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Abstract

The goal of classical domain-independent planning is to find a sequence of actions which

lead from a given initial state to a goal state that satisfies some goal criteria. Most planning

systems use heuristic search algorithms to find such a sequence of actions. A critical part

of heuristic search is the heuristic function. In order to find a sequence of actions from an

initial state to a goal state efficiently this heuristic function has to guide the search towards

the goal. It is difficult to create such an efficient heuristic function. Arfaee et al. [1, 10]

show that it is possible to improve a given heuristic function by applying machine learning

techniques on a single domain in the context of heuristic search. To achieve this improvement

of the heuristic function, they propose a bootstrap learning approach which subsequently

improves the heuristic function.

In this thesis we will introduce a technique to learn heuristic functions that can be used

in classical domain-independent planning based on the bootstrap-learning approach intro-

duced by Arfaee et al. [1, 10]. In order to evaluate the performance of the learned heuristic

functions, we have implemented a learning algorithm for the Fast Downward planning sys-

tem. The experiments have shown that a learned heuristic function generally decreases the

number of explored states compared to blind-search. The total time to solve a single problem

increases because the heuristic function has to be learned before it can be applied.
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1
Introduction

Classical planning is the task of finding a sequence of actions that lead from a given initial

state to a desired goal state. This sequence of actions is called a plan. Finding a plan

can be a challenging and time consuming task for a human, because the problems have a

huge amount of states and each state has many possible actions. To deal with the large

state space of such a problem, domain specific solvers can be developed which use the power

of a computer to solve these problems efficiently. Such a domain specific solver can be

very efficient as it can take advantage of domain specific knowledge that is provided by the

user. Exploiting this knowledge, a solver can search for a plan in these large state spaces

efficiently. However, this is a domain specific approach and developing a new solver for

every domain is costly. Therefore domain-independent planning systems that are able to

solve arbitrary domains were developed. The challenge of developing a domain-independent

planning system based on heuristic search is to have heuristic functions that work well on

a diverse set of domains. Heuristic search is the systematic exploration of the state space,

guided by a heuristic function. A heuristic function estimates the distance from a given state

to the goal. Planning systems based on heuristic search use the heuristic function to guide

the search towards a goal. To be useful in practice, heuristic functions have to be computed

efficiently and work on many domains the planning system tries to solve. To achieve these

properties a loss of accuracy has to be taken into account.

Different domain independent and fast to evaluate heuristic functions that have a rea-

sonable accuracy exists. Still there are problems that cannot be solved in reasonable time

with these heuristic functions. Arfaee et al. [1, 10] show that it is possible to learn a strong

heuristic function with common machine learning techniques, from a given initial heuristic

function. This process is called bootstrap-learning of heuristic functions. With a bootstrap

learned heuristic function it is possible to solve instances that are not solvable by existing

heuristic functions.

Inspired by the capabilities of bootstrap-learning of heuristic functions, this thesis will

provide an adoption of the bootstrap-learning approach presented by Arfaee et al. [1, 10]

and apply it to classical domain-independent planning. Since there is an upper time-limit

to solve a single instance in classical domain-independent planning, the bootstrap learned

heuristic function has to be computed online during the search. In classical planning a goal
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state has to fulfill some goal criteria. Therefore it is possible and likely to have multiple goal

states which is not the case in the original bootstrap-learning approach applied to problems

with a single goal state. Furthermore, the bootstrap learned heuristic function has to be

domain independent, since it will be used for classical domain-independent planning.

This thesis is organized as follows. After showing the notation for planning and pre-

senting machine learning techniques that will be used in this thesis, we will present an

approach to learn heuristic functions for classical domain-independent planning, including

an improvement based on BiSS . We will continue by comparing the learning heuristic func-

tions for classical domain-independent planning approach to some state-of-the-art heuristic

functions. Afterwards, we will evaluate different variants of the learning heuristic functions

for classical domain-independent planning approaches. In the end of this thesis we will

summarize the results and suggest further possibilities to improve the learning heuristic

functions for classical domain-independent planning.



2
Background

This chapter defines the notation that will be used throughout this thesis. Furthermore, it

gives an introduction to machine learning techniques.

2.1 Planning
This section introduces the formal setting and notation used for planning in this thesis.

Planning tasks in this thesis will be formalized in a SAS+ like finite domain representation,

as introduced by Bäckström and Nebel [2].

Definition 1 (planning task). A planning task is a 4-tuple Π = 〈V, s0, s?,A〉:

• V is a finite set of state variables v which have finite domains D(v).

• A partial state s is a variable assignment for each variable v ∈ V from D(v) ∪ {u},
where u /∈ D(v) represents an undefined variable assignment.

• A variable assignment of a specific variable v ∈ V for a given partial state s is

defined as s[v] ∈ D(v) ∪ {u}.

• Let s be a partial state. The set of defined variables in s is defined as var(s) := {v ∈
V | s[v] 6= u}.

• A state s is a partial state for which var(s) = V

• s0 is the initial state.

• s? is a partial state that defines the goals.

• A is a finite set of actions. An action is a triple a = 〈pre(a), eff (a), cost(a)〉:

– pre(a) is a partial state defining the preconditions.

– eff (a) is a partial state defining the effects.

– cost(a) ∈ R+
0 is the cost of applying action a.

Actions are also called operators. Actions do not have to be invertible.
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The transition function result(a, s) produces a new state s′, which is called the successor

state of s, if a is an applicable action in s. An action a is applicable in s if s contains the

preconditions pre(a). In order to produce the successor state s′ out of s, the transition func-

tion result(a, s) replaces all variables v ∈ var(eff (a)) which get a new variable assignment

s′[v] = eff (a)[v].

A planning task can be represented as a state space. For this thesis the state space will

be defined as follows.

Definition 2 (state space). A state space is a 6-tuple S = 〈S, s0, S?, A, T, c〉:

• S is a finite set of states s.

• s0 ∈ S is the initial state.

• S? ⊆ S is a set of goal states.

• A(s) ⊆ A denotes actions applicable in a state s of S.

• T (a, s) : S × A 7→ S denotes a transition function defined for all states s of S and

actions a of A(s).

• c(a) : S 7→ R+
0 is the cost function defined for each action a ∈ A.

A planning task Π = 〈V, s0, s?,A〉 defines a state space SΠ with states S(Π), initial

state s0, goal states {s ∈ S(Π)|s? ⊆ s}, actions A, transition function result(a, s) and cost

function cost(a).

A problem is formalized in a planning task in order to be solved. To solve a planning

task means to find a plan in its state space.

Definition 3 (plan). Given a state space SΠ of a planning task Π = 〈V, s0, s?,A〉, a plan

is a sequence π = a0, . . . , an of actions in A. Moreover, to be a valid plan for the planning

task Π, π must generate a path of transitions in the state space that starts in s0 and ends

in a goal state s? of S?.

Planning describes the task of searching for a plan π in the state space SΠ. If such a

plan π is found, the search was successful. To obtain an optimal plan, the sum of the cost of

each action in π has to be minimal among the cost of all plans. Satisficing planning prefers

to find plans with low cost but also allows to find suboptimal plans, where optimal planning

only allows optimal plans. This thesis deals with satisficing planning.

A planner based on heuristic search starts exploring the sate space from s0. The reachable

state space is this part of the state space that can be reached by any sequence of transition

functions starting from s0.

Definition 4 (random walk). A random walk is a sequence of transitions with randomly

chosen actions a ∈ A(s), which are applicable in the current state s of the random walk,

starting at the initial state s0. The endpoint send of a random walk, is the last state generated

by the sequence of transitions.
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2.2 Machine Learning
This section introduces machine learning in general and defines the notation used in

this thesis based on the textbooks by Murphy [14] and Hagan et al. [6]. This section also

introduces artificial neural networks based on the textbooks Hagan et al. [6] and Nielsen

[15], which is the machine learning technique used for this work.

Machine learning is the field of study in computer science that can learn from data as

well as making predictions on data. Other than just following static program instructions,

machine learning algorithms build models from input data in order to predict the correct

output data. Building such a model, which is also called learning, can be categorized into 3

different types of learning.

