
Enhancing Efficiency of LP-based Heuristic Search

in Optimal Planning

Master Thesis
by Renato Farruggio

Examiner: Prof. Dr. Malte Helmert
Supervisor: Dr. Florian Pommerening

February 7, 2024



Acknowledgments

I would like to thank Prof. Malte Helmert, head of the Artificial Intelligence Research Group
at the University of Basel, for giving me the opportunity to write my thesis in his group. I
want to thank Florian Pommerening for his guidance, for sharing his expertise and knowledge
of LP-based heuristic search, the different heuristics, and Fast Downward with me, and for his
diligent criticisms of my writing. I would also like to thank Augusto Blaas Corrêa, who sometimes
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Abstract

Optimal planning is an ongoing topic of research, and requires efficient heuristic search
algorithms. One way of calculating such heuristics is through the use of Linear Programs
(LPs) and solvers thereof. This thesis investigates the efficiency of LP-based heuristic search
strategies of different heuristics, focusing on how different LP solving strategies and solver
settings impact the performance of calculating these heuristics. Using the Fast Downward
planning system and a comprehensive benchmark set of planning tasks, we conducted a
series of experiments to determine the effectiveness of the primal and dual simplex methods
and the primal-dual logarithmic barrier method. Our results show that the choice of the LP
solver and the application of specific solver settings influence the efficiency of calculating
the required heuristics, and showed that the default setting of CPLEX is not optimal in
some cases and can be enhanced by specifying an LP-solver or using other non-default
solver settings. This thesis lays the groundwork for future research of using different LP
solving algorithms and solver settings in the context of LP-based heuristic search in optimal
planning.
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1 Introduction

Optimal planning is the task of finding an optimal sequence of actions, that leads from an
initial state to a goal state in a pre-defined environment. The widely known Rubik’s Cube
can be expressed as a planning task [18], but there are also more practical applications such
as planning elevator movements [17] and many logistics tasks. Optimal planning is an ongoing
topic of research, and each year numerous papers are submitted to the International Conference
on Automated Planning and Scheduling (ICAPS). One branch of optimal planning is using
heuristic-based search algorithms like A* that estimate the distance to the goal in each step. We
focus on heuristics that can be formulated as linear programs (LPs). An LP is a mathematical
optimization problem with the goal of finding variable values subject to given constraints, that
optimize a given linear objective function. LP solvers are computer programs that find an
optimal solution to a given LP, and are mostly used as a black box [23] in this context. We
analyze the LPs of the heuristics of different planning tasks, hypothesise about the impact of
different solving strategies applied by the LP solver on these problems, and run experiments to
test the hypotheses.

Section 1 gives as an outline and an and serves as an overview over this work. In Section 2 we
introduce various concepts that are important for this thesis. We start with linear programs,
continue with planning tasks and relevant heuristics, and finally we introduce the reader to
planner settings we examined. In Section 3, we present our experiments and findings. Finally,
we conclude with Section 4 and give an outlook on what can be done in the future.

2 Background

In this section we introduce linear programs, planning tasks, and heuristics. These concepts are
fundamental for this thesis.

2.1 Linear Programs

We start by introducing linear programs, before introducing heuristics that can be formulated
as linear programs.

A linear program is a common optimization problem that is defined by a linear function, and
linear constraints in the form of linear inequalities. The linear constraints define a feasible region
in the form of a convex polytope. A convex polytope is a geometric object that can be represented
as a finite intersection of half-spaces, where each half-space is defined by a linear inequality. It
is a higher-dimensional generalization of a polygon in two dimensions or a polyhedron in three
dimensions. In the case of a linear program, each face of the polytope corresponds to one relevant
constraint of the linear program. The area within the polytope, including its borders, is called
the feasible region.

Definition 2.1 (Linear program). Let A ∈ Rm×n be a matrix called the constraint matrix, let
b ∈ Rm be a vector called the bounds vector, and let c ∈ Rn be a vector called the cost vector.
Furthermore, let f : x 7→ cTx be a function called the objective function. Then, a Linear Program
(LP) is defined as

minimize cTx
subject to Ax ≥ b

x ≥ 0

It has n variables and m constraints (not counting the non-negativity constraints). We can
observe that this formulation is equivalent to a maximization problem

maximize −cTx
subject to −Ax ≤ −b

x ≥ 0
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In particular, any linear program can be written as a minimization or a maximization problem.

Definition 2.2 (Feasible region). Let

minimize cTx
subject to Ax ≥ b

x ≥ 0

be a linear program. The feasible region of the LP is the set {x | x ∈ Rn, Ax ≥ b, x ≥ 0}. If
the feasible region of the LP is empty, then the problem is infeasible, otherwise the problem is
feasible. The solution of the LP is a point x∗ within the feasible region that is optimal with
respect to the objective function. The value of the objective function evaluated at x∗, i.e. f(x∗),
is called the objective value. If the objective value of a feasible LP can be arbitrary low (or
high, in the case of an maximization problem), then the problem is called unbounded (feasible).
Otherwise, it is called bounded (feasible).

A problem is called degenerate if there exist different sets of faces of the polygon that define
the optimal solution. In other words, the solution is over-determined, and the linear constraints
that are relevant for the solution are not linearly independent. We also call a linear problem
degenerate, if the solution is under-determined, in which case the objective function yields an
optimal value for different points in the feasible region. In theory both these cases are not a
problem when we are only interested in the objective value, but in practise the algorithms used
to find these solutions can cycle through different sets of faces, in the prior case, or different points,
in the latter case. Luckily, CPLEX has different tactics, for example perturbation methods[1, 8],
to detect these cases and prevent cycling, so we don’t have to worry about them.

