
Implementing Symbolic Pattern Databases for Planning

Matthew Fahrni

April 4, 2023

Contents

1 Introduction 2

2 Background 2
2.1 Planning . 2
2.2 Heuristic . 2
2.3 Pattern Database . 3
2.4 Symbolic Data Structures . 3

2.4.1 Binary Decision Diagram . 3
2.4.2 Algebraic Decision Diagram . 3

3 Implementing Symbolic Pattern Databases using Binary Decision Diagrams 5
3.1 Introducing Symbolic Variables of State Space . 5
3.2 Building the Transition Relations . 6
3.3 Backward search for computation of Pattern Database 6

4 Results 8
4.1 Technical Setup . 8
4.2 Comparison Using Greedy Pattern Generator . 8
4.3 Comparison Using Hillclimbing Pattern Collection Generator 9
4.4 Comparison Using Systematic Pattern Collection Generator 9

5 Discussion 16
5.1 Improvements and Extensions . 16

6 Conclusion 16

7 Acknowledgements 16

1

1 Introduction

Planning is a field of Artificial Intelligence. Planners are used to find a sequence of actions, to get from
the initial state to a goal state. Many planning algorithms use heuristics, which allow the planner to
focus on more promising paths. Pattern database heuristics allow us to construct such a heuristic,
by solving a simplified version of the problem, and saving the associated costs in a pattern database.
These pattern databases can be computed and stored by using symbolic data structures.

In this paper we will look at how pattern databases using symbolic data structures using binary
decision diagrams and algebraic decision diagrams can be implemented. We will extend fast down-
ward (Helmert [2006]) with it, and compare the performance of this implementation with the already
implemented explicit pattern database.

2 Background

2.1 Planning

A SAS+ planning task is a 4-tuple Π = ⟨V, I,G,A⟩ where

• V = {v1, ..., vn} is a finite set of state variables, where the domain dom(vi) of every state variable
vi ∈ V is finite. A fact is an assignment of a state variable (vi 7→ di) with di ∈ dom(vi). A
partial state is a consistent set of facts. A state is a consistent set of facts, in which every state
variable vi ∈ V is assigned a value of its domain dom(vi). We denote the set of all possible states
S.

• I is the initial state. It is represented as a state.

• G is the goal. It is represented as a partial state. We say that a state s is a goal state, if s is
consistent with G.

• A is a finite set of actions, where every a ∈ A consists of the preconditions, effects and cost of
action a := ⟨prec, eff, cost⟩.

– The preconditions of an action prec(a) are represented as a partial state. We say that action
a is applicable on a state s if prec(a) ⊆ s.

– The effect of an action eff (a) is a partial state. It defines what the resulting state s′ is, if
the action is applied on state s.

– The cost of an action cost(a) ∈ R+
0 shows, how expensive it is to apply the action.

We say that s′ is successor of s and s is predecessor of s′, if applying the action a on s results in
the state s′.

Planning tasks allow us to represent complex problems efficiently. The purpose is to find a plan. A
plan is a sequence of actions π = (a1, ..., an) to get from the initial state I to a goal state. A optimal
plan π is a plan, which finds the cheapest sequence of actions to get to a goal state.

2.2 Heuristic

A heuristic is a function h(s) which takes a state, and estimates the cost to get to a goal state. They
allow the search algorithm to focus on more promising paths, thus reducing the search time and the
memory usage. The perfect heuristic h∗(s) returns the cost of the cheapest path beginning from that
state. We call a heuristic

• safe if h∗(s) =∞∀ s ∈ S with h(s) =∞

• goal-aware if h(s) = 0 ∀ s ∈ G

• admissible if h(s) ≤ h ∗ (s) ∀ s ∈ S

• consistent if h(s) ≤ cost(a) + h(s′) ∀ (s, a, s′) ∈ T

2

2.3 Pattern Database

A pattern P is a subset of the state variables of a planning task P ⊆ V . Using the pattern, we can
define a abstract planning task ΠP = ⟨P, IP , GP , AP ⟩ by only keeping the facts in the original planning
task, which contain the variables present in the pattern. As the abstract planning task is smaller than
the original, it is possible to fully explore it, and save the perfect heuristic values in a pattern database.
The perfect heuristics of one or multiple abstract states can be used as an abstraction heuristic for the
original planning task, as it is a safe, goal-aware, admissible and consistent heuristic.