Supervised learning The learning algorithm gets example input data with their corre-

sponding correct output value assigned. The goal of the learning algorithm is to

develop a general rule that maps from the input data to the output value.

Unsupervised learning The learning algorithm only gets the input data with no corre-

sponding output value. The goal of the learning algorithm is to find patterns in the

input data.

Reinforcement learning The learning algorithm has to interact with a dynamic environ-

ment to perform a specific task. The learning algorithm receives no external informa-

tion on how close it is to performing this task.

This thesis only uses supervised learning. The example input data and their corresponding

output values used in supervised learning are called data set.

Definition 5 (data set). A data set is the set U of tuples u = 〈~x, y〉:

• ~x is a vector of input values (x1, . . . , xn).

• y is the corresponding target output value given the input ~x.

Given such a data set U supervised learning can accomplish two different tasks.

classification In classification the learning algorithm assigns the input values ~x to different

class labels y.

regression In regression the learning algorithm imitates a function f that maps input

values ~x to output values y.

In this thesis we are only interested in regression, since we are looking for a heuristic

function h that maps some features ~x of a given state s to a heuristic value y.

2.2.1 Learning and Generalization
This section discusses how learning works in the context of regression. Furthermore, this

section introduces the problem of over-fitting, and how this will be avoided in this thesis.

Regression is the task of finding a function f that approximates the function f? as closely

as possible. A tuple from the data set U can be represented as y = f?(~x), where ~x is the
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given input data from the data set U , y is the target output value assigned to its input ~x

and f? is the target function that explains the data set exactly. The function f can then

be written as ŷ = f(~x), where ~x is the given input data from the data set U and ŷ is the

output data, generated by the function f . The goal of this function f is to learn to predict

the correct output value ŷ given its corresponding input ~x. This information is provided

by the data set U . To learn the function f that approximates f? the best, a performance

measure can be introduced. The overall prediction error on the complete data set U can be

used as a performance measure. The goal is to minimize the overall prediction error to get

the function f that approximates the function f? the best.

If there are no restrictions made for the function f?, there are many possible functions

which can explain the given data perfectly. However, these functions can perform very badly

on yet unseen data. This problem is called over-fitting. To avoid over-fitting, a learning

algorithm should be able to generalize. Different ways to achieve the goal of generalization

exist. This thesis prevents over-fitting by splitting the data set U in two parts. A larger part

that remains as training set T and a smaller validation set V which will be used to compute

the performance measure. The validation set V only contains data not used for training, to

measure how good the function f? performs in terms of generalization. The training set T

and the validation set V have to fulfill the following conditions:

T ∪ V = U (2.1)

T ∩ V = ∅ (2.2)

|T | > |V | (2.3)

For convenience we will use the term training set to refer to the data set in future

references. A training set has to provide enough relevant information in order to successfully

learn a function f , which means there have to be enough data points in the training set

and the data points have to provide useful information. For instance, if the data set only

contains 2 data points and no further information. Almost any function f can fit through

these 2 points but does not match the target function f? at all. If the data set only contains

data points in a specific part of the problem space no statement can be made for the parts

of the problem space where no information is available.

2.2.2 Neural Networks
In this section we will give a brief introduction to artificial neural networks (ANN) and

how this thesis uses ANN.

The human brain is a complex biomechanical machine that is capable of learning complex

tasks. It can be seen as a biological neural network. A neural network is an interconnected

net of neurons transmitting signals. These signals are received via dendrites and processed

by the neuron body. Based on these input signals, a neuron decides to trigger an output

signal which will be send out via an axon. Given these basic concepts, an artificial neural

network can be built to process input signals. An artificial neural network, or ANN, is

an interconnection of artificial neurons. The simplest form of an ANN is a single artificial

neuron, which will be discussed next.
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Figure 2.1: Single neuron with input values vi, weights wi, output value a and neuron
body f trans(

∑
i(vi ∗ wi)).

2.2.3 Neuron
An artificial neuron, which can be seen in Figure 2.1, from now on called neuron, builds

the simplest form of an artificial neural network, and can be used for simple linear classi-

fication. A neuron has multiple input values vi, where each input value vi has an assigned

weight wi. The input values vi are the artificial equivalent of the dendrites and the assigned

weights wi are the strength of the connectivity of these dendrites. A neuron has only a single

output value a which corresponds to the axon. This output value a is the activation value

that determines if a neuron fires or not. The neuron body consists of a decision function

f trans . This decision function f trans , also called transfer function, takes the sum of all input

values vi multiplied by their assigned weight wi and maps it to an output value a.

a = f trans(

n∑
i=1

(vi ∗ wi)) (2.4)

Equation 2.4 shows how the neuron body works. The weighted sum of the inputs can be

abbreviated as z =
∑n

i=1(vi ∗wi). There are many different possibilities for such a transfer

function f trans . The two transfer functions used in this thesis are the sigmoid-like function

f sigmoid(z) = tanh(z) and a linear function f linear (z) = z

Figure 2.2 shows the sigmoid-like transfer function tanh(z). This transfer function has

some sigmoid-like properties that will be used by the neuron. For z < −2, tanh(z) returns

−1. For z > 2, tanh(z) returns +1. These properties give the sigmoid-like transfer function

tanh(z) the behavior of a decision function. This decision function is used to determine if

the neuron should fire or not.

A neuron can be used to solve many different independent problems. However, to be

able to solve a specific problem, a neuron has to learn from the problem it is designed to

solve and adopt its behavior. At the beginning, the weights wi assigned to each input value

vi of the neuron are chosen randomly. To achieve the desired output a, corresponding to a

specific input ~v, the neuron has to adopt the weights wi assigned to each of its input values

vi. By changing the weights wi the neuron is able to distinguish between more and less

important input values vi and can therefore assign the correct output a to its corresponding

input ~v. The change in the weights wi can be computed exactly for the actual input ~vact . If

the weights wi are now adopted to exactly produce the last seen output aact , the prediction
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Figure 2.2: The sigmoid-like transfer function tanh(z).

to previously seen inputs ~vold is most likely to get worse. Because of this behavior, the

learning rate η is introduced to adjust the weights in the correct direction. Changes in the

weights wi are multiplied by a small factor η ∈ [0, 1) which is called learning rate.

Since a single neuron is only able to solve linear separable problems, which is not enough

to solve complex problems, such as approximating a heuristic function, neurons can be

interconnected to each other to build an artificial neural network.

2.2.4 Multilayer Artificial Neural Network
A multilayer artificial neural network, from now on referred to as artificial neural network

or ANN, is an interconnected network of neurons aligned in different layers. There are

3 different types of layers in an ANN: the input layer, where each neuron in this layer

represents a single input value v0
i ; the hidden layer which can consist of multiple layers with

an arbitrary number of neurons in each layer; and the output layer, that can contain one or

multiple neurons, which provide the output aL of the total ANN. In this thesis an output

layer with a single neuron is chosen and a single hidden layer with an arbitrary number of

neurons. The ANN is fully connected which means that each neuron is connected to each

neuron in the previous layer. Connections only exist to the previous layer and there are no

cycles in the network. This type of ANN is also called feed forward ANN. Figure 2.3 shows

an example of such a feed forward artificial neural network.

Given these concepts the neurons Equation 2.4 can be reformulated to

alj = f trans(

n∑
i=1

(al−1
i ∗ wl

ij)), (2.5)

where l is the actual layer and wl
ij is the weight assigned to neuron j in layer l connected

to neuron i in the previous layer l− 1. The root for this recursive equation is defined as the
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Figure 2.3: Example for a multilayer feed foreword ANN with an input layer, a single
hidden layer and an output layer with a single neuron.

input values ~v. Therefore the equation for the input layer looks as follows:

a0
j = f trans(

n∑
i=1

(v0
i ∗ w0

ij)) (2.6)

All neurons in the input and hidden layers are sigmoid neurons, they use the sigmoid

function as their transfer function f trans . The neuron in the output layer is a linear neuron

with the linear function as its transfer function f trans . As the ANN consists of interconnected

neurons, like a single neuron, the ANN has to learn from the problem it is designed to solve.

