

Enhancing Efficiency of LP-based Heuristic Search in Optimal Planning

Renato Farruggio <renato.farruggio@unibas.ch>

University of Basel

08.04.2024

- > Investigate different heuristics
- > Find optimal parameters of LP-solver to compute a given heuristic
- Compare hypotheses with a benchmark
- > Improve overall performance

Presentation overview

Background

- > Optimal Planning
- > Linear Programming
- > Heuristics
- > Experiments and Results
- > Conclusions
- > Outlook

Optimal Planning

Planning is the assignment of finding a sequence of actions that leads from an initial state to a goal state in a predefined environment.

> E.g. Rubik's Cube, 15 Tile Puzzle, Elevator (Miconic)
 > Different formalism: STRIPS, SAS+, PDDL, ...

Definition (STRIPS Planning Task)

A STRIPS Planning Task is a 5-tuple $\Pi = \langle P, I, A, G, cost \rangle$, where

- P is a finite set of boolean state variables, called **atomic propositions**
- I is the initial state
- A is a set of actions

Each action a is a triple of sets of atomic propositions (pre(a), add(a), del(a))

G is the set of goal conditions

cost is a function that maps all actions to real numbers

STanford Research Institute Problem Solver (Fikes & Nilsson, 1971)

STRIPS planning task of the elevator example

$$\Pi = \langle P, I, A, G, cost \rangle \text{ with}$$

$$P = \{e \mapsto f0, e \mapsto f1, p \mapsto f0, p \mapsto f1, p \mapsto e\}$$

$$I = \{e \mapsto f0, p \mapsto f1\}$$

$$G = \{p \mapsto f0\}$$

$$A = \{up, down, enter0, enter1, leave0, leave1\}, \text{ where}$$

$$up = (\{e \mapsto f0\}, \{e \mapsto f1\}, \{e \mapsto f0\})$$

$$down = (\{e \mapsto f1\}, \{e \mapsto f0\}, \{e \mapsto f1\})$$

$$enter0 = (\{e \mapsto f0, p \mapsto f0\}, \{p \mapsto e\}, \{p \mapsto f0\})$$

$$enter1 = (\{e \mapsto f1, p \mapsto f1\}, \{p \mapsto e\}, \{p \mapsto f1\})$$

$$leave0 = (\{e \mapsto f1, p \mapsto e\}, \{p \mapsto f1\}, \{p \mapsto e\})$$

$$leave1 = (\{e \mapsto f1, p \mapsto e\}, \{p \mapsto f1\}, \{p \mapsto e\})$$

$$cost(a) = 1 \text{ for all actions } a \text{ in } A$$

State space of elevator example

State space consists of

- > States
- > Actions (or operations)

- > Task: One instance of a problem with atomic propositions, initial state, goal conditions, etc.
 - E.g. Elevator planning task
- > Problem: The assignment of calculating a heuristic value for one state of a task
 - $^{\scriptscriptstyle >}$ E.g. Calculating the heuristic value for one state
- \geq Plan: A sequence of actions that end in a goal state
 - E.g. $\pi = \langle up, down, up, enter1, leave1, enter1, down, leave0
 angle$
- $^{>}$ Cost of a plan: Sum of all action costs of a plan π
 - > E.g. π has a cost of 8
- > Optimal Plan: A plan with minimal cost
 - > E.g. $\langle up, enter1, down, leave1 \rangle$

- $^{>}$ Estimation of actual cost from a given state to the goal state
- $h: \mathsf{States} \to \mathbb{R}$
- > Not exact, but relatively cheap to calculate
- > Used for an informed guess on where to go next
- > Example:
 - > Estimate road length from Basel to Paris with the straight line distance (413 km)

- > Elevator example is tiny
- > Solution is obvious
- > What if there are more floors, elevator, and passengers?