Definition 2.3 (Primal LP and Dual LP). For all linear programs there exists a corresponding
dual linear program. Let

minimize cTx
subject to Ax ≥ b

x ≥ 0

be a linear program called the primal LP. Its corresponding dual LP (or just dual) is the linear
program

maximize bT y
subject to AT y ≤ c

y ≥ 0

Note that the number of constraints and number of variables has switched, so for a primal LP
with n variables and m constraints, its dual has m variables and n constraints (not counting the
non-negativity constraints).

For any primal LP, the dual of its dual is again the primal LP. The relationship between the
solutions of the primal LP and its dual LP are described by the Weak Duality theorem and
Strong Duality theorem1.

Theorem 2.1 (Weak Duality). Let there be a primal LP and a corresponding dual LP. For any
point x in the feasible region of the primal LP and any point y of the dual LP, it holds that

cTx ≥ bT y

1The primary source is not available, but according to George Dantzigs foreword in [26], these theorems
were first conjectured by John von Neumann and later rigorously proven by Albert W. Tucker and his group at
Princeton.
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This means that the objective value of the dual LP is a lower bound of the objective value of the
primal LP. And similarly, the objective value of the primal LP is an upper bound of the objective
value of the dual LP.

A direct consequence from the Weak Duality is that if an LP is unbounded then its dual is
infeasible. It also follows, that if an LP is feasible, then its dual is bounded.

Theorem 2.2 (Strong Duality). Let there be a primal LP and a corresponding dual LP. If the
primal LP is bounded feasible and has an objective value cTx∗, then the dual LP is bounded
feasible and has an objective value bT y∗, and it holds that

cTx∗ = bT y∗

2.2 Solving Linear Programs

We will now introduce different strategies for solving linear programs. Since we use CPLEX for
our experiments, we will discuss the solving strategies for linear programs that are implemented
in CPLEX. The different strategies we consider are the primal simplex algorithm, the dual
simplex algorithm, and the barrier method. We will also, very briefly, cover the network simplex
algorithm, sifting algorithm, and concurrent optimizer, and justify why we did not use them.

2.2.1 Primal Simplex Algorithm

The primal simplex algorithm, also called the Dantzig Simplex Method, named after George
Dantzig, is a typical approach to find optimal solutions of Linear Programs[12]. It works by
starting at a vertex, i.e. a ”corner”, of the feasible region, and then moving along the edges
of the feasible region to find the vertex with the highest evaluation of the objective function,
while maintaining feasibility at all steps. Finding such an initial point is as hard as solving
the LP, but it can be achieved by adding additional variables. But usually, if such a point is
not known, it is a good approach to use the dual simplex algorithm instead, and this is what
CPLEX does by default. But let us suppose that a point within the feasible region is known,
for a linear program consisting of a linear objective function that we want to minimize, and
a set of constraints, in the form of linear equations Ax ≥ b, and non-negativity constraints
for the variables x1, . . . , xn. Each of the m constraints in Ax ≥ b is of the form aix ≥ bi,
where ai is the i-th row vector of A. In the Primal Simplex Method, slack variables s1, . . . , sm
are introduced, together with non-negativity constraints si ≥ 0 for all 1 ≤ i ≤ m. The slack
variables then get integrated into the LP, so that the constraints inequalities become equalities:
aix − si = bi for 1 ≤ i ≤ m. Any set with m elements from {x1, . . . , xn, s1, . . . , sm} can form
a basis. Each basis corresponds to a vertex (intersection of constraint bounds) in the solution
space. A basis is feasible if all constraints of the problem are satisfied. In particular, if all basic
variables satisfy the non-negativity constraints. The optimal solution can be represented by one
of the feasible bases. Initially, the basis contains all m slack variables. The variables in the basis
are called ”basic variables”, and the rest are the ”nonbasic variables”. In each iteration of the
optimization, the optimizer performs a pivoting-step. As a result, one basic variable leaves the
basis, and another non-basic variable enters the basis. After the optimization is completed, all
nonbasic variables have the value 0, and usually, all basic variables are non-zero. If the problem
is degenerate, then some basic variables can be 0 as well. In that case, the solver could cycle
through several solutions. However, as mentioned before, CPLEX has methods to avoid such
cycling. Since in each iteration, the optimizer searches for the non-basic variable that offers the
largest improvement for the objective function, when added to the basis, there is an advantage
when the problem has a lot more variables than constraints. We think that this is because the
search space is high-dimensional with a lot fewer constraints than dimensions. This might sound
counter-intuitive at first, because the pool of non-basic variables that the algorithm can choose
from at each step is larger when there are more variables, and so more computations are required
in each iteration. But the key point to regard here is that the search space becomes larger, and
thus includes more options for improvement at each iteration. So, the chance of there being, and
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being found, in particular, a short path to a solution, increases. So, while the computations at
each iterations increases if there are more variables, the number of iterations decreases, which is
the deciding factor.

2.2.2 Dual Simplex Algorithm

The dual simplex algorithm works similarly to the primal simplex algorithm, with a few key
differences. Instead of starting at a point in the feasible region, it starts a point within the
feasible region of the dual LP. It then iteratively finds vertices that remain in the feasible region
of the dual LP, while trying to minimize the difference between the evaluation of the objective
function of the primal LP and the evaluation of the objective function of the dual LP. When this
difference is 0, the algorithm terminates and returns the basis and objective value of the primal
LP.

2.2.3 Barrier Methods

In contrast to the simplex methods, the barrier methods move inside a convex feasible region,
searching for the optimal solution from within. [2, 11].

There are different types of interior point methods. Karmakar has presented the first algorithm
that can solve LPs efficiently in polynomial time, called the Karmakar’s algorithm[13]. It was the
first of a family of interior point methods. Interior point methods differ in the way they define
the barrier function. Karmakar’s method, for example, uses a potential reduction method.