2.4 Symbolic Data Structures

2.4.1 Binary Decision Diagram

A binary decision diagram (BDD) is a rooted, directed, acyclic graph (Torralba Arias de Reyna [2015]).
Every nonterminal node in a BDD is assigned a variable xi, as well as two arcs which point to child
nodes, which refer to a ⊤ or ⊥ assignement of said variable. There are two terminal nodes, which
represent ⊤ or ⊥ respectively.

An Ordered Binary Decision Diagram (OBDD) is a BDD, in which the Nodes representing vari-
ables always appear in a predefined order from root to sink, i.e. if the variable ordering (x0, ..., xn) is
given, then on any path from the root to the terminal node, the node xi appears before node xj , for
all i < j.

A Reduced Ordered Binary Decision Diagram (ROBDD) is a OBDD, on which the following two
reduction rules are applied:

• isomorphic Reduction: If the subgraphs rooted at two arbitrary nodes are the same, then all
incoming arcs can be redirected to the same node, and the other node can be deleted. An example
can be seen by comparing the figures 1a and 1b.

• Shannon Reduction: If two arcs beginning from the same parent node point to the same child
node, then the incoming arcs of the parent node can be redirected to the child node. The parent
node can then be deleted. An example can be seen by comparing the figures 1b and 1c.

From this point onward, whenever we talk about BDD, we are actually referring to ROBDD. ROBDD
are more useful than BDD, as they are a canonical, if used with a fixed variable ordering, which allows
for faster computation of equality of different ROBDDs.

In a mathematical sense, a BDD with n variables represents a function, for which holds, that
f(x) ∈ {0, 1}∀x ∈ {0, 1}n As there exists an injective mapping vi : {0, 1}⌈log2(ni)⌉ → {0, 1, ..., ni} :=
Xi ∀ ni ∈ N0 and therefore an injective mapping v : (v1, ..., vm)→ (X1 × ...×Xm) := X ∀m ∈ N0 a
single BDD with equal or less than ⌈log2(n1)⌉+ ...+⌈log2(nm)⌉ BDD variables can be used to represent
subsets. In the following chapters, we will refer to these BDDs using their respective characteristic
function:

fX(x) =

{
1 if x ∈ X

0 if x /∈ X
∀x ∈ X

It is also important to note, that the size of a ROBDD is affected by variable ordering given (See
Figure 1d and 1c).

2.4.2 Algebraic Decision Diagram

A Algebraic Decision Diagram (ADD) is closely related to a BDD. Similarly to BDDs, every nonter-
minal Node in a ADD is assigned a variable xi, as well as two child nodes, which refer to a ⊤ or ⊥
assignement of said variable. However in ADDs, there can exist an arbitrary finite number of terminal
nodes.

ADD can be used to represent the function

f(x) =

c1 if x ∈ X1

...

cn if x ∈ Xn

0 otherwise

with Xi ∩Xj = ∅ ∀i, j ∈ {1, ..., n} , i ̸= j , ck ∈ R+
0

3

x1

x2 x2

x3 x3 x3 x3

0 1 01 0 1 0 0

(a) OBDD with ordering (x1, x2, x3)

x1

x2 x2

x3 x3 x3

0 1

(b) OBDD with isomorphic reduction

x1

x2 x2

x3 x3

0 1

(c) ROBDD

x3

x2 x2

x1

0 1

(d) ROBDD with ordering (x3, x2, x1)

Figure 1: BDDs of function
f(x1, x2, x3) = 1 if (x1, x2, x3) ∈ {(0, 0, 1), (0, 1, 0), (1, 0, 1)} and 0 otherwise

x1

x2 x2

02 1

Figure 2: ADD representing function f(x1, x2) =

2 if (x1, x2) ∈ {(0, 0)}
1 if (x1, x2) ∈ {(1, 0)}
0 otherwise

4

A Reduced Ordered Algebraic Decision Diagram, is an ADD, for which the same rules of Ordering
and Reduction hold as for the BDD.

