 15, 2016

Natural Science Faculty of the University of Basel Department of Mathematics and Computer Science Artificial Intelligence http://ai.cs.unibas.ch

Outline

Background

- Planning
- Machine Learning
- Artificial Neural Networks
- 2 Learning a Heuristic Function
 - Search Strategy
 - Walk Strategy
 - Prediction Strategy

3 Results

- Search Strategy
- Walk Strategy
- Prediction Strategy
- Discussion

Background

Planning Machine Learning Artificial Neural Networks

Planning

Planning task:

- Variables
- States assign values to variables
 - Initial state s₀
 - Goal states s_{\star}
- Operators have preconditions and effects

Planning Machine Learning Artificial Neural Networks

Heuristic Search

- Heuristic search in state space
- Heuristic function
 - Estimates cost to nearest goal
- Use heuristic function to guide the search towards the goal

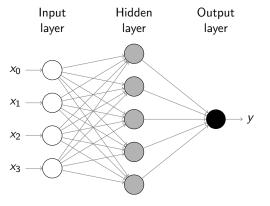
Planning Machine Learning Artificial Neural Networks

Machine Learning

Machine Learning ...

... is the task of learning from data and make predictions on data.

- Set of input values \vec{x}
- Unknown target function $f^*: \vec{x} \to \vec{y}$
- Set of function hypotheses $F = \{f \mid f : \vec{x} \to \vec{y}\}$


Goal

Find a function f that approximates f^* the best.

Planning Machine Learning Artificial Neural Networks

Artificial Neural Network

- Inspired by the brain
- Can predict data
- Needs to be trained

Planning Machine Learning Artificial Neural Networks

From Regression to Heuristic Function

- Regression
 - Find a function $f: \vec{x} \rightarrow \vec{y}$
- Heuristic function
 - Function $h: \vec{v} \rightarrow h_{val}$

f = h

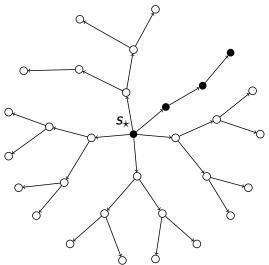
• $\vec{x} = \vec{v}$

•
$$\vec{y} = h_{val}$$

- \vec{x} use variable values of any state s
- \vec{y} use distance from state s to the goal

Learning a Heuristic Function

Search Strategy Walk Strategy Prediction Strategy


Learning a Heuristic Function

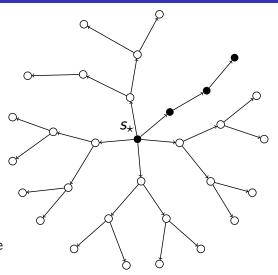
- Use ANN as heuristic function
- Train ANN with back-propagation
- Generate training set for back-propagation
 - Search Strategy
 - Walk Strategy
 - Prediction Strategy

Search Strategy Walk Strategy Prediction Strategy

Generate the Training Set with Search Strategy

- Chose random goal state s_{*}
- Perform random walk starting at
 - s_{\star}
- Search from random walk endpoint
- Add every state from the solution path to the training set

Search Strategy Walk Strategy Prediction Strategy


Generate the Training Set with Walk Strategy

Chose random goal state s_{\star} Perform random walk starting at S_{\star} S_{\star} Add every state on the random walk to the training set

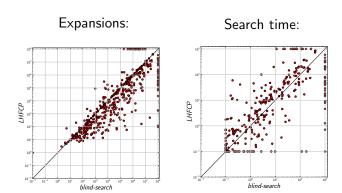
Search Strategy Walk Strategy Prediction Strategy

Generate the Training Set with Prediction Strategy

- Chose random goal state s_{*}
- Perform random walk starting at s₊
- Add every state on the random walk to the training set
- Use a *solution cost predictor* to estimate distance

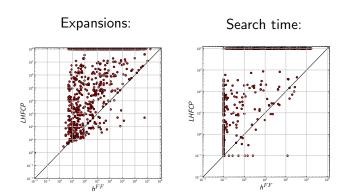
Results

Search Strategy Walk Strategy Prediction Strategy Discussion


Learning Heuristic Functions in Classical Planning (LHFCP)

	blind-search	LHFCP	h ^{FF}
Coverage	680	693	1308
Expansions	53369.73	24990.02	282.75
Search time	1.31	1.62	0.25
Total time	1.35	8.66	0.27

- Slightly better than *blind-search*
- High total time
- Higher search time than blind-search
- Worse than h^{FF}