Since the weights wi at the inputs vi of a neuron are the only thing that can be adopted, the

weights wi have to be learned correctly to predict the correct output aL to its corresponding

input ~v. The state-of-the-art algorithm to train an ANN introduced by Rumelhart et al.

[16] is the so called back-propagation algorithm which will be discussed next.

2.2.5 Back-Propagation
Back-propagation is an algorithm introduced by Rumelhart et al. [16] that will adjust

all the weights wl
ij in an ANN so the ANN will be able to to predict the correct output

value aL given its corresponding input ~v. This section will give a brief overview of how

back-propagation works.

The goal of back-propagation is to minimize the total error E of the ANN. E can be

computed with an arbitrary error function. In this thesis the error function is the mean

square error (MSE)

E =
1

n

n∑
m=1

(aLm − ym)2, (2.7)

where ym is the target output value for the input ~vm, aLm is the predicted value of the ANN

for the given input ~vm and m indicates the m-th entry Um in the data set U .

To achieve this goal, back-propagation has to adopt the weights wl
ij of the ANN with

respect to minimizing the error E of the ANN. In particular back-propagation computes the

partial derivatives ∂E
∂wl

ij

by back propagating the error E through the network.
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δLj =
∂E

∂aLj
f ′(zLj ) (2.8)

Equation 2.8 shows how to compute the error δlj for each neuron j in the output layer.

This equation is easily computable, since each component is known. To propagate the error

δlj further back through the ANN, the error δlj can be defined recursively as:

δlj =
∑
i

wl+1
ji δl+1

i f ′(zlj) (2.9)

Using equation 2.8 as the root for the recursion in equation 2.9, the error δlj can be

computed for every layer l in the ANN. Given the error δlj in each layer l, the partial

derivatives ∂E
∂wl

ij

can be computed as follows:

∂E

∂wl
ij

= al−1
i δlj (2.10)

Given these 3 equations the back-propagation algorithm can be formalized as shown in

Algorithm 1.

Algorithm 1: back-propagation

Input: U , ANN
Output: ANN

1 while stopping condition not met do
2 aL ← feed forward(~x);

3 e← compute error(aL, y);
4 backpropagate error(e);
5 adjust weights();

6 end

The stopping condition used for back-propagation in this thesis consists of 2 parts. The

first part is to stop to back-propagation algorithm if the total error on the validation set

monotonically increases for several consecutive iterations, which are called epochs. This

part of the stopping condition is called early stopping and is used to prevent over-fitting.

The second part of the stopping condition sets an upper bound for the number of epochs.



3
Learning Heuristic Functions for Classical

Planning

In this chapter we will introduce a learning algorithm for heuristic functions in the context of

classical domain-independent planning, based on bootstrap-learning of heuristic functions

introduced by Arfaee et al [1, 10]. Furthermore we will introduce an extension to the

learning algorithm to decrease training set generation time with a solution cost predictor

called bidirectional stratified sampler (BiSS ).

3.1 Bootstrap-Learning of Heuristic Functions
This section briefly describes the bootstrap-learning approach for heuristic functions

introduced by Arfaee at al. [1, 10].

Bootstrap-learning describes the process of learning a new heuristic function from an

initial weak heuristic function. As described by Arfaee et al. [1, 10] bootstrap-learning is an

iterative process where each iteration returns an even stronger heuristic function compared

to the previous iteration. To accomplish this task, a new heuristic function has to be

learned for the current problem. To be able to learn a new heuristic function, a training

set U with enough relevant state space information has to be provided. Given the initial

heuristic function h0, it is only possible to solve easier initial instances. If such an initial

instance can be solved, all the states on the path with their distance to the goal are added

to the training set U . If the training set contains enough relevant state space information, a

stronger heuristic function h1 that is able to solve more instances and more difficult instances

in less time, can be learned from the training set. If the instances were too hard to solve for

the initial heuristic function h0 and therefore the training set U does not contain enough

relevant state space information to generate a stronger heuristic function h1, more easy-to-

solve instances are generated by performing random walks with the goal state as their initial

state.

To apply bootstrap-learning to classical planning, a lower limit on the training set size
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cannot be set1. Furthermore a set of initial easy-to-solve instances may not be available for

every domain, so the initial set of easy-to-solve instances has to be generated for each do-

main independently by the bootstrap-learning approach. Regarding these points, a learning

algorithm for heuristic functions in classical domain-independent planning can be intro-

duced. We will call this algorithm LHFCP which is short for Learning Heuristic Functions

in Classical domain-independent Planning.

3.2 Learning Heuristic Functions in Planning
LHFCP is initialized with a single start state s0, a condition for the goal states S? and

an initial heuristic function h0. Algorithm 2 describes the LHFCP algorithm in detail.

Algorithm 2: LHFCP with search

Input: S?, s0, h0, random walk length,number of random walks
Output: hann

1 instances ← [];
2 training set ← [];
3 for i← 0 to number of random walks do
4 s? ← generate random goal state();
5 send ← end point of random walk(s?);
6 instances. add(send);

7 end
8 foreach State s ∈ instances do
9 π ←search from s with h0;

10 if solution found then
11 foreach State p ∈ π do
12 training set . add(p, distance to goal(p);
13 end

14 end

15 end
16 hann ← train ann(training set);

From line 3 to 7 the easy-to-solve instances are created domain-independently. A random

state s? ∈ S? which fulfills the goal conditions is created and a random walk with s? as the

initial state is performed. The end point send of this random walk is added to the set

of instances if send is not already in the set of instances2. Given the set of instances the

algorithm can proceed and create the training set U from line 8 to 15. In line 9 LHFCP

solves an instance from the set of instances with the initial heuristic function h0. If a solution

is found, line 11 to 13 will add every state p in the plan π with its distance to the goal, to

the training set U . In line 16 the training set U is complete and a new heuristic function

hlearn will be learned from the training set U .

1 Since some domains with less easy-to-solve instances than the lower limit for the training set size might
exist, and LHFCP will be applied to all domains independently, it cannot be guaranteed that a lower
limit on the training set size can be reached in every domain.

2 A search from a fixed start state to a fixed goal state with a fixed deterministic heuristic function, always
returns the same plan. Therefore the computational overhead of solving the same instance multiple times
can be saved, by only including a state once in the set of instances.
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This LHFCP approach depends on the strength of the initial heuristic function h0 and

its ability to solve enough instances. Solving many of these instances is a time consuming

process. Since a random walk starts at a goal state s? ∈ S?, the distance from the goal

for every state visited during the random walk is known. Because actions are not always

invertible, the distance from this state to the goal does not have to be the shortest. However,

it can be used as an estimate for the distance to the goal. Exploiting this property, the

LHFCP algorithm can be reduced to just sampling the state space SΠ with random walks

from a goal state s? ∈ S?. Algorithm 3 describes this approach in detail.

Algorithm 3: LHFCP with random walks

Input: S?, s0, random walk length,number of random walks
Output: hann

1 training set ← [];
2 for i← 0 to number of random walks do
3 s? ← generate random goal state();
4 foreach State p ∈ random walk(s?) do
5 training set . add(p, distance to goal(p));
6 end

7 end
8 hann ← train ann(training set);

Algorithm 3 is a shorter version of Algorithm 2. There is no initial heuristic function

needed and there is no search involved. From line 2 to 7 the training set will be created

directly using the random walks. In line 8 the new heuristic function hlearn will be learned

from the training set U . The advantage of this algorithm is that the time consuming search

can be omitted, however there is a disadvantage too. The distance for a state to the goal

generated by a random walk does not have to be the shortest possible distance. Obviously,

since the distance is generated by random walks, a state that would be right next to a goal,

can occur at the end of a random walk, and therefore have a bigger distance than the true

distance would be. Furthermore, since actions are not always reversible, the random walk

cannot always be reversed to get from send to s?. There is also another factor. Since goal

states are created at random, it could be that a goal state s? is used as the initial state for a

random walk where the search would never go towards this goal state s?. So the state space

SΠ could be sampled in uninteresting regions. To deal with this issue, a new random goal

state s? ∈ S? is created for every new random walk as its initial state. This will increase

the probability of sampling interesting regions of the state space SΠ.