3 Implementing Symbolic Pattern Databases using Binary De-
cision Diagrams

3.1 Introducing Symbolic Variables of State Space

As we have shown in a previous chapter we can represent any subset of a finite set using a BDD using
them to represent their characteristic functions. In this chapter we will define the needed BDDs and
functionalities of these BDDs such that we can calculate the Pattern Database.

For all following functions and operators we assume that S′ = S, s ∈ S, s′ ∈ S′, s = {(v1 7→
d1), ..., (vn 7→ dn)}, sn = {(v′1 7→ d′1), ..., (v

′
n 7→ d′n)} and x ∈ dom(vi).

Definition 3.1

f [vi 7→ x](s, s′) :=

{
1 if (vi 7→ x) ∈ s

0 otherwise
(1)

This characteristic function is independent of s′ and defines a subset (S[vi 7→ x]× S′) ⊆ (S × S′).
If a given state pair (s, s′) is contained in this subset, it implies that (vi 7→ x) ∈ s.

Definition 3.2

f [v′i 7→ x](s, s′) :=

{
1 if (v′ 7→ x) ∈ s′

0 otherwise
(2)

This characterises a subset (S×S′[v′i 7→ x]) ⊆ (S×S′). If a given state pair (s, s′) is contained in this
subset, it implies that (v′i 7→ x) ∈ s′.

Definition 3.3

f [vi = v′i](s, s
′) :=

{
1 if vi = v′i
0 otherwise

(3)

This characteristic function represents a subset (S × S′)[vi = v′i] ⊆ (S × S′), which includes all state
pairs (s, s′) in which the assignment of the corresponding variable is the same.

Definition 3.4

f(s, s′) +′ g(s, s′) =

{
0 if f(s, s′) = g(s, s′) = 0

1 otherwise
(4)

If two characteristic functions f, g represent subsets of the same set Xf , Xg ⊆ (S × S′), then f +′ g
represents a set with Xf+′g = Xf ∪Xg.

Definition 3.5

f(s, s′) ∗ g(s, s′) =

{
1 if f(s, s′) = g(s, s′) = 1

0 otherwise
(5)

If two c.functions f, g represent subsets of the same set Xf , Xg ⊆ (S × S′), then f +′ g represents a
set with Xf∗g = Xf ∩Xg.

Definition 3.6

F∃ s(f(s, s
′)) =

{
1 if ∃ x′ ∈ S′ s.t. f(s, x′) = 1

0 otherwise
(6)

5

If a characteristic function f represents a subset Xf ⊆ (S × S′) then F∃ v(f) defines a set, which
includes ({s} × S′) if (({s} × S′) ∩ (S × S′)f) ̸= ∅. We can understand it, as creating a superset of
(S × S′)f , which is independent of s′ Torralba Arias de Reyna [2015].

Definition 3.7
Fv↔v′(f(s, s′)) = f(s′, s) (7)

If (s, s′) ∈ Xf then (s′, s) ∈ XFv↔v′ (f).

3.2 Building the Transition Relations

The actions a ∈ A of the Planning task are implemented by representing them as transition relations
TRa ⊆ (S × S′) and using a BDD to represent their c. function (8).

Ta(s, s
′) =

{
1 if (s, s′) ∈ TRa

0 otherwise
(8)

For simplicity reasons, we assume that the we do not use patterns. If a pattern is used, we can
simply ignore variables, which are not present in the pattern, thus building our TRs over a subset
(SP × S′P), where S′P = SP and SP ⊆ S.

Ta(s, s
′) = (

∏
i

f [vi 7→ xi]) ∗ (
∏
j

f [v′j 7→ x′
j]) ∗ (

∏
k

f [vk = v′k])