The method used in CPLEX is a primal-dual logarithmic barrier method. We omit the exact
details here; they can be found in various books, such as [11] and [2]. Barrier Methods have a few
benefits over the simplex methods. It can parallelized, and it can handle degenerate problems
better than simplex algorithms.

For us, an interesting practise is called crossover, in which the solution moves from a point in
the interior of the feasible region to a close vertex. This happens as a last step of the barrier
method, and can have benefits, but also comes with some downsides. We will discuss crossover
a bit later, in Section 2.3.

2.2.4 Other Algorithms

The network simplex algorithm is a simplex algorithm that works under very specific constraints.
These problems need to have the following property: Each column has exactly 2 non-zero entries,
where the two coefficients are a+1 and a− 1, or can at least be transformed to such a form[27].
The sifting algorithm works by solving a sequence of LP subproblems, starting with only a few
columns and rows, and dynamically adding more to the problem while solving. The sifting
algorithm can be very effective on problems with many more variables than equations[27]. The
concurrent optimizer from CPLEX runs different optimizers concurrently, one on each thread.
Some optimizers can also be run multi-threaded, for example the primal-dual logarithmic barrier
optimizer.

We did not use the Network Simplex algorithm nor the Sifting algorithm, since the LPs we faced
were not of the form described. We run all searches single-threaded, so that the results are
deterministic, and so the concurrent optimizer is not interesting for our use case either.

2.3 Solver Options

CPLEX has many options for regulating how a problem should be solved. Some of these options
determine what happens before the LP solving is started, others influence what happens during
solving.
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2.3.1 Warm Starts

For both the simplex and the barrier method, it is necessary to have a basis that represents a
point within the feasible region. When such a basis is not available, then an additional step to
compute one is required. Solving a problem with such an additional step is called a cold start.
Such an initial basis can be provided by the user, but it can also have remained in the solver
from the previously solved problem. When using simplex for solving an optimization problem,
the basis of the solution found remains loaded in the solver until the solver shuts down, until the
basis gets manually deleted by the user, or until another problem is loaded for which the saved
basis does not lie within the feasible region of neither the primal nor the dual problem. If the
saved basis can be used as an initial basis for the new problem, then it is called a warm start
(or advanced start). When using warm starts in combination with the barrier method, then it
will just continue with the simplex algorithm, since the barrier method requires a point in the
interior, i.e. not on the edge, of the feasible region.

This setting by default is turned on in CPLEX, so whenever a basis is present in the solver before
solving a problem, CPLEX will check if it is in the feasible region of the primal or dual problem,
and then starts the primal or dual simplex, respectively, with the basis present as a starting
basis.

2.3.2 Preprocessing

CPLEX has a range of options to preprocess any given LP. Preprocessing consists of presolving
and aggregation. These steps contains several reformulations of the problem, such as replacing
trivially fixed variables with their values, removing unnecessary constraints, etc. We cannot
know for sure what happens during the two phases, because the documentation is tenuous. We
could observe that the number of variables and constraints shrinks during this phase. This step
is turned on by default, but can be turned off.

2.3.3 Crossover

The result of the barrier algorithm is a point that does not necessarily lie on the boundary of
the feasible region, but is only guaranteed to find an optimal value. In this case, CPLEX does
not generate a base like it does for the simplex algorithms. crossover shifts the point found to
the nearest vertex, but does not change the objective value. Crossover reduces the number of
nonzero values of the variables, because in the initial solution point, many variables have values
like 0.00001 or 0.99999. This is, because by the nature of the method, the search finds values
within the feasible region, i.e. not on the boundary, meaning that variables will not have the
value 0.

Most of the time, crossover is needed. Crossover creates a basis, so that the problem can be
warm-started. In this case, CPLEX will continue with a simplex algorithm using that basis for
the LP, if a warm start is possible. Another advantage is, that if the variable assignments are
important, then we are often times interested in solutions that have fewer nonzero values. In
this case, crossover is also needed.

2.3.4 Twophase Warm Starts

A new approach that is not implemented in CPLEX, but can be achieved by combining its
functionalities, is what we call a twophase warm start, where changes are made in two separate
phases, between which an additional LP is solved, with the goal of allowing warm starts when this
is otherwise not possible. The idea behind it is as follows. When only changing the objective
function, then the feasible region remains the same. Therefore, in this case, any old solution
found, will be in the feasible region of the primal LP, which can then be warm started. On the
other hand, changing the constraint bounds of the primal LP corresponds to a change in the
objective function of the dual LP. Therefore, in this case, the dual LP can be warm started for
the same reason. With these observations, it stands to reason that it is possible to retain updates
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made to the constraint bounds, and only update the objective function, then solve this auxiliary
LP using the primal simplex method with a warm start, and then update the retained updates
to the constraint bounds, and solve the resulting LP using dual simplex with a warm start. The
order of these two steps could also be switched. While this allows for warm starts of problems
that could otherwise not be warm started, note that the solution attained could very well be
different from a solution attained by a cold start.
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2.4 Planning Tasks

We now define SAS+ planning tasks and related concepts, which serve as a foundation for in-
troducing various heuristics later on. A state space variable (or just variable) is a symbol v
with an associated domain dom(v), which is a finite non-empty set of values. A partial assign-
ment over variables V is a function f that maps a subset of V to elements of their domain:
f : X ⊆ V →

⋃
v∈V dom(v) such that f(v) ∈ dom(v) for all v ∈ X. We refer to the set on

which f is defined as vars(f). A state s is a partial assignment over V , where s is defined for
all variables in V , i.e. where vars(s) = V .

