

Hyper-Parameter Optimization for Remote Homology Detection with Protein Language Models

Master Thesis, Laura Maria Engist < I.engist@unibas.ch>

Supervisors and Examiners: Prof. Dr. Malte Helmert, Dr. Janani Durairaj, Dr. Florian Pommerening

Final Presentation, September 5, 2025

NAPYEAIGEELLSQLVDTFYERVASHPLLKPIFPSDLTETARKQKQFLTQYLGGPPLYTEEHGHPMLRARHLPFPITNERADAWLSCMKDAMDHVGLEGEIREFLFGRLELTARHMVNQ

Source: https://swissmodel.expasy.org/templates/1ux8

```
F D S F G N L S S A S A I M G N P R V K A H G K K V ...
F P H F - D L H H - - - - - G S Q Q L R A H G F K I ...
```

Protein Sequence Alignment

Process to align sequences to highlight similarities

Protein Sequence Homology Search

- Search for sequence similarity
- Uncover evolutionary relationships between proteins

Source: https://www.researchgate.net/figure/A-multiple-sequence-alignment-of-protein-sequences-Gaps-are-introduced-to-achieve_fig4_254860534

Protein Language Model

Protein sequence X of length n

Embedded protein sequence X of length n

Main Questions

1) Are sequence alignments significantly affected by the choice of gap penalties?

```
F D S F G N L S S A S A I M G N P R V K A H G K K V ...
F P H F - D L H H - - - - G S Q Q L R A H G F K I ...
```

2) What parameter values work well for configuring the procedure to compute discrete embedded sequences?

Agenda

1	Hyper-Parameter Optimization: SMAC3
2	Optimization Pipelines and Scoring Metrics
3	Experiments and Results
4	Conclusions and Outlook

- Versatile package for hyper-parameter optimization (Python3 and C++)
- Developed by the AutoML Groups of the Universities of Hannover and Freiburg
- Bayesian optimization idea
 - → Exploration vs. exploitation
- Random forests
 - → Decision trees
- Logs

Sources:

https://github.com/automl/SMAC3

Parameters α , β , and γ , and their configuration spaces (CS)

Agenda

- 1 Hyper-Parameter Optimization: SMAC3
- 2 Optimization Pipelines and Scoring Metrics
- 3 Experiments and Results
- 4 Conclusions and Outlook

Optimization Pipelines

k-Means Amino Acids LM-head **VQ-VAE** Clustering Amino acid alphabet Using embeddings and building new alphabets ... A P Y E A .. Discrete Protein Custom Pairwise Sequences Substitution Sequence Matrix Alignments

Optimization Pipelines

- Start with pre-computed Protein Language Model embeddings
- Difference: discretization approach

Parameters α , β , and γ , and their configuration spaces (CS)

Scoring Metrics

Scoring Metrics

Alignment Quality

Identification Quality

Agenda

- 1 Hyper-Parameter Optimization: SMAC3
- 2 Optimization Pipelines and Scoring Metrics
- 3 Experiments and Results
- 4 Conclusions and Outlook

Experiments and Results

Experimental Setup

Training and validation data: different subsets of the protein sequence databases SCOPe and Pfam

- Training data: 24'627 pairs of sequences
- Validation data: 11'549 pairs of sequences
- Sequences of length up to 1'024 characters

Two experiments

- Experiment 1: Influence of gap penalties: gap-open (go) and gap-extension (ge)
- Experiment 2: Hyper-parameter optimization

Experimental Setup

Average duration of one run:

Amino Acid: 3 minutes

• *k*-Means: 7 minutes

VQ-VAE: 7 hours and 52 minutes

• LM-head: 2 hours and 48 minutes

→ Of course, we parallelized the runs!

Main Questions

- 1) Are sequence alignments significantly affected by the choice of gap penalties?
- 2) What parameter values work well for configuring the procedure to compute discrete embedded sequences?

Experiment 1: Influence of Gap Penalties – Alignment Quality

Main Questions

- 1) Are sequence alignments significantly affected by the choice of gap penalties?
 - Significant influence on the quality of alignments
 - No significant effect on the identification of evolutionary background

2) What parameter values work well for configuring the procedure to compute discrete embedded sequences?

Baseline – Reference Cost

Reference values to evaluate how much we can improve the identification quality with our optimization

x₁ ...

Experiment 2: VQ-VAE Pipeline

Baseline Cost 0.63592

Setup Start pipeline for 1000 runs (configurations sampled). Stop at time limit.

Result

Best found configuration number 176 with a cost of 0.57011

TOD O Layoi ut

Experiment 2: LM-head Pipeline

 $\begin{array}{c|c} p(x_1) & p(x_1) \\ p(x_2) & p(x_2) \\ \vdots & \vdots \\ p(x_{20}) & p(x_{20}) \end{array} \begin{vmatrix} p(x_1) \\ p(x_2) \\ \vdots \\ p(x_{20}) \end{vmatrix} p(x_1) \begin{vmatrix} p(x_1) \\ p(x_2) \\ \vdots \\ p(x_{20}) \end{vmatrix} p(x_2)$

Baseline Cost 0.55347

Setup

Start pipeline for 1000 runs (configurations sampled). Stop at time limit.

Result

Best found configuration number 378 with a cost of **0.5264**

Main Questions

- 1) Are sequence alignments significantly affected by the choice of gap penalties?
 - Significant influence on the quality of alignments
 - No significant effect on the identification of evolutionary background

- 2) What parameter values work well for configuring the procedure to compute discrete embedded sequences?
 - Identified configurations for both neural network models
 - Improved the identification of evolutionary background up to ~ 7%

Agenda

- 1 Hyper-Parameter Optimization: SMAC3
- 2 Optimization Pipelines and Scoring Metrics
- 3 Experiments and Results
- 4 Conclusions and Outlook

Conclusions

- 1) Are sequence alignments significantly affected by the choice of gap penalties?
 - Significant influence on the quality of alignments
 - No significant effect on the identification of evolutionary background

- 2) What parameter values work well for configuring the procedure to compute discrete embedded sequences?
 - Identified configurations for both neural network models
 - Improved the identification of evolutionary background up to ~ 7%

Conclusions

Limitations:

- Optimization process relies on performance and availability of the compute cluster
 - → Influence on experimental throughput
- Fixed databases
 - → Potential limit of generalizability of our results
- Focused on one hyper-parameter optimization framework
 - → Potential improvement with alternative frameworks

Outlook

- Best configurations
 - → Translate entire databases of protein sequences
 - → Enable more effective large-scale search
- Parameter importance
 - → Restrict the optimization process to a smaller subset of hyper-parameters
 - → Potentially decrease number of runs to find improvements
- Alternative optimization frameworks

LM-head

Key Points