The second approach looks promising due to the fact that the time consuming search

can be omitted but has some issues on its own. There is a third approach: Lelis et al. [11]

present a method to predict the optimal distance from a state s to the goal s?. The third

approach uses such a predictor to improve the accuracy of the estimate of the distance of

the states sampled by the random walk starting from a goal state s? ∈ S?. In Algorithm 4

this approach is described in detail.

Algorithm 4 and Algorithm 3 are essentially the same algorithms. The only difference is

in line 5 where the distance to the goal is not the distance generated by the random walk but

an estimate of the distance from the current state to the goal. This estimate can be done
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Algorithm 4: LHFCP with heuristic guess

Input: S?, s0, h0, random walk length,number of random walks
Output: hann

1 training set ← [];
2 for i← 0 to number of random walks do
3 s? ← generate random goal state();
4 foreach State p ∈ random walk(s?) do
5 training set . add(p, heuristic value(p, h0));
6 end

7 end
8 hann ← train ann(training set);

by every heuristic function. However, Lelis et al. [11] pointed out that a heuristic function

is not accurate enough and proposed to use a solution cost predictor instead. The solution

cost predictor used in this thesis will be discussed next.

3.3 Bidirectional Stratified Sampling
In this section we will introduce the bidirectional stratified sampling (BiSS ) approach

and how it can be used to decrease training set generation time for LHFCP .

Chen [3] introduced a method to estimate some properties of a search tree, called strat-

ified sampling. If the search tree is balanced, it is enough to walk along a single path to

collect some information about the search tree. As most search trees are not balanced, a

stratifier is introduced in the form of a type system. A type system groups nodes with

similar properties together.

Definition 6. Let S(s0) be the set of nodes in the search tree rooted at s0. T = t1, . . . , tn

is a type system for S(s0) if it is a disjoint partitioning of S(s0). For every s ∈ S(s0), T (s)

denotes the unique t ∈ T with s ∈ t.

To estimate the distance from an initial state s0 to a goal state s? a special goal type is

introduced which only maps to goal states. Given these goal types, stratified sampling starts

sampling the search tree at the initial state s0 and expands all states s with a different type

T (s) for every level in the search tree, until a state s? ∈ tgoal is found. The level where this

state s? ∈ tgoal appears is the estimate for the distance from the initial state s0 to s? ∈ tgoal.
Figure 3.1 shows an example of stratified sampling, where a goal s? ∈ tgoal is found after 3

levels of expansions. The Figure 3.1 shows every state on every layer of the search tree as a

circle. The filled circles are states which are expanded by the search. The hollow circles are

the states which are not expanded because they have the same type as another state on the

same layer.

Lelis et al. [11] showed in their experiments that the estimates for the solution cost

produced by stratified sampling were more than double the optimal solution cost. To get a

more accurate estimate of the optimal solution cost, Lelis et al. [11] have come up with a

different solution called bidirectional stratified sampling BiSS . As the name already suggests,

stratified sampling is executed in two directions. One starting from the start state s0

sampling forwards and the other starting from the goal state s? sampling backwards. The



Learning Heuristic Functions for Classical Planning 15

s0

s? ∈ tgoal

Figure 3.1: Example for stratified sampling for 3 levels of expansions.

forward as well as the backward sampling, expand every state s with distinct types T (s)

for a complete layer. BiSS checks if the most recent expanded layers, have the same type

t = T (s) in common. If there is a type t in common the sum of the level of the most recent

layers will be used as estimate for the optimal solution cost. Intuitively, such a type t can

occur near to the goal state s? and to the initial state s0, even if the path from the initial

state s0 to the goal state s? is very long. To ensure that such an underestimation does not

occur, multiple consecutive layers need to have same types tn in common, which is called a

match. Figure 3.2 is an illustration of a match.

s0 t0 t1 t2

t0 t1 t2 s?

n

m

Figure 3.2: Illustration of a match for K = 2. Each circle represents a set of types at a
level of search. Each ti denotes just one of the types in the corresponding set.

To apply BiSS to classical planning, multiple goal states have to be taken into account.

BiSS for planning uses a single forward search starting at the initial state s0 and multiple

backward searches starting at a random goal state s? ∈ S?. If a type t has occurred in the

most recent layer of the forward search as well as in the most recent layer of one of the

backward searches, the search stops there. To get a match, BiSS for planning advances the

forward search and checks if any of the backward searches has still a type t in common on

the corresponding layer. If a match did not occur the forward search is set back to its state

before the match, and expansion for the forward search, as well as for the backward searches

continues as normal.



4
Experiments

Experiments were setup to show the integration of LHFCP in a state-of-the-art planning en-

vironment. This chapter will present the implementation details and the basic configuration

of LHFCP as well as the experimental environment. In the reminder of this chapter we will

discuss the results of the experiments. We first compare a basic configuration of the LHFCP

algorithm to some baseline-configuration, to see how the LHFCP algorithm performs. In

further experiments we will compare different configurations of the LHFCP algorithm to

examine the different parameters and find good values for these parameters. Furthermore

we will discuss the different LHFCP approaches and their advantages and disadvantages.

4.1 Implementation Details
This section presents the evaluation system as well as the details for the different LHFCP

approaches.

The LHFCP algorithm was integrated into Fast Downward. Fast Downward is a state-

of-the-art planning system introduced by Helmert [8], which is often used as an evaluation

system for classical planning. The modularity of Fast Downward allows adding new heuristic

functions to the framework easily. Fast Downward already implements several heuristic

functions which can be used for comparison.

We added 3 new components to the Fast Downward planner: the LHFCP algorithm,

the ANN, which is based on an implementation by Miller [13], and BiSS for planning. The

resulting system has several parameters that can be adjusted by the user: length of random

walks as well as number of random walks which control the size of the training set U , the

initial heuristic function h0 which is used to generate the training set U , the learning rate η

which controls the learning speed of the ANN, and the topology of the ANN which controls

the complexity of the learned heuristic function hlearn.

All the experiments were run on a computer with Intel Xeon E5-2660 CPUs running at

2.2 GHz. We set an upper limit for computation time to 30 minutes and a memory bound of

2 GB, as it is common for International Planning Competitions (IPC). The experiments in

this thesis considered planning tasks of all domains from IPC up to 2011 from the benchmark

suite provided with Fast Downward.
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4.2 Results
In this section we will present and discuss the results of the experiments. We will start

with the big picture by evaluating the LHFCP algorithm based on search with different

configurations and comparing it to some baseline configurations.

4.2.1 Big Picture
In this section we will discuss the results of the first LHFCP approach, from now on

referred to as search-strategy , and compare it to some baseline configurations. As baseline

configurations we use blind-search as a comparison to show that learning is possible. Fur-

thermore we compare LHFCP against hFF to see whether it is possible to learn a very

strong heuristic function. These experiments were also run to determine the influence of the

different LHFCP parameters.

h0 This is the initial heuristic function which is used by LHFCP to solve initial-instances.

Depending on the strength of this heuristic function, more initial-instances can be

solved and more of the state space can be explored, which leads to a bigger training

set.

number of random walks This parameter controls the size of the training set as well as

the exploration of the state space. If there is a large state space with a large branching

factor, it is important to perform enough random walks to generate a training set which

provides enough information about the state space.

random walk length This parameter sets the maximum length for a random walk. It

controls the difficulty of the generated initial-instances. A longer walk can result in

more hard-to-solve initial-instances.

topology This parameter sets the number of neurons in each layer of the ANN in the

form input-hidden-output. The more neurons are added to the hidden layers the more

complex functions can be approximated. But with more neurons in the ANN training

needs more time to complete. Furthermore the more complex a function can get the

higher the probability gets that over-fitting will occur.

η This parameter controls the learning rate of the ANN. It is fixed for all experiments.

epochs This parameter sets the maximum number of epochs for the ANN training. This

value is fixed for all experiments.

Table 4.1 shows all the parameters that can be chosen for a run of the LHFCP algorithm,

as well as the default parameter values that will be used in all experiments, if nothing else

is mentioned.