A fact is a partial assignment of exactly one variable. For example, for a variable v, the set
{v 7→ d | d ∈ dom(v)} is a set of facts. Note that for any given state and variable v, there
is exactly one true fact that includes v, and all other facts that include v are false (except for
delete-free planning tasks, that will be introduced in 2.5.3).

Definition 2.4 (SAS+ Planning Task). A SAS+ planning task (or just task) is a tuple Π =
⟨V,O, I,G, cost⟩, where

• V is a finite set of variables

• O is a set of operators of the form ⟨pre(o), eff(o)⟩, where the preconditions pre and effects
eff are partial assignments over V

• I is a state called the start state

• G is a partial assignment that describes all goal states

• cost is a function cost : O → R≥0 that assigns a non-negative cost to each operator

We say that an operator o is applicable in a state s if s and pre(o) are consistent, i.e. there is
no v ∈ V with s(v) ̸= pre(o)(v). If operator o is applicable in state s, then resulting state s′ of
applying o in s is written as s′ = s[o], and is defined as

s′(o) =

{
eff(o)(v) if v ∈ vars(eff(o))

s(v) otherwise.

A plan π for a state s is a sequence of applicable operators ⟨o1, . . . , ok⟩, such that s[o1][o2] . . . [ok]
is a goal state. We introduce s[o1, o2, . . . , ok] as an abbreviation of s[o1][o2] . . . [ok].

A plan for a planning task Π is a plan for the initial state of Π.

The length of a plan ⟨o1, . . . , ok⟩ is the number of operators in the plan, i.e. the number k.

The cost of a plan ⟨o1, . . . , ok⟩ is simply the sum of the costs of all the operators applied:∑k
i=1 cost(oi).

Before we introduce heuristics next, we present an example task, that we can come back to
afterwards. We use an instance of the Miconic task [17]. There are two floors f0 and f1, an
elevator, and a passenger that wants to get from f1 to f0 using the elevator. The scenario is
depicted in Figure 1.

Example planning task We define Πmic to be the Miconic task instance from Figure 1,
formally defined as Πmic = ⟨V,O, I,G, cost⟩, with

• V = {elevator, passenger} with

– dom(elevator) = {f0, f1}

– dom(passenger) = {f0, f1, e}

• O = {up,down} ∪ {enter-f, leave-f} for f ∈ {f0, f1}

– up = ⟨elevator = f0, elevator = f1⟩
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Figure 1: Example of a Miconic task, where the elevator is on floor f0 and the passenger is on
floor f1. The goal is for the passenger to be on floor f0.

– down = ⟨elevator = f1, elevator = f0⟩

– enter-f = ⟨{elevator 7→ f, passenger 7→ f}, {passenger 7→ e}⟩ for f ∈ {f0, f1}

– leave-f = ⟨{elevator 7→ f, passenger 7→ e}, {passenger 7→ f}⟩ for f ∈ {f0, f1}

• I = {elevator 7→ f0, passenger 7→ f1}

• G = {passenger 7→ f0}

• cost(o) = 1 for all o ∈ O

The optimal plan for Πmic is ⟨up, enter-f1,down, leave-f0⟩ with a cost of 4.
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2.5 Heuristics for Planning Tasks

A common approach for optimal planning is the A∗ algorithm presented by Hart et al. [5], which
uses a heuristic function (or just heuristic) that calculates a heuristic value for a given state.
Informally, the heuristic can be understood as an estimation of the cheapest plan cost from a
given state to a goal state. Formally, a heuristic is a function that maps states to real numbers
or infinity. The optimal heuristic h∗(s) of state s is the cost of the cheapest plan for s, or ∞ if
no plan exists. In order for a heuristic to be useful for optimal planning with the A∗ algorithm,
it has to be an admissible heuristic. A heuristic h is called admissible, if it never overestimates
the true cost, i.e. if h(s) ≤ h∗(s) for all states s.

In this section, we cover a family of so called operator-counting heuristics, and a heuristic called
potential heuristic.

2.5.1 Operator-Counting Heuristics

The heuristics in the family of operator-counting heuristics are based on linear programs, as
defined in 2.1, with similar structures. Pommerening et al. [21] showed that these heuristics can
be covered by a common framework based on the notion of operator-counting constraints. We
use their definition:

Definition 2.5 (Operator-counting constraints [21]). Let Π be a planning task with operator
set O, and let s be one of its states. Let Y be a set of non-negative real-valued and integer
variables, including an integer variable Yo for each operator o ∈ O along with any number of
additional variables. The variables Yo are called operator-counting variables.
If π is a plan for s, we denote the number of occurrences of operator o ∈ O in π with Yπ

o . A set
of linear inequalities over Y is called an operator-counting constraint for s if for every plan π for
s, there exists a feasible solution with Yo = Yπ

o for all o ∈ O.
A constraint set for s is a set of operator-counting constraints for s where the only common
variables between constraints are the operator-counting variables.

The operator-counting heuristics are then defined as follows:

Definition 2.6 (Operator-counting heuristic). An operator-counting heuristic of a state s is the
objective value of an optimal solution to a linear program with the objective function

minimize
∑
o∈O

cost(o)Yo

subject to a set of operator-counting constraints, where Yo denotes the number of occurrences
of operator o in a plan for state s.

From this family, we next introduce the state equation heuristic, the delete relaxation heuristic,
the disjunctive action landmark heuristic, the optimal cost partitioning heuristic for abstractions,
and the post-hoc optimization heuristic.

2.5.2 State Equation Heuristic

The term state equation heuristic was presented by Bonet [3]. The core idea is to use facts that
can be true or false in each state. Applying an operator in a state can cause each fact to become
true, false, or remain unchanged.