- > Developed by the AI research group at the University of Basel
- > Open Source
- > Offers several heuristics
 - > We use 6 of them
- > Offers several search algorithms
 - > We used A*
- > Input: Task
 - E.g. Elevator example
- > Output: Optimal plan
 - > E.g. $\langle up, enter1, down, leave0 \rangle$

Linear Programs (LPs)

- > Standardized optimization problem
- > Minimize (or maximize) linear objective function subject to constraints

> Standardized optimization problem

> Minimize (or maximize) linear objective function subject to constraints

$$\begin{array}{rll} \mbox{Minimize} & x+y \\ \mbox{subject to} & x \geq 2 & (c1) \\ & x+2y \geq 4 & (c2) \\ & x+4y \geq 5 & (c3) \end{array}$$

- > Standardized optimization problem
- > Minimize (or maximize) linear objective function subject to constraints

- > Standardized optimization problem
- > Minimize (or maximize) linear objective function subject to constraints

Solution: $x = 2, y = 1 \rightarrow x + y = 3$

Linear Program: Feasibility

- > Feasible point: Point where no constraint is violated
- > Feasible region: Set of all feasible points
- > Feasible region of LP: Convex polytope
 - E.g. polygon (2D), polyhedron (3D), unbounded polytope

> Standardized optimization problem

> Minimize (or maximize) linear objective function subject to constraints

$$\begin{array}{rll} \mbox{Minimize} & x+y \\ \mbox{subject to} & x \geq 2 & (c1) \\ & x+2y \geq 4 & (c2) \\ & x+4y \geq 5 & (c3) \end{array}$$

- > Standardized optimization problem
- > Minimize (or maximize) linear objective function subject to constraints

Minimize
$$x + y$$
Minimize $\begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ subject to $x \ge 2$ (c1) $x + 2y \ge 4$ (c2)subject to $\begin{pmatrix} 1 & 0 \\ 1 & 2 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \ge \begin{pmatrix} 2 \\ 4 \\ 5 \end{pmatrix}$

. .

Linear Program: Matrix formulation

Standardized optimization problem

> Minimize (or maximize) linear **objective function** subject to **constraints**

 $\begin{array}{rll} \text{Minimize} & x+y\\ \text{subject to} & x \geq 2 & (c1)\\ & x+2y \geq 4 & (c2)\\ & x+4y \geq 5 & (c3) \end{array}$

Minimize $\begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ subject to $\begin{pmatrix} 1 & 0 \\ 1 & 2 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \ge \begin{pmatrix} 2 \\ 4 \\ 5 \end{pmatrix}$ Minimize $c^T \mathbf{x}$

Solving LPs

Solving LPs: Simplex & Interior Points Method

> Short: CPLEX

- > Commercial solver by IBM
- > Not open-source
- > Solves optimization problems, such as LPs
 - > Input: Linear Program (LP)
 - > Output: Solution
- > In our case:
 - > Input: Heuristic formulated as LP
 - > Output: Solution (heuristic value)

> Remove redundant constraints

- E.g. $x \ge 2$ and $2x \ge 4$
- > E.g. $x \ge 0$ and $x \ge 1$
- Replace fixed variables
 - > E.g. $x \ge 1$ and $x \le 1$
- > Presolve problem
 - E.g. $x + y \ge 5$ and $x + y + z \ge 7$

> Etc.

> Usually: Less variables and constraints, but constraint matrix A gets more dense.

- > Problem: Finding an initially feasible basis can be hard
- > Idea: Keep the solution loaded in the solver
- > Use this solution as initial variable assignments for simplex algorithm

Heuristics

- > Heuristic assigns numbers to states
- > Estimation of actual cost
- $angle h: \mathsf{States}
 ightarrow \mathbb{R}$
- > Examples:
 - > Count number of passengers at the desired floor
 - > Perfect heuristic: Actual cost

> Main idea: Consider only the net change of each fact

State Equation Heuristic (SEH)

> Main idea: Consider only the net change of each fact

> Example: Elevator task, LP for SEH of initial state

Minimize

$$X_{up} + X_{down} + X_{enter0} + X_{enter1} + X_{leave0} + X_{leave1}$$

subject to

$$\begin{array}{lll} p\mapsto e: & \mathsf{X}_{\mathsf{enter0}}+\mathsf{X}_{\mathsf{enter1}}\\ & -\mathsf{X}_{\mathsf{leave0}}-\mathsf{X}_{\mathsf{leave1}} & \geq 0\\ p\mapsto f0: & \mathsf{X}_{\mathsf{leave0}}-\mathsf{X}_{\mathsf{enter0}} & \geq 1\\ p\mapsto f1: & \mathsf{X}_{\mathsf{leave1}}-\mathsf{X}_{\mathsf{enter1}} & \geq -1\\ e\mapsto f0: & \mathsf{X}_{\mathsf{down}}-\mathsf{X}_{\mathsf{up}} & \geq -1\\ e\mapsto f1: & \mathsf{X}_{\mathsf{up}}-\mathsf{X}_{\mathsf{down}} & \geq 0\\ \mathsf{for all} \ a\in A & \mathsf{X}_a & \geq 0 \end{array}$$