Table 4.2 shows the overall performance of the LHFCP algorithm against blind-search

and hFF . The values in the table are computed as follows: coverage, cost and memory are

computed as the sum across all domains; and evaluations, expansions, generations, search

time and total time are computed as the geometric mean across all domains. The coverage

is the number of planning tasks solved by a configuration. A planning task is not solved if it
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Parameter Value
method search
random walk length 50
number of random walks 200
ANN topology n-50-1
h0 FF
η 0.002
epochs 500

Table 4.1: Basic configuration which is used in all experiments, if no other values are
specified.

exceeds the memory limit or the time limit. LHFCP solved 13 tasks more than blind-search

but not as many as hFF . Plan cost is the sum of all actions in all plans over all tasks where

each configuration found a plan. The configuration for LHFCP produces cheaper plans than

hFF over all domains but not as cheap as blind-search which produces optimal plans. In

order to measure the quality of a heuristic function, the following properties are taken into

account: evaluations, which is the number of states that are evaluated during the search;

expansions, which is the number of states expanded during the search and generations,

which is the number of states generated during the search. A heuristic function is better the

smaller these values are. Over all domains, the configuration for LHFCP requires about half

of expansions, evaluations and generations than blind-search. The performance of the hFF

configuration cannot be reached by the LHFCP configuration. Since expansions, evaluations

and generations all behave in a similar manor, we will restrict ourself just on expansions.

Search time is the time that is used to search for a plan. We can see that hFF has the

lowest value for search timei among these configurations. The blind-search configuration

is slightly faster than the LHFCP configuration. Total time is the time used to solve a

problem, including the generation of the training set and learning of the heuristic function

hlearn. Table 4.2 shows that the total time for the LHFCP configuration is higher than the

total time for the blind-search configuration as well as for the hFF configuration. The high

total time value is caused by the generation of the training set and the learning of the new

heuristic function hlearn, which is considered as preprocessing. Because of this preprocessing

the memory consumption for LHFCP is also higher than for blind-search and hFF . Total

blind-search LHFCP hFF

Coverage 680 693 1308
Cost 8150448 8150988 8150992
Evaluations 85955.71 49785.85 1156.04
Expansions 53369.73 24990.02 282.75
Generated 339075.28 158430.39 1937.95
Memory 97249300 110422044 17366928
Search time 1.31 1.62 0.25
Total time 1.35 8.66 0.27

Table 4.2: Results of the experiments for the search-strategy against the baseline
configuration blind-search and hFF .
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time and memory consumption will not be used as a quality measure for the new learned

heuristic function hlearn.

In Table 4.3 we can see that LHFCP can solve slightly more instances on some domains

than blind-search, which shows that it is possible to learn a stronger heuristic function

on these domains. Considering the domains blocks, driverlog and miconic we can see

that LHFCP solves more instances than blind-search. Furthermore we can see that the

training set provided for these domains is large, which indicates that learning from the

training set was possible and a stronger heuristic function hlearn could be generated. There

are also domains where LHFCP could not solve as many instances as blind-search. For

instance on the domains mprime, mystery, no-mprime and no-mistery, LHFCP failed

to provide a good enough training set and therefore LHFCP was not able to solve as many

instances as blind-search on these domains. The LHFCP configuration solves less instances

on most domains than hFF . On the domains gripper, movie, psr-small, storage and

woodworking-11 LHFCP can solve as many instances as hFF .

Coverage blind-search LHFCP hFF Training set size

airport (50) 21 21 31 6
barman-11 (20) 0 0 0 7041
blocks (35) 18 20 29 36062
depot (22) 4 4 14 6876
driverlog (20) 7 9 15 27359
elevators-08 (30) 2 2 6 21559
elevators-11 (20) 0 0 0 7877
floortile-11 (20) 0 0 7 32
freecell (80) 15 17 74 183
grid (5) 1 1 3 2030
gripper (20) 7 7 7 15276
logistics00 (28) 10 10 21 50862
logistics98 (35) 2 2 8 26767
miconic (150) 50 55 143 155794
movie (30) 30 30 30 1104
mprime (35) 19 15 32 9227
mystery (30) 15 13 19 3807
no-mprime (35) 17 11 30 5307
no-mystery (30) 15 12 19 3806
nomystery-11 (20) 3 3 20 5854
openstacks-08 (30) 12 11 12 1157
openstacks-11 (20) 0 0 0 0
openstacks (30) 7 7 9 169
parcprinter-08 (30) 10 10 20 110
parcprinter-11 (20) 0 0 10 44
parking-11 (20) 0 0 9 1139
pathways (30) 4 4 5 13137
pathways-noneg (30) 4 4 5 13747
pegsol-08 (30) 27 27 30 826
pegsol-11 (20) 17 17 20 426
pipesworld-notankage (50) 14 15 37 31208
pipesworld-tankage (50) 11 13 21 6198
psr-small (50) 49 49 49 36142
rovers (40) 5 7 10 18246
satellite (36) 5 6 19 24094
scanalyzer-08 (30) 12 11 21 28431
scanalyzer-11 (20) 4 3 11 23357
schedule (150) 13 23 33 60253
sokoban-08 (30) 11 11 29 174
sokoban-11 (20) 3 3 19 152
storage (30) 14 16 16 5963
tidybot-11 (20) 3 0 11 0
tpp (30) 6 6 7 1355
transport-08 (30) 6 6 8 21387
transport-11 (20) 0 0 0 7910
trucks (30) 6 6 16 5420
visitall-11 (20) 0 0 0 0
woodworking-08 (30) 4 6 9 15657
woodworking-11 (20) 1 1 1 7187
zenotravel (20) 8 8 13 28208

Sum (2131) 680 693 1308

Table 4.3: Domain-wise coverage of LHFCP , blind-search and hFF . And domain-wise
training set size of LHFCP .
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Figure 4.1: Shows the performance of LHFCP against blind-search for all domains.

Figure 4.1(a) shows the performance of the LHFCP configuration against the blind-search

configuration for each problem in terms of expansions. The LHFCP configuration produces

less expansions on most domains than blind-search. For some domains blind-search needs

less expansions than LHFCP . On these domains a new heuristic function hlearn could not

successfully be generated. There are many problems along the diagonal, where a heuristic

function hlearn was generated that performs about the same as blind-search with a slight

shift towards LHFCP . Figure 4.1(b) shows that the search time for most problems is smaller

for the blind-search configuration than for the LHFCP configuration. For problems where

LHFCP was able to learn a strong heuristic function hlearn LHFCP finds the solution faster

than blind-search. For problems that are near to the diagonal in terms of expansions, blind-

search performs better in terms of search time. This behavior is caused by the overhead of

computing the heuristic value for every state in the search with the ANN, compared to the

blind-search which always returns a fixed value.

Figure 4.2(a) shows the performance of LHFCP against hFF for every problem in all

domains in terms of expansions. We can see that the majority of the problems is located

above the diagonal which means that hFF performs better in terms of expansions than

LHFCP . But there are some problems below the diagonal where LHFCP was able to learn

a heuristic function hlearn which performs better than hFF . These problems come from the

domains gripper and psr-small. In Figure 4.2(b) we can see the performance of the LHFCP

against hFF in terms of search time. We can see that the majority of the problems lie above

the diagonal which means that hFF is faster on most of the problems than LHFCP . We have

already seen that LHFCP performs better on the domains gripper and psr-small in terms

of expansions. Since there are less expansions on the domains gripper and psr-small the

search time is lower for LHFCP on these domains.

The experiments show that it is possible to learn a strong heuristic function hlearn on

the domains gripper and psr-small, because the parameters for the LHFCP approach had

good values. We will investigate the influence of the different parameters for LHFCP next.
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Figure 4.2: Shows the performance of LHFCP against hFF for all domains.

4.2.2 Parameter setting
In this section we will discuss the influence of the different parameters that can be

chosen for LHFCP . The different parameters and their default settings are shown in Ta-

ble 4.1. The names for the different configurations will use the following naming scheme:

parameterName-value. The default configuration is called default and will use the values

specified in Table 4.1. Additional information and discussion for the following experiments

can be found in Appendix A.

