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Abstract

In classical planning, there are tasks that are hard and tasks that are easy.
We can measure the complexity of a task with the correlation complexity, the
improvability width, and the novelty width. In this work, we compare these
measures.

We investigate what causes a correlation complexity of at least 2. To do so
we translate the state space into a vector space which allows us to make use of
linear algebra and convex cones.

Additionally, we introduce the Basel measure, a new measure that is based
on potential heuristics and therefore similar to the correlation complexity but
also comparable to the novelty width. We show that the Basel measure is a
lower bound for the correlation complexity and that the novelty width +1 is an
upper bound for the Basel measure.

Furthermore, we compute the Basel measure for some tasks of the Inter-
national Planning Competitions and show that the translation of a task can
increase the Basel measure by removing seemingly irrelevant state variables.
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1 Introduction

Planning is an area of artificial intelligence that is useful for many applications
for example logistics. In classical planning, we try to find a plan, a sequence of
actions to transition from an initial state to a goal state. We assume everything
to be deterministic and fully observable (e.g. no dice rolls and no hidden cards).
So the solution of this task is not affected by the execution skill of the agent
or randomness but only by the cognitive ability to think ahead. We consider
satisficing planning which looks for a plan that leads us to a goal state. In
contrast to optimal planning which looks for the plan with the lowest cost.
Both satisficing planning and optimal planning are PSPACE-complete in general
(Bylander, 1994) but for some domains, it is drastically easier to find a satisficing
plan than to find an optimal one. The Traveling Salesperson Problem on a fully
connected weighted graph is a good example of this. A satisficing plan would
be visiting all cities in any arbitrary order (we do not even have to look at the
weights) but for the optimal plan, it is a common example of an NP-complete
problem (Papadimitriou, 1977).

Some planning tasks are easier to solve than others even though they have
the same amount of variables and operators. This difference is hidden some-
where in the structure of the task. We want to discuss in this work different
measures for the difficulty of a planning task. The measures assign a number to
the task that reflects how hard it is to solve the task with the corresponding algo-
rithm. Harder tasks have greater measures. In Chapter 2 we provide the formal
background of planning. Afterwards we describe in Chapter 3 the measures and
corresponding algorithms created by Hoffmann (2001, 2002), Chen and Giménez
(2007), Lipovetzky and Geffner (2012) as well as Seipp et al. (2016).

Each of these measures looks at a different kind of structure of the task. The
maximal exit distance by Hoffmann (2001, 2002) checks how many transitions
are needed at most to improve the heuristic value of h+. The improvability
width1 by Chen and Giménez (2007) looks at how many state variables have
to be changed to get to a state with more goal facts being true (without turn-
ing those false that were already true). The novelty width by Lipovetzky and
Geffner (2012) checks how many facts have to be considered at once to detect
that a state in the closed list of a Breadth First Search is a duplicate. The
correlation complexity by Seipp et al. (2016) looks at the minimal dimension of
a potential heuristic that is descending and dead-end avoiding.

Each of these measures provides a bound which implies that the search (with
the fitting algorithm) is exponential only in the measure. However, the search
is linear in the length of the plan, which can be exponential in the number of
state variables. We formulate these algorithms in a common framework. This
makes their similarities and differences more apparent.

In Chapter 4 we look at the sufficient conditions for a correlation complexity
that is at least 2. There we add to the work of Seipp et al. (2016) by formulating

1Chen and Giménez (2007) as well as Lipovetzky and Geffner (2012) defined width differ-
ently, in this work we will call them improvability width and novelty width respectively to
reduce confusion.
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a new criterion that is more general and detects a larger correlation complexity
in more cases. We show that the new criterion is more general by examples and,
with a counterexample, we show that it is not a necessary condition. Addition-
ally, we provide another new criterion to detect a correlation complexity of at
least 3.

In Chapter 5 we translate state transitions into vectors and 1-dimensional
potential heuristics into linear mappings. This way we can use the language of
linear algebra and linear programming to formulate a new criterion that can be
used to detect that the correlation complexity of a given task is larger than 1.

We introduce a new measure, in Chapter 6, which we call the Basel measure,
and use mixed integer programming to create a method to detect whether or not
the Basel measure of a given task is 1. Additionally, we look at the two notions
of width and the correlation complexity and compare them with each other.
We see that the Basel measure is a lower bound for the correlation complexity
and the novelty width +1 is an upper bound for the Basel measure. With two
examples we prove that the novelty width and improvability width, in general,
do not introduce any bounds on each other.

We measure multiple domains from the International Planning Competi-
tions2 (IPC) in Chapter 7 and figure out that individual tasks of these domains
have a Basel measure of 1 and see that the translation of a task can increase
the Basel measure by removing seemingly irrelevant state variables.

2http://ipc.icaps-conference.org
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2 Background

In this chapter, we introduce important definitions and concepts used through-
out this thesis.

2.1 SAS+ Planning Formalism

To argue rigorously about classical planning tasks we express them in a formal
way. In this work, we use the SAS+ formalism (Bäckström and Nebel, 1995). A
SAS+ planning task Π is defined as a tuple Π = 〈V, I,O, γ〉 where V is the set of
state variables in finite domain representation with the domain dom(v) for
each v ∈ V . A tuple 〈v, d〉 with v ∈ V and d ∈ dom(v) is called a fact and we
use the notation v 7→ d. A set of facts is called a partial assignment (unless
stated otherwise we assume each assignment in this work to be valid, meaning
each variable v ∈ V appears at most in one fact of the partial assignment).
We define vars(p) as the set of all state variables that appear in the partial
assignment p. For a partial assignment p we define p(v) = d if the fact v 7→ d
is an element of p and undefined otherwise. We say two partial assignments p,
q agree with each other if p(v) = q(v) for each v ∈ vars(p) ∩ vars(q). We call
a partial assignment s with vars(s) = V a state. Let M ⊆ V and p a partial
assignment, we call pM the projection of p on M and we define it as the partial
assignment pM where vars(pM ) = M ∩ vars(p) and pM agrees with p.

The set O describes the operators. Every operator o ∈ O consists of a
precondition pre(o) and an effect eff (o), both are partial assignments; and
a cost cost(o) ∈ R≥0. An operator o is applicable in state s if pre(o) agrees
with s. A task is in normal form if vars(eff(o)) ⊆ vars(pre(o)) for all o ∈ O.
Applying an operator o in state s results in the successor state sJoK with
sJoK(v) := eff(o)(v) for all v ∈ eff(o) and sJoK(v) := s(v) for all v ∈ V \
vars(eff(o)). The successors of a state s are defined as succ(s) := {sJoK | o ∈
O, o apllicable in s}.

A sequence π = 〈o1, o2, . . . , on〉 of operators oi ∈ O for each i ∈ {1, 2, . . . , n}
applied on a state s is defined as sJ〈.〉K = s for the empty sequence; and
sJ〈o1, . . . , on〉K = sJo1KJ〈o2, . . . , on〉K if o1 is applicable in s, i.e. applying a se-
quence on a state applies at first the first operator of the sequence on the state
and afterwards the rest of the sequence. We call the sequence 〈o1, o2, . . . , on〉
of operators applicable in state s if ok is applicable in state sJ〈o1, . . . , ok−1〉K
for each k ∈ {1, . . . , n} and the state sJ〈o1, . . . , ok〉K is visited by π for each
k ∈ {0, . . . , n}. We call a sequence π of operators that is applicable in s a
path from s to sJπK. If a path from s to s′ exists we call s′ reachable from s.
The operators o and o′ are inverse of each other if there exists a state s with
sJoKJo′K = s (independent of applicability). We define the cost of a sequence
π as the sum of the cost of the individual operators cost(π) =

∑n
i=1 cost(oi).

The notation d(s, s′) is used for the distance from s to s′ which is the cost of
the path from s to s′ with minimal cost (d(s, s′) = ∞ if no such path exists),
such a path is called shortest path from s to s′. Note that the distance is not
symmetric.
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The partial assignment γ describes the goal. A path π from a state s where
sJπK agrees with γ is called a plan from s. If a plan from s exists we call s
solvable otherwise we call s a dead end. I is the initial state of the planning
task and if a path from I to a state s does exist we call s reachable. A state is
called alive if it is reachable and solvable. If I is solvable (i.e. a path from the
initial state to a state that agrees with the goal does exist) we call the planning
task solvable. A plan is optimal if it is a plan with minimal cost.

An operator o is critical (Seipp et al., 2016) in state s if each plan from s
contains o. An operator o is critical in the task Π if there exists an alive state
s where o is critical in s. (o being critical is equivalent to o being an action
landmark.) An operator o is dangerous (Seipp et al., 2016) in state s if s is
solvable, o is applicable in s, and sJoK is unsolvable. An operator o is dangerous
in the task Π if there exists an alive state s where o is dangerous in s.

2.2 Heuristics

Finding a plan to solve the planning task is hard, especially for planning tasks
with many state variables or many applicable operators in individual states. To
reduce the search time we use guidance that estimates how promising a given
state is. We represent this guidance as a heuristic function h for the planning
task Π that maps each state from Π to a value in R∪{∞} where smaller values
represent more promising states. Note that we allow the heuristic to map onto
negative values in this work which is often not the case.

There are many heuristics, classes of heuristics, and properties of heuristics
that are well established in the literature. The heuristic that maps each state
s to the cost of the optimal plan from s if one exists and ∞ otherwise is called
the perfect heuristic h∗. Computing the perfect heuristic for a state s is as
hard as finding the plan from s. For this reason, h∗ is not used in practice but
only for comparison. The goal count heuristic h#g is defined as the number
of facts from γ that are not in the state s, i.e. h#g(s) := |γ \ s|. This heuristic
is very easy to evaluate for a given state but is very uninformed as it ignores
the operators completely.

Additionally, we want to talk about the delete relaxed heuristic3 h+. We
call a sequence π+ = 〈o1, . . . , on〉 of operators a delete relaxed plan from s

if pre(ok) ⊆ s ∪
⋃k−1
i=1 eff(oi) for each k ∈ {1, . . . , n} and γ ⊆ s ∪

⋃n
i=1 eff(oi)

(note that these assignments are generally not valid). The intuition for delete
relaxation is that facts are not overwritten by the operator effects but added.
The delete relaxed heuristic value h+(s) is defined as the minimal cost of all
delete relaxed plans from s if one exists and ∞ otherwise. Evaluating the h+

3The name delete relaxed might be confusing in the context of a finite domain represen-
tation because we never talked about deletions in the first place. The name comes originally
from STRIPS (Fikes and Nilsson, 1971) planning tasks where each operator is defined with
an add-effect and a delete-effect and the delete relaxation ignores these delete-effects (Bonet
and Geffner, 2001; Hoffmann and Nebel, 2001). However, the concept can be generalized to
SAS+ tasks (Domshlak et al., 2015) and the transformation from SAS+ to STRIPS or vice
versa produces with the given definition the same values for the delete relaxed heuristic on
equivalent states so we stay with this name.
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value of a given state is NP-hard (Bylander, 1997) so it is not feasible to use in
practice despite being well informed.

