
Solving the Traveling Tournament
Problem with Heuristic Search

Bachelor’s thesis

University of Basel

Faculty of Science

Department of Mathematics and Computer Science

Artificial Intelligence

ai.cs.unibas.ch

Examiner: Prof. Dr. Malte Helmert

Supervisor: Dr. Gabriele Röger

Patrik Dürrenberger

patrik.duerrenberger@stud.unibas.ch

February 9th, 2015

Abstract

This thesis discusses the Traveling Tournament Problem and how it can be solved with

heuristic search. The Traveling Tournament problem is a sports scheduling problem where

one tries to find a schedule for a league that meets certain constraints while minimizing the

overall distance traveled by the teams in this league. It is hard to solve for leagues with

many teams involved since its complexity grows exponentially in the number of teams. The

largest instances solved up to date, are instances with leagues of up to 10 teams. Previous

related work has shown that it is a reasonable approach to solve the Traveling Tournament

Problem with an IDA*-based tree search. In this thesis I implemented such a search and

extended it with several enhancements to examine whether they improve performance of the

search. The heuristic that I used in my implementation is the Independent Lower Bound

heuristic. It tries to find lower bounds to the traveling costs of each team in the considered

league. With my implementation I was able to solve problem instances with up to 8 teams.

The results of my evaluation have mostly been consistent with the expected impact of the

implemented enhancements on the overall performance.

Table of Contents

Abstract ii

1 Introduction 1

2 Background 3

2.1 Traveling Tournament Problem . 3

2.2 Search space . 4

3 Search 6

3.1 IDA* . 6

3.2 Forced deepening . 8

3.3 Elite paths . 11

3.4 Subtree forests . 13

3.5 IDA* with forced deepening, elite paths and subtree forests 15

4 Heuristics 18

4.1 The independent lower bound heuristic – ILB 18

4.2 ILB as disjoint pattern database . 20

5 Enhancement 21

5.1 Team reordering . 21

5.2 Symmetry breaking . 21

5.3 Team cache . 22

5.4 Multithreading . 23

6 Evaluation 27

6.1 Forced deepening, elite paths and subtree forests 28

6.2 Team reordering . 31

6.3 Symmetry breaking . 31

6.4 Multithreading . 32

6.5 Team cache and disjoint pattern database . 33

7 Conclusion 34

Table of Contents iv

Bibliography 35

1
Introduction

The Traveling Tournament Problem (TTP) is a sports scheduling problem where one tries to

find a schedule for a league that minimizes the overall traveling distance of all teams in this

league. This schedule has to have the form of a double round-robin tournament, meaning

that every pair of teams plays each other twice with each of the two teams having a home

game at one of these two games. The TTP is meant to be applied to leagues where the

distances between teams are high and where therefore it is common to have a series of away

games during which the traveling team is not returning to its home town. If these away trips

are chosen well, traveling distances can be reduced. In Figure 1.1 a graphical representation

of an instance of the TTP with 4 teams is given. An optimal schedule to this instance is

shown to the right of the graph. The TTP, although relatively simple to define, is a hard

problem to solve. This is mostly because its complexity grows exponentially with the number

of teams in the league. Moreover in addition to normal constraints of a schedule, there are

two additional constraints: The at most constraint that limits the number of consecutive

away games a team can have and the no repeat constraint that prohibits that the same

match-up, with different home teams, can be played on two consecutive matchdays. So,

since Basel plays against Freiburg at home on matchday 3 it is prohibited for Basel to play

in Freiburg on matchday 4.

Figure 1.1: A simple instance of the traveling tournament problem with distances between
teams labeled on the edges and an optimal full valid schedule for this problem

Uthus et al. (2011) have developed the algorithm TIDA* that is capable of solving TTP

instances with up to 10 teams optimally. TIDA* is an IDA*-based algorithm that has some

Introduction 2

TTP-specific extensions. The goal of this thesis was to reimplement most of the approaches

used in TIDA* to solve the TTP in an efficient manner. In a first phase of the thesis I

concentrated on reimplementig the standard IDA* algorithm, followed by expanding it with

the concepts of forced deepening, elite paths and subtree forests (Chapter 3). In a second

phase, I also reimplemented a majority of the enhancements used by Uthus et al. (2011) to

improve performance of my basic implementation. Enhancements I implemented are team

reordering, symmetry breaking, team cache and multithreading (Chapter 5). In a third

phase, all implemented extensions and enhancements have been examined in experiments

(Chapter 6). The experiments consisted of a multitude of runs, where each run has had

different settings regarding the extensions and enhancements. Thereby, I evaluated the

influence of each extension and enhancement on the performance of my implementation.

Related work
My thesis, as mentioned above, has been strongly influenced by the work of Uthus

et al. (2011) in which the Traveling Tournament Problem is solved with a specialized IDA*

algorithm called TIDA*. Problem instances with 10 teams have been solved for the first

time with TIDA*. In addition their work introduced the problem set GALAXY, which I

used to test and evaluate my implementation.

Prior work of Easton et al. (2001) introduced the Traveling Tournament Problem and

gave first problem classes and approaches to solve the problem. Easton et al. (2003) applied

combined integer and constraint programming to the problem. As an approach to improve

problem-solving methods, Irnich (2008, 2010) first described a compact formulation of the

problem followed by a solving strategy based on a Branch-and-Price algorithm. Uthus et al.

(2009) applied DFS* to the TTP, keeping heuristic estimates in memory since they are

expensive to calculate.

Concepts used in Uthus et al. (2011) and my thesis build upon various works on subtrees

(Uthus et al., 2009), parallelization (Hafidi et al., 1995; Rao et al., 1987; Powley and Korf,

1991), node ordering (Powley and Korf, 1991), disjoint pattern databases (Korf and Felner,

2002) and symmetry breaking (Irnich, 2008).

2
Background

2.1 Traveling Tournament Problem
In an instance of the Traveling Tournament Problem (TTP) there is an even number of

teams n which have to play against each other in a double round robin tournament. This

means each team has to play against each other team twice, once in a home and once in an

away game. The games will be played on 2 · (n− 1) matchdays. On a matchday every team

plays exactly one game, which results in n
2 games per matchday. So over the whole league

there will be a total of n · (n− 1) matches played.

The goal is to schedule these matches in a way that minimizes the overall traveling

distance. The distances between teams are given as a symmetric matrix.

There are two more constraints that further complicate the problem. One is called the at

most constraint (AMC), the other is the no repeats constraint (NRC) (Uthus et al., 2011).

The AMC demands that the number of consecutive home or away games is at most a given

parameter b. The NRC demands that a pair of teams that has played against each other at

a certain matchday can not play against each other again the following matchday.

With these informations given, a TTP instance can formally be defined as follows:

Definition A TTP instance is given by a triple I = <T,D, b>, where

- T = <t1, ..., tn> is a sequence of team names and n ≥ 4 is an even integer.

- D is a symmetric n × n-matrix of non-negative real values, where Di,j denotes the

traveling distance from the venue of team ti to the venue of team tj . Therefore,

Di,i = 0 for all i.

- b ∈ N+ is a bound on the maximum number of consecutive home or away games.

Before we can define, what is a solution for TTP, we need to formally introduce the

notion of a schedule:

Definition A (partial) schedule for a TTP instance I = <T,D, b> is a sequence S =

<D1, ..., Dm> of matchdays with m ≤ 2 · (|T | − 1). Each matchday Di is a set of matches

M = <th, ta>, where th, ta ∈ T are the home and away team, respectively (th 6= ta). Each

Background 4

team may occur at most once in each matchday. For 1 ≤ i < m, it must hold that |Di| = |T |
2 ,

i. e. all teams are already scheduled for this matchday. The last matchday m can be partial,

i.e. 1 ≤ |Dm| ≤ |T |2 .

The cost of a (partial) schedule S is the sum of the traveled distances of all teams. To

calculate the sum of traveled distances for a team an auxiliary function L is required. If

team ti plays at home on matchday D, it plays at location i. If it has an away game against

tj , it plays at location j. We denote this location with L(ti, D). To reach the location for

matchday Dj , team ti has travel cost

costjti(S) =

Di,L(ti,Dj) if j = 1

DL(ti,Dj−1),L(ti,Dj) otherwise

We also need to account for the cost to travel home at the end of the tournament. This is

only necessary after all matchdays (m = 2 ·(|T |−1)) in the tournament have been scheduled

completely (|Dm| = |T |
2). We define

costbackti (S) =

0 if m < 2 · (|T | − 1) or |Dm| < |T |
2

DL(ti,Dm),i otherwise

The total cost of the schedule is then

cost(S) =
∑
t∈T

((

m∑
j=1

costjt (S)) + costbackt (S)).

A (partial) schedule is valid if

- for all i, L = <L(ti, D1), L(ti, D2), ..., L(ti, Dm)> has no subsequence <s1, s2, ..., sb+1>

with sk = i for all 1 ≤ k ≤ b+ 1 or sk 6= i for all 1 ≤ k ≤ b+ 1 (AMC), and

- no combination of matches exists, where <t, t′> ∈ Dj and <t′, t> ∈ Dj+1 for 1 ≤ j < m

(NRC).

Now a solution can be defined as follows:

Definition For a TTP instance I = <T,D, b>, a solution is a full valid schedule, i.e. a

valid schedule S = <D1, ..., Dm> with m = 2 · (|T | − 1) and |Dj | = |T |
2 for all 1 ≤ j ≤ m. In

addition a full valid schedule must hold that for all pairs of teams t, t′ ∈ T with t 6= t′ exists

a pair of matchdays Di, Dj with i 6= j such that <t, t′> ∈ Di and <t′, t> ∈ Dj . An optimal

solution is a solution with minimal total cost.

2.2 Search space
I will now characterize the search space of a TTP instance. It can be represented as a

search tree. The root node of this search tree corresponds to the empty schedule. All suc-

cessors of a node n with schedule S = <D1, ..., Dm> and last matchday Dm = {M1, ...,Mk}
extend the schedule with one match, where only the last matchday in the schedule may be

partially assigned (|Di| = |T |
2 for all 1 ≤ i < m). Therefore, if k < |T |

2 a schedule of a

Background 5

successor node has the form S′ = <D1, ..., Dm−1, {M1, ...Mk,M
′}>. If k = |T |

2 it has the

form S′ = <D1, ..., Dm, D
′
> with |D′| = 1.