Table 4.4 shows the results of an experiment where the length of the random walks

varies. The default configuration can solve slightly more instances than rwl-20 and rwl-

100. When it comes to cost, all 3 configurations perform more or less the same. The small

difference that can be observed in terms of cost is because of noise. Therefore we cannot

make conclusions about the performance in terms of cost depending on the length of the

random walks. Table 4.4 shows that rwl-100 performs better in terms of expansions than

rwl-20 and default , which is caused by the bigger training set. The rwl-100 configuration

has the lowest search time compared to the configurations rwl-20 and default . The low

search time is caused by the lower value in expansions. In Table 4.4 we can see that rwl-20

has a lower total time than the default and rwl-100 configurations. This is because the

Random walk length (rwl) rwl-20 default rwl-100

Coverage 687 693 690
Cost 8152460 8152552 8152378
Expansions 29221.89 29205.89 27534.29
Search time 1.87 1.84 1.79
Total time 9.32 9.49 10.02
Training set size 396.76 457.66 519.24

Table 4.4: Results of the experiments for the search-strategy with different length for
random walks.



Experiments 22

execution of the random walk needs less time for rwl-20. In terms of training set size the

configuration rwl-100 produces the biggest training set and rwl-20 produces the smallest

training set. Since every state on the path which is produced by the preprocessing search

starting from a random walk end point to the goal is included in the training set, the training

set will be bigger for longer paths. This experiment shows that longer random walks provide

a bigger training set with more information where it is possible to learn a stronger heuristic

function hlearn. The experiment also shows that long random walks produce an overhead

in preprocessing and therefore for some problems the timeout is reached before the actual

search can start.

Number of random walks (nrw) nrw-100 default nrw-500

Coverage 701 693 675
Cost 8152220 8152505 8162028
Expansions 26726.12 25701.05 24337.35
Search time 1.76 1.73 1.70
Total time 7.79 8.95 11.79
Training set size 311.93 466.80 912.01

Table 4.5: Results of the experiments for the search-strategy with different number of
random walks.

Table 4.5 shows the results of an experiment which investigates the influence of the

number of random walks on the quality of the learned heuristic function hlearn. We see that

an increase in the number of random walks also results in an increase of the training set size.

As we expected, nrw-500 generates a heuristic function hlearn that performs better in terms

of expansions than the nrw-100 and default configurations because of the bigger training set.

Because of the better performance in terms of expansions, nrw-500 also performs slightly

better in terms of search time than nrw-100 and default . The overhead in the number of

random walks causes nrw-500 to spend more time in preprocessing than nrw-100 and default

which results in the high value for total time for the nrw-500 configuration. In Table 4.5

we can see that nrw-100 can solve the most instances among the configurations nrw-100,

default and nrw-500. We would expect that nrw-500, which generates the strongest heuristic

function hlearn, can solve the most instances but since nrw-100 has the least overhead in

preprocessing, nrw-100 can spend more time for the actual search than default and nrw-

500. Therefore nrw-100 has the highest value for coverage. In terms of cost we can see that

nrw-100 and default perform more or less the same, the difference can be caused by noise,

but they produce cheaper plans over all than nrw-500.

Figure 4.3 investigates the influence of the number of random walks on the size of the

training set per domain. As we already know from earlier experiments, LHFCP is not able

to produce a training set on every domain. For instance on the domains airport, floortile-

11 and visitall-11 LHFCP cannot provide a training set. Figure 4.3 shows the expected

behavior that the training set size increases linearly with the number of random walk on

most domains, like for instance blocks, depot and zenotravel. There is a third type of

domains, where the training set size does not increase with the number of random walks.
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Figure 4.3: Training set size of LHFCP with different number of random walks.

Examples for these type of domains are movie, pathways and rovers. Since more random

walks produces an overhead in preprocessing, and the information in the training set cannot

be enhanced with more random walks, the number of random walks for these domains should

be as small as possible to save time for the actual search. This experiment shows that it is
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ANN-topology (topo) topo-n-20-1 default topo-n-100-1

Coverage 679 693 689
Cost 8152255 8152552 8152356
Expansions 35034.57 28690.82 26111.88
Search time 1.60 1.81 2.31
Total time 7.86 9.43 12.05
Training set size 454.60 453.10 452.80

Table 4.6: Results of the experiments for the search-strategy with different ANN topologies.

not possible to chose a value for the number of random walks domain-independently.

The next experiment investigates the influence of the topology of the ANN on the qual-

ity of the learned heuristic function hlearn. In Table 4.6 we can see the results for this

experiment. We consider only ANN topologies with a single hidden layer. The number of

the neurons in the hidden layer is changed for this experiment. We will first discuss the

configuration topo-n-20-1 , which uses a topology with 20 neurons in the hidden layer. We

can see in Table 4.6 that the configuration topo-n-20-1 cannot solve as many instances as

the default configuration. In terms of cost the configurations topo-n-20-1 and default pro-

duce about the same cost and the small difference is caused by noise. Table 4.6 shows that

the topo-n-20-1 configuration needs more expansions overall than the default configuration.

This indicates that the goal heuristic function h? is a more complex function than the con-

figuration topo-n-20-1 can produce. To be able to approximate the goal heuristic function

h? better, more neurons have to be added to the hidden layer. Furthermore we can see that

the total time has the lowest value for the topo-n-20-1 configuration. This small value for

total time is because there are less neurons in the ANN and therefore back-propagation has

to adopt fewer weights which results in a decrease in training time. The same behavior can

be observed for the search time. Although for search time the overhead of more neurons

is only produced by feed-forward, we can see that the search time is better for topo-n-20-1

than for the configuration default and topo-n-100-1 .

Table 4.6 shows that the topo-n-100-1 configuration produces a stronger heuristic func-

tion hlearn in terms of expansions than the default and topo-n-20-1 configuration. Since

there are more neurons in the ANN, back-propagation has to adopt more weights and the

training time increases for the topo-n-100-1 configuration. Because of the increase in train-

ing time, the topo-n-100-1 configuration spends too much time in preprocessing and can

therefore not solve as many problems as the default configuration, although it performs

slightly better in terms of expansions. The value for cost is about the same for the default

configuration as well as for the topo-n-100-1 configuration. The small difference in cost is

caused by noise. Since the topology of the ANN has no influence on the generation of the

training set, the size of the training set is the same for all 3 configurations. This experiment

shows the expected behavior for the topology of the ANN. The more neurons we add to

the hidden layer, the better the heuristic performs in terms of expansions. But the training

time also increases with the number of neurons and coverage gets worse.

We can use different heuristic functions as h0 for the search-strategy . The different

heuristic functions used in this experiment are: blind-search, FF , ipdb introduced by Haslum
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initial heuristic (h0) h0-blind-search h0-FF h0-ipdb h0-lm-cut

Coverage 683 705 604 699
Cost 8148963 8149074 8149088 8148928
Expansions 20814.37 19795.51 21012.24 20664.96
Search time 1.48 1.39 1.41 1.40
Total time 10.79 5.53 51.03 6.46
Training set size 181.35 295.55 242.87 234.74

Table 4.7: Results of the experiments for the search-strategy with different heuristic
functions h0.

et al. [7] with the implementation of Sievers et al. [19], and lm-cut introduced by Helmert

and Domshlak [9]. We can see in Table 4.7 that the h0-FF configuration can solve the most

problems among all configurations in this experiment. The configuration h0-lm-cut solves

6 instances less than h0-FF and 16 instances more than h0-blind-search. The configuration

h0-ipdb solves the least instances among all configurations in this experiment. The low value

for coverage for the h0-ipdb configuration, is because ipdb needs much time to setup which

causes an overhead in preprocessing. For the h0-ipdb configuration more instances exceed

the maximum time limit in preprocessing than for the other configurations. In terms of

cost all configurations in this experiment have similar values. The small differences in cost

are because of noise. Table 4.7 shows that h0-FF produces slightly less expansions than

all other configurations in this experiment. The configuration h0-ipdb produces the most

expansions among all the configurations in this experiment. Furthermore we can see in

Table 4.7 that h0-FF , h0-ipdb and h0-lm-cut have about the same value for search time.

