
A* Tie-Breaking Strategies
in Fast Downward

Bachelor’s Thesis

Natural Science Faculty of the University of Basel
Department of Mathematics and Computer Science

Artificial Intelligence Research Group
https://ai.dmi.unibas.ch/

Examiner: Prof. Dr. Malte Helmert
Supervisor: Remo Christen

Mirco Franco
m.franco@stud.unibas.ch

2021-052-022

30.06.2025

https://ai.dmi.unibas.ch/

Acknowledgments

First of all I would like to give a huge thank you to my supervisor Remo Christen. Since
the first day of this thesis he was a big help with his useful feedback, interesting discussions
and important guidance. I am very glad to have had him as a helping hand and advisor
as I always enjoyed the weekly meetings we had. Without him this bachelor’s thesis would
not have been possible. He always gave me hope and encouraged me on proceeding on my
way. Additionally I would also like to thank Prof. Dr. Malte Helmert for suggesting this
interesting topic and giving me the opportunity to work on this thesis. I learned a lot while
working on this thesis and had a lot of fun implementing an interesting approach into a
state-of-the-art problem solver.

Abstract

Planning is a fundamental problem in artificial intelligence. The goal of a planning problem
is to find a sequence of actions that lead a given starting state to a predefined goal state.
The A∗ search algorithm is a widely used to solve cost-optimal planning problems, where
the goal is to find a sequence with minimal cost. This search algorithm navigates through
the different paths from node to node with the help of the f -value each node holds. But if
multiple nodes have the same f -value, tie-breaking strategies have to find the optimal way
to reach the goal. This thesis implements and evaluates the tie-breaking strategy depth-
diversification within the Fast Downward planning system. Additionally a distance-to-go
approach as a tie-breaking strategy is tested and evaluated as well. The default tie-breaker
are ineffective, especially for zero-cost domains, where multiple nodes often have the same
f -value. The findings show that structured tie-breaking strategies like depth-diversification
and distance-to-go heuristics can make a difference and perform better than default tie-
breaking strategies.

Table of Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

2 Background 4
2.1 Planning Task . 4
2.2 Heuristics . 6
2.3 Best-First Search Algorithm . 8
2.4 Plateau . 10

3 Tie-Breaking Strategies 11
3.1 Zero-Cost Domains . 11
3.2 Default Tie-breaking . 15
3.3 Depth-Diversification . 16
3.4 Implementation . 18
3.5 Distance-to-go . 19

4 Evaluation 21
4.1 Setup . 21
4.2 Zero-Cost Domains . 22

4.2.1 Configurations in Zero-Cost Domains 23
4.2.2 Comparison to Asai and Fukunaga (2017) 25
4.2.3 Detailed Evaluation . 27

4.3 IPC-Domains . 30
4.3.1 Comparison to Zero-Cost Domains . 33

5 Conclusion 34
5.1 Configuration Comparison . 34
5.2 Unexpected Findings . 35
5.3 Future Work . 35

Bibliography 37

1
Introduction

Planning is a subfield of Artificial Intelligence. It is about finding a plan for certain problems
in an automated way. A plan in this context means a sequence of actions taken to get to
a predefined goal from a given starting point. There are different kinds of problems that
can be solved. To solve a problem one could use a problem-specific problem solver, which
can only be used for problems of the same kind. But we will only look at general problem
solving methods and not problem-specific approaches. This means that the problem solver
is a general algorithm where the developer of the search algorithm does not know what kind
of problem it has to solve. Because of that these general problem solvers can be used widely
for many different problems. In a classical planning problem we have many paths that can
be followed. Classical planning addresses the fundamental problem of finding a sequences of
actions that lead to a certain goal from a given initial state. Often it is desired to find the
optimal path to a goal. For cost-optimal planning this means that the total cost of the actions
taken in the sequence should be minimized. To do that we want to follow the path that costs
the least and we want to expand as few states as possible while following the path. The A∗

search algorithm is widely used for optimal planning. It uses heuristic functions that estimate
which of the successor states the most promising is. The A∗ search algorithm guarantees
optimality of the solution as long as the heuristic function has certain characteristics that
will be looked at in detail in Section 2.2. But there are cases where two or more nodes n in a
path look exactly the same with respect to their path cost g(n) and heuristics h(n). Adding
these two values together we get the f -value. When the f -value is the same for multiple
nodes then we need to decide which path we should take. This means we have to break the
tie. The presence of zero-cost actions increases the number of nodes in a path that have the
same values for their cost and their heuristic. A plateau is such a set of nodes, that have
the same the path cost g(n) and estimation to the nearest goal h(n). In this paper we will
look at different tie-breaking strategies we can use to determine which path will be best,
not only with respect to the path cost, but also on how many states have to be checked
until reaching the goal. There are the standard default tie-breaking strategies first-in-first-
out (fifo), last-in-first-out (lifo) and random order (ro). But we can see in the example in
Figure 1.1 that these default tie-breakers do not always find the path that needs the fewest
expansion of nodes. In the example we will expand the nodes in a different order depending

Introduction 2

on the tie-break. For this example we will assume that the successor nodes get generated
in alphabetical order. For fifo the expansion order would be: ⟨A,B,C,D,E, F,G,H⟩ while
lifo needs even more expansions with: ⟨A,C,G, F,K, J,B,E,D, I,H⟩. The random order
is not structured and not deterministic but could look like this: ⟨A,B,E,C,D, F, J,H⟩.

A

B

C

D

E

F

G

H

I

J

K

Figure 1.1: This is an example of nodes A, . . . ,K that have the same path cost (g-value)
and the same estimation value to the nearest goal (h-value). Therefore they form a
plateau. Both these values can be the same when the actions (marked as arrows) have cost
zero. The red arrows here are non-zero actions and lead to a node that is not in the
plateau anymore. Those nodes outside the plateau will be ignored in this example as the
node H already holds a goal state and will terminate the search.

To diversify this more and get an even distribution over the nodes, Asai and Fukunaga
(2017) proposed a depth-based tie-breaking strategy. This approach sorts the nodes of a
plateau into depth buckets sorted by their layer of depth. In the example of Figure 1.1 these
buckets would be ⟨A⟩, ⟨B,C⟩, ⟨D,E, F,G⟩ and ⟨H, I, J,K⟩. Now instead of just starting
to select the first or last node that got expanded, we select one node at the time from each
depth bucket. How the node in the depth bucket gets selected is again a matter of the
chosen default tie-breaker. The order of expansion for the depth-diversification with fifo as
the default tie-breaker would be: ⟨A,B,D,C,H⟩. This uses the least expanded nodes and
therefore has optimal expansion. But depth-diversification with lifo will expand all nodes
before the goal in H is found. This example does not show the general case as it is easy to
find a different case where lifo expands less nodes than fifo. For example if not H but K

would be the goal state, then lifo would work better with depth-diversification than fifo.
To see which configurations of tie-breaking strategies and heuristics achieve the best perfor-
mance, we conduct a series of experiments. For these experiments we use Fast Downward
(Helmert, 2006) as the basis for our implementation of the depth-diversification. Fast Down-
ward is a general planning problem solver. For this paper we added the implementation of
different tie-breaking strategies to Fast Downward and tested them out.
The goal of this thesis is to implement depth-diversification and then evaluate its effective-
ness on IPC-domains as well as domains that contain mostly zero-cost actions. Those so
called zero-cost domains are interesting because by creating large plateaus we can test the
tie-breaking strategies better. Additionally different configurations of tie-breaking strate-
gies will be evaluated, including distance-to-go heuristics. A distance-to-go heuristic is a

Introduction 3

heuristic function that focuses on the amount of steps needed to reach a goal rather than
the cost of the path. The evaluation will be compared to previous results from the paper
by Asai and Fukunaga (2017).
In Chapter 2 we will provide necessary context for the thesis for a better understanding on
classical planning, heuristics and search algorithms. Next in Chapter 3 the fundamental idea
of depth-diversification is discussed, as well as the zero-cost domains and the distance-to-go
heuristics. Lastly we will discuss the results of the experiments in Chapter 4 before we draw
a conclusion in Chapter 5.

2
Background

First we will introduce some background concepts needed for this thesis. We will explain
what a planning task is and what it is used for. Then we will see what a heuristic is used for
and which characteristics it can have. Lastly we will see how a best-first search algorithm
works and what kind we will use for this thesis.

2.1 Planning Task
A planning task is a structured approach to solve a problem. Such problems can be of
various kinds like organizing the logistic of a business or synthesizing molecules from given
atoms. A solution of such a planning problem is a sequence of actions that have to be taken
to get to a predefined goal.
When we explicitly describe such a planning problem, we call it a state space search problem.
The state space search problem describes all possible states explicitly.

Definition 1. (State space) A state space is formalized as a 6-tuple S = ⟨S,A, cost, T, sI , SG⟩
where:

• S is a finite set of states

• A is a finite set of actions

• cost is a function cost : A→ R+
0

• T is the transition relation between states, with T ⊆ S ×A× S

• sI is the initial state

• SG is a finite set of goal states, with SG ⊆ S

We see that a state space consists of different states where one of them is the starting point
called initial state sI and a number of them are goal states. Actions each have a cost which
is mapped to it through the cost function. The actions can bring one state s to another
state s′ via a transition. A transition ⟨s, a, s′⟩ ∈ T is a triple consisting of the current state

Background 5

s (predecessor), the action a, and the successor state s′. Another way to write the transition
is s

a−→ s′.
A planning task is a compact description of a planning problem. It efficiently describes the
general problem without getting too big, but still includes all states. In contrast to the state
space search the planning task describes the states implicitly.
Let us define and explain some terms needed to understand the following chapter.

State: In a planning problem we have states. Each state represents how the situation of
the problem is at a given time. For that each object in the problem setting is assigned a
value. For example in a logistics problem we have the object or more formal the variable
package-A that has the status at-location-A. We call this an assignment of the value at-
location-A to the variable package-A. If all variables in a problem have a concrete value
assigned to them, we call it a total assignment. A partial assignment is a state where not
all variables are assigned.

Action: To get from one state to another we need something to change. An action is a
procedure that changes the values of some variables of the problem setting. In the logistics
example, we can have the action move-from-A-to-B. This action would take the variable
package-A and move it to another location. For that we need the precondition at-location-A
to be true for the variable package-A, before we can apply the action to the state. After
applying the action, the value of the variable package-A has changed.

Path: A path is a sequence of actions that start with a state s and end in another state
s′. Formal it is defined as a sequence of transitions such that the intermediate states s and
s′ match the transition.