Search Strategy Walk Strategy Prediction Strategy Discussion

Performance against blind-search

Search Strategy Walk Strategy Prediction Strategy Discussion

Performance against h^{FF}

Search Strategy Walk Strategy Prediction Strategy Discussion

Expansions Gripper

	blind-search	LHFCP	h^{FF}
prob01.pddl	253	110	123
prob02.pddl	1853	993	1413
prob03.pddl	11773	10648	10735
prob04.pddl	68605	65716	66585
prob05.pddl	376829	370598	373347
prob06.pddl	1982461	1913835	1976941
prob07.pddl	10092541	10051648	10084311

- LHFCP performs better on domain gripper than h^{FF}
- Also on the domain psr-small

Results

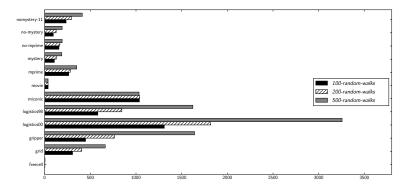
Search Strategy Walk Strategy Prediction Strategy Discussion

Random Walk Length

	rwl-20	default	rwl-100
Coverage	687	693	690
Expansions	29221.89	29205.89	27534.29
Search time	1.87	1.84	1.79
Total time	9.32	9.49	10.02
Training set size	396.76	457.66	519.24

- Longer random walks produce bigger training set
- Longer random walks produce slightly better heuristic
- Longer random walks need more setup time

Search Strategy Walk Strategy Prediction Strategy Discussion


Number of Random Walks

	nrw-100	default	nrw-500
Coverage	701	693	675
Expansions	26726.12	25701.05	24337.35
Search time	1.76	1.73	1.70
Total time	7.79	8.95	11.79
Training set size	311.93	466.80	912.01

- More random walks produce bigger training set
- More random walks produce slightly better heuristic
- More random walks need more setup time

Search Strategy Walk Strategy Prediction Strategy Discussion

Training Set Size for Number of Random Walks

- Not possible to generate training set on each domain
- Size of training set does not scale linear on every domain

Results

Search Strategy Walk Strategy Prediction Strategy Discussion

ANN-Topology

	topo-n-20-1	default	topo-n-100-1
Coverage	679	693	689
Expansions	35034.57	28690.82	26111.88
Search time	1.60	1.81	2.31
Total time	7.86	9.43	12.05
Training set size	454.60	453.10	452.80

- More neurons produce slightly better heuristic
- More neurons need more setup time
- More neurons need more search time

Search Strategy Walk Strategy Prediction Strategy Discussion

Different Initial Heuristic Functions h_0

	<i>h</i> ₀ -blind-search	<i>h</i> ₀ -FF	<i>h</i> ₀ -ipdb	<i>h</i> ₀ -lm-cut
Coverage	683	705	604	699
Expansions	20814.37	19795.51	21012.24	20664.96
Search time	1.48	1.39	1.41	1.40
Total time	10.79	5.53	51.03	6.46
Training set size	181.35	295.55	242.87	234.74

- FF produces the strongest heuristic
- blind-search has the smallest training set
- *ipdb* has highest **setup time**

Search Strategy Walk Strategy Prediction Strategy Discussion

Walk Strategy

	search-strategy	walk-strategy
Coverage	693	692
Expansions	25367.74	25153.76
Search time	1.65	1.61
Total time	8.80	7.82
Training set size	453.09	1850.41

- Both approaches perform about the same
- Lower total time with *walk-strategy*
- Bigger training set with walk-strategy

Search Strategy Walk Strategy Prediction Strategy Discussion

Prediction Strategy

	search-strategy	prediction-strategy
Coverage	49	19
Expansions	21.21	53.91
Search time	0.10	0.10
Total time	0.36	33.87
Training set size	274.89	760.42

- Only executed on domain psr-small
- Lower **coverage** with *prediction-strategy*
- Higher total time with prediction-strategy
- Bigger training set with prediction-strategy

Search Strategy Walk Strategy Prediction Strategy Discussion

Discussion

- Random walk length affects training set size
- Number of random walks affects training set size
- ANN-topology affect total time
- Initial heuristic should have small setup time
- Search can be omitted
- Solution cost predictor too resource hungry

Conclusion and Future Work

Conclusion

- Has high setup time
- Depends on many parameters
- Inverse operators
- Domain-independence not possible
- Can be better than h^{FF} on some domains
- Future Work
 - Adopt parameters to current problem
 - Use other features
 - Use other machine learning techniques

Question?