Potential heuristics are a class of heuristics introduced by Pommerening et al.
(2015). A potential heuristic is a heuristic that is computed with a weighted
count of the partial assignments that agree with the given state.

hpot(s) =
∑
p∈P

(w(p) · [p ⊆ s])

where P is the set of all possible partial assignments for the task, [p ⊆ s] is in
the Iverson bracket notation, and w(p) is the weight for the partial assignment
p. In practice most of the weights are 0. The dimension of a potential heuristic
is maxp∈P,w(p)6=0|p|. For planning tasks with n state variables the evaluation

of a potential heuristic of dimension d can be performed in time O(nd) (Seipp
et al., 2016). So potential heuristics of small dimension are quick to evaluate
but finding good weights that makes the potential heuristic informed is still
complex.

2.3 State Space

An intuitive way to visualize planning tasks is a directed graph with nodes that
represent the states and an outgoing arc for each operator that is applicable in
this state that points to the node that represents the corresponding successor
state. We call this graph the state space of the planning task. We formally
define the state space S induced by the planning task Π = 〈V, I,O, γ〉 as the
directed, arc-labeled, arc-weighted graph 〈S,E,G, s0〉 where S, the set of states
of the planning task is the set of nodes of the graph and E = {〈s, o, c, s′〉 ∈
S × O × R × S | o applicable in s, sJoK = s′, c = cost(o)} is the set of labeled,
weighted arcs we call the state transitions. The set G ⊆ S contains all states
that agree with γ. We call G the goal states and s0 ∈ S is the initial state. The
pair of a state space and a heuristic 〈S, h〉 is called a state space topology.
The heuristic in the state space topology can be interpreted as a weighting
of the graph that is the state space so we get an arc-labeled, arc-weighted,
node-weighted directed graph. Note that with this definition of the state space
topology as a graph the terms successor of s and path from s to s′ as well as its
cost and distance from graph theory are equivalent to the definition we gave in
the SAS+ context.

A heuristic h is descending if each alive state s has a successor s′ with
h(s) > h(s′). A heuristic h is dead-end avoiding if it holds for each alive
state s that each successor s′ of s with h(s′) < h(s) are solvable (Seipp et al.,
2016).

2.4 Search Algorithms

One of the most basic algorithms used to find a path to a goal state is Breadth
First Search (Russell and Norvig, 2010). In the algorithm, we first test if the
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Algorithm 1: Breadth First Search

Data: planning task Π
Result: plan π

1 if γ ⊆ I then
2 return empty plan
3 end
4 open := [I]
5 closed := {I}
6 while open is not empty do
7 s := pop first element of open
8 foreach s′ ∈ succ(s) do
9 if γ ⊆ s′ then

10 return extracted path to s′

11 end
12 if s′ /∈ closed then
13 insert s′ in closed
14 append s′ to open

15 end

16 end

17 end
18 return fail

initial state is itself a goal state. If this is not the case we initialize the open
list and the closed set both containing the initial state. While the open set is
not empty we remove the first element from it and iterate through each of its
successors. If the successor is not a goal state nor in the closed set we insert it
into the closed set and append it to the open list. See Algorithm 1.

The Breadth First Search is uninformed, it does not use any heuristic
guidance.
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3 Previous Work

This chapter summarizes the previous work by Hoffmann (2001, 2002), by Chen
and Giménez (2007), by Lipovetzky and Geffner (2012), and by Seipp et al.
(2016) that introduced different complexity measures for planning instances.
Each implies an upper bound to the search time that is exponential only in the
measure.

Before we begin with the summaries we first describe a running example.
Afterward, we introduce a general framework for the search algorithms. We
describe the search algorithms that are used in these four different works with
this framework. This helps us to make the differences and similarities between
them more apparent.

3.1 Running Example

We will illustrate the following methods on the well-known crossing the river
task. A person wants to put a fox, a rabbit, and a carrot from the west shore
to the east shore of a river, but his boat has only enough space for himself and
one of the objects and the person cannot leave the fox with the rabbit nor the
rabbit with the carrot on the same shore. Expressed as a planning task:

Π =〈V,O, I, γ〉
V ={vfox, vrabbit, vcarrot, vboat}

dom(v) ={West, East} for all v ∈ V

For simplicity we substitute in all facts vfox 7→ East with F and vfox 7→ West
with f . We use the initial letter in uppercase or lowercase of the other state
variables analogously. For example, state {f,R, c, B} is the state where the
rabbit and the boat are on the east shore and the fox and the carrot are on the
west shore. The state space is visualized in Figure 1.

O ={〈{f, r, c, b}, {R,B}〉, 〈{f,R, c, B}, {r, b}〉,
〈{f,R, c, B}, {b}〉, 〈{f,R, c, b}, {B}〉,
〈{f,R, c, b}, {F,B}〉, 〈{F,R, c,B}, {f, b}〉,
〈{f,R, c, b}, {C,B}〉, 〈{f,R,C,B}, {c, b}〉,
〈{F,R, c,B}, {r, b}〉, 〈{F, r, c, b}, {R,B}〉,
〈{f,R,C,B}, {r, b}〉, 〈{f, r, C, b}, {R,B}〉,
〈{F, r, c, b}, {C,B}〉, 〈{F, r, C,B}, {c, b}〉,
〈{f, r, C, b}, {F,B}〉, 〈{F, r, C,B}, {f, b}〉,
〈{F, r, C,B}, {b}〉, 〈{F, r, C, b}, {B}〉,
〈{F, r, C, b}, {R,B}〉,
〈{F,R,C,B}, {r, b}〉}

I ={f, r, c, b}
γ ={F,R,C}
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Figure 1: State space for the crossing the river task. Note that the black edges
are not the state transitions but a visualization of the 4-dimensional hypercube.
The red lines indicate the state transitions.

3.2 Search Framework

We introduce a framework to have the upcoming algorithms in a similar form.
We call it the Search Framework. This allows us to specify a search algorithm
by only the 3 subroutines progressCheck, expandCheck and updateClosed.

The pseudocode for the Search Framework is shown in Algorithm 2. (So
far we did not explain what the width k ∈ N is. We get to it in Section 3.4.)

In the first 7 lines is the initialization. There the initial state I of the
planning task Π is testes for agreement with the goal γ. If it does agree the
search is already over. If it does not agree, then the open list is initialized as
containing only the initial state. The closed set is first initialized as an empty
set but immediately updated by the subroutine updateClosed depending on I
and the width k. The reference state reference is set to the initial state.

After the initialization, the main while loop runs as long as the open list
contains at least one state. Inside the while loop, we pop the first element of
the open list and make it to the current state current. Then we iterate (in an
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Algorithm 2: Search Framework

Data: planning task Π = 〈V, I,O, γ〉, width k ∈ N, heuristic h,
subroutines updateClosed, progressCheck, expandCheck

Result: plan π
1 if γ ⊆ I then
2 return empty plan
3 end
4 open := [I]
5 closed := ∅
6 updateClosed(I, closed, k)
7 reference := I
8 while open is not empty do
9 current := pop first element of open

10 foreach candidate ∈ succ(current) do
11 if γ ⊆ candidate then
12 return extracted path to candidate
13 else if progressCheck(candidate, reference, h) then
14 open := [candidate]
15 closed := ∅
16 updateClosed(candidate, closed, k)
17 reference := candidate
18 break

19 else if expandCheck(candidate, closed, k) then
20 updateClosed(candidate, closed, k)
21 append candidate to open

22 end

23 end

24 end
25 return fail

arbitrary order) over all states candidate that are a successor of current.
Each candidate is tested for agreement with the goal γ. If it does the search

is over and the path to candidate is returned. If it does not agree, then candi-
date is tested for providing progress compared to reference for this we call the
subroutine progressCheck. If progress was made the open list, the closed set
and the reference state are re-initialized like in lines 4-7 but with the candidate
state instead of the initial state I and the foreach loop breaks.

If candidate does not agree with the goal nor does it provide progress, then
candidate is tested if it should be expanded further. We call the subroutine
expandCheck for this. If candidate should be expanded further we call the
subroutine updateClosed on candidate to add elements into the closed set and
we append the candidate to the open list. If the while loop ends the search
terminates with a fail return.

11



There is also a width k ∈ N and a heuristic h in the input data of the Search
Framework. These are only used in some of the subroutines. As an example we
can reproduce the Breadth First Search with the Search Framework frame-
work by using the subroutines Algorithm 3, 4, and 5.

Algorithm 3: progressCheck (Breadth First Search)

Data: states candidate, reference, heuristic h
1 return false

Algorithm 4: expandCheck (Breadth First Search)

Data: state candidate, set closed, k ∈ N
1 return candidate /∈ closed

Algorithm 5: updateClosed (Breadth First Search)

Data: state s, set closed, k ∈ N
1 insert s into closed
2 return

Plugging these subroutines into the the Search Framework results in an
algorithm equivalent to the Breadth First Search from Algorithm 1. Since
the progressCheck in line 13 is never fulfilled we can remove the lines 13-
18 without changing the behavior of the algorithm. Replacing lines 5 and 6
with the line closed = {I} does not change anything of the behavior as well.
With these two modifications, we directly see that the Search Framework with
the mentioned subroutines is, in fact, equivalent to the Breadth First Search

from Algorithm 1.
In the subroutines of Breadth First Search, we see that the heuristic h is

not used. This is because Breadth First Search does not use any heuristic
guidance. We also see that the width k is not used.

Each measure uses a specific algorithm. We will represent its corresponding
algorithm in a table like Table 1. This representation of the measure shows
only the name and the subroutines for the Search Framework that specify the
corresponding algorithm. This makes the similarities and differences of the
algorithms more apparent.