Let us consider the example task from Figure 1. It is clear that the passenger can only leave
the elevator after having entered it. A possible fact we can use here is passenger 7→ e. We can
now express this constraint as Yenter-f0 +Yenter-f1 −Yleave-f0 −Yleave-f1 ≥ 0. Such a constraint
can be formulated for each possible fact of a task. We now say that the operators enter-f0 and
enter-f1 produce the fact passenger 7→ e, since before applying the operators the fact is false, and
afterwards it is true. Likewise, the operators leave-f0 and leave-f1 consume it. The difference
of the number of producers and consumers of an fact is called the net-change of the fact. Since a

12



fact that is not true in the initial state cannot be consumed more often than it is produced, the
net-change of such facts is non-negative at all times. For facts that are true in the initial state,
they can only be consumed once more than they are produced in each state.

Another fact we can consider is passenger 7→ f0. The producer of said fact is leave-f0 and the
consumer is enter-f0. We know that it must be true in the goal, and it is not true in the initial
state, therefore the corresponding net-change must be at least 1, i.e. Yleave-f0 − Yenter-f0 ≥ 1.
Similarly, the fact passenger 7→ f1, which is true initially, but in the goal state it may be false.
So, a plan can consume it once more than it produces it, and we get the net-change constraint
Yleave-f1 − Yenter-f1 ≥ −1. The other two facts are elevator 7→ f0 and elevator 7→ f1. We know
that elevator 7→ f0 is true in the initial state, but it does not have to be true in the goal, therefore
it can be consumed once more than it is produced, so the corresponding net-change must be at
least −1, i.e. Ydown − Yup ≥ −1. For elevator 7→ f1, we know that is not initially true and it
also does not have to be true in the goal. It is produced by the operator up and consumed by
the operator down. Therefore, the corresponding constraint must be Yup − Ydown >= 0. Using
all such facts, we can construct the following LP for the example task Πmic in the initial state:

Minimize ∑
o∈O

cost(o)Yo

subject to
passenger 7→ e : Yenter-f0 +Yenter-f1

−Yleave-f0 −Yleave-f1 ≥ 0
passenger 7→ f0 : Yleave-f0 −Yenter-f0 ≥ 1
passenger 7→ f1 : Yleave-f1 −Yenter-f1 ≥ −1
elevator 7→ f0 : Ydown −Yup ≥ −1
elevator 7→ f1 : Yup −Ydown ≥ 0

for all o ∈ O Yo ≥ 0

A solution to this is to set Yenter-f1 and Yleave-f0 to 1, and all other count-variables to 0. This
gives us an objective value of 2.

To define the LP for the state equation heuristic formally, we first have to extend our definition
of producers and consumers slightly. Since an operator can make a fact true, which was already
true, the operator should not be classified as a producer. Similarly, if an operator makes a fact
false which was already false before, it should not be counted as a consumer. For this reason, we
distinguish between operators that always produce a fact, and operators that sometimes produce
a fact. For an operator that always produces a fact, we know for a fact, that the fact has to be
false before applying the operator, whereas for an operator that sometimes produces a fact, we
do not know whether the fact is true or false before applying the operator. In the same way,
we have operators that always consume a fact, and operators that sometimes consume a fact.
Now that we have this classification, we can observe that the expression

∑
o always produces a Yo+∑

o sometimes produces a Yo−
∑

o always consumes a Yo is an upper bound on the actual net-change of
fact a for any given plan, because it overestimates the number of producers and underestimates
the number of consumers. We can also get a lower bound. For that, define S(a) to be 1 if the
fact a is true in the current state, and 0 otherwise. Furthermore, define G(a) = 1 if the fact a
is required to be true in the goal, and 0 if not. Then we can see that G(a) − S(a) is a lower
bound on the actual net-change of a for every plan for s. With that, we are equipped to define
the constraints for the state equation heuristic:

G(a)− S(a) ≤
∑

o always
produces a

Yo +
∑

o sometimes
produces a

Yo −
∑

o always
consumes a

Yo for all facts a

Yo ≥0 for all o ∈ O
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2.5.3 Delete Relaxation Heuristic

The delete relaxation of a planning task Π is the planning task without the delete effects. It is
called the delete-free planning task Π+. Specifically, the delete relaxation of an SAS+ task is an
altered task where facts are not consumed. This means that once a fact is true, it can never
become false.

Delete relaxations are extensively studied because they provide a foundation for calculating a
heuristic value for a planning task by estimating the cost of an optimal plan to the original task
[10]. The delete relaxation heuristic of a planning task Π is the optimal solution cost of the
delete-free planning task Π+ and is denoted as h+. The optimal cost of the delete relaxation can
be lower than the optimal cost of the original task because facts need to be made true only once.
Therefore, the optimal cost of the delete relaxation serves as a lower bound on the optimal cost
of the original planning task. Moreover, the maximal path length of the delete-free task equals
the number of operators. This is because facts are never reverted from true to false, and hence,
the optimal plan includes each operator at most once, even in the worst-case scenario.

For a planning task with a set of all possible facts A, we have the following optimization variables:

• Uo ∈ {0, 1} for o ∈ O
indicating whether o is part of the plan

• Ra ∈ {0, 1} for a ∈ A
indicating whether a is true at some point in the plan

• Fo,a ∈ {0, 1} for o ∈ O, a ∈ A
indicating whether o is the first operator in the plan that makes a true

• To ∈ {0, . . . , |O|} for o ∈ O
indicating the time at which operator o is applied in the plan. The first operator can be
applied at time 0 and value |O| indicates that the operator was not used

• Ta ∈ {0, . . . , |O|} for a ∈ A
indicating the time at which fact a was true for the first time. Value 0 means that a was
already true in the state s

With that, and using the notion of producers from 2.5.2, we get the following constraints for the
delete relaxation heuristic:

Ra,Uo,Fo,a ∈ {0, 1}
To,Ta ∈ {0, . . . , |O|} for all o ∈ O, a ∈ A
Ra = 1 for all a ∈ G
S(a) +

∑
o produces a

Fo,a ≥ Ra for all a ∈ A

Uo ≥ Fo,a for all o ∈ O, s.t. o sometimes produces a
Ra ≥ Uo for all o ∈ O, a ∈ pre(o)
Ta ≤ To for all o ∈ O, a ∈ pre(o)
To + 1 ≤ Ta +M(1− Fo,a) for all o ∈ O, s.t. o sometimes produces a
Uo ≤ Yo for all o ∈ O

where S is a constant function that maps facts in s to 1 and all other facts to 0, and M is a large
enough constant, such as M = |O|+ 1.

