Merge Strategies for Merge-and-Shrink

Master's Thesis

Daniel Federau

13th February 2017

Introduction •0000	Merge-and-Shrink	Evaluation of Merge Strategies	Implementation 0000	Conclusion 00
Motivatio	on			

- An important factor for the performance of merge-and-shrink is the merge strategy
- There are many merge strategies and improvements described in the literature
- First goal: evaluation of new and existing combinations of merge strategies
- Second goal: implementation of a new combination of MIASM with factored symmetries

Introduction 0●000	Merge-and-Shrink	Evaluation of Merge Strategies	Implementation 0000	Conclusion 00
Planning	Task			

- Set of variables with finite domain
- A partial state assigns values to variables
- State is a variable assignment of all variables
- Initial state and set of goal states
- Set of operators with precondition, effect and cost

Introduction 00●00	Merge-and-Shrink	Evaluation of Merge Strategies	Implementation 0000	Conclusion 00
Transitior	n System			

- Planning task induces a transition system (TS)
- Set of states S
- Set of labels L that correspond to operators
- Set of transitions $\langle s, o, s'
 angle \in \mathcal{T}$
- Initial state s_0 and set of goal states S_*

Introduction	Merge-and-Shrink	Evaluation of Merge Strategies	Implementation	Conclusion
000●0	00000000		0000	00
Search				

- Plan: path in the TS from the initial state to a goal state
- Search: find a plan in the transition system of the planning task
- Optimal Search: plan has the lowest cost among all plans

Introduction 0000	Merge-and-Shrink	Evaluation of Merge Strategies	Implementation 0000	Conclusion 00
Heuristic	Search			

- A heuristic estimates cost from any state to a goal state
- Admissible if heuristic value is never higher than true cost
- Abstraction heuristic: uses cost to goal in abstraction as heuristic value
 - An abstraction maps a TS to a smaller abstract TS
 - An abstract state can correspond to several concrete states

Introduction	Merge-and-Shrink	Evaluation of Merge Strategies	Implementation	Conclusion		
00000	●0000000		0000	00		
Merge-and-Shrink Algorithm						

- $\bullet\,$ manages a set ${\cal T}$ of TS
- \bullet Start: ${\mathcal T}$ contains an atomic transition systems for every variable
- \bullet choose two TS for merging from ${\cal T}$
- Shrink step: shrink one or both TS if they are too big
- \bullet Merge step: replace the two TS in ${\cal T}$ with merge
- $\bullet\,$ Repeat, until only one TS left in ${\cal T}$

Introduction	Merge-and-Shrink	Evaluation of Merge Strategies	Implementation	Conclusion
00000	○●○○○○○○		0000	00
Merge Strategy				

- Decides which two TS will be merged next
- Can be represented by a merge tree
- Linear versus non-linear merge strategy

Introduction	Merge-and-Shrink	Evaluation of Merge Strategies	Implementation	Conclusion
00000	00●00000		0000	00
Linear M	erge Strategi	es		

- Causal graph goal level (CGGL)
 - Add variables that are connected to previously added variables in the causal graph
 - Add a variable that has a goal value
- Reverse level (RL) and level (L)
 - Uses the variable level of the causal graph

Introduction 00000	Merge-and-Shrink 000●0000	Evaluation of Merge Strategies	Implementation 0000	Conclusion
MIASM				

- Goal: merge TS whose product has many unnecessary states
- Unnecessary states:
 - Not reachable from the initial state
 - No path to a goal state
 - Can be pruned
- Subset search of variables
- Partition of variables into subsets
- First merges TS corresponding to variables in each subset
- Then merge remaining TS
- Resulting merge tree is precomputed

Introduction	Merge-and-Shrink	Evaluation of Merge Strategies	Implementation	Conclusion
00000	00000000		0000	00
Subset se	earch of MIAS	SM		

- Best-first search in the space of variable subsets
- Initialisation: add "promising" subsets into priority queue
 - Strongly connected Components (SCC) in the causal graph
 - Mutex groups
- Expand a subset by adding one variable to it
- Subsets are ordered according to formula that uses ratio of necessary states to all states
- Stop if number of states exceeds a defined limit
- Returns a set of subsets that "produce" unnecessary states

Introduction 00000	Merge-and- 00000000	Shrink	Evaluation of Merge Strategies	Implementation 0000	Conclusion 00