3.3 Maximal Exit Distance

The empirical and theoretical analysis of Hoffmann (2001, 2002) on local search
topology considers the delete relaxed heuristic h+. This heuristic is not guaran-
teed to be dead-end avoiding because some states are easy to solve in the delete
relaxation but are dead-ends in the original task. However, Hoffmann shows

12



Name Name of the algorithm

progressCheck what does progressCheck return
expandCheck what does expandCheck return
updateClosed what does updateClosed do (besides return)

Table 1: Pattern to represent an algorithm in the Search Framework compactly.

that a plan can be found with this heuristic guidance in a time only exponential
to the maximal exit distance if there is no local minimum.

In the crossing the river example, an optimal relaxed plan traverses through
the invalid assignments

I ∪
0⋃
i=1

eff(oi) = {f, r, c, b},

I ∪
1⋃
i=1

eff(oi) = {f, r, c, b, R,B},

I ∪
2⋃
i=1

eff(oi) = {f, r, c, b, R,B, F},

I ∪
3⋃
i=1

eff(oi) = {f, r, c, b, R,B, F,C} ⊇ γ

and has the initial heuristic value h+(I) = 3. Figure 2 shows the h+ value
for each state of the crossing the river task.

We see in Figure 2 that the crossing the river task with h+ is not descending.
The initial state has no successor that improves the heuristic value. The delete
relaxed heuristic is dead-end avoiding in the crossing the river task but not in
general.

Hoffmann (2001) partitioned the states of the state space topology into dif-
ferent plateaus. A plateau of level l is a maximal subgraph P of a given state
space topology 〈S, h〉 where all states s ∈ P have the heuristic value h(s) = l.
A state e ∈ P is called an exit if e has an successor e′ that is not in the same
plateau and h(e′) < h(e). A local minimum is a plateau without any exit nor
goal state. A path is flat if it traverses only through states of the same heuristic
value.

Definition 3.1 (Maximal Exit Distance). The exit distance for a state s ∈ S
is the minimal cost of a flat path from s to an exit. The maximal exit distance
of a task is defined as the maximum exit distance over all states.

In Figure 2 we see on the left a plateau of level 3 with state fRcB as exit.
All states with the heuristic value of 2 are in the same plateau. The state fRcb
has an exit distance of 3 because FrCB is the only exit in this plateau and there
exists a flat path from fRcb via FRcB and Frcb to FrCB of cost 3. No state in
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Figure 2: Graphical representation of the h+ heuristic. The height of the cylin-
ders represents the heuristic value of the state.

the task has a greater exit distance and therefore the maximal exit distance of
the crossing the river task is 3.

For this measure Enforced Hill-climbing (see the subroutines for the
Search Framework in Table 2) is used as search algorithm. It acts the same as
Breadth First Search (expandCheck and updateClosed are the same in both
algorithms), until a state with a better heuristic value than reference is found.
There it detects progress and re-initializes.

A plan is guaranteed to be found on state spaces without local minimums
after considering O(h(s0) · bc+1) states, where b is the maximal branching factor
and c is the maximal distance of a state s to the exit of its corresponding plateau.
This is exponential only in the maximal exit distance c. The downside of this
approach is that the heuristic has to be precomputed. Another issue is that
h+ might have local minimums for the given task and even if it does not the
computation of the delete relaxed heuristic h+ is NP-hard. It is not essential to
use the h+ heuristic. Any heuristic without local minimums could be used.

Name Enforced Hill-climbing

progressCheck h(candidate) < h(reference)
expandCheck candidate /∈ closed
updateClosed insert candidate into closed

Table 2: Enforced Hill-climbing represented compactly.

14



3.4 Improvability Width

Chen and Giménez Chen and Giménez (2007) introduced an algorithm that is
exponential only in the improvability width that finds a satisficing plan for a
given task without dead ends. They defined multiple slightly different improv-
ability width notions where all of them are based on the improvability. So we
define this first.

Definition 3.2 (k-Improvable). Let Π = 〈V,O, I, γ〉 be a planning task. A
path π improves a variable u ∈ V in state s if:

• for all v ∈ vars(γ): s(v) = γ(v) implies sJπK(v) = γ(v); and

• if u ∈ vars(γ), then sJπK(u) = γ(u)

A variable v in state s is k-improvable if a path π that improves v and
|
⋃
o∈π vars(eff(o))| ≤ k exists.

Note that a variable v that is k-improvable in state s is also (k+1)-improvable
in s due to the inequality in the definition. The concept k-improvable in a state s
is defined for all state variables but it is only interesting for variables u ∈ vars(γ)
with s(u) 6= γ(u) because the others are trivially 0-improvable with the empty
path.

So an improving path increases (or does not change) the number of variables
that are in goal position and each variable that was in goal position, in the
beginning, is still there after applying the path.

For example, a variable is 2-improvable in state s if there is an improving
path from s that only acts on one fixed face of the hypercube and a variable
is 3-improvable in s if there is an improving path from s that only acts on one
fixed cell of the hypercube (Figure 3).

For the initial state of the crossing the river task the state variables fox
and carrot are 3-improvable (and not 2-improvable) because each path from the
initial state that ends in a state s where s(fox) = γ(fox) (analogous for carrot)
has effects on the variable boat and rabbit.

With wrong(s) := {v ∈vars(γ) | s(v) 6= γ(v)} we denote the variables in s
that differ from the goal.

Definition 3.3 (Improvability Width). A planning task has improvability
width k if it is unsolvable, or for every reachable state s that is not a goal
state, every variable u ∈ wrong(s) is k-improvable in s.

Definition 3.4 (Persistent Improvability Width). A planning task has persis-
tent improvability width k if it is unsolvable, or for every reachable state
s that is not a goal state, there exists a variable u ∈ wrong(s) such that u is
k-improvable in s.

They defined the Hamming improvability width and persistent Hamming
improvability width in a similar fashion based on the k-Hamming improvability.
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Figure 3: State space for the crossing the river task. Note that the black edges
are not the state transitions but a visualization of the 4-dimensional hypercube.
The number in each state shows the Hamming distance to the initial state frcb.
The red lines indicate the state transitions.

Definition 3.5 (k-Hamming Improvable). The Hamming distance dh(., .) of
two states s, s′ is defined as dh(s, s′) = |{v ∈ V | s(v) 6= s′(v)}|.

A state variable u in state s is k-Hamming improvable if an improving path
π = o1, . . . , on exists such that dh(s, sJo1, . . . , oiK) ≤ k for each i ∈ {1, . . . , n}.

See for an example the Hamming distance from the initial state to each state
in the hypercube (Figure 3 ). A variable is 2-Hamming improvable in state s if
there is an improving path from s that only acts on the faces of the hypercube
that are connected to s and a variable is 3-Hamming improvable in s if there is
an improving path from s that only acts on the cells of the hypercube that are
connected to s.

Definition 3.6 (Hamming Improvability Width). A planning task has Ham-
ming improvability width k if it is unsolvable, or for every reachable state s
that is not a goal state, every variable u ∈ wrong(s) is k-Hamming improvable
in s.
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Definition 3.7 (Persistent Hamming Improvability Width). A planning task
has persistent Hamming improvability width k if it is unsolvable, or for
every reachable state s that is not a goal state, there exists a variable u ∈
wrong(s) such that u is k-Hamming improvable in s.

If we know that a task has a bounded (persistent) (Hamming) improvability
width of k, we can use the Improvability Width Algorithm (IWA). See sub-
routines in Table 3. It does a Breadth First Search but only on the part of
the state space graph where each state differs at most in k-many variables from
the reference state. The size of this state space graph is exponential only in
k. Progress is made if an improving state is found. Progress can be made at
most |γ| times. Therefore, the search time is exponential only in k. For the
Improvability Width Algorithm is no precomputation needed. No heuristic
guidance is used.

We only show the table of the variant that uses the persistent Hamming
improvability width because it is the most general.

Name Improvability Width Algorithm

progressCheck wrong(candidate) ( wrong(reference)
expandCheck candidate /∈ closed and dh(candidate, reference) ≤ k
updateClosed insert candidate into closed

Table 3: Improvability Width Algorithm represented compactly.

3.5 Novelty Width

Lipovetzky and Geffner (2012) described an iterative algorithm that calls No-

velty Width Algorithm (NWA) for the same task and a number k that is in-
cremented each iteration until a plan is found. Novelty Width Algorithm (see
the subroutines in Table 4) is a modification of Breadth First Search to find
a plan with complexity that is only exponential in the novelty width. In the
case of a unit cost task, this plan is also optimal.

The difference to Breadth First Search is the stricter pruning. Novelty

Width Algorithm prunes not only the states that are duplicates (i.e the states
in the closed set) but all states with a novelty larger than k. The novelty of a
state s is the size of the smallest partial assignment p that agrees with s but
no other state that was generated previously in the search. The amount of
partial assignments of size k is exponential only in k. No partial assignment p
can be used twice to make expandCheck return true. This is due to the fact
that updateClosed puts p into closed as soon as expandCheck returns true.
Therefore, the search time is exponential only in k. No precomputation is
required and no heuristic guidance is used.

Figure 4 shows the search tree of a Novelty Width Algorithm with k = 3
on the crossing the river task. We see in depth 2 that this Novelty Width

Algorithm with k = 1 halts because the state fRcb counts as duplicate. A
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fRcB FRcB fRCB
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FRcB FrCB FrCB fRCB
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Figure 4: Search tree of a Novelty Width Algorithm with k = 3. States with
novelty 1, 2, and 3 have a smallest new partial assignment underlined in green,
blue and red respectively. The tie-breaking is indicated by nodes of the same
depth being more to the left if they are generated earlier.
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Name Novelty Width Algorithm

progressCheck false
expandCheck ∃p ⊆ candidate with |p| ≤ k, p /∈ closed
updateClosed insert each p ⊆ candidate with |p| = k into closed

Table 4: Novelty Width Algorithm represented compactly.

Novelty Width Algorithm with k = 2 would halt at depth 6 because FrCb
contains no pair that is new to the search tree, only a new triple.

The novelty width is defined with the graph Gi.

Definition 3.8. For Π = 〈V, I,O, γ〉 the graph Gi is defined inductively by:

• the partial assignment p of size |p| = i is a root in Gi iff p agrees with I.

• 〈p, p′〉 is a directed edge in Gi iff p is in Gi and for every optimal plan π for
Π(p) there is an operator o ∈ O such that π followed by o is an optimal
plan for Π(p′) and |p′| = i.

Definition 3.9 (Novelty Width). A formula ϕ on the state variables V is of
novelty width 0 if it is true in I. Otherwise its novelty width is the smallest
w such that Gw contains a partial assignment p with p |= ϕ.