To eliminate the existence of multiple paths to the same (partial) solution (witch would

be represented by different nodes), we apply an additional restriction that enforces the

matches for a matchday to be added in a particular order: If k < |T |
2 , we may only extend

Dm with a match <th, ta> if Dm contains no match <t′h, t
′
a> with ord(t′h) > ord(th), where

ord defines some arbitrary but fixed total order on the teams.

Finally, a goal node is a node that is associated to a solution.

3
Search

3.1 IDA*
The IDA* algorithm (Korf, 1985) is a well known approach in the field of artificial intel-

ligence to solve classical tree search problems. It combines the advantages of breadth first

search and depth first search algorithms, that is requiring little memory while guaranteeing

to find an optimal solution.

Algorithm 1 IDA*

1: procedure IDA*
2: n0 ← makeRootNode()
3: fcur ← 0
4: solution← none
5: while solution = none do
6: fnext ←∞
7: solution← recursiveSearch(n0, fcur, fnext)
8: fcur ← fnext
9: return solution

One way to implement IDA* is shown in Algorithm 1. When using IDA* for the TTP,

there is no need for handling the case of an unsolvable instance, because TTPs are known to

be always solvable. Therefore Algorithm 1 is a specialization of general IDA* search, where

the unsolvable case is ignored.

IDA* search tries to find a solution throughout multiple iterations of depth first searches.

Thereby, each of these depth first searches, executed by the procedure recursiveSearch, uses

a limit fcur to the f -values of nodes, that determines whether a node is expanded, i.e. its

successors are created and examined. This limit increases with each iteration. The new limit

is determined within the recursiveSearch procedure. Eventually, the limit to the f -value will

be high enough for recursiveSearch to find a solution and the IDA* procedure will stop and

return it. This solution is guaranteed to be optimal due to the properties of recursiveSearch,

which will be shown in detail later.

The explained behaviour of Algorithm 1 is realized by first creating a root node (line 2)

and setting the f -limit for the first iteration of the while loop to 0 (line 3). The root node

has no parent assigned to it and consists of an empty schedule and an f -value that is set

Search 7

to the heuristic estimate (cf. Chapter 4) of that schedule. After the creation of the root

node and the assignment of fcur the IDA* procedure starts with the while loop and runs it

as long as no solution has been found (line 5). Within the while loop the f -limit for the

next iteration is initialized to infinity (line 6). Then recursiveSearch is called with the root

node and the two f -limits as parameters (line 7). After recursiveSearch returned fcur is set

to fnext (line 8), that has been updated by recursiveSearch to a proper next f -limit and is

not equal to infinity anymore. Then, if recursive search has not returned a solution, a new

iteration begins. If a solution to the problem has been found, the while loop will eventually

stop and return the solution to the caller (line 9).

Algorithm 2 recursiveSearch

1: procedure recursiveSearch(n, fcur, fnext)
2: if f(n) > fcur then
3: if f(n) < fnext then
4: fnext ← f(n)

5: return none
6: if isGoal(n) then
7: return n
8: for each n′ ∈ successor(n) do
9: solution← recursiveSearch(n′, fcur, fnext)

10: if solution 6= none then
11: return solution
12: return none

Algorithm 2 shows the recursiveSearch procedure. It first checks whether the f -value of

the node given by the caller is greater than the current f -limit (line 2). In that case we

can tighten the next f -limit (line 3-4) and return none (line 5). Thus, the given node n is

not expanded, i.e. its successors are not generated, and the tree search proceeds one level

higher in the search tree. If the f -value of the given node is lower than the next f -limit,

recursiveSearch proceeds at line 6 and checks whether the given node is a goal node. If it

is, the given node is returned to the caller as a solution.

Notice that until now all that recursiveSearch has done, was checking whether there is

a reason to stop going deeper into the search tree at the given node. When no such reason

has been found, all possible successors of the given node will be created and processed in

a for loop (line 8). For each successor node, recursiveSearch is called recursively (line 9).

If the return value of this call is a solution, it is handed to the caller (line 11). Otherwise,

the next successor will be expanded. If no successor led to a solution, Algorithm 2 returns

none (line 12) to indicate that there is no solution in this subtree within the given f -limit.

Figure 3.1 gives an example of a simple search tree with nodes n0, ..., n14 and their

corresponding f -values. An IDA* search traverses this tree in the following manner:

• In the first iteration fcur is zero. Therefore the root node n0 has already a f -value

exceeding fcur. Thus, the value 5 will be set as the f -limit for the next iteration.

Search 8

5

6

8

10 10

7

10 8

8

8

12 9

10

10 11

n0

n1 n2

n3 n4 n5 n6

n7 n8 n9 n10 n11 n12 n13 n14

Figure 3.1: A simple search tree with a solution depth of 3, nodes n0, ..., n14 enumerated
from top to bottom and from left to right and labeled f -values inside the nodes. Note that
the root node is assigned a depth of 0.

• In the second iteration fcur has a value of 5. Therefore the root node is expanded. But

since the f -values of the children n1 and n2 both exceed fcur, their are not expanded

anymore and fnext is set to 6, which is the lowest f -value of all considered nodes that

exceeds fcur.

• In the third iteration fcur has a value of 6. The nodes n0 and n1 can be expanded

since their f -values do not exceed fcur. So, every node up to and including node n4

is considered. Thus, fnext is set to 7 because this is again the lowest f -value of all

considered nodes that exceeds fcur.

• In the fourth iteration fcur has a value of 7. Thus, like in the previous iteration the

nodes n0 and n1 are expanded. In addition n4 gets expanded too. So, the considered

nodes are all nodes up to and including n4 and the two nodes n9 and n10. The lowest

f -value of these nodes f -values exceeding 7 is 8. Therefore fnext is set to 8. Note that

although the tree search went into the depth of a solution, no solution is found. The

reason for this behaviour is that the goal test (Algorithm 2, line 6) is executed after

the updating of fnext (Algorithm 2, lines 3 & 4). And since a solution, when it is seen

for the first time, will always trigger the updating part of the procedure, the goal test

can not be reached. This is an aimed behavior of the procedure. Suppose an earlier

goal test is applied, then the guarantee for IDA* to find an optimal solution would be

lost.

• In the fifth and final iteration fcur has a value of 8 and a solution is found at node n10.

3.2 Forced deepening
Forced deepening (FD) is an approach to reduce the number of iterations required by

IDA* before finding a solution. It was introduced by Uthus et al. (2011). They also proofed

that forced deepening does not affect the guarantee of the optimality of a solution as long as

all solutions come from a constant depth and f is monotone. In a TTP instance, all solutions

Search 9

come from a constant depth. Further, the Independent Lower Bound heuristic (cf. Chapter

4), applied to calculate f in this thesis, is monotone. Therefore, forced deepening can be

exploited in this thesis without any concerns about loosing the guarantee of a solution’s

optimality.

Through forced deepening the number of iterations can be limited. This is done by

defining an integer parameter λ ≥ 1 and forcing the tree search in each iteration to go at

least λ levels deeper into the tree than in the previous iteration. So nodes, whose f -values

exceed the f -limit for an ongoing iteration (fcur), might now, in contrast to the IDA* search

without FD, still be expanded, as long as their depth does not go beyond the depth of

the node where the f -limit was found in the previous iteration plus λ. However, there is

one exception where nodes are not expanded, even though their depth level is sufficiently

shallow. That is if their f -value exceeds not only fcur but also fnext. In that case expanding

the node would not make any sense, because this node could impossibly lower fnext.

We denote the depth of a solution as dsolution, the depth corresponding to the fcur-value as

dcur and the depth corresponding to the fnext-value as dnext. Since by forced deepening it is

guaranteed that dnext is at least as large as dcur +λ, the maximum number of iterations whit

forced deepening is limited to ddsolution

λ e + 1. But simultaneously the number of expanded

nodes per iteration will be larger. This is because the algorithm can still search on at a

certain node even though its f -value exceeds the current f -limit. This drawback however

is pretty insignificant in cases where IDA* without FD goes through a large number of

iterations. Furthermore, it is of course vital to chose λ properly, since a λ chosen too small

still results in many iterations to be done and a λ chosen too big results in a greater overhead

in every iteration by expanding many additional nodes that exceed the current f -limit.

Algorithm 3 recursiveSearch with forced deepening

1: procedure recursiveSearch(n, fcur, fnext, depth, dcur, dnext)
2: if f(n) > fcur then
3: if not (depth < dcur + λ and f(n) ≤ fnext and dcur < dsolution) then
4: if f(n) < fnext or (f(n) = fnext and depth > dnext) then
5: fnext ← f(n)
6: dnext ← depth

7: return none
8: if isGoal(n) then
9: return n

10: for each n′ ∈ successor(n) do
11: solution← recursiveSearch(n′, fcur, fnext, depth + 1, dcur, dnext)
12: if solution 6= none then
13: return solution
14: return none

Algorithm 3 shows what applying forced deepening changes compared to Algorithm 2.

First of all, it is now essential to keep track of the depth, which is why the depth variable

was added. In the call to recursiveSearch (line 11) depth + 1 is given as a parameter to

indicate that the depth gets bigger with each recursive step. Algorithm 3 also needs to keep

track of the depth dnext of the node associated with the current fnext-value. Therefore the

code on line 6 has been added. Note that when several different nodes have the same fnext

Search 10

value the depth of the node that is the deepest is stored in dnext (added condition on line 4).

The initial depth has to be passed by the IDA* procedure (Algorithm 1) as 0. In addition

it has to pass and keep track of dcur and dnext. The dcur value for the first iteration is set

to 0.

When applying FD and f(n) exceeds the current f -limit, recursiveSearch can now, as

mentioned above, still expand n as long as the condition on line 3 is not satisfied. This

means, that recursiveSearch forces the algorithm to go deeper into the search tree when

depth < dcur + λ, f(n) ≤ fnext and dcur < dsolution.

Of those three conditions depth < dcur + λ is the most important, that actually im-

plements the forced deepening behavior. Through it recursiveSearch cannot return none

(line 7) until it has reached a certain depth that is λ greater than the depth reached in the

previous iteration.

The next condition is f(n) ≤ fnext, which guarantees that the f -value f(n) of the current

node does not exceed the f -limit for the next iteration fnext. This is important because as

soon as f(n) is exceeding fnext the search in the subtree below n will not result in a better

fnext value, than the one that we already have. Therefore searching these successors would

be a waste of time and effort and is prohibited.