A path from s to s′ is a sequence ⟨⟨s0, a0, s1⟩, ⟨s1, a1, s2⟩, . . . , ⟨sn, an, sn+1⟩⟩ such that
s0 = s and sn+1 = s′.

We can write s −→ s′ for a path from s to s′. Here the number of actions between s and s′

can be arbitrary.
For this thesis we will only consider classical planning. A planning problem is called classical
if the problem environment has the following properties:

• Static: the environment will not change without an action

• Deterministic: each action will always lead to the same successor from e given prede-
cessor

• Fully observable: there is no hidden information, the state of the environment is always
given

• Discrete: there is only a finite number of states and actions

• Single-agent: there is only one agent that can change the environment or take actions

Background 6

Because we only look at deterministic state spaces in classical planning, the transitions have
to be deterministic in ⟨s, a⟩. This means that s a−→ s1 and s

a−→ s2 can only be in T together
if s1 = s2. Or more formal: ∀s ∈ S, ∀a ∈ A : ⟨s, a, s1⟩ ∈ T ∧ ⟨s, a, s2⟩ ∈ T ⇒ s1 = s2.
We call a path a solution or a plan if it starts with the initial state si and ends in one of
the goal states sg ∈ SG.
For this thesis we only consider optimal planning, which will always give us an optimal
solution (minimal path costs) for a given problem. To formalize planning tasks we use the
finite domain representation formalism SAS+ proposed by Bäckström and Nebel (1995).

Definition 2. (SAS+) This definition is based on the work of Bäckström and Nebel (1995).
A planning task problem consists of a 4-tuple Π = ⟨V,O, s0, s∗⟩ where:

• V is a finite set of state variables vi

• O is a finite set of actions, such that an action a ∈ O has preconditions, postconditions
and a cost: ⟨pre(a), post(a), cost(a)⟩

• s0 is the initial state

• s∗ is the goal which is a partial assignment

Each variable can be assigned a value. Assigning a value d to the variable v is denoted with
v 7→ d. Additionally each variable has a finite domain dom(v), that denotes which values d

the variable v can be assigned to. A state in the SAS+ formalism is a total assignment of
all variables v ∈ V such that {v 7→ d | v ∈ V, d ∈ dom(v)} The state s0 is a total assignment
and the goal s∗ is a partial assignment of the variables in V. The pre- and postconditions
pre(a) and post(a) are partial assignments too. To be able to apply the action a in the
current state s all variables of the partial assignment in pre(a) have to match with the
values of the variables of the current state s. The action a is only applicable in a state s

if each assignment in pre(a) is also assigned in state s. With that we get a set of actions
that can be applied to the state s. In cost-optimal planning we want to find the action in
this set that will lead us to the goal while minimizing the path cost. To find the action that
looks most promising we can use a heuristic function that computes a estimation for each
successor node.

2.2 Heuristics
A heuristic is a function that maps each state of the planning problem to a heuristic value.
This value is an estimation of the cost to the next goal state beginning from the current
state s, for which this heuristic value is computed. A heuristic value is always computed to
one state s that is considered at the moment. In this thesis we consider different heuristic
functions that will focus more on the path cost or more on the number of steps needed to
reach the goal state. The heuristic function is used in a search algorithm, which we will see
later in Section 2.3. With the computed heuristic value the search algorithm is guided in the
direction of the most promising path according to the heuristic. For cost-optimal planning
this is the path, that has the lowest path cost. But of course there are heuristics which are

Background 7

better and such that are not as good in guiding the algorithm. The perfect heuristic h∗ is
the heuristic that always gives back the true value of the cost from the state s to a goal
state. A good heuristic function for cost-optimal planning will approximate this value as
close as possible, while a bad heuristic can not get a good approximation. Each heuristic
function has different characteristics, that influence the quality of the search.

Definition 3. (Safety)

A heuristic function h is safe, if for every state s it holds that if h(s) =∞ then also
h∗(s) =∞.

This means that a heuristic function is called safe, if the h-value of a state s is only∞ when
there really is no solution from the state s to a goal state. The heuristic value is never ∞
when there is still a solution possible from the state s.

Definition 4. (Goal-awareness)

A heuristic function h is goal-aware, if for every goal states s ∈ SG it holds that h(s) = 0.

Goal-awareness implies that a heuristic function assigns the value 0 to every goal state in
the planning problem. The heuristic recognizes a goal state when the state is evaluated.

Definition 5. (Admissibility)

A heuristic function h is admissible, if for every state s it holds that h(s) ≤ h∗(s) .

With admissibility the heuristic ensures that for every state s ∈ S, it estimates the cost to
reach the goal not more than the actual minimal cost. In other words, the heuristic never
overestimates the true cost from a state s to the goal, which ensures that it is optimistic.

Definition 6. (Consistency)

A heuristic h is consistent, if h(s) ≤ cost(a) + h(s′) for all transitions s
a−→ s′

This means that a heuristic function is consistent, if the estimated distance to the goal (the
h-value) is not greater than the cost to a successor combined with the successor’s h-value.
Or more formal: for every transition s

a−→ s′ with cost cost(a), the estimated cost from s to
the goal is not more than the cost of reaching s′ plus the estimated cost from s′ to the goal.
This condition ensures that the estimated total cost along a path never decreases.
In this thesis we only consider optimal planning. The cost of a solution path should be
minimal. To ensure that the solution is cost-optimal, the choice of the search algorithm is
important. Some algorithms can not guarantee optimality and some need specific heuristics
to guarantee optimality. In the next Section 2.3 we will see that the search algorithm A∗ is
used for this thesis. A∗ can guarantee optimality but only if it uses an admissible heuristic.
The first heuristics we used in this thesis is the admissible LM-cut heuristic (Helmert and
Domshlak, 2009). The LM-cut heuristic works by repeatedly finding so called landmark cuts
to achieve a good approximation of the cost to the next goal state. Another heuristic we
used is the Merge and Shrink heuristic (Helmert et al., 2007) or just M&S. Merge and Shrink
is an admissible heuristic that takes simple transition systems for each state variable. These

Background 8

transition systems are then iteratively merged together. To control the complexity of the
system it gets abstracted by grouping together states. This abstraction is called shrinking.
With these heuristic functions we can now use a search algorithm to solve planning problems.

2.3 Best-First Search Algorithm
Best-first search algorithms are search algorithms that prioritize paths that seem promising.
In the search we have nodes n that have a corresponding state s(n) to it. The best-first
search uses the f function to decide which node is the most promising successor. This f

function can be chosen differently and gives us different search algorithms. We will only
consider the search algorithm A∗ in this thesis. A∗ was proposed in 1968 by Hart et al.
(1968) and can guarantee an optimal solution with a suitable heuristic. The f function of
A∗ takes the g-value of the node n and the h-value of the corresponding state s(n) and
combines them to get a good estimation on how good this path is. Here the g-value is
the actual cost of the path from the initial state sI to the current state s. The heuristic
value h estimates the rest of the path from the current state s to the nearest goal state
sg ∈ SG. Which heuristic function A∗ is using can be chosen and determines how well the
search algorithm works. A∗ will always find an optimal solution when using an admissible
heuristic.
Algorithm 1 shows how the A∗ search algorithm could look like. We need an OpenList and
a ClosedList to keep track of the seen nodes and states. The OpenList holds the nodes that
are not yet looked at but are successors of nodes that we already expanded. Expanding
means that a node gets selected and removed from the OpenList. Then the successors of
the node will be generated and put into the OpenList. Which node gets selected is object
of the search algorithm and its configuration. A search algorithm has to order the nodes in
the OpenList, for example by the heuristic value. The problem arises that more than one
node can be of the same order and have the same values. For these situations the search
algorithm has to define a tie-breaking strategy to select one of the nodes with the same
value. Later in Section 3.2 we will see how this can be done in particular. After a node is
selected and expanded, its state will be put into the ClosedList. The procedure starts with
the initial node n0 which is the root node and holds the initial state sI .

A∗ gives us an optimal solution independent on the tie-breaking strategy. Because of that
we can omit the tie-break in the algorithm 1. Nevertheless it is necessary to implement a
tie-breaking strategy in practice, to decide which node should be expanded next when two
nodes have the same f -value. Many search algorithms will just use a default tie-breaking
strategy like first-in-first-out, last-in-first-out or random. The tie-breaking strategy first-in-
first-out or short fifo will expand the nodes in order of generation. So every node gets put
into a list as they are generated and then fifo will choose the node that was put into the
list first. In contrast last-in-first-out or lifo will choose the last node that was added to the
list. Lastly random or ro chooses the next node randomly from the list. But we will see
later, that there are better options for tie-breaking strategies to choose from. A tie-breaking
strategy is denoted as a criterion that decides which node to choose. To show which tie-

Background 9

Algorithm 1 A*
1: procedure AStar
2: OpenList ← PriorityQueue ordered by f(n) = g(n) + h(s(n))
3: ClosedList ← empty set
4: g(n0)← 0
5: f(n0)← h(n0)
6: Insert n0 into OpenList with priority f(n0)
7: while OpenList is not empty do
8: n← OpenList.remove_next()
9: if is_goal(s(n)) then

10: return extract_path(n)
11: end if
12: Add s(n) to ClosedList
13: for each m ∈ successors(n) do
14: gnew ← g(n) + cost(n,m)
15: if m ∈ ClosedList and gnew ≥ g(m) then
16: continue
17: end if
18: if s(m) /∈ OpenList or gnew < g(m) then
19: g(m)← gnew
20: f(m)← g(m) + h(s(m))
21: if m /∈ OpenList then
22: Insert s(m) into OpenList with priority f(m)
23: else
24: Update priority of s(m) to be f(m)
25: end if
26: end if
27: end for
28: end while
29: return Unsolvable
30: end procedure

breaking strategies are used we write it as follows: [criterion1, criterion2, ... , criterionk].
If multiple nodes have the same criterion1, the next criterion2 has to be computed and
compared. After that the criterion3 is needed, but only when both criterions before are
equal for multiple nodes. This can go on until the last criterion that has to be a tie-breaker
that always only chooses one node.
For A∗ these criterions would be just [f] or [g+h]. In the original paper for A∗ (Hart et al.,
1968), it is stated that a node should be chosen by the smallest f -value and the tie-break
should happen arbitrarily, but always in favor of any goal state. Hansen and Zhou (2007)
additionally state that A∗ achieves the best performance, when using the h-value as a tie-
breaker. In practice this is also commonly used to take the h-value as a first tie-breaker to
get [f, h]. The optimality of A∗ is still given independent of the following criterions. It does
not matter for cost-optimality, which node from the set of nodes with the same f -value is
chosen. The h-value can just break the tie and still guarantee optimality.