The novelty width of a planning task Π is the novelty width of the formula
that is the conjunction of all elements in γ (the goal formula).

A Novelty Width Algorithm can find a sub-optimal plan if k is less than the
novelty width. This can happen if the states of the optimal path are categorized
as a duplicate due to large novelty while all states on a sub-optimal path provide
a lower novelty. We call the smallest k for which a Novelty Width Algorithm

finds a satisficing plan the effective novelty width.
Lipovetzky and Geffner (2012) split multiple IPC domains with N atomic

goals into N problems with single goals and tested them for their effective
novelty width. Less than 12% of them had an effective novelty width greater
than 2. Note that it is possible for two different states that are in the same
depth of the search tree to be seen as a duplicate of each other, this makes the
effective novelty width dependent on the tie-breaking.

Considering Figure 4 again. All nodes in the example that are not expanded
are true duplicates. Therefore, each tie-breaking strategy would not expand
them. This implies that the novelty width, as well as the effective novelty
width, is 3 for the crossing the river task.

3.6 Correlation Complexity

Correlation complexity is another measure for the complexity of planning tasks
introduced by Seipp et al. (2016) which is based on potential heuristics. They
looked for potential heuristics that are descending and dead-end avoiding (DDA).
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Definition 3.10 (Correlation Complexity). The correlation complexity of a
planning task Π is defined as the minimal dimension of all descending, dead-end
avoiding potential heuristics for Π.

Finding a plan with the use of a DDA heuristic is easily done with Simple

Hill-climbing (SHC). The subroutines are shown in Table 5. This algorithm
works by starting at the initial state and repeatably updating the current state
with a successor that provides progress until a goal state is found. This can be
interpreted as wandering downwards in the state space. The number of state
expansions is bounded by L = hpot(I)−mins∈S h

pot(s) if all weights are integers
(Seipp et al., 2016).

In contrast to Section 3.3 the heuristic h in progressCheck is not fully pre-
computed. Only the weights for a DDA potential heuristic on the task are
precomputed. In progressCheck the value of hpot is evaluated which is a sum
over the precomputed weights. The amount of summands is exponential only
in the dimension of the potential heuristic. Therefore, the search time is expo-
nential only in the correlation complexity.

Name Simple Hill-climbing

progressCheck hpot(candidate) < hpot(reference)
expandCheck false
updateClosed -

Table 5: Simple Hill-climbing represented compactly.

Seipp et al. investigated multiple IPC planning domains and showed that all
of them had a correlation complexity of 2 but it is possible to construct planning
tasks with arbitrarily large correlation complexity.

It is impossible to find a potential heuristic for the crossing the river task
that is descending. To show this we consider the state transition from frcb to
fRcB that brings the boat and the rabbit from the west to the east shore as well
as the two state transitions from fRCB to frCb and fRCB to frCb that bring the
rabbit and the boat from the east to the west shore. The first state transition
is critical and has to be descending for each DDA heuristic. For the first state
transition to be descending with a 1-dimensional potential heuristic it is required
that w(f) + w(r) + w(c) + w(b) + w(∅) > w(f) + w(R) + w(c) + w(B) + w(∅)
which implies w(r) + w(b) > w(R) + w(B). However, at least one of the other
two state transitions has to be descending as well. For the last state transition
to be descending with a 1-dimensional potential heuristic would imply that
w(f) +w(R) +w(C) +w(B) +w(∅) > w(f) +w(r) +w(C) +w(b) +w(∅) which
implies w(R) + w(B) > w(r) + w(b) (analogous for the other state transition).
This causes a contradiction.

The crossing the river task has correlation complexity of 2, too. With the
weights from Table 6 it is possible to create a descending, dead-end avoiding
potential heuristic (see Figure 5). The computation of the weights for a DDA
potential heuristic can be expressed as a mixed integer program (Francès et al.,
2019).
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partial state weight
f 5
fr 3
Fc 2
cB 2
r 1

fB 1
rB 1

Table 6: Partial states and corresponding weight for a potential heuristic that
is DDA (all other partial states have a weight of zero).
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Figure 5: Graphical representation of the potential heuristic with the weights
from Table 6. The height of the partial cylinders represents the weight of the
partial state.

21



4 Lower Bounds of the Correlation Complexity

Before we compare the measures we want to understand better what causes a
large correlation complexity.

The correlation complexity of a task4 Π describes the minimal dimension of
a potential heuristic hpot such that hpot is DDA. This can be interpreted as a
measure of how many facts the agent has to consider at once to find the next best
successor. Unless all reachable states are goal states the correlation complexity
is at least 1 (the agent has to consider at least something). Seipp et al. (2016)
introduced two criteria to identify that a task has correlation complexity of at
least 2.

Theorem 4.1. Let Π be a planning task in normal form, and let o and o′ be
critical operators of Π that are inverses of each other. Then Π has correlation
complexity of at least 2 (Seipp et al., 2016)

Theorem 4.2. Let Π be a planning task in normal form, and let o be an operator
that is critical and dangerous in Π. Then Π has correlation complexity of at least
2 (Seipp et al., 2016)

These criteria focus on the operators in the task. We want to add two criteria
that look from a different angle and focus on the states instead.

4.1 4 States Criterion

We first look at the Theorem 4.3. Roughly speaking it checks if a given poten-
tial heuristic can be translated into a 2-dimensional heuristic. Note that each
heuristic (that never evaluates ∞, which is sufficient for our purposes) can be
translated into a potential heuristic if the dimension is large enough.

Theorem 4.3. Let Π = 〈V, I,O, γ〉 be a planning task, and let hpot be a potential
heuristic. If there exist states a, b, c, d in Π and a partition {W,M} of V such
that:

hpot(a) > hpot(b),

hpot(c) ≥ hpot(d),

aW = bW ,

cW = dW ,

aM = dM ,

bM = cM ,

then the dimension of hpot is at least 2.

4In this work we assume that each task is solvable.
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For the proof we use the fact that we can split one (finite) sum over all x ∈ X
with {Y,Z} partition of X into two sums where one iterates over y ∈ Y and the
other over z ∈ Z. ∑

x∈X
f(x) =

∑
y∈Y

f(y) +
∑
z∈Z

f(z),

with f an arbitrary function.

Proof. Let hpot be a heuristic and a, b, c, d states in Π and {W,M} a partition
of V such that:

hpot(a) > hpot(b) and hpot(c) ≥ hpot(d) and aW = bW and cW = dW and
aM = dM and bM = cM .

Assume that the dimension of the potential heuristic hpot is 1. The assump-
tion implies that hpot(s) = hpot(sW ) + hpot(sM ) − w(∅) for each state s. The
weight w(∅) is subtracted because ∅ ⊆ sW and ∅ ⊆ sM . Therefore, it is added
twice on the right side of the equation but only once on the left. This provides
us with the two inequalities

hpot(aW ) + hpot(aM )− w(∅) > hpot(bW ) + hpot(bM )− w(∅)

hpot(cW ) + hpot(cM )− w(∅) ≥ hpot(dW ) + hpot(dM )− w(∅).
Since aW = bW and cW = dW we can simplify the inequalities to

hpot(aM ) > hpot(bM )

hpot(cM ) ≥ hpot(dM ).

We know that aM = dM and bM = cM so we replace these values in the
latest inequality and end up with

hpot(aM ) > hpot(bM )

hpot(bM ) ≥ hpot(aM ).

which is a contradiction. So the assumption is not true and therefore the
dimension of the potential heuristic hpot is at least 2.

From Theorem 4.3 follows the 4 states criterion.

Theorem 4.4 (4 States Criterion). Let Π = 〈V, I,O, γ〉 be a planning task. If
for each potential heuristic hpot that is DDA on Π there exist states a, b, c, d in
Π and a partition {W,M} of V such that:

hpot(a) > hpot(b),

hpot(c) ≥ hpot(d),

aW = bW ,

cW = dW ,

aM = dM ,

bM = cM ,

then the correlation complexity of Π is at least 2.
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Note that these states and the partition do not have to be the same for all
DDA potential heuristics.

Proof. We know that the correlation complexity of a task Π is the minimal
dimension over all potential heuristics that are DDA on Π. The condition of the
4 states criterion says that each DDA potential heuristic holds the condition for
Theorem 4.3. Therefore, we can apply Theorem 4.3 on each potential heuristic
that is DDA on Π. We conclude that the dimension of each potential heuristic
that is DDA on Π is at least 2. Therefore, the correlation complexity of Π is at
least 2.

The 4 states criterion is more general than the criteria from Theorems 4.1
and 4.2. To prove that the 4 states criterion is in fact a generalization of the
other two we show that if the criteria from Theorem 4.1 or 4.2 can be used,
then the criterion from Theorem 4.3 can be used as well. To do this, we first
have to prove that the condition of Theorem 4.1, o and its inverse are both
critical, implies that vars(pre(o)) is a proper subset of V . For this, we will use
the following definition and lemma.

Definition 4.5 (cycle-avoiding successor). Let s be a solvable state and s′ ∈
succ(s). We call s′ a cycle-avoiding successor of s if it exists a plan from s′

that does not visit s.
If at least one plan from s′ exists and all plans from s′ visit s we call it a

cycle-inducing successor of s.

In other words, if s′ is a successor of s and s is a landmark for s′ then s′ is
a cycle-inducing successor of s.

With this definition, we can categorize each successor of s. The successor
s′ ∈ succ(s) is either a cycle-avoiding successor of s or a cycle-inducing successor
of s or unsolvable. For a fixed s each successor belongs to exactly one of the
three categories. However, the state s′ can be a cycle-avoiding successor of s
but a cycle-inducing successor of s′′. In the crossing the river task the state
fRcB is a cycle-avoiding successor of frcb but fRcB is a cycle-inducing successor
of fRcb.

Lemma 4.6. Let Π = 〈V, I,O, γ〉 be a planning task in normal form, and
let o and o′ be critical operators of Π that are inverses of each other. Then
vars(pre(o)) ( V .

Proof. Let Π be a planning task in normal form, and let o and o′ be critical
operators of Π that are inverses of each other.

Assume vars(pre(o)) = V . This implies that o is in exactly one state s =
pre(o) applicable. Since o is critical we know that one alive state exists in where
o is critical. Let z be such a state.

Each plan from z includes o because o is critical in z. This implies that
for each state x that is solvable and it exists a path from z to x that does not
include o it holds that o is critical in x. Since o is critical in z there must be
a path that does not include o from z to a state y with o applicable in y (this
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could be the empty path. In that case z = y). Since s is the only state where
o is applicable we conclude s = y. We see that o is critical in s because s is
reachable from z with a path that does not include o.