These problems tend to get big and hard to solve. It has been shown that different relaxations
can be adopted that give a lower heuristic value, which is less useful, but they are easier to obtain,
and it is often advantageous to take this trade-off[10]. We consider two such relaxations. One is
the LP-relaxations, which we used for all optimization problems in this thesis. This changes the
constraints Ra ∈ {0, 1} to 0 ≤ Ra ≤ 1 for all a ∈ A. Similarly, we change the constraints of Uo

and of Fo,a. The other relaxation we consider is the time-relaxation, which effectively ignores
optimization all variables To for all o ∈ O and Ta for all a ∈ A, and the two types of constraints
that include these variables.
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Furthermore, since this is a delete relaxation of a task, we also change the objective function,
and replace Yo by Y+

o , which denotes the number of occurrences of operator o in the delete-free
planning task. Note that this can only be 0 or 1.

We end up with the following LP:

minimize
∑

o∈O cost(o)Y+
o

subject to
0 ≤ Ra ≤ 1 for all a ∈ A
0 ≤ Uo ≤ 1 for all o ∈ O
0 ≤ Fo,a ≤ 1 for all o ∈ O, a ∈ A
Ra = 1 for all a ∈ G
S(a) +

∑
o produces a

Fo,a ≥ Rafor all a ∈ A

Uo − Fo,a ≥ 0 for all o ∈ O, s.t. o sometimes produces a
Ra −Uo ≥ 0 for all o ∈ O, a ∈ pre(o)
Y+

o −Uo ≥ 0 for all o ∈ O

where Ra, Uo and Fo,a are defined as above for all o ∈ O, a ∈ A, without the restriction of them
being in {0, 1}.

2.5.4 Optimal Cost Partitioning of Disjunctive Action Landmarks

A disjunctive action landmark [7] for a state s is a set of operators of which at least one must
be part of any plan for s.

For example, let us consider a task with three operators o1, o2, o3 with cost(o1) = cost(o3) = 5
and cost(o2) = 7. Let {o1, o2} and {o2, o3} be two disjunctive action landmarks for state s. We
can see that from each of the disjunctive action landmarks individually, the minimal cost of any
plan for s is 5, by taking the cheapest operators from both sets. However, we can come to a
better heuristic estimate of 7 by using the count-variables Yi for the number of occurrences of
each of the three operators oi for i ∈ {1, 2, 3} in any plan for s. We can require that Yi ≥ 0.
Furthermore, from the given landmarks we can derive the two constraints Y1 + Y2 ≥ 1 and
Y2 +Y3 ≥ 1. We can now solve the LP of minimizing the objective function 5Y1 + 7Y2 + 5Y3,
subject to the previous five constraints to get a heuristic estimate of 7.

For the general case, consider an arbitrary task with operators O. Let L be a set of disjunctive
action landmarks for state s. The constraints for the optimal cost partitioning for the disjunctive
action landmark heuristic then are:

∑
o∈L Yo ≥ 1 for all L ∈ L

Yo ≥ 0 for all o ∈ O.

The idea of using linear programs to derive heuristic estimates from landmarks originates from
Karpas and Domshlak [14]. Keyder et al. [16] presented an improved formulation. The formula-
tion here was first proposed by Bonet and Helmert [4], and they also showed that it is the dual
of the representation by Keyder et al.

There are different ways of generating such landmarks automatically. We used the landmark
generation method proposed by Richter et al. [22].

2.5.5 Post-Hoc Optimization Heuristic

An abstraction of a task is a simplified task, called abstract task, where different states are
grouped together to abstract states. One way of generating an abstract task is by using an
abstraction function α that maps the original states to the abstract states. This task is then
called the planning task induced by α. We call these two tasks original task and abstract task,
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and talk of original objects and abstract objects, e.g. states and operators. When not defined
otherwise, we denote these objects with a superscript of the abstraction function, e.g. sα and
oα. Usually, the abstract task has a lot fewer states than the original task. We say that an
abstract state sabs contains a state s iff sabs = α(s). The initial state in the abstract task is the
abstract state that contains the initial state from the original task. The abstract goal states are
all abstract states that contain at least one original goal state. We have a transition from one
abstract state a to another abstract state b iff there are two original state s and s′, such that a
contains s and b contains s′, and there is an (original) transition from s to s′. The cost of the
abstract transition from a to b then is the cost of the cheapest such original transition.

One way of defining such abstractions automatically is the systematic approach. In the systematic
approach, we project states onto subsets of variables, called patterns, with a pattern size of no
more than a pre-defined maximal pattern size. The number of abstractions grows exponentially
in the number of maximal pattern size. In practice, a maximal pattern size of 2 is a good trade-off
between functionality and efficiency. For example, if the maximal pattern size is 1, then for each
variable there is an abstraction, and each abstract state corresponds to a value in the domain of
the variable. For the miconic example with one variable and one passenger, the two abstractions
are αpassenger and αelevator. αpassenger maps all states onto the abstract state that corresponds to
floor f0, floor f1, or the elevator e. So, there are 3 abstract states in the planning task induced
by αpassenger. Likewise, the planning task induced by αelevator has two abstract states, one for
floor f0 and one for floor f1. As an additional improvement, patterns that are a union of two
disjoint patterns can be ignored if the union does not have more information than the individual
patterns[20].