Background 10

2.4 Plateau
But now when both the f -value and the h-value are the same, we need another tie-breaking
strategy to decide the next best node to expand. For this final tie-break we can use one of
the default tie-breaking strategies fifo, lifo or ro. Because these three strategies will always
choose only a single node. Any tie-breaking strategy that gives back only one node at a time,
can be used for the final tie-break. We call a set of nodes with the same f - and h-values
in A∗ a plateau. Such a plateau will be denoted by plateau(f, h) or with concrete values
(for example: plateau(5,3)). In the case where A∗ is considered only with [f] there would
be [f]-plateaus where the h-value does not have to be the same for two nodes to be in the
same plateau(f). In the same way there can be plateaus with the other criterions too, but
we will not consider them here. The entrance of any plateau(f,h) is the node whose parent
is not in the same plateau(f,h).

Definition 7. If f(m) ̸= f(n) ∨ h(m) ̸= h(n) with m as predecessor of n, then n is an
entrance to the plateau(f(n), h(n)).

We call the distance from the entrance to the node n the depth d(n) of the node n. The
depth d(n) of a node n is zero when the node n and its parent node m are not in the same
plateau. If both nodes n and the parent node m are in the same plateau, the depth d(n) of
n is one more than the depth d(m) of the parent node m.

Definition 8. For node n and its predecessor node m: if f(m) = f(n)∧ h(m) = h(n), then
m and n are in the same plateau(f(n), h(n)) and d(n) = d(m) + 1. Else n is an entrance
to the plateau(f(n), h(n)) and has depth d(n) = 0.

The final plateau is the last plateau and contains at least one goal state. After reaching the
final plateau the search algorithm could theoretically be finished within the next expansion
if the tie-break chooses the right node with the goal state. Because of that the tie-breaking
strategy can be important in certain situations and can either increase the amount of re-
sources needed or it can reach the goal immediately.

3
Tie-Breaking Strategies

While the default tie-breaking strategies are widely used, they do not follow any informed
strategy. Because of that we would not expect these strategies to produce an effective order
of expansion. The advantage of fifo, lifo and ro is that they are implemented easily. But
Asai and Fukunaga (2017) show that these default tie-breaking strategies are not effective
for certain domains.

3.1 Zero-Cost Domains
An action a is called zero-cost action if cost(a) = 0. If the action cost is non-zero (cost(drive) >
0), we call it a positive or non-zero action. Domains that contain mostly zero-cost actions
are therefore called zero-cost domains. These domains still have to have at least one positive
action or else it would not matter which actions are taken in which order because the total
cost at the end would always be zero. Zero-cost domains are useful to model certain scenar-
ios that domains with only positive action costs can not model. With the help of zero-cost
actions the search algorithm does not only focus on the cost of the different actions but
rather give the cost a meaning. For example the traditional driverlog domain, consists
of a truck that has to drive around different locations to deliver packages. A cost-optimal
plan for this domain minimizes the path cost and because all actions are positive the search
has to consider all actions. Each step has a certain action cost and so all steps are relevant
for the total cost. The zero-cost domain driverlog-fuel from Asai and Fukunaga (2017)
modifies the cost model to have a more fuel-centric view. Only the driving action drive has
a positive action cost, while the picking up (pick) and dropping off (drop) of packages are
zero-cost actions. Intuitively this corresponds to the idea that driving around uses up fuel,
while the handling of the packages do not influence the amount of fuel spent. In the PDDL
model, this intuition is realized by assigning a positive action cost to the driving action and
zero to all other actions. This example intuitively shows how zero-cost actions can help in
modeling more realistic cost structures. But most of the benchmark domains in planning
competitions do not consider zero-actions. The most commonly used benchmark set is the
set of domains and instances used in the past International Planning Competitions (IPC).
Most of these IPC-domains use positive action costs for most actions in the domain. Asai

Tie-Breaking Strategies 12

and Fukunaga (2017) created domains that have many zero-cost actions, but always at least
one action with positive action cost. Even though most IPC-domains do not even consider
zero-cost actions, it is still meaningful to look at zero-cost domains. Zero-cost domains can
be used to study tie-breaking strategies and their effectiveness. With many zero-cost actions
the need of tie-breaking strategies and their impact on the result increases. This is because
zero-cost actions can lead to the formation of plateaus.
But zero-cost domains bring a problem with them. A zero-cost action does never change
the path cost from one node to another.

Proposition 1. The path cost from the current node n to another node nk is zero if all
actions used to go from n to nk are zero-cost actions.
If n

a1−→ n1
a2−→ . . .

ak−→ nk, where ai are zero-cost actions with i = 1, . . . , k Then g(n) =

g(n1) = . . . = g(nk) because no action adds cost to the path.

Just like the g-value which does not increase because the cost of the action is zero, also the
h∗-value often does not change either. Because we only look at admissible heuristics h that
try to approximate h∗, we can say that the following proposition will hold for h too. Each
node ni that is accessible by zero-cost actions from a current node n will need the same
positive actions to reach a goal state as the current node n. Therefore the h∗-value of all
nodes n and ni (with i = 1, . . . k) will be the same.

Proposition 2. The heuristic value of the current node n will be the same as for another
node nk if nk is reachable from n by only applying zero-cost actions. The set of positive
actions needed to get from nk to the goal node ng is the same set for n because we can get
to nk without any positive actions.
If n a1−→ n1

a2−→ . . .
ak−→ nk −→ ng, where ai are zero-cost actions with i = 1, . . . , k and positive

actions from nk to ng with ng being a node with a goal state. Then h∗(n) = h∗(n1) = . . . =

h∗(nk) because the set of positive actions leading to a goal state are the same for each node.

If we consider this true for all admissible heuristics h, we can find that this leads to the
same f -value between the current node n and its successors ni. Because of that all nodes
ni and the node n are now in the same plateau(f, h). Additionally n can have more than
one applicable zero-cost action. With multiple applicable actions we can get to multiple
successors from the same node n that end up in the same plateau. All of these successors
can again have multiple successors from zero-cost actions and the plateau will grow even
more. This behavior can continue further and the plateau can grow level-wise per generation
of successors. We will call each new level of successors a new depth layer. In Figure 3.1 we
can see an example of such a plateau. We see that the plateau can grow exponentially in
depth to the branching factor. In the example of Figure 3.1 the branching factor is three
and the plateau contains 3n nodes with n being the depth value of the deepest depth layer.
While expanding the first nodes we get other nodes that are put into the list of open nodes.
From those nodes some will be in the same plateau and for them we have to decide which
node is the most promising. For that we have to apply another tie-breaker to select a single
node to expand next.

Tie-Breaking Strategies 13

Figure 3.1: A plateau is created with zero-cost actions ai which do not change the f -value
of the successor node. Here the node n does have another f -value while all other nodes in
the plateau(f+1, h) = {n0, n1,1, n1,2, . . . , nn,m} have the same f -value f+1. The action a1
has a cost greater than zero while all other actions ai after this have a cost of 0 (zero-cost
actions). The node n0 is the entrance of the plateau as it is the first node with the f -value
f+1.

Let us look at a more concrete example. The zero-cost domain gripper-move is about a
robot called Robby. The robot has two gripper-arms which can pick up one ball each. We
will look at a specific instance from this domain and simply it by reducing the number of
gripper-arms to only one. Here we have two different balls 1 and 2. They can be either
in room A or room B. Lastly we have the robot Robby. Robby has in this example one
gripper-arm which can hold one ball at the time. Both balls are in room A at the initial
state and have to be in room B at the goal state. The domain defines three actions: move,
drop and pick. To pick up a ball with the gripper-arm the action pick is used and to drop
the ball that is held by the arm the drop action is used. Both drop and pick are zero-cost
actions. The last action move changes the position of the robot from the current room to
the other. This is the only positive action in this domain and has a action cost of one.

Tie-Breaking Strategies 14

Figure 3.2: An instance of the gripper-move domain as an example of forming a plateau.
The actions pick and drop are zero-cost actions, while only move has a cost of one. All
nodes that belong to the same plateau(f, h∗) have the same color. The nodes with a red
outline hold states that where already seen and will not be expanded by the search. The
green outline denotes a node that holds a goal state. The graph is not complete because
we skipped some nodes for the sake of readability.

In Figure 3.2 we can see a part of the visualization of the instance from the gripper-move

example. Let the search algorithm for this example be A∗ with the tie-breaking strategies
[f, h∗] and f = g + h∗. The search starts at the node n0 that holds the initial state. This
starting node n0 has the h-value h(n0) = 3, because in any optimal path we only need
the move action three times. The g-value of the starting state is zero, which makes the
f -value f(n0) = 3. If we use the move action we reach the node n1,1. The h-value h(n1,1)

increases by one because now we would have to apply move four times to get to any goal
node. Additionally the path cost g(n1,1) is increased by one too, which gives us f(n1,1) = 5.
The f -value of the goal nodes f(n7,2) = f(n7,4) = 3 is smaller than f(n1,1) = 5. Because of
that we know that A∗ with an admissible heuristic would not expand n1,1 before reaching
the goal. The nodes n2,3, n2,5, n3,1, n3,4, n7,1 and n7,3 are such states too and marked with
a red circle in Figure 3.2. All these nodes will never be expanded in this example. So
the next actions to look at are either pick on the first ball or pick on the second. Both
ways will lead to a similar path and later to a solution. The node n1,2 and n1,3 both have
the same h-value as the starting node n0. Additionally because pick is a zero-cost action
the g-value will not increase either. We find that all three nodes have the same f -values

Tie-Breaking Strategies 15

f(n0) = f(n1,2) = f(n1, 3) = 3. In this case we already have a plateau from the start with
n0 as the entrance node. We denote it as plateau(3, 3) with f = 3 and h = 3. This plateau
is marked yellow in Figure 3.2. Additionally all other plateaus are marked with different
colors. Applying drop to either n1,2 or n1,3 will give as another node n2,3 or n2,5 in the
same plateau. The positive action move changes the g-value for the nodes n2,2 and n2,4

respectively. Both nodes have the same path cost g(n2,2) = g(n2,4) = 1 and the heuristic
value h(n2,2) = h(n2,4) = 2. The f -value f(n2,2) = f(n2,4) = 3 is still the same as for the
nodes n0, n1,2 and n1,3 but the h-value does not match anymore. In the case of only looking
at tie-breaking strategies [f] without the h-value we would additionally have a plateau(3).
Then the nodes f(n0) = f(n1,2) = f(n1, 3) = f(n2,2) = f(n2,4) = 3 would all be in the same
plateau(3) because they have the same f -value. But for this example we will only consider
[f, h]-plateaus where both the f - and the h-value are the same. This means that n2,2 and
n2,4 would be not in the same [f, h]-plateau as the others but still in the plateau(3) because
of the f -value. We apply more actions to the expanded nodes until we reach a node that
holds any goal state. In this example the goal nodes are n7,2 and n7,4. To find the most
efficient path we still have to decide which node from the plateaus we should expand first.
For that we need to take a closer look at different tie-breaking strategies.