With o is critical in s and s is the only state where o is applicable we conclude
that sJoK is the only cycle-avoiding successor of s.

Let s′ = pre(o′). We argue analogously that s′Jo′K is the only cycle-avoiding
successor of s′.

With o, o′ inverse of each other and vars(pre(o)) = V we conclude that
s = s′Jo′K and s′ = sJoK.

We, therefore, see that each cycle-free plan from s visits s′ and each cycle-free
plan from s′ visits s which implies a cycle and thereby a contradiction.

We finally conclude that the assumption vars(pre(o)) = V is not true and
therefore vars(pre(o)) ( V holds.

Corollary 4.7. The 4 states criterion is a generalization of the criterion from
Theorem 4.1.

We show that the condition of the criterion from Theorem 4.1 implies the
condition of the 4 states criterion.

Proof. The correlation complexity requires by definition a descending, dead-end
avoiding heuristic. In this proof, we focus on the descending property.

If Π = 〈V, I,O, γ〉 is a planning task in normal form with the operators o
and o′ that are inverse of each other and critical in Π, then for each plan π there
exist states s, sJoK, s′, s′Jo′K that are visited by π (with s visited before sJoK
and s′ visited before s′Jo′K and o applicable in s and o′ applicable in s′). For a
heuristic h to be descending the inequalities h(s) > h(sJoK) and h(s′) > h(s′Jo′K)
have to hold.

Since Π is in normal form and o is the inverse of o′ we conclude vars(eff(o)) =
vars(eff(o′)) =: M and pre(o)M = eff(o′) and pre(o′)M = eff(o), because each
operator in normal form has vars(eff(o)) ⊆ vars(pre(o)).

With o applicable in s and M ⊆ vars(pre(o)) we conclude sM = pre(o)M ,
analogous s′M = pre(o′)M . A similar argument for the effect, with M =
vars(eff(o)) we conclude sJoKM = eff(o), analogous s′Jo′KM = eff(o′). This
implies that sM = s′Jo′KM and s′M = sJoKM .

Let W := V \M . As vars(eff(o)) = vars(eff(o′)) = M we see that sW =
sJoKW and s′W = s′Jo′KW because o and o′ act only on variables in M .

Considering that o is critical. This implies that ∅ 6= eff(o) = M . With
vars(eff(o)) ⊆ vars(pre(o)) and Lemma 4.6 we conclude that M ( V . Therefore,
{W,M} is a partition of V .

This shows that we can use the 4 states criterion because for each heuristic h
that is descending there exist states s, sJoK, s′, s′Jo′K in Π and a partition {W,M}
of V such that:

h(s) > h(sJoK) and h(s′) > h(s′Jo′K) and sW = sJoKW and s′W = s′Jo′KW
and sM = s′Jo′KM and sJoKM = s′M , which is the condition of the 4 states
criterion.
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Corollary 4.8. The 4 states criterion is a generalization of the criterion from
Theorem 4.2.

We show that the condition of the criterion from Theorem 4.2 implies the
condition of the 4 states criterion.

Proof. The correlation complexity requires by definition a descending, dead-end
avoiding heuristic.

If Π = 〈V, I,O, γ〉 is a planning task in normal form with the operator o
that is dangerous and critical in Π then for each DDA heuristic h there exist
reachable states s, sJoK, s′, s′JoK with s, sJoK, s′ alive and s′JoK unsolvable and
o applicable in s and s′ and h(s) > h(sJoK) and h(s′JoK) ≥ h(s′).

Let M := vars(pre(o)) and W := V \ M . With Π is in normal form we
conclude sM = s′M and sJoKM = s′JoKM . Because of eff(o) ⊆ pre(o), applying
the operator o does not affect any variable in W . Therefore, sW = sJoKW and
s′W = s′JoKW .

It remains to show that {M,W} is a partition of V . Therefore, we assume
vars(pre(o)) = V . This implies that pre(o) is the only state where o is applicable
and therefore sJoK = s′JoK but the one is solvable while the other is unsolvable.
We conclude that the assumption is wrong and that vars(pre(o)) ( V . Con-
sidering that o is critical. This implies that ∅ 6= eff(o). Since o is in normal
form we know that vars(eff(o)) ⊆ vars(pre(o)) and therefore ∅ ( vars(pre(o)).
So with M = vars(pre(o)) we conclude ∅ ( M ( V . Therefore, {M,W} is a
partition of V .

This shows that we can use the 4 states criterion, because for each heuristic h
that is DDA there exists states s, sJoK, s′JoK, s′ in Π and a partition {W,M} = V
such that:

h(s) > h(sJoK) and h(s′JoK) ≥ h(s′) and sW = sJoKW and s′JoKW = s′W and
sM = s′M and sJoKM = s′JoKM

We proved that the 4 states criterion is a generalization of the criteria from
Theorem 4.1 and Theorem 4.2. So the 4 states criterion detects all cases that
the other two detect. Does the 4 states criterion detect a case where none of
the old ones does? The answer is yes. We can show that with the following
example.
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Figure 6: State space of a task with inverse macros. A node with label xy
represents the state {v1 7→ x, v2 7→ y}.

V ={v1, v2}
dom(v1) ={0, 1}
dom(v2) ={0, 1, 2, 3}

O ={〈{v1 7→ 0, v2 7→ 0}, {v2 7→ 1}〉,
〈{v2 7→ 1}, {v2 7→ 3}〉,
〈{v1 7→ 0, v2 7→ 3}, {v1 7→ 1}〉,
〈{v1 7→ 1, v2 7→ 3}, {v2 7→ 2}〉,
〈{v2 7→ 2}, {v2 7→ 0}〉}

I ={v1 7→ 0, v2 7→ 0}
γ ={v1 7→ 1, v2 7→ 0}

In Figure 6 it is easy to see that each operator in this task is critical, but no
two operators are inverse of each other. Therefore, we cannot use the criteria
from Theorem 4.1 and Theorem 4.2 on this task. However, if we do not only
look at individual critical operators but also at sequences of operators, called
macros, we see that the macro from 00 to 03 and the macro from 13 to 10 are
inverse of each other and critical.

If we extend the arguments from Seipp et al. (2016) from only operators to
macros we can detect that the correlation complexity of this example is at least
2 as well.

However, there is also another example where the new criterion works but
the old ones do not. In Figure 7 we see the state space of a task without any
dangerous operator (each is reversible) nor any critical operator. For each state
s there are two plans from s that do not share any operator.
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Figure 7: State space of a task that does not contain any dangerous nor critical
operator. A node with label xyz represents the state {v1 7→ x, v2 7→ y, v3 7→ z}.
The goal state is labeled 111.

For a heuristic h to be descending it has to hold that h(000) > h(110) >
h(111) or h(000) > h(011) > h(111). We assume the latter case. We could
argue with the other analogously due to the symmetry of the task. Considering
all the plans from the states 100, 010 and 001 we see that the state 000 is visited
by all of them. We conclude that h(100) > h(000) and h(010) > h(000) and
h(001) > h(000). With transitivity we conclude h(010) > h(011).

Now we can use the 4 states criterion with a = 001, b = 000, c = 010, d = 011
and W = {v1, v2}, M = {v3} for the case that the DDA potential heuristics
holds h(000) > h(011) > h(111). For the case that the DDA potential heuristics
holds h(000) > h(110) > h(111) we have a = 100, b = 000, c = 010, d = 110
and W = {v2, v3}, M = {v1}.

With the 4 states criterion, we have a sufficient condition for a potential
heuristic to have a dimension of at least 2. Is it also a necessary condition? The
answer is no. Consider the state space in Figure 8.

111

101110 011

000start

Figure 8: State space of a task with correlation complexity of 2 that is not
detected by the criterion from Theorem 4.3. A node with label xyz represents
the state {v1 7→ x, v2 7→ y, v3 7→ z}. The goal state is labeled 111.

We cannot use the criterion from Theorem 4.3 because it would require a
partition of {W,M} of V . Since |V | = 3 either M or W contains 2 variables.
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We assume W = {v1, v2} (we can argue analogously for the assumption M =
{v1, v2}). Looking at the states in the task we see that only one pair has the
same projection on W . Therefore, there are no 4 states a, b, c, d with aW = bW

and cW = dW (analogously aM = dM and bM = cM ). We can argue analogous
for all possible partitions {W,M} of V due to the symmetry of the task.

4.2 8 States Criterion

We will introduce a concept called canonical upward projections to formulate
the 8 states criterion to detect that a task has correlation complexity larger than
2. The canonical upward projection is a special case of upward projection. This
is similar to the Pm construction by Haslum (2009) and to the ΠC compilation
by Steinmetz and Hoffmann (2018). We discuss the similarities and differences
later.

Definition 4.9 (Upward Projection). Let Π = 〈V, I,O, γ〉 a planning task, s a
state in Π and M a superset of the state variables M ) V .

We call sM an upward projection of s on M if sM is an assignment of the
variables in M and the (downward) projection of sM on V equals the original
state.

(sM )
V

= s

The upward projection does not specify what the assignments of the variables
of M \V are nor what the corresponding domains are. We focus on one specific
family of upward projections that project on a canonical extension of the state
variables V .

Definition 4.10 (Canonical Extension). Let V be a set of state variables with
finite domains and k ∈ N. We call the set V ≤k the canonical extension of size
k of V if V ≤k ⊇ V and there exists a bijective mapping f from {W ∈ Pow(V ) |
|W | ≤ k} to V ≤k such that

dom(f(W )) =×
v∈W

dom(v).

where Pow(V ) is the power set of V i.e. the set that contains all subsets of V .

We denote the variable that corresponds to the set {vi1 , vi2 , . . . , vim} as
vi1,i2,...,im . Note that the canonical extension is almost unique because the
cartesian product is not commutative so it makes a difference in which order

×v∈W dom(v) iterates. However, we assume a fixed order for the state variables
to iterate and with this assumption the canonical extension is unique. The up-
ward projection of a state on the canonical extension is still not unique because
the assignments of the variables of M \V are ambiguous. The canonical upward
projection is an unique upward projection on a canonical extension.

Definition 4.11 (Canonical Upward Projection). Let V = {v1, . . . , vn} be a
set of state variables with finite domains, s = {v1 7→ d1, . . . , vn 7→ dn} a state
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and k ∈ N. We call an upward projection of s on V ≤k the canonical upward
projection if for each vi1,i2,...,im ∈ V ≤k:

sV
≤k

(vi1,i2,...,im) = 〈s(vi1), s(vi2), . . . , s(vim)〉

We use the shorthand notation s≤k. With Π≤k we denote the planning task
Π where each state is replaced with its canonical upward projection.