with i ∈ {i|(vi → xi) ∈ prec(a)},
j ∈ {j|(v′j → x′

j) ∈ eff(a)},
k ∈ {k|(v′k → x′

k) /∈ eff(a)}

The first product operator calculates a characteristic function of the preconditions of the action a ∈ A.
This is done by creating a characteristic function for every assignment in prec(a) (1). This can be under-
stood, as a subset of (Sprec(a)×S′) ⊆ (S×S′), which contains every variable pair (s, s′) ∈ (Sprec(a)×S′),
for which the preconditions are satisfied in v, and all v′ are allowed.
The second product operator does the same, but instead over the preconditions of a eff(a) (2). There-
fore we get a subset (S × Seff(a)) ⊆ (S × S′), which contains every state pair (s, s′) ∈ (S × Seff(a)), for
which the s′ is a possible successor state, and all s are allowed.
The third product operator is needed to ensure, that variables which are not present in eff(a) do
not change their value. This is achieved by calculating the characteristic function of the biimpli-
cations (3) for every variable, which is not assigned in eff(a). This means that we create a subset
(Sbiimp(a) × S′

biimp(a)) ⊆ (S × S′), which contains all state pairs (s, s′), in which the corresponding

assignments are the same vi = v′i, as long as they are not present in eff(a).
The resulting Transition Relation is a subset TRa ⊆ (S×S′). If for given a variable assignment (s, s′)
it holds, that Ta(v, v

′) = 1, then it means that the state s′ can be reached applying the corresponding
action a on state s. As the function Ta does not include the cost of the action cost(a), it must be kept
track of separately.

Since these transition relations are used only to calculate the heuristic value of a state, it is not
necessary to distinguish between different operators of the same cost. This allows us to merge multiple
Tai

into a singular transition relation T c.

3.3 Backward search for computation of Pattern Database

Backward search for the computation of a Pattern Database is based on the Dijstkra Algorithm. It is
performed by representing the sets of states as a single BDD and operating with it, using the former
calculated Transition Relations representing sets of operations.

Dijsktra using symbolic data structures (see Algorithm 1) begins by calculating the corresponding
BDD of all goal states. Afterwards, we can apply every 0-cost operation at once, using the correspond-
ing transition relation. We can add this new BDD, which represents all the states with a heuristic

6

value of 0, to a priorityqueue, which contains BDDs as well as its heuristic value. The priorityqueue
is ordered by minimal h-value.

While the priority-queue pq is not empty, we take out the BDD with the smallest h-value. If there
are multiple BDDs with the same h-value, we can merge these BDDs, such that we don’t have to apply
the same operation multiple times (lines 5-8). This newly calculated BDD is added to the pattern
database vector [(fh, h)] with the corresponding h-value. For every Transition Relation with non-zero
cost, we apply it to the BDD 2, as well as 0-cost transition relation afterward. It is important to apply
the 0-cost transition relations repeatedly, until no more states are expanded, as it is possible, that the
amount of represented states can increase using multiple 0-cost operations in succession. If the newly
calculated BDD represents more sets of states as the former BDD, we add it to the priority-queue pq
with their correspnding h-value.

Algorithm 1 Backward search for computation of Pattern Database

Input: goal states as BDD: fgoal
Transition Relations with cost vector: ((T1, c1), ..., (Tn, cn))
optional zero-cost Transition Relation: T 0

Output: pattern database vector 〈BDD, heuristic-value〉: ((f1, h1), ..., (fn, hn))
1: reached← preimage(fgoal, T

0)
2: pq.push(reached, 0)
3: while pq is not empty do
4: (reached, hi)← pq.pop
5: while pq.top.h = hi do
6: reached← reached+′ pq.top.f
7: pq.pop
8: end while
9: reached← preimage(T 0, reached)

10: pdb.add(reached, hi)
11: for all (Ti, ci) ∈ ((T1, c1), ..., (Tn, cn)) do
12: new states = preimage(reached, T c)
13: if reached ̸= new states then
14: pq.push(new states, c+ hi)
15: end if
16: end for
17: end while

The preimage algorithm 2 is used to calculate the predecessors of a given set of states. We begin by
creating a copy of the BDD, which encodes all the currently reached states. We then swap the primed
and unprimed variables, leading to a BDD, which is independent of the unprimed variables. By taking
the product with the Transition Relation of the action, we get a BDD, which includes all the possible
state pairs (s, s′), where s is a possible predecessor state, when action a is applied. As we only want
to keep track of the predecessor states, and do not care, what the successor is, we apply a Existential
Quantification over all variables s. We then take the sum of the resulting BDD and the input BDD.