3.2 Default Tie-breaking
Let us first use a default tie-breaking to find the next node to expand. If we use first-in-first-
out we would order all nodes in order of generation inside a list. Because we do not know
how the algorithm chooses which successor gets generated first we can not say correctly how
the list would look like. But we can at least say which nodes where before other. For the
example in Figure 3.2 we know that the starting node n0 is generated before its successor
nodes n1,1, n1,2 and n1,3. What we do not know is which of these three successor nodes
gets generated first. The nodes that are next in the list will be the successors of these three
nodes n1,1, n1,2 and n1,3. Again we do not know the order of these successor nodes. We
only know that they will be expanded only after all predecessors are expanded first. This
tie-breaking strategy lets the search algorithm behave the same as a breadth-first search
inside a plateau. With this approach we would start at the most shallow levels of depth and
gradually continue on to the deepest part of the plateau. If none of the nodes in the depth
layers from 0 to n-1 contains any goal state we have to expand almost every node before
finding the goal. Because of that we could use last-in-first-out. This approach behaves like
a depth-first search inside the plateau. The deepest nodes will be expanded first. As the
list grows with each expansion lifo will choose the current last node in the list. So this
tie-breaking strategy focuses on the deeper layers rather than the first layers. The search
algorithm would then need much time in the last depth layer with depth = n. This last layer
is exponentially bigger than the others as every layer grows exponentially by the branching
factor of the tree (in figure 3.1: branching factor = 3). The last default tie-breaking strategy
random does a better job in looking through the different depth layers evenly but is not
structured. All three used default tie-breaking strategies may search in the wrong order and
then have to expand a large amount of nodes before finding any goal. This could lead them

Tie-Breaking Strategies 16

to failing to reach the goal in the given time limit.

3.3 Depth-Diversification
To solve these problems of inefficiency Asai and Fukunaga (2017) recommend a new tie-
breaking strategy called depth-diversification. This depth-diversification is effectively search-
ing evenly over all depth layers. We denote the depth-diversification criterion as ⟨d⟩ and
write [f, h, ⟨d⟩] for A∗ with h tie-break and depth-diversification. The idea is to sort all
nodes of a plateau in so called depth buckets. A depth bucket is not more than a priority
queue inside the plateau. Each depth bucket corresponds to a depth layer in the plateau.
The nodes then get sorted by their depth and put in the corresponding depth bucket. With
depth-diversification the depth bucket with the highest depth value is selected at first. The
depth value is the number of how many layers the node is away from the entrance of the
plateau. A default tie-breaking strategy then selects one of the nodes from the selected
depth bucket, which will be expanded next. There is a counter with the highest d-value
that is then decreased by one. It shows from which depth bucket the next node should be
expanded. The counter starts at the deepest depth bucket and progressively decreases after
choosing one node in the current depth bucket. When reaching depth zero it loops around
and starts again at the deepest depth bucket. This behavior ensures that all different depth
layers get searched evenly. The problem that occurs with fifo and lifo is solved with the
depth-diversification. This is because with depth-diversification there is always a chance of
finding the solution in a short amount of time even when it is concentrated near the entrance
or at the deeper layers. When going over the gripper-move example in Figure 3.2 we
find that lifo expands the least nodes with 10 expanded nodes. The example runs with the
perfect heuristic h∗ so it is informed and finds the solution path fast.. But with fifo we have
to expand 16 nodes while the depth-diversification only needs 13. So for this small example
one default tie-breaker is better than the other while the depth-diversification is a good mid-
dle ground. For exponentially bigger instances the difference between the expanded nodes
can grow exponentially too. This shows that the depth-diversification is more reliable than
the default tie-breakers as both fifo and lifo can be in a position where they expand a large
amount of nodes depending on the problem.
To understand better how the depth-diversification works, we can look at the Algorithms
2, 4, 3 and 5. The Algorithm 2 shows the method that gets called when a new node gets
generated. The new node n gets inserted into the OpenList with the key = [f, h]. The
parent node m is needed to compare the f - and h-values of n and m. With these values
we can find out if both nodes are in the same plateau or not and update the d-value of the
new node n. To find the the right plateau, we use the key that then sorts the node into the
corresponding selector.
The method Add is described in Algorithm 3 and adds the node n into the depth buckets
of the selector. Figure 3.3 shows how the OpenList and the selectors are built. Each circle
represents a node inside the depth bucket. The number of nodes inside can vary and does
not have to be evenly distributed like the figure might show. The new node gets added to
the selector with the key-value as the index. Inside the selector the node gets sorted into

Tie-Breaking Strategies 17

the depth bucket with the d-value of the new node n as the index.

Algorithm 2 Node Insertion into Open List
1: procedure DivDoInsertion(current_node, entry, parent_node, depth_value)
2: if current_node is root node then
3: Compute h(current_node), f(current_node)
4: key ← [f(current_node), h(current_node)]
5: depth_value(current_node)← 0
6: else
7: Compute g(current_node), h(current_node), f(current_node)
8: key ← [f(current_node), h(current_node)]
9: if g(current_node) = g(parent_node) and

10: f(current_node) = f(parent_node) then
11: Node current_node and parent_node are in same plateau
12: depth_value(current_node)← depth_value+ 1
13: else
14: // New plateau
15: depth_value(current_node)← 0
16: end if
17: end if
18: Identify correct Selector for key
19: Call Selector.Add(entry, depth_value)
20: end procedure

Algorithm 3 Selector Add Entry
1: procedure Add(entry, depth_value)
2: if depth bucket at index depth_value does not exist then
3: Create new depth bucket
4: end if
5: Insert entry into bucket at depth depth_value
6: return
7: end procedure

To expand the next node, the search will call the method RemoveMin of the OpenList. We
can see this method in the Algorithm 4. In the OpenList the selector with the numerical
lowest key gets selected. This means we will look at the plateau with the lowest [f, h]-value
pair. For this selector the method RemoveNext gets called. The selecting of the next node
to expand is done in the selector which we can see in Algorithm 5.

Algorithm 4 Remove Minimal Entry from Open List
1: procedure RemoveMin
2: Select Selector bucket with lowest key
3: result← Selector.RemoveNext(tiebreaking_criteria)
4: if Selector is empty then
5: Remove Selector
6: end if
7: return result
8: end procedure

In the method RemoveNext inside the selector, lays the logic of the tie-break. Each selector

Tie-Breaking Strategies 18

has its own counter that points to a depth bucket. In Figure 3.3 the counter points at the
depth bucket with d-value of two. So the next node to expand will be one of this depth
bucket. Which of these nodes it is, decides the tie-breaking criteria in the switch cases in
Algorithm 5. The counter gets decreased at the beginning of the method to avoid problems
with the initialization. If the counter gets below zero it gets rewind to the highest d-value
that corresponds to an unempty depth bucket. Lastly when the node is selected in the depth
bucket, it will be removed from there und returned to the search algorithm.

Algorithm 5 Selector Remove Next Entry
1: procedure RemoveNext(tiebreaking_criteria)
2: // The counter gets initialized with -1 for the first node in the Selector
3: Decrease counter by 1
4: if counter < 0 then
5: Rewind counter to deepest non-empty depth bucket
6: end if
7: if tiebreaking_criteria == FIFO then
8: Select and remove first entry from depth bucket
9: else if tiebreaking_criteria == LIFO then

10: Select and remove last entry from depth bucket
11: else
12: Select and remove random entry from depth bucket // RANDOM
13: end if
14: return selected entry
15: end procedure

3.4 Implementation
In Figure 3.3 we can see how we implemented the depth-diversification ourselves. The im-
plementation is done in Fast Downward and can be combined with any other tie-breaking
strategy. In the OpenList we have different selectors that represent a plateau. These selec-
tors are containers that are indexed by the f - and h-value in the case of A∗ with depth-
diversification. In general the index could be any combination of tie-breaking criterion up
until the second-last criterion. The second-last criterion then has to be the depth value
⟨d⟩ and the last has to be a tie-breaker that always chooses exactly one node for exam-
ple one of the default tie-breakers. So the key that indexes the selector looks like this:
[criterion1, criterion2, . . . , criterionn]. We denote a tie-breaking strategy with criterions 1

to n and depth-diversification as [criterion1, criterion2, . . . , criterionn, ⟨d⟩, ∗] with * being
one of the default tie-breaking strategies. Inside each selector there are the depth buckets
that are indexed by the ⟨d⟩-value. The nodes that get added to the OpenList will first be
sorted by the first n tie-breaking criterions and then put into the depth bucket corresponding
to their depth layer.

Tie-Breaking Strategies 19

Figure 3.3: With the depth-diversification the OpenList sorts the nodes first by the key
[criterion1, criterion2, . . . , criterionn] into so called selectors. Inside the selectors the
nodes get sorted again by the depth value of the plateau. The counter is in this example at
the depth layer 2 and one node will be from the list with d = 2. A default tie-breaking
strategy will decide which node will be chosen. After that the counter will continue at
depth d = 1.