- > State Equation Heuristic (SEH)
- > Delete-Relaxation Heuristic (DEL)
- > Post-Hoc Optimization Heuristic (PHO)
- > Optimal Cost Partitioning of Disjunctive Action Landmarks Heuristic (OCP)
- > Initial State Potential Heuristic (IPOT)
- > Diverse Potential Heuristic (DPOT)

"Putting it all together"

"Enhancing Efficiency of LP-based Heuristic Search in Optimal Planning"

> Planning

- > Finding a plan in a predefined environment
- > Optimal planning
 - > Finding a plan with minimal costs
- > Heuristic-based optimal planning
 - > Utilize heuristics in the search algorithm
 - > E.g. A* algorithm
- > LP-based heuristics in Optimal Planning
 - > This is what we wanted to enhance

- In each step, calculate the heuristic values of all reachable states and choose the most promising state.
- > "most promising" means least number of
 - > Actual cost from initial state to new state, plus
 - > Estimated cost from new state to goal state

- > CPLEX is a black box
- > CPLEX is used with default settings
- > Our goal was to find better CPLEX settings

Experiments and results

- > Formulating hypotheses was impractical
- > As alternative: Run tests and interpret results
- > Find possible reasons for improved performance

- Benchmarking set with 1827 tasks
- > Limit time to 5 minutes per task
- > Limit memory usage to 3.5gb per task
- > Single-threaded

Baseline

Tasks solved across all heuristics with default settings

Disabling preprocessing for Initial State Potential Heuristic

Disabling preprocessing for Initial State Potential Heuristic

Reasons for improvement – Initial State Potential Heuristic without preprocessing

- > Potential heuristics are only calculated once per Task
- > Preprocessing is expensive, and not worth it in this case
- > Why so much spread?
- > Ignores all facts that do not occur in the initial state
 - > Much faster if we are lucky
 - > Much slower if we are unlucky

Using Barrier Method for Optimal Cost Partitioning Heuristic

Using Barrier Method for Optimal Cost Partitioning Heuristic

Reasons for improvement – Optimal Cost Partitioning using Barrier method

- > LPs can change a lot from one state to the next
- > Old solution becomes infeasible
- > Many cold starts
- > Simplex cannot take advantage of warm starts

Results

Conclusions

- > In most cases CPLEX works well with default settings
- > There is room for improvement
- > Two improvements:
 - > OCP works better with the barrier algorithm
 - > IPOT works better with preprocessing disabled

- > Further investigate shared properties of improved/worsened tasks
- > Further investigate preprocessing options and their impact
- > Investigate "barrier ordering parameter" to speed up cholesky decomposition of barrier algorithm
- $^{\scriptscriptstyle >}$ Investigate impact of these settings in other variants of the heuristics
- \geq Investigate impact of these settings in other heuristics
- > Try quadratic programming with barrier method
- > Try Integer Programming (without the LP-relaxation)

Thank you!

- > All images are taken from wikipedia if not specified otherwise, except for the plots
- > We have created all plots
- > The Fast Downward logo was taken from www.fast-downward.org
- > The elevator task sketch is an own creation
- > The person in the elevator task sketch was kindly drawn by Katharina Pêtre

Additional material

- > In each step, find the minimum of a barrier function
- > Want to find minimum of the barrier function at each iteration
- > Can be approximated using the gauss-newton algorithm
- > Compute Cholesky decomposition
- $\,>\,$ This is the bottleneck of this method

Nonlinear Programming (Dimitri P. Bertsekas)

> Currently: Don't set any CPLEX parameters, let CPLEX choose

- > CPLEX uses:
 - > Simplex algorithm for every LP
 - > Preprocessing is set to automatic (let CPLEX choose)
 - > Warm starts problems

Baseline

Disabling preprocessing for Diverse Potentials Heuristics

Disabling preprocessing for State Equation Heuristics

Disabling preprocessing for Delete Relaxation Heuristics

Disabling preprocessing for Optimal Cost Partitioning of Disjunctive Action Landmarks Heuristics

Disabling preprocessing for Post-Hoc Optimization Heuristics