Algorithm 2 preimage computation

Input:
BDD of successor states: fsucc
BDD of action: Ta

Output:
BDD of predecessor states BDDpred

h-value of predecessor states cost(pred)
1: temp← fsucc
2: temp← Fv↔v′(temp)
3: temp← temp ∗ Ta

4: temp← F∃ v(temp)
5: return (temp+′ fsucc)

7

Merging of multiple BBDs into a single ADD is used, such that a single ADD can be used to
represent all states with their corresponding heuristic value. This is useful, as it alleviates the need to
evaluate a state in multiple BDDs to get its respective heuristic value.

Before we look at how we can achieve this, we must first define, how we convert a pair (fh, h) to an
ADD. We convert the BDD, by replacing the terminal node ⊤ with h, and the terminal node ⊥ with
∞. This conversion is denoted by convert(fh, h) in the merging algorithm 3. This converted ADD
represents the function:

fADD(s, s′) =

{
cost if fh(s, s′) = 1

∞ otherwise
∀x

For the actual merging algorithm (see Algorithm 3), we initialize an ADD with constant value ∞,
i.e. an ADD which represents the function f(x) =∞ ∀x. Then, for every pair of (fi, hi) inside of our
vector, we convert it to an ADD, as represented by the aforementioned function, and take the minimal
terminal value of the former ADD. We repeat this process for every (fh, h) ∈ [(fh, h)], thus getting an
ADD which can be used, to access all the heuristic values.

Algorithm 3 merging

Input:
pattern database as list: ((f1, h1)...(fn, hn))

Output:
pattern database as ADD: fADD

1: fADD ← ADD(∞)
2: for all (fi, hi) ∈ {(f1, h1)...(fn, hn)} do
3: temp← convert(fi, hi)
4: fADD ← min(temp, fADD)
5: end for

4 Results

4.1 Technical Setup

For the experiments, the symbolic pattern database was implemented into Fast Downward, which is a
domain-independent classical planning system (Helmert [2006]) with the integration of PDBs (Sievers
et al. [2021]). The symbolic data structures were implemented using the Colorado University
Decision Diagram Package. The used search algorithm is A*. The patterns were generated using
different pattern generators, namely the greedy pattern generator, the hillclimbing pattern collection
generator, and the systematic pattern collection generator. The experiments where conducted on the
sciCORE scientific computing center at University of Basel and evaluated using LAB (Seipp et al.
[2017]).

The following three sub chapters compare different metrics when using the implemented symbolic
datastructure to compute and represent the PDB, as opposed to the explicit representation. All runs
have a overall time limit of 30 minutes.

4.2 Comparison Using Greedy Pattern Generator

In this chapter we will compare the performance when the patterns are created using the greedy pattern
generator. The amount of represented abstract states is limited to 1000000.

In the summary (see Table 1) we can see that the coverage is the same, which means that the
symbolic representation cannot solve more tasks.

The computation time of the PDB is generally better when using the symbolic approach.
The PDB size compares the number of abstract states represented in explicit algorithm compared

to the amount of nodes in the ADD, which represents the same PDB. It must be noted, that a
direct comparison is not as useful, as a node needs additional memory. However the needed space is

8

symbolic explicit
coverage 791 791
PDB computation time - Geometric mean 0.10 0.31
PDB size - Geometric mean 246.59 275418.36
search time - Geometric mean 0.57 0.48

Table 1: Summary of results when using the greedy pattern generator

symbolic explicit
coverage 873 915
sum CPDB size - Geometric mean 677.77 4182.60
average PDB size - Geometric mean 75.17 294.20
total CPDB computation time - Geometric mean 20.94 1.59
number of patterns - Geometric mean 8.84 8.84
search time - Geometric mean 0.39 0.19

Table 2: Summary of results when using the hillclimbing pattern collection generator

proportional to the amount of nodes, and we can see in the following graphs, that the needed nodes is
not proportional to the amount of represented abstract states.

The time for the actual search increases, when the symbolic PDB is used. This is most likely
because to get the heuristic value of a state in the ADD, the state must first be converted, to get
the corresponding heuristic value. In the scatterplot comparing the number of nodes to the number
of abstract states (see Figure 3) it can be seen, that the amount of needed nodes is generally not
proportional to the amount of abstract states, but instead increases slower. There are some outliers
where more than 10000 abstract states can be represented with one node. While this may seem really
efficient, it must be noted that this also implies that the heuristic value of all states is the same, which
means that the generated pattern is bad.