The last condition is dcur < dsolution. It is on one hand there to improve performance

by preventing forced deepening from being applied in the last iteration (where dcur equals

dsolution). So for the last iteration no additional nodes will be expanded and through that no

overhead will be produced. On the other hand this condition is important for the guarantee

of an optimal solution. If forced deepening is applied for the last iteration, the tree search

would generate every node on the deepest level (dsolution) of the tree that has an f -value

which does not exceed fnext. But, this would also allow the f -value of a solution found at

node s to be in the range fcur < f(s) ≤ fnext when it should actually be equal to fcur.

Hence, forced deepening is prohibited for the last iteration.

If λ 6= 1 one has to be aware that for late iterations dcur + λ could get bigger than

dsolution. In that case dcur + λ is set to dsolution to prevent errors. For better clarity this

fact is omitted in Algorithm 3. Still, it should not be forgotten when implementing the

algorithm.

Consider the tree from Figure 3.1 again. To clarify the differences of an IDA* search

with FD to the search without FD, the manner of traversing the tree with FD and λ = 2

follows (compare to the manner of traversing without FD):

• In the first iteration fcur and dcur are zero. Therefore the root node n0 has already a f -

value exceeding fcur. But since depth is only 0 for the root node and dcur+λ = 0+2 = 2

exceeds it, 5 = f(n0) < fnext =∞ and 0 = dcur < dsolution = 3, the search can expand

the root node. The first successor node n1 is on depth 1 of the search tree. Since

fcur < f(n1) < fnext and still dcur < dsolution this node can be expanded too. The

generated nodes n3 and n4 have a depth of 2 and depth < dcur+λ is no longer satisfied.

Thus, they cannot be expanded anymore. The lowest f -value of those two nodes is

set as fnext. Now the tree search continues with generating the second successor n2 of

the root node. But since fnext is now 7, 8 = f(n2) < fnext is not satisfied. Hence, n2

is not expanded.

Search 11

• In the second iteration fcur has a value of 7 and dcur has a value of 2. Now all nodes

until depth dcur+λ = 2+2 = 4 can be generated if their parents f -values do not exceed

fnext. Since the tree goes only into a depth of 3, dcur + λ has now to be considered as

3 (spacial case described above). The sequence of generated nodes for this iteration

starts with n0, n1, n3, n7, n8, n4, n9, n10 (as one can verify with Algorithm 3). After

these nodes have been generated, fnext is 8 since it is the lowest f -value of the already

generated nodes on level 3. Now only the sequence of nodes n2, n5, n11, n12, n6 is still

generated. The node n6 is not expanded since its f -value of 10 does exceed fnext.

• In the third and last iteration fcur has a value of 8 and dcur has a value of 3. Since

dcur = dsolution no forced deepening is applied. A solution is found and returned at

node n10. As predicted by ddsolutionλ e+ 1 the number of iterations needed was 3.

3.3 Elite paths
When applying elite paths (EP) (Uthus et al., 2011), the recursiveSearch algorithm is

expanded such that for each iteration it stores the path from the root node to the node

where fnext was found. This is the so-called elite path for the upcoming iteration. In an

IDA* search with EP recursiveSearch traverses the elite path first at the beginning of each

iteration by choosing the first successor n′ according to the elite path (Algorithm 4, line 10).

Thus, recursiveSearch first searches the children and siblings of the node associated to fcur.

Or to say it in other words: If we consider the node associated with fcur as our last and

best partial solution so far, then an elite path actually ensures that recursiveSearch first

tries to expand this best partial solution to a new partial solution closer to a final solution.

Any other partial solution is not tried until then. This works of course best, when the best

partial solution for the next iteration is a descendant from the current partial solution.

To ensure that, whenever there is more than one best partial solution for an iteration,

the partial solution with the largest depth is considered as the elite path, the condition on

line 3 of the recursiveSearch procedure was added. To make the verification of this condition

possible Algorithm 4 has to take track of the depth, which is why the depth variables depth

and dnext were added.

Note that when elite paths are applied without forced deepening the number of expanded

nodes stays the same for every iteration but for the last. For the last iteration a reduction

of the number of expanded nodes is probable. The probability grows with the depth of the

elite path in the last iteration. It is not necessarily the solutions depth because, in contrast

to an IDA* search with forced deepening, it is possible that when a optimal solution has

a parent with the same f -value, only the parent node of the optimal solution is generated

in the second last iteration and not the node associated to the optimal solution itself. This

can of course also apply to the parent of the parent of the solution and so on. Thus, the

deeper the elite path in the last iteration already is, the higher is the probability that

an optimal solution is located below the elite paths final node. If the elite path is more

shallow, the probability grows that the solution is located in a different subtree than the

elite path is in. In the optimal case, when the elite path has the depth of a solution, exactly

dsolution − 1 = n · (n − 1) − 1 nodes along the elite path have to be expanded for the last

Search 12

iteration.

If elite paths are applied in combination with forced deepening, they can reduce the

number of additionally expanded nodes forced deepening considers for any iteration. This is

due to the fact that the fnext-value is likely to decrease faster when elite paths are applied.

And if fnext decreases faster, forced deepening will have to expand fewer nodes per iteration.

This behaviour can be explained by looking at the condition on line 3 in the recursiveSearch

procedure with forced deepening (Algorithm 3). If fnext decreases faster, f(n) ≤ fnext will be

unsatisfied more often. Hence, the whole condition on line 3 will be satisfied more often and

the recursiveSearch procedure will prevent the current node from expanding by returning

with no solution (line 7).

Algorithm 4 recursiveSearch with elite paths

1: procedure recursiveSearch(n, fcur, fnext, depth, dnext, ep)
2: if f(n) > fcur then
3: if f(n) < fnext or (f(n) = fnext and depth > dnext) then
4: fnext ← f(n)
5: dnext ← depth
6: ep← extractPath(n)

7: return none
8: if isGoal(n) then
9: return n

10: for each n′ ∈ successor(n, ep) do
11: solution← recursiveSearch(n′, fcur, fnext, depth+ 1, dnext, ep)
12: if solution 6= none then
13: return solution
14: return none

A special property of Algorithm 4 is that the elite path variable is both used to read the

elite path of the previous iteration (line 10), as well as to store the elite path for the current

iteration (line 6). On the first grasp this may seem problematic, but since in the course of

an iteration all reading access (line 10) is performed before any writing access (line 6), this

is a tolerable way to save memory space for one variable and simplify the algorithm. But

why is it that all reading access takes place before any writing access? As one can see at

line 2, for a writing access f(n) > fcur has to hold. But since on the elite path by definition

every f(n)-value is smaller or equal to the fcur-value, the writing access can never take place

while traversing the elite path. The question still remains what happens in the successor

function (line 10) after a writing access (line 6) took place? Isn’t it possible that the newly

assigned ep introduces errors to the successor function? Not if the successor function is able

to determine whether the last reading access to ep for an ongoing iteration already took

place. After that last access, the successor function simply changes its behaviour to that of

a simple successor function that does not work with elite paths (like in Algorithm 2) for the

rest of the iteration.

It turns out that a successor function, that is able to determine when the last reading

access to ep for an ongoing iteration took place, is simple to realize. The overlaying IDA*

procedure only has to count every call to the successor function for an iteration. Whenever

the number of calls is higher then the length of the elite path, the last reading access to ep

Search 13

has already taken place.

The IDA* procedure from Alogrithm 1 has to be changed further to work together with

Algorithm 4. Mainly it has to ensure that the path extracted in recursiveSearch at line 6

is handed over as the elite path parameter to the first call of recursiveSearch in the next

iteration of the IDA* procedure. It also has to hand over initial values for depth and dnext.

Because these changes are minor, no adapted version will be shown here.

5

6

7

10 10

7

10 8

5

8

12 9

6

10 7

n0

n1 n2

n3 n4 n5 n6

n7 n8 n9 n10 n11 n12 n13 n14

Figure 3.2: A simple search tree with a solution depth of 3, nodes n0, ..., n14 enumerated
from top to bottom and from left to right, and labeled f -values inside the nodes. Note
that the root node is assigned a depth of 0.

To give an example on how elite paths work, consider the search tree shown in Fig-

ure 3.2. The order of expanded nodes for this tree in the final iteration with fcur = 7 is

<n0, n1, n3, n4, n2, n6> when not applying elite paths (cf. Algorithm 2) and given that left

successors are expanded before right successors. When on the other hand elite paths are

applied, the expanding order is <n0, n2, n6> since the elite path found in the previous iter-

ation is the path from the root node to the node n14. So instead of expanding 6 nodes of

the search tree like IDA* without EP does, IDA* with EP expands only 3 nodes in order to

find the solution at node n14.

3.4 Subtree forests
Subtree forests (SF) extend the IDA* algorithm in a way that reduces the number of

expanded nodes per iteration. Like FD and EP they were introduced by Uthus et al. (2011).

A subtree forest S is defined as the set of all nodes taken from a certain depth d in

the original search tree associated with the path from the original root to this nodes. For

example the subtree forest with d = 2 of the search tree shown in Figure 3.2 is S =

{<n0, n1, n3>, <n0, n1, n4>, <n0, n2, n5> <n0, n2, n6>}.
A subtree is an element of a subtree forest and consists of the path from the root node

to the frontier node of the subtree (i.e. the deepest node in the subtree), the frontier node

itself and a variable fsub that holds the lowest f -limit of an unexpanded node below the

frontier node (not shown in the equation above).

Search 14

The general idea behind IDA* with subtree forests is to handle subtrees individually

within an iteration in an order that has a high probability of finding the next f -limit (or a

solution) faster than without subtrees. This order should prefer the subtrees with low fsub-

values over those with high fsub-values. In addition subtrees that cannot expand a node

that has not yet been expanded in previous iterations can be skipped. This is the case for

all subtrees that have a fsub-value exceeding the fcur-value of an iteration. Subtree skipping

of course improves performance and is at the same time not affecting the optimality of the

solution.