3.5 Distance-to-go
To further improve depth-diversification we can use an inadmissible distance-to-go estimate.
A distance-to-go estimate is a heuristic function that uses a heuristic like LM-cut or Merge
and Shrink. But instead of calculating the h-value with the real action costs, it will replace
every action cost with one. With this adjustment even the zero-cost actions cost the same
as other actions. Because of that the heuristic can predict the number of actions needed
until some goal state is reached. We denote ĥ as the distance-to-go heuristic of a heuristic h.
In general distance-to-go heuristics are inadmissible because they do not underestimate for
example zero-cost actions or actions with a cost less than one. The optimality of A∗ is still
given when the distance-to-go heuristic is only used as a tie-breaker and not to compute the
f -value. It does not matter if any criterion after the f -value uses an inadmissible heuristic
because the first criterion provides optimality on its own. With this knowledge we can use
multi-heuristic strategies like [f, h, ĥ] or [f, ĥ] as long as f = g+h with h being an admissible
heuristic. Furthermore does the second criterion not even have to be related to the heuristic
in the first criterion f . We can use LM-cut for the computation of f to ensure optimality,
while we can use another heuristic for the second criterion. For the second heuristic we
can choose the FF heuristic as a distance-to-go estimate and denote it as ĥFF . The Fast
Forward heuristic or just FF heuristic (Hoffmann and Nebel, 2001) is a planning heuristic
that estimates the path cost by ignoring delete effects of actions. With the performing of a
greedy forward search, it counts the number of actions needed in the simplified search. In
contrary to LM-cut this FF heuristic is not admissible.
Now if we use a distance-to-go heuristic in our tie-breaking strategy we can get [f, h, ĥ],
[f, ĥ] or [f, ĥFF]. But with that we are not done. the distance-to-go criterions can still
leave plateaus with the same ĥ- or ĥFF -values and therefore need another tie-breaker. For

Tie-Breaking Strategies 20

that we can use one of the default tie-breaking strategies fifo, lifo or ro. With that we
can combine the different tie-breaker together and get [f, h, ĥ, ∗], [f, ĥ, ∗] or [f, ĥFF , ∗] with
∗ as one of the default tie-breakers. These tie-breaking strategies will improve the search
performance in contrast to [f, h, ∗] as we will later see in Chapter 4. Additionally we can
combine the distance-to-go heuristic with the depth-diversification. The ⟨d⟩ criterion will be
added after the distance-to-go criterion and will be again followed by a default tie-breaker:
[f, ĥFF , ⟨d⟩, ∗]. With that the distance-to-go criterion has a bigger impact on the search
than the depth-diversification. The distance-to-go criterion will sort the nodes into plateaus
where the depth-diversification then can tie-break the nodes that still have the same f - and
ĥFF -values. Lastly the default tie-breaker is needed to ultimately break the tie and select a
single node from the plateau.

4
Evaluation

In order to determine the effectiveness of our implementation we conducted a series of
experiments. First we will see how the setup of the experiments was done to then see in
the later sections how these experiments turned out. We will look at the impact of our
implementation on the zero-cost and IPC-domains and compare them to the experiment
results of Asai and Fukunaga (2017).

4.1 Setup
To evaluate the efficiency of the depth-diversification we ran experiments to test the imple-
mentation we did in Fast Downward. Each experiment was conducted with a 5 min time
limit and a memory limit of 3.5 GiB. The CPU we used for all the experiments is a Core
Intel Xeon Silver 4114 2.2 GHz Processor. The instances that these experiments ran on
come from Asai and Fukunaga (2017) and contain 28 different zero-cost domains. Over-
all we have 620 instances with zero-cost actions that we used to run our experiments on.
Asai and Fukunaga (2017) created these zero-cost domains based of the IPC-benchmarks.
They modified the problems such that the majority of actions are zero-cost actions while
always at least one action has a positive action cost. The non-zero actions are chosen to,
for example, optimize energy usage for transportation-type domains or minimize resource
usage for assembly-type domains. The number of instances per domain is smaller than the
IPC-domains with 1104 instances. This is achieved by choosing 5 to 40 instances from each
domain. The instances are evenly chosen by difficulty and size of the problem instance.
Additionally we also ran all of the experiments on the IPC-domains too. The IPC-domains
contain 1104 instances distributed over 35 domains with 5 to 150 instances per domain.
In Chapter 3 we already looked at the different tie-breaking criterions there are. For the
experiment we used the tie-breaking strategies listed in Table 4.1.
Every configuration of tie-breaking strategies was run for each default tie-breaking strategy
(denoted as ∗ in the Table 4.1).
With the same configurations we can compare our results to the results of Asai and Fukunaga
(2017). Every configuration that uses a random tie-break was run ten times and then
averaged to get a comparable result. The f -value was computed by f = g + h for all

Evaluation 22

Strategy Description

Baseline:
[f, h, ∗] standard A∗ search with h tie-breaking
[f, h, ⟨d⟩, ∗] h tie-breaking with depth-diversification

Distance-to-Go:
[f, ĥ, ∗] tie-breaking with inadmissible distance-to-go heuristic ĥ

[f, h, ĥ, ∗] combination of standard h and distance-to-go ĥ tie-breaking
[f, ĥFF , ∗] tie-breaking with distance-to-go version of FF heuristic

Distance + Depth:
[f, ĥFF , ⟨d⟩, ∗] combination of distance-to-go ĥFF and depth-diversification

Table 4.1: Overview of different tie-breaking strategies we used for our experiments. All
experiments were done with f = g + h, half with h = LM-cut and half with h = Merge and
Shrink.

configurations. For the heuristic h the landmark heuristic LM-cut was used. While we
focused on the results where the LM-cut heuristic was used, we also conducted the same
experiments again with the same configurations but replaced LM-cut with Merge and Shrink.
It is interesting to see if the choice of the heuristic functions changes the result, but this
thesis focuses more on the different configurations of tie-breaking strategies. For the Merge
and Shrink heuristic we did not find any settings in the paper by Asai and Fukunaga (2017).
Because of that we choose the recommended settings from the documentation1.
The important parts of the settings can be seen in Table 4.2.

Parameter Setting

Merge strategy SCC-DFP
Shrink strategy non-greedy shrink_bisimulation
Label reduction exact (before_shrinking=true, before_merging=false)
Max states 50k
Threshold before merge 1

Table 4.2: Settings of the Merge and Shrink heuristic using the recommended
specifications from the documentation.

4.2 Zero-Cost Domains
First we will look at the results for the zero-cost domains. We will take a closer look at these
experiments because we expect to see more interesting results than with the IPC-domains.
At first we have to know which configurations we used and how well they performed in
the series of experiments. After that we will compare our results with the paper of Asai
and Fukunaga (2017). Lastly we will discuss interesting details and anomalies in different
zero-cost domains.

1 https://www.fast-downward.org/latest/documentation/search/Evaluator/#merge-and-shrink_
heuristic, accessed on 2025-06-17

https://www.fast-downward.org/latest/documentation/search/Evaluator/#merge-and-shrink_heuristic
https://www.fast-downward.org/latest/documentation/search/Evaluator/#merge-and-shrink_heuristic

Evaluation 23

Sorting Criteria LM-cut with zero-cost domains (620)
Results Asai and Fukunaga

Baselines
[f, h,fifo] 241 256
[f, h, lifo] 245 279
[f, h, ro] 241 261.9 ± 1.4
[f, h, ⟨d⟩,fifo] 257 284
[f, h, ⟨d⟩, lifo] 247 264
[f, h, ⟨d⟩, ro] 258 288.1 ± 1.6

Distance-to-Go
[f, ĥ,fifo] 272 295
[f, ĥ, lifo] 278 303
[f, ĥ, ro] 275 301.0
[f, h, ĥ,fifo] 279 305
[f, h, ĥ, lifo] 282 309
[f, h, ĥ, ro] 277 305.9 ± 2.1
[f, ĥFF ,fifo] 313 337
[f, ĥFF , lifo] 311 340
[f, ĥFF , ro] 314 341.0 ± 2.2

Distance + Depth
[f, ĥFF , ⟨d⟩,fifo] 317 340
[f, ĥFF , ⟨d⟩, lifo] 317 342
[f, ĥFF , ⟨d⟩, ro] 316 344.3 ± 1.8

Table 4.3: Coverage of different configurations in comparison to Asai and Fukunaga (2017)
with LM-cut heuristic on the zero-cost domains.

4.2.1 Configurations in Zero-Cost Domains
Let us first focus on which configuration solved the most instances within the time and
memory limits. This coverage is a good indicator on how well the tie-breaking strategy
works. The configurations can be assigned to three categories: baseline, distance-to-go and
distance + depth. We can see all configurations divided in the categories in Table 4.1.
We have the baseline configurations that test the common A∗ configuration with [f, h, ∗].
Additionally we add the configurations with the depth-diversification added after the h tie-
break. We see that this standard depth-diversification configuration solves more instances
than the baseline strategies without ⟨d⟩. This shows that the depth-diversification increases
the coverage in the zero-cost domains. The distance-to-go category uses ĥ as a distance-
to-go variant of the h function. Additionally we have the distance-to-go version of the FF
heuristic as a tie-breaker. The runs with the distance-to-go heuristics ĥ scores an even
better result compared to the baseline runs. This is topped slightly with the combination
of h criterion and ĥ criterion. The distance-to-go version of the FF heuristic again achieves
a higher coverage than the distance-to-go runs before. We learn that the distance-to-go
approach for the second or third criterion increases the coverage. Therefore we can conclude
that it is effective for zero-cost domains. This can be explained with that the distance-to-go
heuristics will try to minimize the number of actions taken until a goal is reached. This is
because all actions cost one. In cost-optimal planning this leads the tie-breaking to rather

Evaluation 24

Sorting Criteria M&S with zero-cost domains (620)
Results Asai and Fukunaga

Baselines
[f, h,fifo] 284 280
[f, h, lifo] 278 301
[f, h, ro] 268 287.7 ± 3.2
[f, h, ⟨d⟩,fifo] 297 302
[f, h, ⟨d⟩, lifo] 290 288
[f, h, ⟨d⟩, ro] 295 308.1 ± 2.1

Distance-to-Go
[f, ĥ,fifo] 289 308
[f, ĥ, lifo] 286 305
[f, ĥ, ro] 288 307.3 ± 1.5
[f, h, ĥ,fifo] 294 307
[f, h, ĥ, lifo] 291 306
[f, h, ĥ, ro] 292 307.8 ± 1.4
[f, ĥFF ,fifo] 335 336
[f, ĥFF , lifo] 328 331
[f, ĥFF , ro] 331 337.9 ± 2.1

Distance + Depth
[f, ĥFF , ⟨d⟩,fifo] 336 337
[f, ĥFF , ⟨d⟩, lifo] 330 333
[f, ĥFF , ⟨d⟩, ro] 332 337.6 ± 1.3

Table 4.4: Coverage of different configurations in comparison to Asai and Fukunaga (2017)
with Merge and Shrink heuristic on the zero-cost domains.

select nodes that appear to be closer to a goal than others. Therefore the search algorithm
will not expand as many states in a plateau as with the normal version of h. When more
states have to be expanded the search takes longer and therefore some instances can not be
solved in the limited time given.
Only the combination of ĥFF and depth-diversification solves more instances than the runs
with ĥFF alone. The difference between these two configurations is not big but we can still
see that depth-diversification seems to improve the coverage on the zero-cost domains. Zero-
cost domains benefit from the depth-diversification and even more so from the distance-to-go
estimation. Comparing the difference between the default tie-breakers of the different con-
figurations we see that the final default tie-break does not have a big impact on the coverage
overall. We find the best performing configurations [f, ĥFF , ⟨d⟩,fifo] and [f, ĥFF , ⟨d⟩, lifo].
Both happen to have solved 317 instances out of the 620 instances in the zero-cost benchmark
domains.
When looking at the results with the Merge and Shrink heuristic we find that the coverage
did not change significantly in comparison to the runs with LM-cut. The only difference
is that Merge and Shrink achieves a higher coverage with every configuration. The best
performing configuration is [f, ĥFF , ⟨d⟩,fifo] too and the lowest coverage has [f, h, ro]. This
is the same for the experiments with LM-cut on the zero-domains.