In the crossing the river task the set of state variables is

V = {vfox, vrabbit, vcarrot, vboat}

the corresponding canonical extension is

V ≤2 ={vfox, vrabbit, vcarrot, vboat,
vfox,rabbit, vfox,carrot, vfox,boat,

vrabbit,carrot, vrabbit,boat, vcarrot,boat}

with the domains

dom(vfox) = dom(vrabbit) = dom(vcarrot) = dom(vboat) = {West,East}

and dom(v) = {West,East} × {West,East} for all other variables in v ∈ V ≤2 \
V . For example the canonical upward projection of the state s = {vfox 7→
West, vrabbit 7→ East, vcarrot 7→West, vboat 7→ East} on V ≤2 is

s≤2 ={vfox 7→West, vrabbit 7→ East, vcarrot 7→West, vboat 7→ East,

vfox,rabbit 7→ 〈West,East〉, vfox,carrot 7→ 〈West,West〉,
vfox,boat 7→ 〈West,East〉, vrabbit,carrot 7→ 〈East,West〉,
vrabbit,boat 7→ 〈East,East〉, vcarrot,boat 7→ 〈West,East〉}

The most significant difference between the canonical upward projection and
the Pm construction by Haslum (2009) or the ΠC compilation by Steinmetz and
Hoffmann (2018) is that the canonical upward projection does not describe a
valid planning task. The operators are not fitting to the resulting state space
(it would be possible to extend the definition in a way that the operators are
projected upward as well. However, this would be rather cumbersome and
unnecessary since we do not need the operators for our arguments).

The additional variables in a ΠC compilation have a binary domain and
each additional variable represents a partial assignment. In other words, a con-
junction of facts. The additional variables in the canonical upward projection
represent a conjunction of variables. The domain of such an additional variable
is the cartesian product of the corresponding domains. The set of partial as-
signments that are considered by a ΠC compilation, is not further specified. If C

30



contains all partial assignments of size ≤ k, then we can interpret the additional
facts from the ΠC compilation as the translation into STRIPS of the additional
facts from Π≤k.

The Pm construction is defined on propositional STRIPS tasks, while the
canonical upward projection and the ΠC compilation are defined on tasks in
finite domain representation. However, the Pm construction considers all partial
assignments of size ≤ k and is in this regard similar to the canonical upward
projection.

With the canonical upward projection we can artificially reduce the dimen-
sion of a potential heuristic because we have facts in the canonical upwards
projection that encode multiple facts at once.

Theorem 4.12. Let Π = 〈V, I,O, γ〉 be a planning task. If there exists a
potential heuristic hpot of dimension k then there exists a potential heuristic
h′pot of dimension 1 such that hpot(s) = h′pot(s≤k) for each state s in Π.

Proof. We remember that hpot(s) =
∑
p∈P(w(p) · [p ⊆ s]). For each partial

assignment p = {vi1 7→ di1 , . . . , vim 7→ dim} that agrees with s with |p| ≤ k
there exists a corresponding fact f = (vi1,...,im 7→ 〈di1 , . . . , dim〉) in the canon-
ical upwards projection s≤k and therefore a partial assignment p′ = {f} of
size 1. Let P ′ be the set of all possible partial assignments of the canon-
ical upward projection. By choosing w(p′) = w(p) for each p we see that
hpot(s) =

∑
p∈P(w(p) · [p ⊆ s]) =

∑
p′∈P′(w(p′) · [p′ ⊆ s≤k]) = h′pot(s≤k)

Looking at the contrapositive of Theorem 4.12 we see that we can use the
canonical upward projection on V ≤k to check if a given heuristic is impossible
to represent as a potential heuristic of dimension k. We now use this to create
our next criterion.

Theorem 4.13. Let Π = 〈V, I,O, γ〉 be a planning task, and let hpot be a
potential heuristic on Π. If there exist states a, b, c, d, e, f, g, r in Π≤2 and a
partition {A,B,C} of V ≤2 such that:

hpot(a) > hpot(b), hpot(c) > hpot(d), hpot(e) > hpot(f), hpot(g) > hpot(r),

aA = bA, cA = dA, eA = fA, gA = rA,

aB = dB , bB = cB , eB = rB , fB = gB ,

aC = rC , bC = gC , cC = fC , dC = eC ,

then the dimension of hpot is at least 3.

Proof. Assume there exists a potential heuristic h′pot of dimension 1 on the task
Π≤2 and a partition {A,B,C} of V ≤2 such that:

hpot(a) > hpot(b) and hpot(c) > hpot(d) and hpot(e) > hpot(f) and hpot(g) >
hpot(r) and

aA = bA and cA = dA and eA = fA and gA = rA and
aB = dB and bB = cB and eB = rB and fB = gB and
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aC = rC and bC = gC and cC = fC and dC = eC . The assumption
implies that h′pot(a) = h′pot(aA)+h′pot(aB)+h′pot(aC)−2 ·w(∅) (analogous for
b, c, d, e, f, g, r). This provides us four inequalities (the −2 · w(∅) is not written
in the following because it cancels out immediately). The first one is:

h′pot(aA) + h′pot(aB) + h′pot(aC) > h′pot(bA) + h′pot(bB) + h′pot(bC)

with aA = bA we can simplify it to

h′pot(aB) + h′pot(aC) > h′pot(bB) + h′pot(bC).

The second inequality is:

h′pot(cA) + h′pot(cB) + h′pot(cC) > h′pot(dA) + h′pot(dB) + h′pot(dC)

with cA = dA we can simplify it to

h′pot(cB) + h′pot(cC) > h′pot(dB) + h′pot(dC).

We know that cB = bB and dB = aB so we replace these values

h′pot(bB) + h′pot(cC) > h′pot(aB) + h′pot(dC).

The third inequality is:

h′pot(eA) + h′pot(eB) + h′pot(eC) > h′pot(fA) + h′pot(fB) + h′pot(fC)

with eA = fA we can simplify it to

h′pot(eB) + h′pot(eC) > h′pot(fB) + h′pot(fC).

We know that eC = dC and fC = cC so we replace these values

h′pot(eB) + h′pot(dC) > h′pot(fB) + h′pot(cC).

The fourth inequality is:

h′pot(gA) + h′pot(gB) + h′pot(gC) > h′pot(rA) + h′pot(rB) + h′pot(rC)

with gA = rA we can simplify it to

h′pot(gB) + h′pot(gC) > h′pot(rB) + h′pot(rC).

We know that gB = fB and gC = bC and hB = eB and rC = aC so we replace
these values

h′pot(fB) + h′pot(bC) > h′pot(eB) + h′pot(aC).

By adding the first and the second inequality we get

h′pot(aB) + h′pot(aC) + h′pot(bB) + h′pot(cC)

>

h′pot(bB) + h′pot(bC) + h′pot(aB) + h′pot(dC).

Which we simplify to

h′pot(aC) + h′pot(cC) > h′pot(bC) + h′pot(dC).
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By adding the third and the fourth inequality we get

h′pot(eB) + h′pot(dC) + h′pot(fB) + h′pot(bC)

>

h′pot(fB) + h′pot(cC) + h′pot(eB) + h′pot(aC).

Which we simplify to

h′pot(dC) + h′pot(bC) > h′pot(cC) + h′pot(aC).

We see that the two inequalities

h′pot(aC) + h′pot(cC) > h′pot(bC) + h′pot(dC)

h′pot(dC) + h′pot(bC) > h′pot(cC) + h′pot(aC)

form a contradiction. Therefore, the assumption must be false. So we conclude
that there exists no potential heuristic of dimension 1 on task Π≤2. With the
contrapositive of Theorem 4.12 we conclude that no potential heuristic hpot on
Π with dimension 2 exists. Therefore, the dimension of hpot is at least 3.
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Figure 9: Left: State space of the Gray code counter task of size 3. A node
with label xyz represents the state {v1 7→ x, v2 7→ y, v3 7→ z}. Right: Canonical
upward projection of the state space of the Gray code counter task. The num-
bers in the second row inside a node represent the assignments of the variables
v1,2, v1,3, v2,3 and 0 is the shorthand notation for 〈0, 0〉, 1 for 〈0, 1〉, 2 for 〈1, 0〉,
3 for 〈1, 1〉. (The following colored underlining indicates which original fact cor-
respond to which added fact.) For example the state {v1 7→ 1, v2 7→ 0, v3 7→ 1}
is represented as the node with the label 101 in the left figure and the canon-
ical upward projection of it is {v1 7→ 1, v2 7→ 0, v3 7→ 1, v1,2 7→ 〈1, 0〉, v1,3 7→
〈1, 1〉, v2,3 7→ 〈0, 1〉} and is represented as the node with the label 101231 in the
right figure.
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Theorem 4.14 (8 States Criterion). Let Π = 〈V, I,O, γ〉 be a planning task. If
for each potential heuristic hpot that is DDA on Π there exist states a, b, c, d,
e, f , g and r in Π≤2 and a partition {A,B,C} of V ≤2 such that:

hpot(a) > hpot(b), hpot(c) > hpot(d), hpot(e) > hpot(f), hpot(g) > hpot(r),

aA = bA, cA = dA, eA = fA, gA = rA,

aB = dB , bB = cB , eB = rB , fB = gB ,

aC = rC , bC = gC , cC = fC , dC = eC ,

then the correlation complexity of Π is at least 3.

Proof. We know that the correlation complexity of a task Π is the minimal
dimension over all potential heuristics that are DDA on Π. The condition of
the 8 states criterion says that each DDA potential heuristic holds the condition
for Theorem 4.13. Therefore, we can apply Theorem 4.13 on each potential
heuristic that is DDA on Π. We conclude that the dimension of each potential
heuristic that is DDA on Π is at least 3. Therefore, the correlation complexity
of Π is at least 3.

Seipp et al. (2016) investigated the correlation complexity of the Gray code
counter of size 3. They have proven that the correlation complexity of that task
is exactly 3. We can also use the 8 states criterion to prove that the correlation
complexity of this task is at least 3.