A trivial way of creating an admissible abstraction heuristic for a state s from several abstractions
is to combine them by taking the maximum value of the optimal path costs in the abstract
states: maxa h

α(α(s)). But there exists a better way of calculating an admissible abstraction
heuristic, by creating an optimal cost partitioning [15] over the abstract operators. The idea of
cost partitioning in this context is to introduce a new (abstract) cost function costα for each
abstraction that assigns new costs to abstract operators, such that the sum over all abstract
instances of an operator is not greater than the original operator cost:

∑
α costα(oα) ≤ cost(o)

for all operators o ∈ O.

For some tasks, or abstractions thereof, some operators do not contribute to the optimal solution
cost, e.g. if they do not bring us closer to the goal state. We call an operator relevant when
setting its cost to 0 changes the optimal solution cost. Otherwise, the operator is irrelevant.
Using different abstractions, different operators might become irrelevant. Formally, we have the
following definition.

For a task with operators O and a set of admissible heuristics H, the constraints for the post-hoc
optimization heuristic [23] for a state s are as follows:

h(s) ≤
∑
o∈O

o is relevant
for h in s

cost(o)Yo for all h ∈ H

0 ≤ Yo for all o ∈ O

Pommerening et al. [20] have shown that this is an admissible heuristic.

2.5.6 Potential Heuristic

We now introduce the potential heuristics. For the potential heuristic, we need potential func-
tions, first introduced by Pommerening at al. [19]. The main idea of potential functions is to
assign a numerical value, called potential, to all facts in a state s. The potential of fact v 7→ d is
denoted as Pv 7→d, where v is a variable and d is an element from the domain of v. The key idea
here is to just calculate the LP once, and then use the result from it for the rest of the search.
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For defining the LP, we use the same simplification as Pommerening et al., assuming that all
variables in the effect of an operator o also occur in its precondition (vars(eff(o)) ⊆ vars(pre(o)))
and that there is a unique goal state (vars(G) = V ). In the implementation, we do not need this
restriction. With that we get the following linear program:

maximize opt

subject to
∑
v∈V

Pv 7→G(v) ≤ 0∑
v∈vars(eff(o))

(Pv 7→(pre(o))(v) − Pv 7→(eff(o))(v)) ≤ cost(o) for all o ∈ O

The objective function opt can be chosen arbitrarily. Seipp et al. [24] have presented the
following two evident choices for possible objective functions:

1. Maximizing the heuristic value of one state s, for example the initial state

opts =
∑
v∈V

Pv 7→s(v)

2. Maximizing the average heuristic value of all states S

optS =
1

|S|
∑
s∈S

∑
v∈V

Pv 7→s(v)

aswell as more advanced potential functions, such as the sample based heuristic, and the diverse
potentials heuristic.

3 Experiments

For the experiments we use the Fast Downward planning system v23.06 [6]. Calculations were
performed at sciCORE2 scientific computing core facility at University of Basel. We utilized an
Intel Xeon E5-2660 Core running at 2.2 GHz and limited memory usage to 3584MB, time to
5 minutes, and 1 core per task. The results are very deterministic, with results between runs
varying very little. Therefore we only used one run per experiment. The LPs are solved by
CPLEX v22.1.1[9]. As a benchmark framework we use Downward Lab v7.4 [25]. We used the
optimal strips plannig tasks from the AI Basel github repository3 as our benchmarks.

For the rest of this section, we will talk of the arithmetic mean as the average. Furthermore,
it is important to know that the tasks in the benchmark are defined in PDDL format. Fast
Downward first translates such a task into an SAS+ format, before the actual search starts.
After this translation, the search starts. We define total time as the total time it takes the
solver to find a plan. The only step not considered in total time is the time needed for the
aforementioned translation. Finally, we define the coverage as the number of tasks for which a
plan is found within the given time and memory constraints.

3.1 Preliminaries

There are different questions that are interesting to answer before trying to improve the current
settings. By default, CPLEX can choose the solver to use itself. So, the obvious question here is,
which one CPLEX actually chooses for the different heuristics. We found that CPLEX chooses
either primal simplex or dual simplex, for all tasks, as can be seen in Table 1.

2http://scicore.unibas.ch/
3https://github.com/aibasel/downward-benchmarks
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SEH DEL OCP PHO IPOT DPOT
Dual simplex for initial state 1602 1602 1602 1602 1602 1602
Primal simplex 14030725 895959 0 10721434 0 166612
Dual simplex 602773 2147267 4073024 1729194 0 0
Network simplex 0 0 0 0 0 0
Barrier 0 0 0 0 0 0
Sifting 0 0 0 0 0 0
Concurrent 0 0 0 0 0 0

Table 1: Comparison of which algorithm uses which LP solver method for all LPs after the initial
LP for each task. The first row shows that CPLEX uses dual simplex for solving the LP in the
initial state for all heuristics.

SEH DEL OCP PHO IPOT DPOT

Cold starts 0 0 565771 0 0 851

Table 2: Sum of cold starts required for all tasks in the benchmark per heuristic, ignoring the
cold starts required for the first LP of each task.

3.2 Barrier Method

One metric that was interesting to look at was the number of cold starts. Since the first LP solved
of each task is always a cold start, essentially by definition, we ignored these LPs. We found
that only the optimal cost partitioning of landmarks heuristic (OCP) has a relevant number of
cold starts, as can be seen in Table 2. The diverse potential heuristics have a sum of 851 cold
starts, which is negligible. All other heuristics require no cold starts at all.