In the scatterplot (see Figure 4), we can see that the computation time of the PDB is generally
better. However we can also see that there is a lot of variance between the two approaches. Especially
for domains, where the actions have different costs, the computation time can increase vastly, because
we cannot merge all actions into one transition relation and thus have to compute the preimage multiple
times.

4.3 Comparison Using Hillclimbing Pattern Collection Generator

In this chapter we compare the symbolic PDBs with the explicit PDBs using the hillclimbing pattern
collection generator. To ensure that the same patterns for both types of PDBs are generated, the
amount of generated patterns has been limited to 1000. In the summary (see Table 2) we can see that
the coverage is worse when using symbolic PDBs. While the amount of nodes needed to represent the
same amount of abstract states is lower, when using symbolic PDBs, it is not as extensive as with the
pattern generated with the greedy algorithm. The search time is also worse with the symbolic PDBs,
because of the aforementioned reason.

In the scatterplot (see Figure 5) the same trend can be seen as before. The number of nodes does
not increase proportionally with the amount of represented abstract states, but less. In the scatterplot
(see Figure 6) it can be seen, that computing time of symbolic PDBs is generally worse. However
in in unit-cost domains, this difference is not as extensive. This is because the actions must first be
transformed into their respective transition relations.

4.4 Comparison Using Systematic Pattern Collection Generator

For the last experiment, the systematic pattern collection generator is used, with the pattern size being
limited to 2. In the summary table (see Table 3) we can see, that the symbolic PDBs are outperformed
by the explicit PDBs, as the coverage is higher, the search and computation time is higher, and the
PDB size is not low enough. In the scatterplot (see Figure 7) we can see, that the amount of nodes
needed to represent the PDB is about proportianal to the amount of abstarct states it represents.

9

Figure 3: Scatterplot comparing the number of nodes of the ADD with the number of states it
represents with pattern generated using greedy pattern generator

symbolic explicit
coverage 754 787
average PDB size - Geometric mean 9.68 19.53
sum CPDB size - Geometric mean 460.47 901.25
total CPDB computation time - Geometric mean 0.40 0.12
number of patterns - Geometric mean 44.89 44.89
search time - Geometric mean 1.64 0.49

Table 3: Summary of results when using the systematic pattern collection generator

10

Figure 4: Scatterplot comparing the computation time of explicit PDB with symbolic PDB with
pattern generated using greedy pattern generator

This is because we have limited the pattern size to 2, and the symbolic PDBs are better, when bigger
patterns are used.

In the scatterplot comparing the computation time (see Figure 8) we can see, that the computation
time of the PDBs is worse when using symbolic PDBs.

11

Figure 5: Scatterplot comparing the number of nodes of the ADD with the number of states it
represents with patterns generated using hillclimbing pattern collection generator

12

Figure 6: Scatterplot comparing the computation time of explicit PDB with symbolic PDB with
patterns generated using hillclimbing pattern collection generator

13

Figure 7: Scatterplot comparing the number of nodes of the ADD with the number of states it
represents with pattern generated using systematic pattern collection generator

14

Figure 8: Scatterplot comparing the computation time of explicit PDB with symbolic PDB with
patterns generated using systematic pattern collection generator

15

5 Discussion

5.1 Improvements and Extensions

While the symbolic pattern database is functional, there are lots of improvements and extensions,
which can be added. Most importantly the current implementation using BDDs and ADDs is poorly
optimized. For example there are functionalities which are implemented subsequently instead of ”in-
terweaved”, such as the conversion from BDD to ADD, which can be made in the same loop instead
of subsequently. Also the variables in the respective BDDs and ADDs are not reordered as mentioned
in 2.4.1.

For possible extensions the most obvious one is implementing symbolic search. This would also
allow for some data structures to be shared between the symbolic PDB and the search algorithm, which
would improve runtime and memory usage. It would also be useful to implement other symbolic data
structures, such as zero-suppressed decision diagrams, or edge-valued multi-valued decision diagrams.
However, to implement such data structures it might be required to use other planning tasks to utilize
their full potential.