Looking at Figure 9, we see that we can apply the 8 states criterion with
the following states (the colored underlining indicates which digit belongs to
which set of the partition) a = 000000, b = 001011, c = 011113, d = 010102,
e = 110322, f = 111333, g = 101231 and r = 100220 and the subsets of V ≤2

as A = {v1, v2, v1,2}, B = {v1,3}, C = {v3, v2,3}. Each DDA heuristic fulfills the
inequalities for the 8 states criterion on these states.
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5 Planning and Linear Algebra

In this chapter, we see how we can use linear algebra to get a different view on the
planning tasks and thereby create a new criterion for a correlation complexity
of at least 2. In Figures 1 and 3 as well as in Figure 9 we see the state space
displayed in a space with |V | dimensions. In these examples is the domain size
for each variable 2. In this chapter, we restrict ourselves to such tasks. We can
translate each SAS+ planning task into an equivalent5 planning task where each
state variable has a domain of size 2. In a domain with exactly two elements,
we can arbitrarily substitute one element with the number 0 and the other with
the number 1.

For each fact v 7→ d in the original task we create a state variable bv 7→d with
dom(bv 7→d) = {0, 1}. As an example, we translate the task from Figure 6 into
this form.

V ={bv1 7→0, bv1 7→1, bv2 7→0, bv2 7→1, bv2 7→2, bv2 7→3}
dom(b) ={0, 1} for all b ∈ V

O ={〈{bv1 7→0 7→ 1, bv2 7→0 7→ 1, bv2 7→1 7→ 0}, {bv2 7→0 7→ 0, bv2 7→1 7→ 1}〉,
〈{bv2 7→1 7→ 1, bv2 7→3 7→ 0}, {bv2 7→1 7→ 0, bv2 7→3 7→ 1}〉,
〈{bv1 7→0 7→ 1, bv2 7→3 7→ 1, bv1 7→1 7→ 0}, {bv1 7→1 7→ 1, bv1 7→0 7→ 0}〉,
〈{bv1 7→1 7→ 1, bv2 7→3 7→ 1, bv2 7→2 7→ 0}, {bv2 7→2 7→ 1, bv2 7→3 7→ 0}〉,
〈{bv2 7→2 7→ 1, bv2 7→0 7→ 0}, {bv2 7→0 7→ 1, bv2 7→2 7→ 0}〉}

I ={bv1 7→0 7→ 1, bv1 7→1 7→ 0, bv2 7→0 7→ 1, bv2 7→1 7→ 0, bv2 7→2 7→ 0, bv2 7→3 7→ 0}
γ ={bv1 7→1 7→ 1, bv2 7→0 7→ 1}

Before we dive into linear algebra we want to point out that, instead of
iterating the sum over all possible partial assignments, to evaluate the potential
heuristic we can instead iterate over the subsets of V .

Lemma 5.1. Let hpot be a potential heuristic of dimension d and s be a state.
Then:

hpot(s) =
∑
p∈P

(w(p) · [p ⊆ s]) =
∑

U∈Pow(V )
|U |≤d

w({u 7→ s(u) | u ∈ U}).

Proof. The expression [p ⊆ s] evaluates to 1 if and only if (u 7→ s(u)) is an
element of p for each u ∈ vars(p). We define P ′(s) := {{u 7→ s(u) | u ∈ U} |
U ⊆ V } which is the set of partial assignments that agree with the state s. This

5There is a bijection from each plan in the original task to each plan in the translated task.
However, the size of the state space grows exponentially.
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is trivially a subset of all possible partial assignments P ′(s) ⊆ P. We split the
sum into two parts∑

p∈P
(w(p) · [p ⊆ s]) =

∑
p∈P′(s)

(w(p) · [p ⊆ s]) +
∑

p∈P\P′(s)

(w(p) · [p ⊆ s]).

The first part iterates over all partial assignments that agree with s and the
second part iterates over all that do not agree with s. Therefore, we can replace
[p ⊆ s] with a constant 1 in the first one and a constant 0 in the second. There
we can ignore the second part as it sums up to 0 and the remaining part we
simplify∑

p∈P
(w(p) · [p ⊆ s]) =

∑
p∈P′(s)

(w(p) · 1) +
∑

p∈P\P′(s)

(w(p) · 0) =
∑

p∈P′(s)

w(p).

We know for each p ∈ P ′(s) that p = {u 7→ s(u) | u ∈ vars(p)} and for each
subset U ⊆ V there is exactly one partial assignment p with vars(p) = U that
agrees with s and that is the projection sU . So we conclude∑

p∈P′(s)

w(p) =
∑

U∈Pow(V )

w({u 7→ s(u) | u ∈ U}).

We now consider the dimension d of the heuristic and split the sum into two
parts. The first iterates over the subsets of V of size less or equal to d and the
second iterates over the others, the subsets of size greater than d.

hpot(s) =
∑

U∈Pow(V )
|U |≤d

w({u 7→ s(u) | u ∈ U}) +
∑

U∈Pow(V )
|U |>d

w({u 7→ s(u) | u ∈ U})

With the definition of the dimension of a heuristic, we know that the weight of
a partial assignment w(p) = 0 for all p ∈ P with |p| > d. Therefore, the second
part sums up to 0. We conclude:

hpot(s) =
∑

U∈Pow(V )
|U |≤d

w({u 7→ s(u) | u ∈ U}).

Corollary 5.2. Let hpot be a potential heuristic of dimension 1 and s be a state.
Then:

hpot(s) =
∑
v∈V

w({v 7→ s(v)}) + w(∅)

Proof. As hpot is of dimension 1 we know from Lemma 5.1 that

hpot(s) =
∑

U∈Pow(V )
|U |≤1

w({u 7→ s(u) | u ∈ U})
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We split this sum into two parts. The first iterates over all subsets of V of size
1 and the second over all subsets of size 0. As ∅ is the only subset of V of size
0 we get

hpot(s) =
∑

U∈Pow(V )
|U |=1

w({u 7→ s(u) | u ∈ U}) + w(∅).

With |U | = 1 we conclude that each U in the sum is of the form {v} with v ∈ V .
Since {u 7→ s(u) | u ∈ {v}} = {v 7→ s(v)} we conclude

hpot(s) =
∑
v∈V

w({v 7→ s(v)}) + w(∅).

5.1 Vectors between Points and Transitions between States

Looking at the Figure 1, we see that the transition system of the task is repre-
sented in a 4-dimensional space. Each dimension corresponds to a state variable
and each state corresponds to a single point in this space.
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Figure 10: State space for the crossing the river task with substituted domain
values. (Compare Figure 1)
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Looking at the representation of the crossing the river task in Figure 10,
we see that the states 0000 and 0101 are connected. By viewing the states as
points in the 4-dimensional space, we can interpret the transitions as vectors.
So the vector

−→
t1 = (0, 1, 0, 1)> is the vector from state 0000 to 0101.

Note that we are not only talking about state transitions (arcs in the state
space that are induced by an operator), but the transition from any state to any
state. Independent of whether or not the one is even reachable from the other.
The vector

−→
t2 = (0,−1, 1, 0)> is the vector from state 0101 to 0011.

We call the translation of two states into a vector the vectorization. We
define it formally:

Definition 5.3 (Vectorization). Let Π = 〈V, I,O, γ〉 a planning task with only

binary domains. The vector
−→
t ∈ R|V | is the vectorization from the state s to

the state s′ where −→
t [i] := s′(vi)− s(vi)

for each i ∈ {1, . . . , |V |}.

As notation we use
−−→
ts,s′ for the vectorization from state s to state s′. This

definition implies an order for the state variables. We can choose an arbitrary
one for that. We denote this order with an index function idx. As shorthand
notation we use

−→
t [v] =

−→
t [idx(v)]. The vector represents the change that a

transition from s to s′ induces.

5.2 Weight of Vectors and State Variables

For a potential heuristic hpot(s) =
∑
p∈P(w(p) · [p ⊆ s]), we define the weight

of a state variable v ∈ V as

w(v) := w({v 7→ 1})− w({v 7→ 0}).

Based on the weight of a state variable, we define the weight of a vector
−→
t as

w(
−→
t ) :=

∑
v∈V

w(v) · −→t [v].

Note that the weight function w is now overloaded and accepts partial as-
signments, state variables, and vectors as input.

Theorem 5.4. Let h be a potential heuristic of dimension 1 and
−−→
ts,s′ the vec-

torization from s to s′ with s, s′ being states of a planning task with only binary
domains. Then:

w(
−−→
ts,s′) = h(s′)− h(s).

Proof. With h being of dimension 1, we know from Corollary 5.2 that

h(s′)− h(s) =
∑
v∈V

w({v 7→ s′(v)})−
∑
v∈V

w({v 7→ s(v)}).
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Both sums iterate over the same set so we can combine them.

h(s′)− h(s) =
∑
v∈V

w({v 7→ s′(v)})− w({v 7→ s(v)}).

Considering an individual summand

w({v 7→ s′(v)})− w({v 7→ s(v)}) =


0 if s′(v) = s(v)

w(v) · 1 if s′(v) = 1 and s(v) = 0

w(v) · (−1) if s′(v) = 0 and s(v) = 1

Looking at the individual cases:

• if s′(v) = s(v) then s′(v)− s(v) = 0

• if s′(v) = 1 and s(v) = 0 then s′(v)− s(v) = 1

• if s′(v) = 0 and s(v) = 1 then s′(v)− s(v) = −1

With these implications of the conditions, we conclude that

w(v 7→ s′(v))− w(v 7→ s(v)) = w(v) · (s′(v)− s(v)) = w(v) · −−→ts,s′ [v].

Plugging this equivalent summand into the equation, we get

h(s′)− h(s) =
∑
v∈V

w(v) · −−→ts,s′ [v] = w(
−−→
ts,s′).

The vectorization of any two states is an element of R|V |. The function w
over the vectors in R|V | is preserving over addition and scalar multiplication. In
the words of linear algebra: the function w : R|V | → R is a linear map (Fischer,
2010).

Definition 5.5 (Linear Map). Let n ∈ N. A function f : Rn → R is a linear
map if for each two vectors −→x ,−→y ∈ Rn and scalar k ∈ K the conditions

f(−→x +−→y ) = f(−→x ) + f(−→y )

and
f(k · −→x ) = k · f(−→x )

are satisfied.

In our case the function w maps from the vector space R|V | to the vector
space R.