Based on that, we hypothesized that using the barrier algorithm might be beneficial for the
OCP. We found that this was indeed the case, as can be seen in Table 3. For one did we see
an increase in coverage by 2.4%. And even though the average presolve time increased from
0.99s to 1.03s, the total time the solver spent solving the LPs decreased by 17.4% and the
average total time process of all tasks decreased by 14.4%. As expected did these improvements
not occur in the other heuristics. The average total time per task increased by 450% for the
state equation heuristic, by 296% for the delete relaxation heuristic, by 189% for the post-hoc
optimization heuristic, and by 40% for the diverse potentials heuristic. For the initial state
potential heuristic, there were no changes.

We expect the results to get worse when turning off crossover, since then, warm starts are not
possible. And indeed, this is what we found. We omit the table here, but it can be found in
the appendix. We found that all values were very similar, with the biggest differences being in
lp solve time sum increasing by 5.8% to 12292.77, and the average total time increasing from
35.28s to 37.16s.

OCP default OCP barrier Diff

Coverage 737 755 18
Search-out-of-time 1075 1057 -18
Lp solve time sum 14066.84 11624.01 -2442.82
Warm starts 582654 0 -582654
Presolve time 0.99 1.03 0.04
Total time 41.20 35.28 -5.92

Table 3: Comparison between the default setting and the barrier method for all but the first LP
solved on the optimal cost partitioning of landmarks heuristic. All values are sums of all tasks
that were solved by both algorithms, except for total time, which is the average over all tasks
that were solved by both algorithms.
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IPOT default IPOT no preprocessing Diff

Coverage 834 882 48
Search-out-of-memory 645 615 -30
Search-out-of-time 331 313 -18
Total time 21.16 16.33 -4.83

Table 4: Comparison between the default setting and disabled preprocessing for the initial state
potential heuristic. Total time is averaged over all tasks that, for both settings, either finished
normally, ran out of memory of ran out of time. All other values are sums of all tasks that,
for both settings, finished normally, ran out of memory or out of time. Bold values are the
advantageous values.

DPOT default DPOT no preprocessing Diff

Coverage 894 897 3
Search-out-of-memory 351 360 9
Search-out-of-time 565 553 -12
Total time 34.26 32.69 -1.57

Table 5: Comparison between the default setting and disabled preprocessing for the diverse
potentials heuristic. Total time is averaged over all tasks that, for both settings, either finished
normally, ran out of memory of ran out of time. All other values are sums of all tasks that,
for both settings, finished normally, ran out of memory or out of time. Bold values are the
advantageous values.

3.3 Preprocessing

In the case of the potential heuristics, we only solve a few heuristics once, before starting the
search, and then use their values. Especially in the initial state heuristic, there is just one LP
to be solved. This means that the time spent during preprocessing could be better spent solving
the initial LP, since we only profit from the preprocessing once. We expect that more problems
run out of memory, but fewer problems run out of time. We considered the initial state potential
heuristic and the diverse potentials heuristic.

We found that disabling preprocessing enhances the efficiency of the potential heuristics, specially
for the initial state potential heuristic. As apparent in Table 4, the coverage for the initial
potential heuristic increased by 5.8%, and the total time decreased by 22.8%. Surprisingly, fewer
problem ran out of memory.

But also for the diverse potentials heuristic, the results look promising. But in this case, the
coverage only increased by 0.3%, and the total time decreased by 4.6%, as can be seen in Table
5
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4 Conclusion

In this thesis we aimed for enhancing the efficiency of LP-based heuristic search in optimal
plannig, focusing on the solving approaches of the LPs. We used the Fast Downward planning
system, CPLEX, and a comprehensive set of benchmarks of planning tasks to understand how
different LP solving strategies influence the performance of the search algorithms and discover
new strategies through which planning systems can be improved.

Our experiments have demonstrated that the default settings of CPLEX are optimal in many
cases. But it has also showed that the choice of the LP solving strategy, especially the barrier
method, can substantially affect the efficiency of heuristic search under certain circumstances. In
particular, solving the optimal cost partitioning of landmarks heuristic resulted in a significant
improvement in both coverage and search time. This finding shows that selecting an appropriate
LP solving strategy can improve the efficiency of the calculation of a heuristic value, and thus
also the planning tasks that rely on it. Furthermore, we have found that disabling preprocessing
for potential heuristics improves the overall efficiency of finding a plan for search tasks, especially
for the initial state potential heuristic.

These results show that examining solver options for heuristic-based optimal planning offer a
promising outlook. Further research can build on these findings by exploring a more selective
settings application, based on the characteristics of the individual LPs, or by trying out other
settings.

In conclusion, the work presented in this thesis contributes to our goal of enhancing LP-based
heuristic calculations for optimal planning tasks. It also highlights the importance of the choice
of LP solving strategies and solver settings and shows promising ways for future exploration.
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Negative to General Operator Cost Partitioning. Proceedings of the AAAI Conference on
Artificial Intelligence, 29(1):3335–3341, 2015.
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5 Appendix

OCP default OCP barrier - no crossover Diff

Coverage 737 758 19
Search-out-of-time 1073 1054 -19
Lp solve time sum 14660.82 12292.77 -2368.04
Warm starts 582654 0 -582654
Presolve time 1.0 1.02 0.02
Total time 42.89 37.16 -5.73

Table 6: Comparison between the default setting and the barrier method with crossover turned
off for all but the first LP solved on the optimal cost partitioning of landmarks heuristic. All
values are sums of all tasks that were solved by both algorithms, except for total time, which is
the average over all tasks that were solved by both algorithms.
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