Algorithm 5 IDA* with subtree forest

1: procedure IDA*
2: subtreeQueue← createSubtreeForest()
3: fcur ← 0
4: solution← none
5: while solution = none do
6: fnext ←∞
7: while subtreeQueue not empty do
8: currentSub← subtreeQueue.pop()
9: fsub ← currentSub.getF()

10: if fsub ≤ fcur then
11: fsub ←∞
12: n← currentSub.getNode()
13: solution← recursiveSearch(n, fcur, fsub)
14: if solution 6= none then
15: return solution
16: currentSub.setF(fsub)

17: if fsub ≤ fnext then
18: fnext ← fsub
19: nextSubtreeQueue.push(currentSub)

20: fcur ← fnext
21: subtreeQueue← nextSubtreeQueue

Algorithm 5 shows IDA* with subtree forests. At the very beginning the subtree forest

is created and stored in a priority queue called subtreeQueue (line 2). Note that, after that,

no root node is created (in contrast to Algorithm 1) since the frontier nodes of the subtrees

will be given to recursiveSearch instead of the root node. Then, as in the standard IDA*

algorithm, the f -limit for the first iteration of the while loop is set to 0 (line 3) and the

while loop is started with the f -limit for the next iteration set to infinity (lines 5 & 6).

Subtrees are ordered, as mentioned above, by the associated f -value. Before starting

recursiveSearch on a frontier node, the corresponding subtree has to be inspected, using the

concept of subtree skipping (line 10). Subtree skipping declares that every subtree whose

f -limit exceeds the current iterations f -limit can be ignored (or skipped). A skipped subtree

will not be explored and so many nodes are not expanded that would have been re-expanded

in an IDA*-search without a subtree forest.

For the first iteration, however, the fsub-values will all be zero. This is because they are

initially set to zero in createSubtreeForest (line 2). So, at the beginning of the tree search

every subtree is considered. But since fcur is zero (line 3) the call handing the frontier

Search 15

node to recursiveSearch (line 13) will not expand any nodes and will immediately set fsub

to the f -value of the frontier node. If however for later iterations a subtree is skipped, the

algorithm will still update the fnext-value if necessary (lines 17 & 18) and push the skipped

subtree into nextSubtreeQueue (line 19).

For each subtree that is not skipped the algorithm proceeds with resetting the f -limit

for the current subtree to infinity (line 11). After that the node that is associated with the

current subtree is assigned as frontier node (line 12). Now recursiveSearch is called with

the reset fsub to see whether it can find a solution below the current frontier node within

the current limit fcur. If it can, the found solution is returned. If not, the new fsub value,

found while executing recursiveSearch, is set as the f -limit of the current subtree (line 16).

Note that this new fsub value will always be greater than the old one since fsub ≤ fcur

(line 10) was true for the old fsub and the new fsub can only be set (line 4 in Algorithm

2) if it is greater than fcur (line 2 in Algorithm 2). As a next step, the fnext value will be

updated if necessary and the current subtree will be pushed into nextSubtreeQueue before

the algorithm proceeds with the next subtree.

If recursiveSearch has been called for all unskipped subtrees and none of them has re-

turned a solution, subtreeQueue will eventually run empty and control flow will proceed

at line 20. There, the variables fcur and subtreeQueue are updated to be properly set for

the next iteration. Note that the procedure shown is again a subtype of an IDA* algorithm

that ignores the unsolvable case (cf. Chapter 3.1). Therefore, there will always be a next

iteration when line 21 is reached. The outer while loop can only be exited when returning

a solution (line 15).

3.5 IDA* with forced deepening, elite paths and subtree forests
In this section, I combined the IDA* algorithm with all three extensions seen above. This

resulted in Algorithm 6. In red you can see the additional code segments that are added

compared to Algorithm 5. There are also a few lines of code that are no longer needed

(Algorithm 5, lines 17 & 18) since the update functionality of those lines is shifted into the

recursiveSearch-method (as you will see below).

In an IDA* search with forced deepening, elite paths and subtree forests each subtree

keeps track of the depth of the node with the best f -value and of the corresponding elite

path. Mainly, the added lines in Algorithm 6 are for allocating, assigning and updating

new variables needed to keep track of these values. The fsub-variable, for example, which,

after line 11, holds the f -limit of the current subtree, is handed over to recursiveSearch as

a parameter and might be updated during its execution. After that, it is written back into

the current subtree at line 20. Like fsub, the variables fnext, dnext, dsub and ep can also be

updated within recursiveSearch.

In addition to these new variables, Algorithm 6 holds another important modification:

The comparison that is responsible for the subtree skipping (line 14) now considers fnext

as the skipping limit and not fcur anymore. This is due to the combination of subtree

forests with forced deepening. Therefore the skipping limit will now be narrowed during an

iteration, whereas in Algorithm 5 it was a constant value in the course of one iteration. The

Search 16

Algorithm 6 IDA* with FD, EP and SF

1: procedure IDA*
2: subtreeQueue← createSubtreeForest()
3: fcur ← 0
4: dcur ← 0
5: solution← none
6: while solution = none do
7: fnext ←∞
8: dnext ← 0
9: while subtreeQueue not empty do

10: currentSub← subtreeQueue.pop()
11: fsub ← currentSub.getF()
12: dsub ← currentSub.getDepth()
13: ep← currentSub.getElitePath()
14: if fsub ≤ fnext then
15: fsub ←∞
16: n← currentSub.getNode()
17: solution← recursiveSearch(n, fcur, fsub, fnext,depth(n), dcur, dsub, dnext, ep)
18: if solution 6= none then
19: return solution
20: currentSub.setF(fsub)
21: currentSub.setDepth(dsub)
22: currentSub.setElitePath(ep)

23: nextSubtreeQueue.push(currentSub)

24: fcur ← fnext
25: dcur ← dnext
26: subtreeQueue← nextSubtreeQueue

narrowing behavior can be easily put across by recognizing that at the beginning of each

iteration fnext is set to infinity (line 7) and within recursiveSearch it is updated continuously

to smaller and smaller values.

In Algorithm 7 it is shown in detail, what recursiveSearch does when applying all three

presented extensions at the same time. Everything that is different compared to the recur-

siveSearch algorithms with only one added extension (Algorithms 3 & 4) is emphasized in

red.

The only aspect that really changes is that recursiveSearch receives two additional pa-

rameters fsub and dsub to keep track of (what is done on lines 4-6). This is necessary because,

as mentioned above, the fnext-value is already properly set within recursive search and not

only later on outside of recursiveSearch (as in Algorithm 5, lines 17 & 18). So fsub can

no longer be handed over to recursiveSearch as fnext (like in Algorithm 5, line 13). Rather

fsub and fnext are handed over separately and recursiveSearch simultaneously keeps track

of both these limits.

Note that since the initial caller of recursiveSearch (Algorithm 6) keeps track of a dsub

value for every subtree, the order in which the subtrees are handed over by the subtree

queue (Algorithm 6, line 10) can be modified. The subtrees are now ordered by greatest

dsub value, using the fsub value for tie-breaking. Thereby we give consideration to the fact

that a subtree with a high dsub value is associated to a partial schedule that has a high

number of matches already scheduled and is therefore closer to a full schedule than lower

Search 17

Algorithm 7 recursiveSearch with FD, EP and SF

1: procedure recursiveSearch(n, fcur, fsub, fnext, depth, dcur, dsub, dnext, ep)
2: if f(n) > fcur then
3: if not (depth < dcur + λ and f(n) ≤ fnext and dcur < dsolution) then
4: if f(n) < fsub or (f(n) = fsub and depth > dsub) then
5: fsub ← f(n)
6: dsub ← depth

7: if f(n) < fnext or (f(n) = fnext and depth > dnext) then
8: fnext ← f(n)
9: dnext ← depth

10: ep← extractPath(n)

11: return none
12: if isGoal(n) then
13: return n
14: for each n′ ∈ successor(n, ep) do
15: solution← recursiveSearch(n′, fcur, fsub, fnext, depth + 1, dcur, dsub, dnext, ep)
16: if solution 6= none then
17: return solution
18: return none

dsub-valued subtrees.

Despite these little changes in Algorithm 7, there is still one subject to discuss: the one

of the ep-parameter. As said in Chapter 3.3 the ep parameter is both used to read the elite

path of the previous iteration (line 14), as well as to store the elite path for the current

iteration (line 10). We have seen that this is permitted when using elite paths without

forced deepening and subtree forests. But is it also unproblematic to use ep in this manner

when all tree extensions are activated? It turns out that it is, as one can realize by looking

at the conditions under which recursiveSearch can write onto ep. Again f(n) > fcur (line

2) has to be satisfied for that. For the elite path that stems form the subtree where fsub

equals fcur, this condition is always broken (as shown in Chapter 3.3) and therefore the elite

path is traversed completely before any writing access. But for elite paths that stem from

subtrees where fsub is bigger than fcur, f(n) > fcur could be satisfied before the elite path

is traversed completely. But however, from the additional conditions on line 3, that can be

written as depth ≥ dcur + λ or f(n) > fnext or dcur ≥ dsolution by applying De Morgan’s

law, only f(n) > fnext can be true while being on an elite path (because dcur in the first

condition is equal to the depth of the elite path and the third condition is irrelevant to

consider in this matter since it is only there to prevent forced deepening from being applied

in the last iteration and has no further effect). But if f(n) > fnext, then f(n) < fnext and

f(n) = fnext (line 7) cannot be true and therefore the writing access on ep (line 10) can

never be reached while being on an elite path. So, having only one ep-variable per iteration

is again unproblematic.

4
Heuristics

4.1 The independent lower bound heuristic – ILB
The independent lower bound heuristic (Easton et al., 2001) is used to estimate the

minimal cost to extend a partial schedule of the TTP to a full schedule. The minimal

distance is thereby estimated by finding a lower bound for it, meaning that there is no

extension to a full valid schedule of lower cost. When calculating the ILB heuristic for an

already full schedule, the result is 0 if the schedule is valid and ∞ if it is unvalid.

The independent lower bound consists of multiple lower bounds that are estimated sepa-

rately for each team and summed up afterwards. Thereby the dependencies between teams

are ignored. For example, after estimating team 1’s minimal remaining traveling distance,

which could induce team 1 to play an away game against team 3 on matchday 4, it would still

be allowed for team 2 to consider playing against team 3 away on the very same matchday,

when estimating team 2’s minimal remaining distance to travel, although it is not possible

for both, team 1 and 2, to play against team 3 at the same time.

This simplification allows a relatively fast calculation of the remaining traveling distance

for a team, while guaranteeing that it is a lower bound. This is the case because the

simplified calculation has less severe constraints for the completion of the schedule than the

calculation where teams depend on each other.