Evaluation 25

Sorting Criteria Average Results Difference Asai and Fukunaga

[f, h, ∗] 242.33 +5.9%−−−−→ 256.63
[f, h, ⟨d⟩, ∗] 254 +9.7%−−−−→ 278.70
[f, ĥ, ∗] 275 +9.0%−−−−→ 299.66
[f, h, ĥ, ∗] 279.33 +9.8%−−−−→ 306.63
[f, ĥFF , ∗] 312.66 +8.5%−−−−→ 339.33
[f, ĥFF , ⟨d⟩, ∗] 316.66 +8.0%−−−−→ 342.10

Table 4.5: Relative difference of the averages of the different configurations with LM-cut
between our results and Asai and Fukunaga (2017).

4.2.2 Comparison to Asai and Fukunaga (2017)
When comparing our results to the results from Asai and Fukunaga (2017), we find similar
conclusions. In our experiments the configuration with ĥFF in combination with depth-
diversification and either fifo or lifo deliver the highest coverage. The best performing
tie-breaking strategy from Asai and Fukunaga (2017) is the same configuration but with
random default tie-breaking. In general our results have a lower absolute number. We can
explain this with the difference in the CPU and machines the experiments ran on. But we
also see that for Asai and Fukunaga (2017) the increase from the coverage of the baseline
configurations to the highest coverage with ĥFF and depth-diversification is of about 35%.
The increase in our experiments is only of 32%. So our implementation gives us a smaller
increase.
The averages from the different configurations with LM-cut compared relatively to the
average results of Asai and Fukunaga (2017) give us a rough overview of how close our
results are in comparison to their paper. Factors like the CPU and machine the experiments
ran on do not interfere with these relative differences. In Table 4.5 we see that the results
from Asai and Fukunaga (2017) are on average about 8 to 9% higher than our results. The
configurations without depth-diversification use the unmodified Fast Downward and can be
a good pointer to how much the hardware interferes with the results. We find a variance
from +5.9% up to +9.8% increase. The configurations with depth-diversification and our
modified version of Fast Downward do not exceed this variance. This suggests that our
implementation is not responsible for the decrease of coverage even if it is possible that it
has some effect on the results. We can see this development in Figure 4.1 where the curve of
our zero-cost experiments with LM-cut (green) is very similar to the curve from the results
of Asai and Fukunaga (2017) (red). The curves of the IPC-domain experiments are discussed
later in Section 4.3. The average of the [f, h, ∗] configuration results from our experiments
are higher in relativity to the results of Asai and Fukunaga (2017) in comparison to the
other configurations. This explains the higher increase from the baseline experiments to the
best performing configuration in their paper.
When we look at the Merge and Shrink experiments we find even smaller differences between
the paper and our experiments on the zero-cost domains. We can see in Table 4.6 that the
variance of the increase is from +1% up to +6.2%. This means that our results are closer
to the results of Asai and Fukunaga (2017) with the Merge and Shrink heuristic. But we

Evaluation 26

Figure 4.1: This figure shows the coverage in our experiments with LM-cut compared to
the results of Asai and Fukunaga (2017). The results of the zero-cost domains (green and
red) can be compared to the IPC-domains (blue and orange). The curves all show a
similar development. This shows that our results are similar to the results of Asai and
Fukunaga (2017). There is a noticeable difference between the IPC-domains and the
zero-cost domains for the first six configurations (baseline runs).

Sorting Criteria Average Results Difference Asai and Fukunaga

[f, h, ∗] 276.67 +4.7%−−−−→ 289.57
[f, h, ⟨d⟩, ∗] 294.00 +1.8%−−−−→ 299.37
[f, ĥ, ∗] 287.67 +6.2%−−−−→ 306.77
[f, h, ĥ, ∗] 292.33 +5.0%−−−−→ 306.93
[f, ĥFF , ∗] 331.33 +1.1%−−−−→ 334.97
[f, ĥFF , ⟨d⟩, ∗] 332.67 +1.0%−−−−→ 335.87

Table 4.6: Relative difference of the averages of the different configurations with Merge
and Shrink between our results and Asai and Fukunaga (2017) on the zero-cost domains.

can also see that the difference is low for the configurations with depth-diversification and
ĥFF heuristic. The configurations that contain either depth-diversification or ĥFF have a
difference of only about 1% while the others have differences from 5 up to 6.2%. This could
suggest that our implementation did not increase the coverage as much as expected. But
the differences are small and the depth-diversification improvement still achieves the best
performance. In Figure 4.2 we can see that the curve for our results (green) is almost identical
to the results of Asai and Fukunaga (2017) (red). The largest differences in coverage are for
the baseline runs where we achieved less coverage than their paper. For the configurations
with the depth-diversification or the ĥFF the results match well.

Evaluation 27

Figure 4.2: This figure shows the coverage in our experiments with Merge and Shrink
compared to the results of Asai and Fukunaga (2017). The results of the zero-cost domains
(green and red) can be compared to the IPC-domains (blue and orange). The curves for
the zero-cost domains show a similar development while we have a noticeable dip in the
IPC-domains for the configurations with ĥ. Apart from that, our results are similar to the
results of Asai and Fukunaga (2017).

4.2.3 Detailed Evaluation
We can look deeper into the individual domains and find some anomalies. In Table 4.7 we
can see the best and worst performing configurations for the different zero-cost domains.
Most domains do not have great differences between the configurations. Because of that we
only listed the domains that looked interesting.
In the elevators-up domain the distance-to-go approaches achieve the highest coverage
with a large gap to the standard [f, h, ∗] configurations. This domain tries to solve the
problems of bringing people from one floor to the other with elevators. This can be explained

Domain Best performing Worst performing
Strategy Coverage Strategy Coverage

elevators-up [f, ĥ, ∗], [f, h, ĥ, ∗], 20 [f, h, ∗] 7
[f, ĥFF , ⟨d⟩, ∗]

miconic-up [f, ĥFF , lifo], 22 [f, ĥ,fifo], 14
[f, ĥFF , ⟨d⟩, lifo] [f, h, ĥ,fifo]

mprime-succumb [f, ĥFF , ⟨d⟩,fifo] 32 [f, h, lifo] 14

parking-movecc [f, ĥFF , ∗], 20 baseline 0
[f, ĥFF , ⟨d⟩, ∗]

scanalyzer-analyze [f, h, ĥ, lifo] 18 [f, h, ro], [f, ĥ,fifo] 9

woodworking-cut distance-to-go & depth 20 baseline 5-10

Table 4.7: Best and worst performing tie-breaking strategies per domain for zero-cost
domains with LM-cut . Only the domains with interesting differences are listed.

Evaluation 28

as the only non-zero action in the elevators-up domain is the action move-up-fast. That
means that you can get to the goal with the other three actions move-up-slow, move-down-
fast and move-down-slow. With this many zero-cost actions there are many nodes that
will lead to a goal without adding cost. For this the distance-to-go approach minimizes the
number of actions and therefore the number of nodes that get expanded. The standard
strategy with only the heuristic as a tie-breaker can not differentiate which zero-cost action
is the best when many nodes have a h∗-value of zero.
The miconic-up domain is a very similar domain that contains people that want to move
to their goal floor and one lift that can move those people. Here the action up is the only
non-zero action so moving the lift down, boarding and departing all cost zero. In contrast
to the elevators-up domain, we see that not all distance-to-go configurations achieved a
high coverage. We have a noticeable difference between the configurations with ĥFF and
the ones with ĥ. Even the standard baseline configurations performed better. This could be
because of the overhead of computing ĥ which is still about as uninformed as the heuristic h.
The ĥFF configuration has overhead too, but it is robuster against a high amount of zero-
cost actions in the domain. Additionally ĥFF works with delete-relaxation what ignores
the negative effects of actions. In a elevator or lift problem this means that the lift is seen
as staying simultaneously in every floor it has seen before. This brings a huge advantage
because it can ignore many actions for moving back to floors where the lift already was.
For the domains mprime-succumb, parking-movecc and woodworking-cut we can
come to the same conclusion. We find that the configurations with the distance-to-go and
the depth-diversification improvements achieve far better coverage as the standard baseline
configurations. This is not surprising as the improvements specifically where made to solve
instances of zero-cost domains. Noticeable is that none of the baseline configurations where
able to solve a single parking-movecc instance while the configurations with ĥFF solved
all 20 instances in the given time. In this domain the goal is to park some cars in the right
order. There are curbs where a car c1 can be parked and then another car c2 can park
behind the car c1 in the curb. The actions move-curb-to-car, move-car-to-car and move-
car-to-curb are all zero-cost actions while move-curb-to-curb is the only non-zero action in
the domain. Each instance can be solved with only zero-cost actions. This is the same with
the elevators-up domain. These two domains are the only ones that have a total cost
of zero when solved optimally. For these problems the standard baseline configurations are
not suited as they can not differentiate which path expands less nodes. The distance-to-go
approaches can identify better which path needs more actions and therefore expands more
nodes.
Lastly the we will look at the scanalyzer domain. This planning domain was introduced
by Helmert and Lasinger (2010) for the sixth International Planning Competition (IPC-
2008). The problem that has to be solved in the domain is the scanning and analyzing of
plants in a greenhouse. For that conveyer belts have to transport a batch of plants from
the greenhouse into a imaging chamber. Each batch of plants is placed on one conveyer
belt and has to be moved at least once to the imaging chamber. The batch size can vary
but we will consider the batch size as half the amount of plants that fit on one conveyer
belt. The zero-cost variant scanalyzer-analyze of this domain contains the zero-cost