DFP and Dynamic-MIASM

- Score for every pair of Transition Systems
- Perform merge with the best score
- DFP:
 - Merges TS that have joint labels that occur near a goal state
- Dynamic-MIASM:
 - Ratio of unnecessary states compared to total amount of states in the merged TS

Introduction	Merge-and-Shrink	Evaluation of Merge Strategies	Implementation	Conclusion
00000	000000●0		0000	00
SCC				

- Uses strongly connected components (SCC) of the causal graph
- First merges TS corresponding to variables in SCC
- Then merges all remaining TS
- Uses fall-back strategy for merging

Introduction	Merge-and-Shrink	Evaluation of Merge Strategies	Implementation	Conclusion
00000	0000000●		0000	00
Factored	Symmetries			

- Factored symmetry:
 - Is a permutation on the set of TS that maps states to states and labels to labels
 - Preserves goal state properties and label costs
- $\bullet\,$ Compute set of TS that are affected by factored symmetry $\sigma\,$
- $\bullet\,$ If available, merge TS that are affected by $\sigma\,$
- If not, merge according to fall-back strategy

Introduction 00000	Merge-and-Shrink	Evaluation of Merge Strategies	Implementation 0000	Conclusion 00
Overview				

base	CGGL	RL	L	DFP	MIASM	DYN-MIASM
Coverage	710	726	705	745	756	744
SYMM-	CGGL	RL	L	DFP	MIASM	DYN-MIASM
Coverage	748	749	741	753	753	758
SCC-	CGGL	RL	L	DFP	MIASM	DYN-MIASM
6	-					

Introduction	Merge-and-Shrink	Evaluation of Merge Strategies	Implementation	Conclusion
00000	00000000	⊙●	0000	00
MIASM a	nd Factored	Symmetries		

- If factored symmetries are found, merge according to symmetries
- Problem: precomputed merge tree will be ignored
- Goal of MIASM to find unnecessary states not supported

Introduction	Merge-and-Shrink	Evaluation of Merge Strategies	Implementation	Conclusion
00000	00000000		•000	00
Naive Im	plementation	ı		

- Idea: use factored symmetries in the initialisation of the subset search of MIASM
- Find factored symmetry and merge affected TS
- Replace atomic TS with merged TS in subset search
- \bullet Problem: merges without shrinking \rightarrow TS can become too big

Introduction 00000	Merge-and-Shrink	Evaluation of Merge Strategies	Implementation 0000	Conclusion 00
Hill-Climb	oing Implem	entation		

- Idea: only use factored symmetries where all affected TS can be merged efficiently
- Return a set F of TS that are affected by factored symmetries
- Compute all factored symmetries
- \bullet Select factored symmetry σ that affects the most TS
- Add set of TS affected by σ to F if it fulfils:
 - Product of the size of the TS affected by σ is smaller than a defined limit
 - All TS affected by σ are disjoint to all TS in ${\it F}$
- Merge all subsets in F for subset search of MIASM

Introduction	Merge-and-Shrink	Evaluation of Merge Strategies	Implementation	Conclusion
00000	00000000		0000	00
Evaluation				

Eval	luation	- Overview

MIASM	SYMM-MIASM	Naive-Combo	HC-Combo
758	753	667	768
417004130	326412007	352085190	283159812
1444	1452	1221	1447
71.02	78.13	71.67	67.21
70.5	9.5	48.4	44.8
	MIASM 758 417004130 1444 71.02 70.5	MIASMSYMM-MIASM7587534170041303264120071444145271.0278.1370.59.5	MIASM SYMM-MIASM Naive-Combo 758 753 667 417004130 326412007 352085190 1444 1452 1221 71.02 78.13 71.67 70.5 9.5 48.4

Comparison: Original MIASM against Hill Climbing

Introduction	Merge-and-Shrink	Evaluation of Merge Strategies	Implementation	Conclusion
00000	00000000		0000	•0
Conclus	ion			

- Combinations perform better than original strategies
- Only exception is MIASM with symmetries
- Our hill climbing-combination performs better than MIASM and the old combination with factored symmetries
- Factored symmetries do not improve quality but efficiency

	_			
Introduction	Merge-and-Shrink	Evaluation of Merge Strategies	Implementation	Conclusion

Thank you for your attention.

Questions?