To calculate lower bounds for teams, we will have to introduce a data structure that

represents an away trip of a team. I will call this structure an away sequence, since it is a

sequence of away games for the considered team. In this sequence possible opponents will be

ordered such that the first opponent appearing in the sequence is also the first team played

on the away trip associated with it, and so on.

The aim, when calculating a lower bound for team i, is to find every possible away

sequence referring to an away trip team i can still perform, considering the given partial

schedule. Since team i might have visited other teams already on the previous matchdays

and every team is only visited once, these teams can no longer be part of an away sequence

for team i. In addition an away sequence cannot be chosen in a way that violates the at

most constraint (cf. Chapter 2.1), meaning that an away sequence is forbidden to have more

than b members.

When all legal away sequences for team i have been determined, a combination of these

Heuristics 19

sequences has to be found that has the lowest traveling cost. This can be expressed as a

constraint optimization problem: Let S be the set of all legal away sequences sj for team

i, dj be the traveling distance associated with sj and T be the set of teams that team i

still has to play in an away game. Then the resulting traveling distance can be expressed as

dres :=
∑
j

dj · xj , where xj ∈ {0, 1} is a variable that indicates whether sj is a chosen away

sequence. The constraint optimization problem to solve is:

Minimize dres =
∑
j

dj · xj

Subject to
∑
{j|t∈sj}

xj = 1 for all t ∈ T

What it does is, minimizing the resulting traveling distance dres such that in the set

of chosen away sequences (indicated by xj) all members are disjoint. So every team t, has

to be in exactly one of the chosen subsets, which is ensured by summing up the indicator

values xj for every subset j that includes team t and ensuring that this sum adds up to one.

Note that this formulation of the constraint optimization problem by now only works for

nodes where team i is not currently on an away trip (so, actually the heuristic only works

for the root node and the goal nodes, since for every other state half the teams are on away

trips). For a refined formulation of the constraint problem we will first have to discuss the

following issue.

It is not sufficient, as proposed above for reasons of simplicity, to consider all legal away

sequences sj only once. This is because the associated traveling distances dj depend on

whether sj is launching the away trip from its home location or continues an away trip, that

it has already started on one of the previous matchdays. The latter case occurs whenever

team i has played an away game on the previous matchday. In that case the away sequence

is considered as continuation of an away trip already started. Therefore the size of such

a sequence is not allowed to exceed the maximum sequence size b minus the number c of

consecutive away games of team i at this point of the schedule.

When team i is currently on an away trip the conclusion of this trip, meaning that team

i returns home before visiting any other teams, has to be considered as well. Therefore

an empty away sequence is allowed to join the set of all legal away sequences. It will be

assigned with the traveling distance required for team i to get from its current location to

its home location. Thus, it is possible for a team to conclude its away trip, which was not

the case without an introduction of an empty away trip.

As a consequence, whenever team i of which the lower bound is calculated is currently

on an away trip, all away sequences that have a size small enough, have to be considered

twice when solving the constraint optimization problem. And in addition the empty away

sequence has to be considered as well. Therefore an additional set S′ with members sk is

defined that contains all sj ∈ S with |sj | ≤ b− c and an additional member s′ = <> that is

an empty sequence. Each sequence sk ∈ S′ is associated with a traveling distance dk that is

generally different from the distance dj of the corresponding sequence sj and s′ is associated

with the home traveling distance of team i.

The refined formulation of the constraint optimization problem is: Let S = S∪S′ be the

set of all legal away sequences sl for team i where S = {s1, ...sa} and S′ = {sa+1, ..., sa+a′},

Heuristics 20

dl be the traveling distance associated with sl and T be the set of teams that team i still

has to play in an away game. Then the resulting traveling distance can be expressed as

dres :=
a+a′∑
l=1

dl · xl, where xl ∈ {0, 1} is a variable that indicates whether sl is a chosen away

sequence. The constraint optimization problem to solve is:

Minimize dres =

a+a′∑
l=1

dl · xl

Subject to
∑
{l|t∈sl}

xl = 1 for all t ∈ T

a+a′∑
k=a+1

xk = 1 if a′ > 0

The additional constraint ensures that whenever team i is currently on an away trip,

exactly one continuation or the conclusion of an away sequence is among the chosen away

sequences (indicated by xl). Note that when team i is not currently on an away trip S′ is an

empty set and a′ is therefore zero. This is why in that case the additional constraint can be

ignored and the constraint optimization problem will be the same as before the refinement.

4.2 ILB as disjoint pattern database
In order to calculate an ILB heuristic value of a given partial schedule, it is not required

to have complete information about the given schedule. It is sufficient to know 4 values for

each team of the given problem instance. These values are the number of remaining away

games, the set of teams to still play against away, the number of consecutive away games

and, if the last match was an away match, the last opponent team.

One can exploit this fact by establishing a pattern database for each team that contains a

precomputed lower bound value for every possible pattern of the 5 required values. The set

of all pattern databases is then called a disjoint pattern database because the ILB heuristic

is additive – meaning it can be calculated for every team individually and the sum of these

individual values is the overall lower bound heuristic value.

If a disjoint pattern database is established before starting the tree search, the time to

calculate heuristic values of nodes within the search tree is reduced in a big scale. For each

required heuristic value there will only be need of determining the pattern for each team of

the given problem instance, looking up the lower bound value of the determined patterns in

the pattern databases and adding up these values to receive the ILB value.

Therefore the effort of establishing a disjoint pattern database before starting with the

search for a solution is a well spent effort and is very likely to improve performance of the

search drastically. However, the larger the problem instance is, the more memory space will

be required for storing and the more time will be spent calculating the database entries.

In fact, memory requirements and processing time grow exponentially with the number of

teams in the problem instance. Nevertheless, for instances that are possible to solve in a

reasonable time with today’s hardware, the time and memory consumption of establishing

a disjoint pattern database is normally not the bottleneck of the solution finding process.

5
Enhancement

In this chapter I present all other enhancements used in my implementation of the TTP-

solver. They have been inspired by Uthus et al. (2011), who use the same enhancements.

5.1 Team reordering
Team reordering is a feature, where the static order in which the teams are tried to be

allocated to matches of the schedule can be modified before starting the IDA* search.

Initially, teams are ordered by their appearance in the distance matrix. So, the team

that has its distances to the other teams written on the first column of the distance matrix

is called team 0 and is the first team that is tried to be allocated to a match, when using no

special ordering. After that, team 1 will be tried (which consequently stems from column 2

of the distance matrix) and so on.

Different team orderings that can be chosen in my implementation are a random order,

the ordering by maximal total distance of one team to all other teams and equivalently the

ordering by minimal total distance.

5.2 Symmetry breaking
The search space of a TTP instance (characterized in Chapter 2.2) does already break

some existing symmetries – namely, the symmetry of order of matches on a matchday.

Since a matchday is considered as a set of matches in the problem definition (Chapter 2.1),

schedules with matchdays that have the same matches scheduled in different orders have to

be considered identical. Hence, a fixed total order of matches on a matchday is defined for

the search space to generate only one path per identical schedule.

Symmetry breaking is a feature that further reduces the search space which has to be

traversed by the IDA* algorithm in order to find the optimal solution. It does that by

benefiting from symmetrical distances between teams, which are given by definition.

If the distance matrix for a TTP instance is symmetric, then every solution has the

property that it results in another solution when the order of matchdays is reversed. I will

call this process of reversing the order of all matchdays mirroring. Because of the symmetry

Enhancement 22

of distances the overall traveling distance of a mirrored solution stays the same as in the

original solution.

So for an optimal solution there always exists a corresponding mirrored solution, which

is optimal too. But since we only want to find one optimal solution and not all of them,

we do only have to consider one solution of a pair of mirrored solutions when traversing the

search tree.

Therefore, we eliminate half of the mirrored solutions as soon as we can, which is before

the first match of the second half of the schedule. At this point we look at the remaining

number of home and away games of a fixed team, e.g. the first team of the team ordering.

If it has more home than away games still to come, we will not further pursue this subtree

of the search tree. Uthus et al. (2011) call this symmetry-H. There also exists symmetry-A,

which is almost the same, despite for the fact that we switch the roles of the remaining

home and away games. This means, we check that the remaining number of away games is

greater than the remaining number of home games for the considered team before the first

match of the second half of the schedule.

Both symmetry breaking types exploit the fact that when half of the schedule is assigned,

each team has played an uneven number of matches. This is because a full valid schedule

has 2 · (n − 1) matchdays, where n is the number of teams in the given problem instance,

and therefore a half full schedule has (n− 1) matchdays, which is uneven by definition.

5.3 Team cache
Even though calculating a heuristic value for a node in the search tree is already relatively

efficient through the use of disjoint pattern databases, it can still be speed up by the usage

of a team cache. A team cache exploits the property of the TTP that when assigning a new

match to the schedule (or in other words when going deeper in the search tree) only the

heuristic values for the teams that are involved in the newly assigned match change. So for

all other teams the heuristic values stay the same.

Therefore, it is advisable to have a cache that stores the last seen heuristic value at every

level of the search tree for every team. Thereby, when calculating the overall heuristic value

for a specific node, the individual team heuristic values can be fetched from the parent node

for all teams that are not involved in the last match assigned to the schedule. Thus only

two values per node have to be read from the disjoint pattern databases.

This is more efficient since for reading from a pattern database, the calculation of the

pattern is required which has linear costs in the number of teams, whereas reading from the

team cache is a simple access with constant costs to a known index which does not have

to be calculated first. The linear costs for the calculation of the pattern result from the

generation of a hash value for the set of teams to still play against away. To have a distinct

hash value for each possible set, every team in the set has to be considered (i.e. a loop

through the (at most) n− 1 opponent teams has to be performed).

So by using a team cache we again trade in additionally used memory for a better time

performance. But since a team cache consumes much less memory than a disjoint pattern

database, there is no reason not to apply it when already using disjoint pattern databases.

Enhancement 23

And even when no disjoint pattern databases are used the application of a team cache is

advantageous, since without it the heuristic value for every team has to be calculated again

at every node.

5.4 Multithreading
The computation time when solving problem instances with the help of subtree forests

can further be reduced with multithreading. So far, subtrees have been searched one after

another in a sequential manner. But this is not mandatory. They might as well be searched

in parallel. This is relatively easy to achieve when the tree search is done without forced

deepening and gets a little bit more complicated otherwise.