Evaluation 29

Configuration fifo lifo random Factor

[f, h, ∗] with instance p11.pddl 52 19’386 11’591.20 × 372.80
[f, ĥ, ∗] with instance p15.pddl 1’548 29 1’444.30 × 53.37
[f, h, ĥ, ∗] with instance p14.pddl 27’919 519 7’999.86 × 53.79

Table 4.8: The number of expansions of specific instances of the scanalyzer-analyze
domain that show a noticeable difference between the final default tie-breakers.

actions rotate-2 and rotate-4. These two actions can swap two batches on the conveyer
belts. Additionally there are the non-zero actions analyze-2 and analyze-4. The actions
with *-4 are used for larger rotations when we have two batches on one conveyer belt. In
the experiments we find some differences in the results. The configurations in the Table 4.8
use the ĥ tie-breaker in both the best and the worst performing strategy. The difference
here lies in the final tie-breaker. Table 4.8 shows three instances where there is a noticeable
difference in number of expanded nodes between fifo and lifo. For most instances of the
same configuration either fifo or lifo is strongly better than the other. The three instances
in Table 4.8 just show the extreme cases. For [f, h, ∗] the worst coverage over all instances
is in combination with ro. The instance p11.pddl expands the most nodes with lifo while
fifo expands 372.8 times less nodes. The other worst performing strategy [f, ĥ, ∗] is worst in
combination with fifo. In the instance p15.pddl we see this with a magnification factor of
53.37 times the expanded nodes of the result with lifo. A similar factor can be seen with the
[f, h, ĥ, ∗] configuration in the instance p14.pddl. But this configuration performs best
in the scanalyzer-analyze domain. For the coverage the difference in expansion number
does not matter in this configuration as fifo solves 17 and lifo 18 instances. The order of
expansion is important for the fifo/lifo tie-breaking. But we do not know which action the
algorithm applies first. This is a matter of the internal implementation. Because of that we
can not be sure which nodes are put into the OpenList first when the previous tie-breaks are
the same. In all three cases this order of expansion had a significant impact on the amount
of expansions in total. Therefore we can conclude that the order of applying the actions can
matter in certain scenarios and can increase the number of nodes expanded.
Let us look at another example where the final tie-breaker made a significant difference.
The pathways-fuel domain solves the problem with sequences of chemical reactions in
a biological organism. In the domain we have the zero-cost actions choose, initialize and
synthesize that are needed to make a molecule available for a chemical reaction. The only
two non-zero actions associate and associate-with-catalyze are there to use up two molecules
to make a third new molecule. In the experiments none of the configurations was able to
solve more than five instances out of the 30 existing. This instance p05.pddl shows some
significant differences between the configurations with different default tie-breakers. For the
baseline configurations [f, h, ∗] and [f, h, ⟨d⟩, ∗] we can explain the difference by stating that
lifo works like a depth-first-search inside the plateau. There the deeper nodes hold states
that have more molecules available to react with. This is because the zero-cost actions
can accumulate molecules without increasing the cost. Then at a deeper layer the non-
zero actions can be applied easier because the preconditions are more likely to match. But
this does not explain why the configurations [f, ĥ, ∗] and [f, h, ĥ, ∗] expanded so much more

Evaluation 30

Configuration fifo lifo random Factor

[f, h, ∗] 4’173’908 290 566’145.80 × 14’392.78
[f, h, ⟨d⟩, ∗] 325’339 423 1’114’393.50 × 2’634.50
[f, ĥ, ∗] 55 156’712 39’234.50 × 2’849.31
[f, h, ĥ, ∗] 43 156’712 none × 3’644.47

Table 4.9: The number of expansions of the instance p05.pddl of the pathways-fuel
domain. The results show a significant difference between the final default tie-breakers.

nodes with lifo but needed even less expansions with fifo. The distance-to-go heuristic ĥ

makes the paths with many zero-cost actions costly as ĥ is computed with all unit action
cost. This makes the nodes that are closer to the current node more attractive in the sense
of cost-minimization. So the search finds paths that only apply the necessary zero-cost
actions faster with fifo. The paths with many zero-cost actions will be only expanded if the
closer nodes already got expanded. Even tough one of the default tie-breakers performed
significantly better than the other with certain configuration, no configuration was able
to solve the instance p06.pddl. While the instance p05.pddl needs six variables to be
assigned in the goal state, the instance p06.pddl increases the amount to eight variables.
This of course increases the difficulty but still does not explain why the well performing
configurations from the instance p05.pddl can not solve the problem within the memory
and time limitations. This example shows that we can never know which default tie-breaking
works best for a general problem. It is always dependent on the domain. For that reason we
implemented teh depth-diversification that allows us to not rely on luck wether fifo or lifo
is better for any specific problem. The instance p05.pddl of the pathways-fuel domain
shows this well, because the number of expansions for the configuration [f, ĥFF , ⟨d⟩, ∗] are
balanced with fifo: 31, lifo: 31 and ro: 31.80.

4.3 IPC-Domains
For the IPC-domains we used the same configuration of tie-breaking strategies as before
with the zero-cost domains. The coverage of the different configurations can be seen in Table
4.10. We find a small increase of coverage for the baseline runs with depth-diversification
[f, h, ⟨d⟩, ∗] in comparison to the standard runs with [f, h, ∗]. These runs with the depth-
diversification are overall the best performing ones with [f, h, ⟨d⟩,fifo] achieving the highest
coverage. The configurations with the distance-to-go heuristic ĥ did not perform as well as
the other configurations. When we compare the average of the runs with ĥ with the average
of the baseline runs we find a decrease of coverage of almost 6%. For the both [f, ĥFF , ∗] and
[f, ĥFF , ⟨d⟩, ∗] we find a decrease of more than 5%. These last two configurations both share
the same average. When comparing the configurations [f, ĥFF , ∗] and [f, ĥFF , ⟨d⟩, ∗] we can
not find any big differences even when looking at the individual domains. The distance-to-go
approaches on their own do not perform as well as the combination of the distance-to-go
heuristics with depth-diversification. We can explain this based on the fact that the search
algorithm has to compute two different heuristic values for each state. This is because we use
another heuristic for the h that is used to get f and for the ĥ. The generated overhead from

Evaluation 31

Sorting Criteria LM-cut with IPC domains (1104)
Results Asai and Fukunaga

Baselines
[f, h,fifo] 881 558
[f, h, lifo] 890 565
[f, h, ro] 874 558.9 ± 2.1
[f, h, ⟨d⟩,fifo] 895 571
[f, h, ⟨d⟩, lifo] 894 575
[f, h, ⟨d⟩, ro] 891 571.4 ± 1.7

Distance-to-Go
[f, ĥ,fifo] 836 534
[f, ĥ, lifo] 834 534
[f, ĥ, ro] 836 534 ± 2.1
[f, h, ĥ,fifo] 837 536
[f, h, ĥ, lifo] 836 535
[f, h, ĥ, ro] 836 534.7 ± 1.5
[f, ĥFF ,fifo] 885 564
[f, ĥFF , lifo] 880 562
[f, ĥFF , ro] 886 563.7 ± 1.4

Distance + Depth
[f, ĥFF , ⟨d⟩,fifo] 885 563
[f, ĥFF , ⟨d⟩, lifo] 881 560
[f, ĥFF , ⟨d⟩, ro] 885 561.9 ± 1.4

Table 4.10: Coverage of different configurations in comparison to Asai and Fukunaga
(2017) with LM-cut heuristic on the IPC domains.

the computation of the second heuristic is is most likely the cause of the decreased coverage.
This overhead explains why [f, ĥFF , ∗] and [f, ĥFF , ⟨d⟩, ∗] are so similar. The computation
of the distance-to-go heuristic uses up so much resources that the search reaches the limits.
The depth-diversification is not able to increase the performance because the plateaus get
too big before the tie-break even happens.. Therefore the depth-diversification can not make
any difference in these two settings. But because the FF heuristic is a powerful heuristic
function itself, we still manage to get a comparable result to the baseline configurations
without depth-diversification. Comparing it to the zero-cost domains we see that with zero-
cost actions the distance-to-go heuristics increase the coverage. In the IPC-domains this
increase is not notable. But the depth-diversification has a larger impact on the coverage
increase as in the zero-cost domains.
When we compare the default tie-breakers in the different configurations, we see lifo does
not perform as well in the distance-to-go configurations. In contrary in the standard baseline
runs lifo outperforms the other two default tie-breaker. For the baseline run with depth-
diversification, the results are rather balanced between fifo and lifo.
Now let us look at the overall results with the heuristic Merge and Shrink on the zero-cost
domains. We find that the baseline configurations [f, h, ∗] and [f, h, ⟨d⟩, ∗] achieved the
highest coverage. From those configurations [f, h, lifo] performed best with 902 out of 1’104
instances. Slightly worse was the configuration [f, h, ⟨d⟩, lifo] with 901 of 1’104 instances

Evaluation 32

Sorting Criteria Merge and Shrink with IPC domains (1104)
Results Asai and Fukunaga

Baselines
[f, h,fifo] 886 491
[f, h, lifo] 902 496
[f, h, ro] 823 489.4 ± 1.0
[f, h, ⟨d⟩,fifo] 895 487
[f, h, ⟨d⟩, lifo] 901 487
[f, h, ⟨d⟩, ro] 841 485.6 ± 1.5

Distance-to-Go
[f, ĥ,fifo] 708 477
[f, ĥ, lifo] 712 475
[f, ĥ, ro] 707 470.4 ± 0.9
[f, h, ĥ,fifo] 706 476
[f, h, ĥ, lifo] 712 475
[f, h, ĥ, ro] 706 470.9 ± 0.9
[f, ĥFF ,fifo] 816 458
[f, ĥFF , lifo] 815 457
[f, ĥFF , ro] 812 457 ± 1.3

Distance + Depth
[f, ĥFF , ⟨d⟩,fifo] 816 457
[f, ĥFF , ⟨d⟩, lifo] 815 457
[f, ĥFF , ⟨d⟩, ro] 813 456.8 ± 1.2

Table 4.11: Coverage of different configurations in comparison to Asai and Fukunaga
(2017) with Merge and Shrink heuristic on the IPC domains.

solved. But on average the baseline configurations with depth-diversification [f, h, ⟨d⟩, ∗]
with 879 solved instances performed better than the baseline configurations without depth-
diversification (870.33 instances). The average was taken over the three default tie-breakers.
It stands out that the configurations with the default tie-breaker random achieved noticeable
less coverage than the other two default tie-breakers. But this is only for the baseline
configurations. In all other configurations the random tie-breaker performs similar to fifo in
most cases.
The distance-to-go runs with ĥ achieved lower coverage than all other runs. But the configu-
rations with ĥFF increase the coverage to the same level as the configurations [f, ĥFF , ⟨d⟩, ∗].
This is the opposite of the results from Asai and Fukunaga (2017). Our results show on
average an increase of almost 15% from the ĥ-distance-to-go configurations to the ĥFF

configurations with and without depth-diversification. In the paper of Asai and Fukunaga
(2017) they state a decrease of the coverage of 4%. These differences are most likely because
we used Merge and Shrink with our own settings. It is possible that Asai and Fukunaga
(2017) used different settings and because of that also achieved different results.