Only h0-blind-search has a higher value in search time than the other configurations. The

configuration h0-ipdb has the highest value in total time. As we already discussed, this

high value is caused by the ipdb initialization. The total time value for the h0-blind-search

configuration is significantly higher compared to the configurations h0-FF and h0-lm-cut .

Because blind-search needs more time to solve the initial instances than FF and lm-cut ,

the h0-blind-search configuration also needs more time in total. The configuration h0-blind-

search generates the smallest training set among all the configurations in this experiment

because blind-search cannot solve as many initial instances as the other heuristic functions.

We can see that the h0-FF configuration can solve the most initial instances and therefore

provides the biggest training set in this experiment.

This experiment shows that the stronger the initial heuristic function h0 is, the better the

learned heuristic function hlearn performs. A stronger heuristic function h0 also generates a

bigger training set. Since the initial heuristic function h0 is used in preprocessing, it should

have a small initial time to reduce the overhead.

4.2.3 Walk Strategy
In this section we will present the results of the experiments for the second LHFCP

variant. We will from now on refer to this approach as walk-strategy .

In table 4.8 we can see that the walk-strategy produces a newly learned heuristic function



Experiments 26

search-strategy walk-strategy

Coverage 693 692
Cost 8152339 8174179
Expansions 25367.74 25153.76
Search time 1.65 1.61
Total time 8.80 7.82
Training set size 453.09 1850.41

Table 4.8: Results of the experiments for the walk-strategy compared with the
search-strategy .

hlearn-walk which performs slightly better than the heuristic function hlearn-search in terms

of expansions. The walk-strategy solves only 1 instance less than the search-strategy over

the complete set of domains. In terms of cost we can see that the search-strategy produces

overall cheaper plans than the walk-strategy . If we look at the size of the training set, we

can see that the walk-strategy produces a much bigger training set than the search-strategy .

This is because in the search-strategy there are only states in the training set that occur in a

plan produced in the LHFCP search preprocessing phase. In the walk-strategy , states in the

training set that are not part of such a plan also exist. If we now look at table 4.8 we can

see that the improvement in terms of expansions of the heuristic function hlearn-walk is not

as big as we expected given the much bigger training set. Despite the much bigger training

set we can see that the total time is lower for the walk-strategy than for the search-strategy .

This indicates that the search done in preprocessing to generate the training set is a time

consuming process. The search time over all domains is slightly lower for the walk-strategy

which is as we expected since there are less expansions for the walk-strategy than for the

search-strategy .

This experiment shows that it is possible to learn a strong heuristic function hlearn-walk

only relying on sampling the state space with random walks without using any heuristic

functions.

4.2.4 Prediction Strategy
In this section we will present and discuss the results of the third approach of LHFCP .

From now on we will refer to the third approach as prediction-strategy . In the previous

search-strategy prediction-strategy

coverage 49 19
cost 249 249
expansions 21.21 53.91
search time 0.10 0.10
total time 0.36 33.87
training set size 274.89 760.42

Table 4.9: Results of the experiments for the prediction-strategy compared to the
search-strategy on the domain psr-small.
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section, we already saw the advantages of sampling the state space SΠ and omit the search.

Now we also want to enhance the accuracy of the training set. This experiment is executed

only on the domain psr-small because it was possible to learn a strong heuristic function

on this domain. Because our implementation of BiSS for planning is resource hungry the

experiments are restricted only to the domain psr-small. We will use the following type

system in these experiments: Tc(s) = (h(s), c(s, 0), . . . , c(s,H)), where h(s) is the heuristic

value for state s, c(s, k) is the number of children of s which have the heuristic value k and

N is the maximum heuristic value. N was set to 100 for these experiments and the heuristic

value is computed with h0 = FF.

Table 4.9 shows the overall performance of the prediction-strategy compared to the

search-strategy for the domain psr-small. We can see that the prediction-strategy solves 30

instances less than the search-strategy . Because the implementation of BiSS for planning

uses so many resources, LHFCP exceeds the time limit for most instances already in the

preprocessing phase, and can therefore not solve as many instances as the search-strategy .

In terms of cost the prediction-strategy as well as the search-strategy produce the same cost

over all problems that could be solved. We can see in Table 4.9 that the prediction-strategy

produces more expansions than the search-strategy which is not as we expected. The search

time is the same for both approaches. The total time for the prediction-strategy is much

higher than the total time for the search-strategy which is because of the resource hungry im-

plementation of BiSS for planning. Table 4.9 shows that the training set is much bigger for

the prediction-strategy than for the search-strategy which is because the prediction-strategy

adds all states visited during the random walks to its training set, and the search-strategy

only adds states that occur in a plan produced by the preprocessing search to its training

set.

This experiment shows that BiSS for planning is too resource hungry to be used with

LHFCP .

4.3 Discussion
In this section we will give a brief wrap up on the experiments that we have run in this

chapter and give an overview of the influence of the different parameters.

The experiments have shown that it is possible to learn a heuristic function which pro-

duces less expansions than blind-search. The experiments have also shown that the overall

time to solve a problem with the learned heuristic function increases which has to be taken

into account if a heuristic function should be learned. The experiments that were run to

determine the influence of the different parameters, have shown that it is not possible to

be domain-independent with every parameter. The random walk length produces a slightly

bigger training set with increasing length. The training set size increases almost linear with

the number of random walks on most domains. But there are also domains where an increase

in the number of random walks does not increase the size of the training set and therefore

the number of random walks should be as low as possible on these domains to reduce the

overhead in training set generation. Further experiments have shown that more neurons in

the hidden layer of the ANN increase the performance of the heuristic function. But there is



Experiments 28

a trade off. The more neurons there are the more time takes the training and less time can

be used to solve an instance. The experiments that investigated the influence of different

initial heuristic functions h0 showed that a stronger initial heuristic function h0 can solve

more instances from the set of initial-instances and therefore provide a bigger training set

with more information which generates a slightly stronger heuristic function hlearn. The

experiments have shown that the best set of parameters cannot be chosen easily. There is a

trade off between less expansions and better coverage. The best trade off for the parameter

settings is the default configuration with less random walks.

The next set of experiments have shown that the search phase can be omitted in pre-

processing which leads to a decrease of the total time and an increase in the training set

size. The increase in the training set size is because all states visited by the random walks

are included in the training set. The performance of the learned heuristic function for the

walk-strategy slightly improves compared to the search-strategy . Further experiments have

shown that BiSS for planning does not improve the learned heuristic function. Moreover, it

shows that BiSS for planning is too expensive and the time limit is often exceeded during

the preprocessing phase.
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Related Work

Arfaee et al. [1, 10] describe a machine learning approach to learn a heuristic function during

the search, which they call bootstrap-learning of heuristic functions. Bootstrap-learning of

heuristic functions starts with a weak initial heuristic function h0, a set of initial problem

instances and a time limit to solve these initial problem instances. The instances that can be

solved by bootstrap-learning in the given time using the initial heuristic function h0, provide

the training examples to learn a stronger heuristic function. The stronger heuristic function

replaces the weaker heuristic function and the bootstrap-learning process is repeated with

the stronger heuristic function, to obtain an even stronger heuristic function. This process

is repeated until a heuristic function that is strong enough to solve hard instances in the

given amount of time is returned by the bootstrap-learning process. If the bootstrap-learning

process cannot solve enough instances in the given amount of time, a random walk procedure

produces easy to solve instances, starting from the goal state.

Arfaee et al. [1] introduce an approach to solve single problem instances using the

bootstrap-learning approach, without the need of a training phase in the order of days.

Lelis et al. [12] propose a way to reduce the learning time used by the bootstrap-learning

approach from the order of days to minutes. Their approach is to estimate the distance to

the goal directly, instead of letting the bootstrap-learning approach solve the given problem

instances. They use these predictions to learn the new heuristic function.

Samadi et al. [17] introduce a method where a heuristic function is learned during search

from a set of other heuristic functions. Instead of picking the maximum heuristic value out of

the given heuristic functions, the new heuristic function is computed with an artificial neural

network (ANN), from a set of different input heuristic functions. The ANN is precomputed

and used during the search to compute the heuristic value for a state.