Algorithm 8 IDA* with FD, EP, SF and multithreading

1: procedure IDA*
2: subtreeQueue← createSubtreeForest()
3: fcur ← 0
4: dcur ← 0
5: solution← none
6: while solution = none do
7: fnext ←∞
8: dnext ← 0
9: while subtreeQueue not empty do

10: currentSub← subtreeQueue.pop()
11: startThread(solution, fcur, fnext, currentSub, nextSubtreeQueue)

12: joinAll()
13: if solution 6= none then
14: return solution
15: fcur ← fnext
16: dcur ← dnext
17: subtreeQueue← nextSubtreeQueue

First we will look at why parallelisation can be done without any concerns about loosing

correctness of the algorithm when applying no forced deepening. In Algorithm 5 we see that

for every subtree there is a call (line 13) to recursiveSearch (Algorithm 2) with fsub given

as what the recursiveSearch procedure considers as fnext . This is already the important

point why parallelisation is so easy. Since only n, fsub and the constant (throughout one

iteration) fcur are given to recursiveSearch, it can exclusively work with read-only variables

(fcur, n) and a subtree specific variable (fsub) which therefore can only be manipulated by

one thread at a time. So introducing multiple threats working in parallel can not have an

influence on the result of recursiveSearch. But in the IDA* procedure it could still have

influence and it turns out that it does interfere with the updating process of fnext (lines 17

& 18).

Since fnext can be reduced by any thread at any point in time, it is possible that, when

two threads t1 and t2 run in parallel, thread t1 reads fnext at line 17 and comes to the

conclusion that it has to set fnext to a lower value because its fsub value is smaller than

fnext. But now, before t1 can set the new fnext value, thread t2 also realizes at line 17

that is has a lower fsub value than the current fnext. Therefore t2 updates fnext at line 18.

Enhancement 24

Afterwards, t1 is also updating fnext at line 18 and thereby erases the update of t2.

If this sequence of events takes place, it is possible that inconsistencies have been intro-

duced. This is the case whenever t2’s fsub value is lower than the one of t1, because then

t1’s fsub value would be the fnext value for the continuation of the algorithm, which is false

because fsub of t2 is lower. Therefore the lines 17 & 18 have to be made threadsafe by

introducing a lock which has to be acquired before line 17 and released after line 18.

When in addition forced deepening is applied, things get slightly more complicated. If

we look back at Algorithm 6, we can see all changes compared to Algorithm 5 marked in

red. Only a part of these changes can have an impact on the behaviour of the algorithm

when introducing multiple threads. These are the changes on line 12, 13, 14, 17, 21 and 22

All other changes can not have an influence since parallelisation is only applied within the

while loop starting at line 9. From the remaining changes those which concern the read and

write operations on the depths and paths associated to the subtrees (lines 12, 13, 21 & 22)

are also unproblematic since they are subtree (and therefore thread) specific. So we only

have to take a closer look to the call of recursiveSearch (line 17) and the altered skipping

limit for the subtree skipping (line 14).

Algorithm 9 startThread

1: procedure startThread(solution, fcur, fnext, currentSub, nextSubtreeQueue)
2: fsub ← currentSub.getF()
3: dsub ← currentSub.getDepth()
4: ep← currentSub.getElitePath()
5: if fsub ≤ fnext then
6: fsub ←∞
7: n← currentSub.getNode()
8: temp← recursiveSearch(n, fcur, fsub, fnext,depth(n), dcur, dsub, dnext, ep)
9: if temp 6= none then

10: solution← temp
11: return
12: currentSub.setF(fsub)
13: currentSub.setDepth(dsub)
14: currentSub.setElitePath(ep)

15: nextSubtreeQueue.push(currentSub)

Let us first look at the call to recursiveSearch (Algorithm 7). Unlike in the case without

forced deepening the result of recursiveSearch now depends on the other threads, because

what recursiveSearch considers as fnext is now in fact an actual reference to the fnext used in

the IDA* procedure and no longer just the fsub handed over as fnext parameter. And since

fnext can be altered by any thread at any time and is read at lines 3 & 7 of recursiveSearch,

the result depends on the progress of the fnext value. But what is important, is that the

lowest possible fnext-value in an iteration will still be found and set as fcur at the end of

the iteration. It might not be found in a predictable manner (because the management of

threads by the operating system itself is not predictable), but still it will be set correctly

when all subtrees have been processed. This is because the node with the lowest fnext-value

for an iteration will never satisfy depth < dcur + λ (because forced deepening is applied),

which makes the critical condition f(n) ≤ fnext (line 3) needless to consider. Furthermore,

Enhancement 25

for said node f(n) will always be lower or equal than the current fnext value and therefore

satisfy the condition on line 7.

Keep in mind that again, to realize a threadsafe updating behaviour of fnext, it is impor-

tant to introduce a lock which is acquired before line 7 and released after line 10. Amongst

other things, this is realized in algorithm 10, which will be discussed below.

We still need to consider the impact of the altered skipping limit on line 14 of Algorithm

6 and whether it can do any harm when searching with multiple threads. Since the skipping

limit is only used to prevent the IDA* procedure from doing useless work by considering

subtrees that can not improve the fnext value, line 14 still fulfills its purpose. Whenever a

subtree has a fsub that exceeds fnext it cannot improve fnext regardless of whether this fnext

value was found by single- or multithreading.

Algorithm 10 recursiveSearch with FD, EP, SF and multithreading

1: procedure recursiveSearch(n, fcur, fsub, fnext, depth, dcur, dsub, dnext, ep)
2: if isSolutionFound() then
3: return none
4: if f(n) > fcur then
5: if not (depth < dcur + λ and f(n) ≤ fnext and dcur < dsolution) then
6: if f(n) < fsub or (f(n) = fsub and depth > dsub) then
7: fsub ← f(n)
8: dsub ← depth

9: acquireUpdateLock()
10: if f(n) < fnext or (f(n) = fnext and depth > dnext) then
11: fnext ← f(n)
12: dnext ← depth
13: ep← extractPath(n)

14: releaseUpdateLock()
15: return none
16: if isGoal(n) then
17: acquireSolutionLock()
18: if not isSolutionFound() then
19: setSolutionFound(true)
20: releaseSolutionLock()
21: return n
22: else
23: releaseSolutionLock()
24: return none
25: for each n′ ∈ successor(n, ep) do
26: solution← recursiveSearch(n′, fcur, fsub, fnext, depth + 1, dcur, dsub, dnext, ep)
27: if solution 6= none then
28: return solution
29: return none

Algorithms 8, 9 and 10 show versions of the IDA* and recursiveSearch procedures that use

forced deepening, elite paths, subtree forests and multithreading. All code that was added

compared to Algorithms 6 and 7 is emphasized in red. Note that to realize multithreading

the procedure startThread has been split off from the original IDA* procedure. The two

procedures together still contain all the lines of code of the original procedure.

To correctly understand the workflow of Algorithm 8, it has to be mentioned that the

Enhancement 26

call to startThread (line 11) is a non blocking call, which gets executed in a newly created

thread. Further, the call to joinAll (line 12) is of course blocking until all threads have

terminated. Furthermore, it is important that the subtree queue used in Algorithm 8 is a

thread-safe queue.

Most of the changes that were introduced in Algorithm 9 and 10 influence what happens

after a solution was found. First of all, in Algorithm 9 at line 8 a temporary variable temp is

required to store the result of recursiveSearch. This is the case because solution is a variable

that is shared by all threads and is likely to be overwritten by another thread in the time

that passes between the storing (Algorithm 9, line 8) and the return of the solution to the

caller (in Algorithm 8, line 14), whereby the solution would be lost.

Secondly, the changes between line 17 and 24 in Algorithm 10 are introduced to guarantee

that only the first solution found over all threads is returned. Possible further solutions will

be ignored and none will be returned (line 24). This is also why the condition temp 6= none

in Algorithm 9 at line 9 is sufficient to determine whether a temporary solution has to be

made permanent or not.

To guarantee that only the first solution found over all threads is returned, the methods

isSolutionFound and setSolutionFound are required. They manage a Boolean which stores,

whether a solution has been found or not. In addition, a thread is only allowed to enter the

if statement beginning at line 18, if it is the first thread to enter this statement. This is

guaranteed through the solution lock acquired at line 17 and released at line 20. Thereby

as soon as the if statement is entered no other thread can enter it. And after the lock is

released, still no other thread can enter it because isSolutionFound is guaranteed to return

true.

Third, to avoid that threads are still running, long after the solution was found and

thereby blocking the IDA* procedure at line 12 of Algorithm 8, the first thing recursiveSearch

does is returning none (line 3) if a solution has already been found (line 2). Through that,

all threads are guaranteed to stop their search quite fast and terminate soon after that.

6
Evaluation

In this chapter I evaluate my implementation of a TTP-solver written in C++ with different

settings and enhancements. The runs for my evaluation have been performed on a compute

cluster located at the University of Basel. It has 24 nodes each with 2 eight core CPUs

running at 2.20GHz and 64GB RAM. For each run I set a time limit of 24 hours. I did not

set a customized limit to memory because the pattern databases fitted into the memory of

the cluster and the IDA*-based search itself has very low memory requirements.

The independent lower bound heuristic, that I used to calculate the f -values for nodes in

the search tree, requires solving constraint optimization problems. To do so, I used an open

source C++ toolkit called Gecode (Gecode Team, 2006). It provided all data structures and

functionalities needed to define and solve the constraint optimization problem formulated

in Chapter 4.1.

For the evaluation I worked with some predefined problem sets of the TTP. They consist

of a list of team labels with a corresponding distance matrix.

The first problem set is the SUPER set (introduced by Uthus et al., 2009) that is based

on the Super 14 Rugby League, a league with 14 teams from South Africa, New Zealand and

Australia. By now this league has an odd number of teams (15) and is thereby no longer

an instance of the TTP. The SUPER set still refers to the old league with 14 teams.

The second problem set is the GALAXY set (introduced by Uthus et al., 2011), that is

based on the distances between some of the exoplanets in the universe and earth. There

are 40 exoplanets (earth included) in the set which are considered as teams playing in an

intergalactic league.

It is possible to consider only subsets from either the SUPER or the GALAXY set. In

order to do so, the number of team labels and the dimension of the distance matrix is reduced

to an even number smaller than the original number of teams. The SUPER6 instance for

example consists of the first 6 team labels and a corresponding 6× 6 distance matrix.