Evaluation 33

4.3.1 Comparison to Zero-Cost Domains
In Figure 4.1 we can see that the overall curve development is similar for all four curves
with LM-cut. The most noticeable difference between the zero-cost and IPC-domains are
the first six configurations. These baseline runs [f, h, ∗] and [f, h, ⟨d⟩, ∗] perform better in
the IPC-domains than the distance-to-go runs [f, ĥ, ∗] and [f, h, ĥ, ∗]. But for the zero-cost
domains this is the opposite case. We find that the baseline configurations work better in
the IPC-domains than in the zero-cost domains. Noticeable here is that we have a dip for the
configuration [f, h, ro] for both the IPC- and teh zero-cost domains. For the configurations
with ĥFF the curve goes up again for both domain sets. This shows that the baseline
configurations have trouble in solving zero-cost domain problems more than solving IPC-
domains. This makes sense as the h-value can not differentiate between two paths that
contain many zero-cost actions and will therefore choose either path with an uninformed
default tie-breaking. For the baseline runs the following paths look equally promising:

PathA: n0
a1−→ n1

a2−→ . . .
an−−→ nn

b−→ ng with a1, . . . , an as zero-cost actions, b as a non-zero
action and ng as a goal.

PathB: n0
b−→ ng with b as a non-zero action and ng as a goal

The runs for the distance-to-go combination with depth-diversification do not change the
development of the curve much for either of the results.
If we look at the specific domains we can compare scanalyzer-08-strips and scanalyzer-

opt11-strips with the modified zero-cost domain scanalyzer-analyze. The main dif-
ference between those domains is of course that in scanalyzer-analyze only one action
has a non-zero cost. The other two domains from the IPC-domain set only have non-zero
actions. We find significant differences in scanalyzer-analyze between the different de-
fault tie-breaks as the final tie-breaking strategy. In the IPC-domains of the scanalyzer

problem we do not find any noticeable anomalies. So the zero-cost actions can be identified
as the cause of the anomalies.

5
Conclusion

The aim of this thesis was to implement the depth-diversification tie-breaking within Fast
Downward. With that we wanted to see if the depth-diversification performs better than the
original implementation with the default tie-breaker fifo. Additionally we wanted to improve
the performance with different configurations with distance-to-go heuristics, especially for
zero-cost domains of Asai and Fukunaga (2017) where bigger plateaus appear more often
than in the IPC-domains. Bigger plateaus increase the importance of tie-breaking strategies
as the default tie-breakers are often only effective for certain problems.

5.1 Configuration Comparison
We first want to look at which configurations solved the most instances in the different
domains. We found out that there can be a significant difference between fifo and lifo as
a final tie-breaker but otherwise have the same configurations. The baseline configuration
with [f, h, ∗] show significantly worse results in the zero-cost domains compared to other
configurations with distance-to-go heuristics and depth-diversification. The average coverage
achieved by [f, h, ∗] is only 242.33 out of 620 zero-cost instances which is only about 39%
of all instances solved. In contrast, the baseline configurations perform better than the
distance-to-go configurations with ĥ in the IPC-domains. There we have a average coverage
of 887.5 out of 1’104 IPC-instances (80.39%) over all baseline configurations. But in both
zero-cost and IPC-domains the configurations with ĥFF achieve a high coverage. In the
zero-cost domain with an average of 314.66 of 620 (50.75%) and in the IPC-domains with
883.67 of 1’104 (80.04%) over the configurations [f, ĥFF , ∗] and [f, ĥFF , ⟨d⟩, ∗]. Combining
ĥFF with depth-diversification improves the results even more. In the zero-cost domains
the configuration of [f, ĥFF , ⟨d⟩, ∗] achieve the highest coverage. This shows that both the
improvement through ĥFF and the depth-diversification is effective for zero-cost domains.
These improvements also increase the coverage for IPC-domains. But for the IPC-domains
the best performing algorithm is the baseline configuration with the depth-diversification
improvement [f, h, ⟨d⟩, ∗]. This baseline configuration with depth-diversification solves on
average 893.33 of 1’104 instances (80.92%) and is therefore slightly better performing than
the configurations with ĥFF . We find similar results compared to the results of Asai and

Conclusion 35

Fukunaga (2017). But our absolute values for coverage in the zero-cost experiment were
about 5 to 9% less than in the paper from Asai and Fukunaga (2017) with LM-cut. For
Merge and Shrink this decrease is reduced even more to about 1 to 6%. These result
comparisons suggest hardware-related factors as the reason for the difference, because the
relative improvements remain consistent. The experiments show that the choice of the tie-
breaking strategies is indeed important and can make significant differences in the results.
We showed that the depth-diversification and the distance-to-go improvements did indeed
improve the amount of solved instances. This was expected because the depth-diversification
prevents the search from wasting too much time and resources in either shallow (breadth-
first like) or deep (depth-first like) layers of a plateau. Depth-diversification ensures more
balanced explorations across all depth layers. This is particularly significant in zero-cost
domains where the plateaus can grow exponentially. Additionally the distance-to-go heuris-
tic ĥFF is beneficial for domains like elevators-up or miconic-up. In these domains the
delete-relaxation of the FF heuristic allows the elevator to appear simultaneously on all
floors it has visited. In this relaxed state of the problem, the need to account for the ex-
pensive moving actions is omitted. This enables the ĥFF heuristic to focus on the number
of depart and board actions that make the difference in a plateau. Because of that hathFF

provides a better performance for distinguishing between different paths with many zero-
costs. A distance-to-go heuristic can differentiate between paths with a different number of
required actions even when the action all have a cost of zero.

5.2 Unexpected Findings
Let us look at more specific into some domains. The domains elevators-up and parking-

movecc both require only zero-cost actions to reach any goal node. Because of that the
optimal solution of each instance has a total cost of zero. The domains with this charac-
teristics showed the biggest differences in coverage between the different configurations. In
the parking-movecc domain both configurations with ĥFF achieved a coverage of 20 out
of 20 instances while all baseline configurations could not even solve a single instance. This
example shows that the baseline configurations can be trapped in big plateaus because of
zero-cost actions. While the distance-to-go configurations can navigate through the paths
more efficiently without creating unnecessary big plateaus.
Another interesting finding is that in the scanalyzer-analyze and also the pathways-

fuel domain the differences between the final default tie-breakers were greater than expected
for some instances. The biggest difference in number of expansions was achieved with the
baseline configuration [f, h, ∗] where we have a increase from [f, h, lifo] (290 expansions)
to [f, h,fifo] (4’173’908 expansions) by a factor of over 14’000. This finding shows the
unpredictability of action ordering inside the search.

5.3 Future Work
We will take a look at further topics that could be studied and improvements that could be
made in connection with this thesis. One thing that could be extended is the configuration

Conclusion 36

of the distance-to-go heuristics. At the moment the distance-to-go heuristic ĥ takes the
original heuristic h and replaces every action cost with the value one. This weights only the
amount of actions taken and does not consider the cost of the action itself. Corrêa et al.
(2018) proposed the idea of adding a value c to the action-cost instead of replacing it with
one. With that Corrêa et al. (2018) expand the experiments of Asai and Fukunaga (2017)
with a cost adaption approach. This approach values the action-cost while still accounting
for the amount of the actions needed. It could lead to an interesting result to see if this
idea that adapts the the action cost by c performs better than the distance-to-go heuristic
ĥ. Additionally it would be interesting to see if the cost adaption improves or reduces the
coverage depending on the values of c.
Another idea would be to test out more heuristics and take a deeper look at the differ-
ences they make. For this thesis we focused on one heuristic (LM-cut) and only shortly
compared the results to the findings with the Merge and Shrink heuristic. Other heuristic
functions may be able to achieve even better results with the configurations we tested in the
experiments.
Lastly Asai and Fukunaga (2017) mention that they also tried the depth-diversification with
a randomizer instead of the counter. This could increase the performance as well, because
the different depth-buckets would be selected randomly. The random selection omits the
problem that fifo and lifo have with their breadth-first and depth-first like search inside a
plateau. The depth-diversification with randomizer could still find the solution in reasonable
time without getting stuck at the lower or higher depth layers. But as a randomizer is not
deterministic, this would not be suitable to show in a thesis because the results would have
to be tested more rigorously to show a consistent result.

Bibliography

Asai, M., and Fukunaga, A. Tie-breaking strategies for cost-optimal best first search. Journal
of Artificial Intelligence Research (JAIR), 58:67–121, 2017.

Bäckström, C., and Nebel, B. Complexity results for SAS+ planning. Computational Intel-
ligence, 11(4):625–655, 1995.

Corrêa, A. B.; Pereira, A. G.; and Ritt, M. Analyzing tie-breaking strategies for the A*
algorithm. In International Joint Conference on Artificial Intelligence (IJCAI), pages
4715–4721, 2018.

Hansen, E. A., and Zhou, R. Anytime heuristic search. Journal of Artificial Intelligence
Research (JAIR), 28:267–297, 2007.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):
100–107, 1968.

Helmert, M. The Fast Downward planning system. Journal of Artificial Intelligence Research
(JAIR), 26:191–246, 2006.

Helmert, M., and Domshlak, C. Landmarks, critical paths and abstractions: What’s the
difference anyway? In Proceedings of the International Conference on Automated Planning
and Scheduling (ICAPS), pages 162–169, 2009.

Helmert, M., and Lasinger, H. The scanalyzer domain: Greenhouse logistics as a planning
problem. In Proceedings of the International Conference on Automated Planning and
Scheduling (ICAPS), pages 234–237, 2010.

Helmert, M.; Haslum, P.; Hoffmann, J.; et al. Flexible abstraction heuristics for optimal se-
quential planning. In Proceedings of the International Conference on Automated Planning
and Scheduling (ICAPS), pages 176–183, 2007.

Hoffmann, J., and Nebel, B. The FF planning system: Fast plan generation through heuristic
search. Journal of Artificial Intelligence Research (JAIR), 14:253–302, 2001.