Thayer et al. [21] propose a method to use suboptimal search algorithms to reduce the

solving time by sacrificing guaranteed optimality. They present a technique for improving

the heuristic function during search based on an approach introduced by Sutton [20] called

temporal difference learning. Since they apply the heuristic function for suboptimal search,

the learned heuristic function can be inadmissible. They applied the on-line learned heuristic

function to greedy best-first search introduced by Doran and Michie [4]. This new learned

heuristic function produced better solutions faster than previous heuristic functions used
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with greedy best-first search.

Sarkar et al. [18] introduce a method for learning a heuristic function while solving a

problem, to solve subsequent problems faster. They assume that these subsequent problems

come from the same distribution and therefore the distribution can either be estimated in

an off-line training phase or on-line while solving the actual problem.

Fink [5] proposes a method of learning a heuristic function out of several given heuristic

functions. One possible way of getting a heuristic value out of other heuristic values is by

choosing the maximum heuristic value among the given heuristic values. In his paper he

describes an approach where he computes the new heuristic value as a weighted sum of

the different base heuristic values. The weights of the new composite heuristic function are

trained on-line by using the known distance to the nodes which were already visited during

the search.



6
Conclusion

This chapter gives a conclusion of the work done in this thesis. The last section of this

chapter presents possible future work and improvements of the LHFCP approach.

6.1 Overall Results
We introduced a framework that is capable of learning heuristic functions in the context

of classical domain-independent planning. The framework is inspired by an approach called

bootstrap-learning for heuristic functions introduced by Arfaee et al. [1, 10]. The subject of

their approach as well as of our approach was to use common machine learning techniques

to learn a strong heuristic function which can be used to speed up heuristic search.

We have shown that it is possible to learn a heuristic function in the context of classical

domain-independent planning by relying on common machine learning techniques like artifi-

cial neural networks. We have also shown that it is possible to learn such a heuristic function,

without relying on any other heuristic function by just sampling the state space with random

walks starting from a goal state. Furthermore we have added a solution cost predictor as

an improvement for our approach, based on a suggestion for the original bootstrap-learning

approach made by Lelis et al. [11] which is called bidirectional stratified sampling (BiSS ).

We showed that BiSS can be adapted to planning tasks which have more than a single goal

state. The experiments have shown that BiSS for planning produces a too big overhead

to be used with LHFCP . Furthermore, the experiments showed that a domain-independent

approach is not possible with LHFCP . There are many parameters that have a different

optimal value for different domains. Since a new heuristic function has to be learned for

every problem individually, there is always an overhead in total time that has to be taken

into account.

Although LHFCP did not perform as good as already existing heuristic functions and

has some issues with domains with non invertible operators, it seems a viable alternative

in domains where existing heuristic functions perform badly or to improve the heuristic

function in specific domains, without additional knowledge of the domain itself.
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6.2 Future Work
The modularity of the LHFCP framework allows to substitute the learning component

with each other machine learning technique. Although ANNs are very powerful and can

approximate almost every function, it can be very difficult to choose the correct topology

for the current task. There might be some other machine learning techniques that are

better suited for this task. In common machine learning tasks the efficiency of a learner

can be improved by the introduction of features which expose more sophisticated domain

knowledge to the learner. Until now the features are the raw values of a state, but the

framework allows to easily add some other features. The size and the quality of the training

set depend on the number of random walks as well as the length of the random walks. Since

these parameters have other optimal values for each problem, they can be estimated in a

preprocessing phase. Stratified sampling introduced by Chen [3] which can estimate some

properties of a search tree could be used to estimate the length of the random walks, as this

is related to the length of the solution cost, as well as the number of random walks which is

related to the branching factor. Exposing this knowledge, a training set which provides the

necessary state space informations can be built more efficiently for every domain and the

overhead in training set generation can be reduced to save more time for the actual search.
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A
Appendix

A.1 Problem Wise Evaluation
In this section we will discuss the results of the experiments for the different config-

urations of LHFCP in more detail. We will investigate the performance of the different

parameters: random walk length, number of random walks and topology of the ANN in

terms of expansions and search time with problem wise distribution.
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Figure A.1: Shows the performance of the default configuration against rwl-20 for all
domains.

In Figure A.1(a) we can see that all the problems are aligned along the diagonal. Some

problems can be solved with less expansions by the default configurations, other produce less

expansions for the rwl-20 configuration. Both configurations perform about the same over

all problems. Figure A.1(b) shows that the default configuration can solve more problems

at a minimum search time than the rwl-20 configuration. Most of the problems are aligned

along the diagonal.

Figure A.2(a) shows the performance of the default configuration compared to the rwl-

100 configuration. All problems are aligned along the diagonal, but there is a small shift to
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the bottom which means that the rwl-100 configuration performs slightly better in terms of

expansions. In Figure A.2(b) we can see that more problems are located below the diagonal

which means that the rwl-100 configuration has a lower search time in general than the

default configuration.
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Figure A.2: Shows the performance of the default configuration against rwl-100 for all
domains.

We already saw in Table 4.5 that the difference in terms of expansions and search time

is marginal. In Figure A.3(a) we can see that this marginal difference is because all the

problems are near to the diagonal, so none of the configurations nrw-100 and default can

be preferred in terms of expansions. Figure A.3(b) shows that nrw-100 and default have a

similar search time for most problems. There are some problems that can be solved faster

10−2 10−1 100 101 102 103 104 105 106 107 108

default

10−2

10−1

100

101

102

103

104

105

106

107

108

nr
w

-1
00

(a) Expansions

10−2 10−1 100 101 102 103

default

10−2

10−1

100

101

102

103

nr
w

-1
00

(b) Search Time

Figure A.3: Shows the performance of the default configuration against nrw-100 for all
domains.
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by the default configuration but there are also problems that can be solved faster by the

nrw-100 configuration. Neither of the configurations nrw-100 nor default can be preferred

in terms of search time.

In Figure A.4(a) we can see that the default configuration and the nrw-500 configuration

have about the same number of expansions for most problems. The same behavior can be

observed in Figure A.4(b) in terms of search time.
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Figure A.4: Shows the performance of the default configuration against nrw-500 for all
domains.

Figure A.5(a) shows the performance of the topo-n-20-1 configuration against the default

configuration. We can see that slightly more problems are located above the diagonal, which

means that the default configuration produces less expansions over all problems than the
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Figure A.5: Shows the performance of the default configuration against topo-n-20-1 for all
domains.
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topo-n-20-1 configuration. There are some problems which are located below the diagonal.

For these problems the topo-n-20-1 configuration was able to produce a heuristic function

hlearn which produces less expansions than the default configuration. This experiment

shows that there are some problems that can be approximated with an ANN with few

neurons, but there are also other problems that need more neurons in the hidden layer to be

approximated. In Figure A.5(b) we can see that the majority of the problems are located

below the diagonal. This behavior can be observed because the default configuration has

more neurons in the hidden layer than the topo-n-20-1 configuration which means that

calculating the heuristic value with an ANN with more neurons takes more time than with

fewer neurons. There are some problems in Figure A.5(b) that are above the diagonal.

Despite the computational overhead of more neurons the default configuration is faster,

because it produces less expansions on these problems.

In Figure A.6(a) we can see that the problems are aligned along the diagonal with

a slight shift to the bottom which means that topo-n-100-1 performs better in terms of

expansions than the default configuration. We can observe a similar behavior as for the

topo-n-20-1 and default configuration. There are some problems that need more neurons

in the hidden layer to be approximated correctly, but there are also problems that can be

approximated with fewer neurons in the hidden layer. Figure A.6(b) shows the performance

of the default configuration against the topo-n-100-1 configuration in terms of search time.

As we expected, most of the problems are located above the diagonal because there are more

neurons in the topo-n-100-1 configuration than in the default configuration which cause an

overhead in computation when the heuristic function is evaluated.
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Figure A.6: Shows the performance of the default configuration against topo-n-100-1 for
all domains.
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