Without multithreading my implementation was able to solve problem instances with

up to 8 teams for both the SUPER and GALAXY problem set. Table 6.1 shows the best

configuration for each problem instance and the required time. Forced deepening (with one

exception for the smallest SUPER instance) and elite paths are always activated in the best

configuration. They seem to be undoubtedly profitable when trying to solve the TTP as

Evaluation 28

time required FD EP SF SB TO SD λ

SUPER4 < 1msec × X × none none - -

SUPER6 1.20sec X X X symmetry-H max total n/2 n

SUPER8 1h 09min X X X symmetry-A max total n/2 n

GALAXY4 < 1msec X X × none none - n

GALAXY6 1.27sec X X × none none - n

GALAXY8 1h 24min X X X none none n/2 2n

Table 6.1: Fastest runs for each problem instance: SB = symmetry breaking, TO = team
ordering, SD = subtree depth, n = number of teams in the problem instance

FD EP SF SUPER4 GALAXY4 SUPER6 GALAXY6 SUPER8 GALAXY8

× × × 100 100 100 100 - 100

× × X 45.31 35.91 35.41 96.95 - 99.70

× X × 83.20 83.43 99.99 100.58 - 101.07

× X X 54.30 37.02 36.01 97.10 - 99.70

X × × 278.91 141.44 0.57 36.83 100 17.23

X × X 91.80 63.54 0.16 12.23 97.18 10.09

X X × 103.52 72.10 0.20 10.73 92.25 11.95

X X X 81.64 57.46 0.18 11.65 94.37 9.77

Table 6.2: Relative number of expanded nodes: The value where none of the extensions
were activated is considered 100% (Except for SUPER8, where the fifth line is considered
100%). Where SF was applied, the depth of the subtree forest was n

2 with n given as the
number of teams in the problem instance. Symmetry breaking, team reordering and
multithreading were not activated and λ = n for the forced deepening.

fast as possible. Subtree forest as well seem to be profitable in terms of time performance

for large instances. Apparently, the best choice for the depth of a subtree forest is n/2 and

for λ it is n (although for GALAXY8 2n was the better choice). Symmetry breaking and

team reordering only improved time performance for large SUPER instances.

6.1 Forced deepening, elite paths and subtree forests
I will discuss the impact of the three basic extensions (FD, EP and SF) on the standard

IDA* algorithm with the help of the values given in Table 6.2. It shows the relative number

of nodes that were expanded in order to find an optimal solution to the given problem

instances. For the SUPER8 instance not all values are given. This is because these values

could not be found within a reasonable time.

First I will discuss the impact when applying forced deepening. We can see that in cases

where FD is applied there are often much fewer expanded nodes than without FD. This effect

is particularly strong for the SUPER6 problem instance, where less than 1% of nodes are

expanded independent of whether the other 2 extensions are activated. For instances with

only 4 teams, however, there are also configurations where FD is harmful, in the worst case

leading to 179% more expansions. Both observations can be explained by considering the

Evaluation 29

FD SUPER4 GALAXY4 SUPER6 GALAXY6 SUPER8 GALAXY8

× 5 6 2510 73 >2045 125

X 3 3 6 6 8 8

Table 6.3: Number of iterations with and without applying FD

λ = 1 λ = 2 λ = n/2 λ = b 23nc λ = n λ = 2n

SUPER4 201 233 233 233 209 202

SUPER6 1061190 952592 904182 909246 949001 947642

SUPER8 4.099 · 109 3.050 · 109 2.713 · 109 2.538 · 109 2.505 · 109 2.538 · 109

GALAXY4 325 252 252 252 208 294

GALAXY6 2330961 1805716 1445428 1416313 1112714 1507564

GALAXY8 4.297 · 109 3.214 · 109 2.314 · 109 2.288 · 109 2.039 · 109 2.041 · 109

Table 6.4: Number of expanded nodes depending on the choice of λ: The lowest number
for every problem instance is written in bold. All runs have been performed with FD, EP
and SF but without symmetry breaking or team reordering. The depth of the subtree
forest was n

2 with n given as the number of teams in the problem instance.

number of iterations that can be saved through FD (Table 6.3). Note that the application

of EP and SF does not influence the number of iterations, which is why the configuration

of EP and SF is not specified in Table 6.3. We can see that for instances with 4 teams

we only save 2 or 3 iterations. But for instances with more than 4 teams (especially the

SUPER6 and SUPER8 instances) there is a drastically lower number of iterations. Thus,

when applying FD on a 4 team instance there are indeed a few iterations less, but this is not

an advantage (node expansion wise) because each of the remaining iterations has a larger

number of expanded nodes. For instances with many teams, however, this larger number

of expanded nodes can be neglected because so many iterations are saved. But for small

instances they do in fact matter and it is better not to apply forced deepening on them.

I further examined the influence of the parameter λ on forced deepening. Table 6.4

shows the corresponding results. Apparently, the best result for problem instances with a

large number of teams are achieved when λ is equal to n. This is, although valid for small

GALAXY instances, not valid for small SUPER instances. However, the gain from using

any other λ than n is minor. For the SUPER6 instance for example there are about 45

thousand fewer nodes to be expanded. Since in my implementation there are roughly 500

thousand nodes expanded per second, the gain of performance is very little in both of the

small SUPER instances. I would therefore recommend to use a λ-value of n when trying to

solve new instances.

The impact of elite paths on the number of expanded nodes is, as expected, a lot weaker

than the one of FD. Often EP even appear to slightly slow down the algorithm (e.g. when

FD and SF are applied in SUPER6). It is hard to identify some principle impact of EP on

the number of expanded nodes. There seems to be a large amount of randomness involved

in the application of EP. This is of course linked up with the fact that EP work best when

best partial solutions for an iteration are found by expanding the best partial solution of

Evaluation 30

SD = 1 SD = n/2 SD = n SD = n(n−1)
2

SUPER4 232 209 128 79

SUPER6 1177876 949001 781826 -

SUPER8 2549564855 2504874152 - -

GALAXY4 243 208 131 79

GALAXY6 1031381 1112714 975263 -

GALAXY8 2419616487 2039468168 - -

Table 6.5: Number of expanded nodes depending on the choice of SD: The lowest number
for every problem instance is written in bold. All runs have been performed with FD, EP
and SF but without symmetry breaking or team reordering. The parameter λ was n with
n given as the number of teams in the problem instance.

the previous iteration. But whether and how often this is the case is hard to foresee and

highly dependent from the properties of the considered problem instance.

As expected, applying subtree forests as well does lower the number of expanded nodes

in general. Although, there seem to be some exceptions when also applying FD and EP

(second last and last row in Table 6.2). In that case, a third of the problem instances that I

tested, required more node expansions in order to find an optimal solution. It is hard to tell,

why this is the case, since the occurrences of these events seem to be quite random within

the given data. Once they happen in a SUPER instance, once in a GALAXY instance. They

happen in a small problem instance (with 6 teams) as well as in a larger problem instance

(with 8 teams). However, the amount of gains or losses in the number of expanded nodes

for large instances is around 2%. Therefore, if someone is risk-avers it might still be a good

choice to apply subtree forests, even when both forced deepening and elite paths are already

applied. Because the impact for other cases of the given data is quite large (e.g. SUPER 6

on row 1 and 2 of Table 6.2), it seem to be advisable to always apply subtree forests when

either forced deepening or elite paths are not applied.

I also tested the influence of the depth of a subtree forest on the number of expanded

nodes (Table 6.5). For this purpose I compared the cases where there are subtrees for each

valid partial schedule where the first match is scheduled (subtree forest depth 1), where all

matches of the first matchday are scheduled (subtree forest depth n/2), where all matches

of the first two matchdays are scheduled (subtree forest depth n) and where half of the

schedule has been scheduled (subtree forest depth n(n−1)
2) . Having subtree forest where the

depth is bigger than n/2 has proven to be unfeasible for bigger instances since the number

of subtrees in the forest explodes and they no longer fit into memory. Therefore I would

recommend to choose a subtree forest depth of n/2 because this size was unproblematic in

memory consumption for all tested instances. For small instances subtree forests with a

larger depth can be advisable, as long as they still fit into memory.

Finally, when I compare my evaluation of the three extensions forced deepening, elite

paths and subtree forsests to the empirical results of Uthus et al. (2011), I can state that

they are congruent with each other. Especially, the values in Table 6.2 are very similar to

the values evaluated in Uthus et al. (2011) – although they used λ = 1 instead of λ = n.

Evaluation 31

TO SUPER4 GALAXY4 SUPER6 GALAXY6 SUPER8 GALAXY8

none 100 100 100 100 100 100

max total 121.05 147.12 99.15 95.82 99.83 100.21

min total 95.69 100 93.91 99.83 100.04 99.17

random 95.69 147.12 101.91 96.02 99.97 99.44

Table 6.6: Relative number of expanded nodes: Values have been obtained whit all 3
extensions (FD, EP and SF) activated. The number of nodes expanded when no team
reordering is applied is considered 100%. No multithreading or symmetry breaking was
applied. The subtree depth is n

2 with n given as the number of teams in the problem
instance and λ = n.

6.2 Team reordering
The impact of team ordering on the number of expanded nodes is not quite clear. In

some problem instances the number of expanded nodes decreases, in other problem instances

it increases (Table 6.6). To examine whether the team ordering might have in fact a random

impact on the number of expanded nodes, I implemented an additional random team order-

ing. As you can see, the random ordering as well performs better in some cases, but worse

in other cases. These random values are, however, not by any means representative and

are to be considered with caution, since they stem from a single run. Nevertheless, we can

conclude that there is probably some sort of randomness involved in the relation between

team ordering and number of expanded nodes.

What stands out is that for instances with a large number of teams (e.g. SUPER8 and

GALAXY8), team ordering does not really affect the number of expanded nodes. We observe

that changes are only within a range of one percent, regardless of whether the change is for

the good or for the bad. Obviously, this is not a very pleasing behaviour. In addition, for

small instances (e.g. SUPER4 and GALAXY4), we can quite often see that, in cases where

the computational effort required grows, a change of team ordering does heavily increase the

number of expanded nodes, whereas, in cases where the effort drops, the team reordering

only induces a little decrease in number of expanded nodes. So, positive effects are outweigh

by negative effects for the small instances considered.

In conclusion, since team reordering is not sure to improve performance when solving

an arbitrary problem instance, applying it is in general not helpful in order to speed up

computations. It might be helpful, though, if we had additional information about the

optimal schedule (e.g. if we would know that team 1 should be playing a lot of home games

early in the schedule). But in reality we never have this kind of information. Therefore, I

would advice not to apply team reordering when solving TTP instances.

