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• Protein Sequence Alignment 

• Process to align sequences to highlight similarities 

• Protein Sequence Homology Search 

• Search for sequence similarity 

• Uncover evolutionary relationships between proteins
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𝑋 ∈ ℝ𝑛×𝐾Protein sequence 𝑋 of 

length 𝑛

Embedded protein 

sequence 𝑋 of length 𝑛
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Protein Language Model



Main Questions

1) Are sequence alignments significantly affected by the choice of gap penalties? 

2) What parameter values work well for configuring the procedure to compute discrete embedded sequences?
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Agenda

1 Hyper-Parameter Optimization: SMAC3

2 Optimization Pipelines and Scoring Metrics

3 Experiments and Results

4 Conclusions and Outlook
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Hyper-Parameter Optimization: SMAC3
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Hyper-Parameter Optimization: SMAC3

• Versatile package for hyper-parameter optimization (Python3 and C++)

• Developed by the AutoML Groups of the Universities of Hannover and Freiburg

• Bayesian optimization idea

→ Exploration vs. exploitation

• Random forests

→ Decision trees

• Logs
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Sources: 
https://github.com/automl/SMAC3
M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, and D. Deng, “SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization,” Journal of Machine Learning Research, vol. 23, pp. 1–9, 2022.

http://www.automl.org/
https://github.com/automl/SMAC3


Hyper-Parameter Optimization: SMAC3

𝜶

𝜸

𝜷

Parameters 𝛼, 𝛽, and 𝛾, 

and their configuration 

spaces (CS)

𝛼 = 𝑖 ∈ 𝐶𝑆 𝛼
𝛽 = 𝑗 ∈ 𝐶𝑆(𝛽)
𝛾 = 𝑘 ∈ 𝐶𝑆(𝛾)

cost

SMAC3
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Agenda

1 Hyper-Parameter Optimization: SMAC3

2 Optimization Pipelines and Scoring Metrics

3 Experiments and Results

4 Conclusions and Outlook
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Optimization Pipelines
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Optimization Pipelines

Amino Acids
𝑘-Means 

Clustering
VQ-VAE LM-head
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Using embeddings and

building new alphabets

Amino acid alphabet

Discrete Protein 

Sequences Custom 

Substitution 
Matrix

Pairwise 

Sequence 
Alignments
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Optimization Pipelines

𝑘-Means 

Clustering
VQ-VAE LM-head
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• Start with pre-computed Protein Language Model embeddings

• Difference: discretization approach 



Hyper-Parameter Optimization: SMAC3

𝜶

𝜸

𝜷

Parameters 𝛼, 𝛽, and 𝛾, 

and their configuration 

spaces (CS)

Pipeline returning a 

performance feedback value 

to be minimized

𝛼 = 𝑖 ∈ 𝐶𝑆 𝛼
𝛽 = 𝑗 ∈ 𝐶𝑆(𝛽)
𝛾 = 𝑘 ∈ 𝐶𝑆(𝛾)

cost

SMAC3
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Scoring Metrics
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Scoring Metrics

• Alignment Quality

• Identification Quality
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Agenda
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Experiments and Results
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Experimental Setup

Training and validation data: different subsets of the protein sequence databases SCOPe and Pfam

• Training data: 24’627 pairs of sequences

• Validation data: 11’549 pairs of sequences

• Sequences of length up to 1’024 characters

Two experiments 

• Experiment 1: Influence of gap penalties: gap-open (go) and gap-extension (ge)

• Experiment 2: Hyper-parameter optimization
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Experimental Setup

Average duration of one run:

• Amino Acid: 3 minutes

• 𝑘-Means: 7 minutes

• VQ-VAE: 7 hours and 52 minutes

• LM-head:    2 hours and 48 minutes

→ Of course, we parallelized the runs!
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Main Questions

1) Are sequence alignments significantly affected by the choice of gap penalties? 

2) What parameter values work well for configuring the procedure to compute discrete embedded sequences?
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Largely differing cost values 

→ significant influence

Experiment 1: 

Influence of Gap Penalties – Alignment Quality
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Experiment 1: 

Influence of Gap Penalties – Identification Quality

Values vary in a maximum range of 0.11 

→ no significant influence
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Main Questions

1) Are sequence alignments significantly affected by the choice of gap penalties? 

• Significant influence on the quality of alignments

• No significant effect on the identification of evolutionary background

2) What parameter values work well for configuring the procedure to compute discrete embedded 

sequences?
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Baseline – Reference Cost

• Reference values to evaluate how much we can improve the identification quality with our optimization

0.63592 0.55347
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Experiment 2: VQ-VAE Pipeline

Baseline Cost 0.63592

Setup Start pipeline for 1000 runs (configurations sampled). Stop at time limit.

Result Best found configuration number 176 with a cost of 0.57011

VQ-VAE
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Experiment 2: LM-head Pipeline

Baseline Cost 0.55347

Setup Start pipeline for 1000 runs (configurations sampled). Stop at time limit.

Result Best found configuration number 378 with a cost of 0.5264

LM-head
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Main Questions

1) Are sequence alignments significantly affected by the choice of gap penalties? 

• Significant influence on the quality of alignments

• No significant effect on the identification of evolutionary background

2) What parameter values work well for configuring the procedure to compute discrete embedded sequences?

• Identified configurations for both neural network models

• Improved the identification of evolutionary background up to ~ 7% 
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Conclusions and Outlook
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Conclusions
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1) Are sequence alignments significantly affected by the choice of gap penalties? 

• Significant influence on the quality of alignments

• No significant effect on the identification of evolutionary background

2) What parameter values work well for configuring the procedure to compute discrete embedded sequences?

• Identified configurations for both neural network models

• Improved the identification of evolutionary background up to ~ 7% 



Conclusions

Limitations:

• Optimization process relies on performance and availability of the compute cluster 

→ Influence on experimental throughput

• Fixed databases 

→ Potential limit of generalizability of our results

• Focused on one hyper-parameter optimization framework

→ Potential improvement with alternative frameworks
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Outlook

• Best configurations 

 → Translate entire databases of protein sequences

 → Enable more effective large-scale search

• Parameter importance

 → Restrict the optimization process to a smaller subset of hyper-parameters

 → Potentially decrease number of runs to find improvements

• Alternative optimization frameworks
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Key Points
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