6 Conclusion

The implementation of symbolic pattern databases using BDDs and ADDs do not outperform the
currently implemented explicit pattern databases, but it is better for in some instances, especially
for big patterns and domains with unit-cost actions. During the implementation of symbolic pattern
databases I realized, that the current implementation of PDBs is already extremely well optimized. To
get a better representation of the usability of symbolic pattern databases, a lot of optimization needs
to be done.

While the my implementation of symbolic PDBs is not very well optimized, working on this I have
learned a lot about planning in general, particularly about pattern databases, as well symbolic data
structures and their usability.

7 Acknowledgements

I would like to thank my supervisor Silvan Sievers, as he has helped me in many aspects of this work,
and giving me the guidance needed to tackle such a project.

Calculations were performed at sciCORE (http://scicore.unibas.ch/) scientific computing center at
University of Basel.

References

Malte Helmert. The fast downward planning system. Journal of Artificial Intelligence Research, 26,
2006. doi: 10.1613/jair.1705.

Jendrik Seipp, Florian Pommerening, Silvan Sievers, and Malte Helmert. Downward Lab. https:

//doi.org/10.5281/zenodo.790461, 2017.

Silvan Sievers, Manuela Ortlieb, and Malte Helmert. Efficient implementation of pattern database
heuristics for classical planning. Proceedings of the International Symposium on Combinatorial
Search, 3(1):49–56, 2021. doi: 10.1609/socs.v3i1.18237.

David Speck, Florian Geißer, and Robert Mattmüller. Symbolic planning with edge-valued multi-
valued decision diagrams. 2018.

Álvaro Torralba Arias de Reyna. Symbolic search and abstraction heuristics for cost-optimal planning.
2015.

16

https://doi.org/10.5281/zenodo.790461
https://doi.org/10.5281/zenodo.790461

August 2021

Erklärung zur wissenschaftlichen Redlichkeit und Veröffentlichung der
Arbeit (beinhaltet Erklärung zu Plagiat und Betrug)

Titel der Arbeit:

Name Beurteiler*in: __

Name Student*in __

Matrikelnummer: __

Mit meiner Unterschrift erkläre ich, dass mir bei der Abfassung dieser Arbeit nur die darin
angegebene Hilfe zuteil wurde und dass ich sie nur mit den in der Arbeit angegebenen
Hilfsmitteln verfasst habe. Ich habe sämtliche verwendeten Quellen erwähnt und gemäss
anerkannten wissenschaftlichen Regeln zitiert.

Ort, Datum: _______________________ Student*in: ____________________________

Wird diese Arbeit veröffentlicht?

 Nein

 Ja. Mit meiner Unterschrift bestätige ich, dass ich mit einer Veröffentlichung der Arbeit

(print/digital) in der Bibliothek, auf der Forschungsdatenbank der Universität Basel
und/oder auf dem Dokumentenserver des Departements / des Fachbereichs
einverstanden bin. Ebenso bin ich mit dem bibliographischen Nachweis im Katalog SLSP
(Swiss Library Service Platform) einverstanden. (nicht Zutreffendes streichen)

Veröffentlichung ab: __

Ort, Datum: _______________________ Student*in: ____________________________

Ort, Datum: _______________________ Beurteiler*in: __________________________

Diese Erklärung ist in die Bachelor-, resp. Masterarbeit einzufügen.

Dr. Gabriele Röger
Matthew Fahrni
17-056-672

Liesberg, 05.04.23

	Introduction
	Background
	Planning
	Heuristic
	Pattern Database
	Symbolic Data Structures
	Binary Decision Diagram
	Algebraic Decision Diagram

	Implementing Symbolic Pattern Databases using Binary Decision Diagrams
	Introducing Symbolic Variables of State Space
	Building the Transition Relations
	Backward search for computation of Pattern Database

	Results
	Technical Setup
	Comparison Using Greedy Pattern Generator
	Comparison Using Hillclimbing Pattern Collection Generator
	Comparison Using Systematic Pattern Collection Generator

	Discussion
	Improvements and Extensions

	Conclusion
	Acknowledgements