6.3 Symmetry breaking
The influence of symmetry breaking on the number of expanded nodes when solving a

TTP is shown in Table 6.7. We can see that, although the solution space gets smaller by

applying symmetry breaking, a solution is in general not found within fewer steps. E.g. for

some small instances (SUPER4, GALAXY4 and SUPER6) the usage of symmetry-A causes

Evaluation 32

SB SUPER4 GALAXY4 SUPER6 GALAXY6 SUPER8 GALAXY8

none 100 100 100 100 100 100

symmetry-A 122.49 120.19 141.58 83.98 88.08 105.46

symmetry-H 97.13 101.92 87.24 95.83 3013.26 109.31

Table 6.7: Relative number of expanded nodes: Values have been obtained whit all 3
extensions (FD, EP and SF) activated. The number of nodes expanded when no symmetry
breaking is applied is considered 100%. No multithreading or special team ordering was
applied. The subtree depth is n

2 with n given as the number of teams in the problem
instance and λ = n.

my implementation to expand more nodes than in the case without symmetry breaking.

This is also the case for GALAXY 8. The amount of additionally expanded nodes is thereby

quite high for some instances (up to 40%). An even worse outcome can be observed for

the SUPER8 instance combined with symmetry-H. There the amount of expanded nodes is

more than three times higher than in the non symmetry breaking case. Apparently, in this

case the solutions that can be found quickly are all eliminated by symmetry breaking when

half of the schedule is fixed, leaving the algorithm with only solutions that are found slowly,

meaning that these solutions are not found in subtrees that are located near the front of

the subtree queue or that these solutions have lots of early matches that involve teams that

appear at the end of the team ordering.

However, in less than half of the cases that I tested, symmetry breaking did improve

performance of the tree search. Yet the improvement was, especially when compared with

the possible degradations, not very high (up to 12%). So, symmetry breaking seems to be

a risky enhancement for my implementation and I would not recommend to use it.

6.4 Multithreading
For my implementation of a multithreaded tree search, I used datastructures partly based

on examples from the book by Williams (2012). The experiments shown in this section have

been performed in another setting than the other experiments shown in this chapter. This

was due to the incompatibility of the compute cluster with multithreaded programs. The

hardware I used for the following experiments was a laptop computer with 4 cores that

simulate 8 virtual cores running at 2.00GHz with 3.8GB RAM.

In Table 6.8 we see that computation time is, as expected, reduced for both tested

problem instances when increasing the number of threads. The time reducing impact is

clearest in the steps from 1 thread to 2 threads (about 45%) and from 2 threads to 4 threads

(about 40%). In the last step time reduction is only about 12%. This is due to the fact

that the hardware of the test setting has only 4 actual cores. The other 4 cores are virtual.

Therefore time reduction in the last step cannot be as significant as in the first two steps.

We can also see that the number of expanded nodes slightly increases with the number of

threads. This behaviour can be explained with the dynamically changing fnext-value that is

crucial for the decisions whether subtrees are skipped and whether successors of nodes in the

search tree are generated. When subtrees are searched in parallel, they tend to have a higher

Evaluation 33

1 thread 2 threads

time nodes nodes/s time nodes nodes/s

SUPER8 122mins 40s 2.50 · 109 340338.4 66mins 36s 2.50 · 109 626388.8

GALAXY8 128mins 52s 2.04 · 109 263777.7 69mins 20s 2.03 · 109 488285.2

4 threads 8 threads

time nodes nodes/s time nodes nodes/s

SUPER8 39mins 3s 2.50 · 109 1068347.8 34mins 7s 2.52 · 109 1230007.7

GALAXY8 41mins 46s 2.06 · 109 823710.7 36mins 28s 2.12 · 109 967260.0

Table 6.8: Performances of multithreaded runs: All runs have been performed with FD,
EP and SF but without symmetry breaking or team reordering. The depth of the subtree
forest was n

2 = 4 with n given as the number of teams in the problem instance and λ was
n = 8.

DPD TC required time DPD TC required time

GALAXY4

X X 150msecs

GALAXY6

X X 1.68secs

X × 150msecs X × 3.21sec

× X 829msecs × X >24h

× × 825msecs × × >24h

Table 6.9: Performances of runs when either disjoint pattern database (DPD), team cache
(TC) or both are deactivated: All runs have been performed with FD, EP and SF but
without symmetry breaking or team reordering. The depth of the subtree forest was n

2
with n given as the number of teams in the problem instance and λ was n.

fnext-value at the beginning of and throughout the search in this subtree as they would have

had without parallelization. Therefore the tree search tends to expand more nodes and to

skip fewer subtrees. Nevertheless, the time required for a multithreaded search is lower than

in the single-threaded case. This is due to the expanded nodes per second rate that gets

significantly higher the more threads are employed.

6.5 Team cache and disjoint pattern database
The influence of a team cache and a disjoint pattern database on the time performance

of my implementation is shown in Table 6.9 using the two problem instances GALAXY4

and GALAXY6. For GALAXY4 only the impact of the disjoint pattern database can be

recorded. The instance can be solved almost four times quicker with a disjoint pattern

database. There is no recordable impact of a team cache for GALAXY4. For the larger

instance GALAXY6 we can see that a team cache does double the speed of the solution

finding process. When not applying a disjoint pattern database for GALAXY6, an optimal

solution cannot be found in the course of 24 hours, whereas with a disjoint pattern database

the solution is found in about 2 seconds.

Thus, a team cache and a disjoint pattern database are, as expected, vital enhancements

when trying to find optimal solutions for the TTP efficiently.

7
Conclusion

I implemented an optimal solver for the Traveling Tournament Problem, a very hard prob-

lem that is the subject of numerous past and recent scientific work. In my implementation

I realized an iterative-deepening A* algorithm with various extensions and enhancements

and tried two similar approaches to calculate heuristic values - the direct independent lower

bound heuristic and the independent lower bound heuristic as a disjoint pattern database. In

the following I evaluated all implemented extensions and enhancements on the SUPER and

GALAXY problem sets to verify their benefits to the performance of the tree search. In sum-

mary I can say that, while all three implemented extensions – forced deepening, elite paths

and subtree forests – are beneficial for large problem instances, not all enhancements did

consistently improve the performance of my implementation. Some enhancements, namely

symmetry breaking and team reordering, have proven to be risky to apply, since they show

an improvement for some problem instances but harm the performance significantly for other

problem instances. The usage of a team cache and multithreading however have shown only

performance improvements. They do, in combination with all three extensions and a disjoint

pattern database, strongly improve the standard IDA* algorithm, that is initially only able

to solve problem instances with 4 teams in a reasonable amount of time.

Bibliography

Easton, K., Nemhauser, G., and Trick, M. (2001). The Traveling Tournament Problem

description and benchmarks. In Principles and Practice of Constraint Programming —

CP 2001, volume 2239 of Lecture Notes in Computer Science, pages 580–584. Springer-

Verlag.

Easton, K., Nemhauser, G., and Trick, M. (2003). Solving the Travelling Tournament Prob-

lem: A combined integer programming and constraint programming approach. In Practice

and Theory of Automated Timetabling IV, volume 2740 of Lecture Notes in Computer Sci-

ence, pages 100–109. Springer-Verlag.

Gecode Team (2006). Gecode: Generic constraint development environment. Available

from: http://www.gecode.org.

Hafidi, Z., Talbi, E., and Goncalves, G. (1995). Load balancing and parallel tree search:

The MPIDA* algorithm. In Proceedings of the Fifth International Conference on Parallel

Computing (ParCo’95), pages 93–100. Elsevier.

Irnich, S. (2008). A new branch-and-price algorithm for the Traveling Tournament

Problem. Presented at the International Workshop on Column Generation 2008,

Aussois, France, June 17-20, 2008. Available from: https://www.gerad.ca/colloques/

ColumnGeneration2008/slides/SIrnich.pdf [Accessed 3 Feb, 2015].

Irnich, S. (2010). A new branch-and-price algorithm for the Traveling Tournament Problem.

European Journal of Operational Research, 204(2):218 – 228.

Korf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible tree search.

Artificial Intelligence, 27(1):97–109.

Korf, R. E. and Felner, A. (2002). Disjoint pattern database heuristics. Artificial Intelligence,

134(1–2):9–22.

Powley, C. and Korf, R. E. (1991). Single-agent parallel window search. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 13(5):466–477.

Rao, V. N., Kumar, V., and Ramesh, K. (1987). A parallel implementation of iterative-

deepening-A*. In Proceedings of the Fourteenth National Conference on Artificial Intelli-

gence (AAAI 1997), pages 178–182. AAAI Press.

Uthus, D. C., Riddle, P. J., and Guesgen, H. W. (2009). DFS* and the Traveling Tour-

nament Problem. In Integration of AI and OR Techniques in Constraint Programming

http://www.gecode.org
https://www.gerad.ca/colloques/ColumnGeneration2008/slides/SIrnich.pdf
https://www.gerad.ca/colloques/ColumnGeneration2008/slides/SIrnich.pdf

Bibliography 36

for Combinatorial Optimization Problems, volume 5547 of Lecture Notes in Computer

Science, pages 279–293. Springer-Verlag.

Uthus, D. C., Riddle, P. J., and Guesgen, H. W. (2011). Solving the traveling tournament

problem with iterative-deepening A*. Journal of Scheduling, 15:601–614.

Williams, A. (2012). C++ Concurrency in Action. Manning.

	Abstract
	Table of Contents
	1 Introduction
	2 Background
	2.1 Traveling Tournament Problem
	2.2 Search space

	3 Search
	3.1 IDA*
	3.2 Forced deepening
	3.3 Elite paths
	3.4 Subtree forests
	3.5 IDA* with forced deepening, elite paths and subtree forests

	4 Heuristics
	4.1 The independent lower bound heuristic – ILB
	4.2 ILB as disjoint pattern database

	5 Enhancement
	5.1 Team reordering
	5.2 Symmetry breaking
	5.3 Team cache
	5.4 Multithreading

	6 Evaluation
	6.1 Forced deepening, elite paths and subtree forests
	6.2 Team reordering
	6.3 Symmetry breaking
	6.4 Multithreading
	6.5 Team cache and disjoint pattern database

	7 Conclusion
	Bibliography