Theorem 5.6. The weight function, w : R|V | → R, is a linear map.
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Proof. Let −→x ,−→y be vectors in R|V | and k ∈ R. This chain of equations shows
the first condition:

w(−→x +−→y ) =
∑
v∈V

(w(v) · (−→x [v] +−→y [v]))

=
∑
v∈V

(w(v) · −→x [v] + w(v) · −→y [v]))

=
∑
v∈V

w(v) · −→x [v] +
∑
v∈V

w(v) · −→y [v]

= w(−→x ) + w(−→y )

(1)

This chain of equations shows the second condition:

w(k · −→x ) =
∑
v∈V

(w(v) · (k · −→x [v]))

= k ·
∑
v∈V

(w(v) · (−→x [v]))

= k · w(−→x )

(2)

In linear algebra, the span of a set S of vectors is defined as the set of all
linear combinations of vectors from S (Fischer, 2010). For our purposes, we
want to focus on the linear combinations with non-negative coefficients. This is
called the convex cone cone(S) (in our case it is a polyhedral cone because we
generate it with a finite amount of vectors).

Definition 5.7 (convex cone). Let n ∈ N and S be a set of vectors in Rn. We
call the set

cone(S) := {
n∑
i=1

λi · −→xi | −→xi ∈ S, λi ∈ R≥0}

the convex cone of S and the elements of S are called the generators of the
convex cone. (Dattorro, 2005)

Definition 5.8 (overlapping). We say the convex cone of the sets of vectors S
and S′ are overlapping if

cone(S) ∩ cone(S′) ) {−→0 }.

The convex cone is always a subset of the span. For example the span
of S = {(0, 1)>, (−1, 0)>} is the entire two-dimensional plane but the convex
cone of S is only the 2rd quadrant (including the edges). The convex cone of
S′ = {(0, 2)>, (0.3, 0)>} is overlapping with cone(S) because the vector (0, 1)>

is in both convex cones.

Lemma 5.9. Let X ′ and Y ′ be sets of vectors in Rn where cone(X ′) and
cone(Y ′) are overlapping and X ⊇ X ′ and Y ⊇ Y ′. Then cone(X) and cone(Y )
are overlapping.
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Proof. With the definition of the convex cone we see that cone(X) ⊇ cone(X ′)
and cone(Y ) ⊇ cone(Y ′) Since cone(X ′) and cone(Y ′) are overlapping we know
that there exists a element −→z ∈ cone(X ′)∩cone(Y ′) with −→z 6= 0. This −→z is also
element in cone(X) because it is a superset of cone(X ′). Analogous for cone(Y ).
We conclude −→z ∈ cone(X) ∩ cone(Y ) and therefore cone(X) and cone(Y ) are
overlapping.

This means that if we want to show that two convex cones C and G are
overlapping it is sufficient to prove that at least one convex cone C ′ that is
contained in C overlaps with at least one convex cone G′ that is contained in
G.

A convex cone is fully defined by its generators. With the following Theorem
and Corollaries, we see that if the sign of a linear mapping to R is the same for
all generators then it is the same for all vectors in the convex cone (except the
zero vector).

Theorem 5.10. Let S be a set of vectors in Rn and the function f : Rn → R
a linear mapping. If f(−→x ) > 0 for each −→x ∈ S, then f(−→y ) > 0 for all −→y ∈
cone(S) \ {−→0 }.

Proof. With −→y ∈ cone(S) we know that it is of the form

−→y =

n∑
i=1

λi · −→xi

with n = |S|, −→xi ∈ S and λi ≥ 0 for all i ∈ {1, . . . , n}. Since f is a linear
mapping we know that

f(−→y ) =

n∑
i=1

λi · f(−→xi).

As f(xi) > 0 and λi ≥ 0 for each i ∈ {1, . . . , n} we know that each summand is

non-negative λi ·f(−→xi) ≥ 0. Since −→y ∈ cone(S)\{−→0 } we know that −→y 6= −→0 and
therefore there is at least one λi 6= 0. This implies that at least one summand
is strictly positive. A sum of non-negative and strictly positive summands is
strictly positive, therefore f(−→y ) > 0.

Corollary 5.11. Let S be a set of vectors in Rn and the function f : Rn → R
a linear mapping. If f(−→x ) < 0 for each −→x ∈ S then f(−→y ) < 0 for all −→y ∈
cone(S) \ {0}.

Proof. From the condition we know that f(−→x ) < 0 for each −→x ∈ S. Therefore,
−f(−→x ) > 0 for each −→x ∈ S. With −f being a linear mapping and Theorem
5.10 we conclude that −f(−→y ) > 0 for each −→y ∈ cone(S) \ {0}. We conclude
f(−→y ) < 0 for each −→y ∈ cone(S) \ {0}.

Corollary 5.12. Let S be a set of vectors in Rn, the function f : Rn → R
a linear mapping. If f(−→x ) ≥ 0 for each −→x ∈ S then f(−→y ) ≥ 0 for all −→y ∈
cone(S) \ {0}.
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Proof. With −→y ∈ cone(S) we know that −→y is of the form

−→y =

n∑
i=1

λi · −→xi

with n = |S|, −→xi ∈ S and λi ≥ 0 for all i ∈ {1, . . . , n}. Since f is a linear
mapping we know that

f(−→y ) =

n∑
i=1

λi · f(−→xi).

As f(xi) > 0 and λi ≥ 0 for each i ∈ {1, . . . , n} we know that each summand
is non-negative λi · f(−→xi) ≥ 0. Therefore, the sum is non-negative and hence
−→y =

∑n
i=1 λi ·

−→xi ≥ 0.

Whit this corollary we can detect that the correlation complexity of the
task in Figure 8 is at least 2. The vector −→o1 = (1, 1, 1)> encodes the transition
from the initial state to the goal state. Each of the vectors −→o2 = (1, 1, 0)>,
−→o3 = (1, 0, 1)> and −→o4 = (0, 1, 1)> encode a transition that corresponds to a
dangerous operator. They encode the transitions from the initial state to the
dead-ends.

With 0.5 · −→o2 + 0.5 · −→o3 + 0.5 · −→o4 = −→o1 we see that −→o1 is an element of
cone({−→o2,−→o3 ,−→o4}). For each DDA heuristic of dimension 1 on this task the
weight of −→o1 has to be negative and the weights of −→o2, −→o3 and −→o4 have to be
non-negative which contradicts Corollary 5.12.

We now introduce the red-blue-split (RB-split), which categorizes all vector-
ized transitions of a state space topology. The blue set B contains all vectorized
transitions where the transition improves the heuristic value and the red set
R all the others. The RB-split helps us to connect the convex cones with 1-
dimensional potential heuristics.

Definition 5.13 (RB-split). Let Π = 〈V, I,O, γ〉 be a planning task with only
binary domains, 〈S, h〉 be a state space topology of Π with S = 〈S,E,G, s0〉.
We call the tuple 〈R,B〉 the RB-split of Π with h if R = {−−→ts,s′ | s, s′ ∈
S, h(s′)− h(s) ≥ 0} and B = {−−→ts,s′ | s, s′ ∈ S, h(s′)− h(s) < 0}.

Theorem 5.14. Let h be a potential heuristic on a planning task Π = 〈V, I,O, γ〉
in normal form with binary domains and 〈R,B〉 the RB-split of Π with h. If
dim(h) = 1 then cone(R) and cone(B) are not overlapping.

Proof. With h being of dimension 1 and Theorem 5.4 we know that h(s′)−h(s) =

w(
−−→
ts,s′) for each s, s′ ∈ S. Therefore, we know that w(−→r ) ≥ 0 for each −→r ∈ R

and w(
−→
b ) < 0 for each

−→
b ∈ B. With Corollary 5.2 and Corollary 5.11 we

know that w(
−→
r′ ) ≥ 0 for each

−→
r′ ∈ cone(R) \ {0} and w(

−→
b′ ) < 0 for each

−→
b′ ∈ cone(B) \ {0}. Assume −→x ∈ cone(R) ∩ cone(B) with −→x 6= 0. This implies
that w(−→x ) ≥ 0 because −→x ∈ cone(R) and w(−→x ) < 0 because −→x ∈ cone(B).
This is a contradiction. We conclude that cone(R)∩cone(B) = {0} and therefore
cone(R) and cone(B) are not overlapping.
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With Lemma 5.9 and the contrapositive of Theorem 5.14 we create an even
more general criterion.

Theorem 5.15. Let h be a potential heuristic on the planing task Π, 〈R,B〉 the
RB-split of Π with h. Let R′ ⊆ cone(R) and B′ ⊆ cone(B). If the convex cones
cone(R′) and cone(B′) are overlapping then the dimension of h is at least 2.

Proof. The overlapping of the convex cones cone(R′) and cone(B′) implies with
cone(R′) ⊆ cone(R), cone(B′) ⊆ cone(B) and Lemma 5.9 that the convex cones
of R and B are overlapping. This implies with the contrapositive of Theorem
5.14 that dim(h) 6= 1. We conclude that the dimension of h is at least 2.

Theorem 5.16 (RB-spilt criterion). Let Π be a planning task. If for each

potential heuristic hpot that is DDA on Π there exists a −→x 6= −→0 such that
−→x ∈ cone(R) ∩ cone(B), where 〈R,B〉 is the RB-split of Π with hpot, then the
correlation complexity of Π is at least 2.

Proof. The existence of −→x 6= −→0 such that −→x ∈ cone(R) ∩ cone(B) implies that
cone(R) and cone(B) are overlapping. This implies, with the contrapositive of
Theorem 5.14 that dim(h) 6= 1. We conclude that the dimension of each hpot

that is DDA on Π is at least 2. Therefore, the correlation complexity of Π is at
least 2.

Corollary 5.17. The RB-split criterion is a generalization of the 4 states cri-
terion.

We show that the condition of the 4 states criterion from Theorem 4.1 implies
the condition of the RB-split criterion.

Proof. Let Π = 〈V, I,O, γ〉 be a planning task. Without loss of generality, we
assume that Π is a planning task with only binary domains. If for each potential
heuristic hpot that is DDA on Π there exist states a, b, c, d in Π and a partition
{W,M} of V such that:

hpot(a) > hpot(b),

hpot(c) ≥ hpot(d),

aW = bW ,

cW = dW ,

aM = dM ,

bM = cM .

We show that the vector
−→
ta,b is not the zero vector

−→
0 and in both cones

cone(R) and cone(B).

The inequalities imply that the vector
−→
ta,b is an element of B and the vector

−→
td,c is an element of R for each RB-split with a potential heuristic hpot that is

DDA on Π. The strict inequality implies
−→
ta,b 6=

−→
0 .
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The vector
−→
ta,b is defined as

−→
ta,b[v] = b(v)− a(v) and

−→
td,c[v] = c(v)− d(v) for

all v ∈ V .
We know from aW = bW and cW = dW that

−→
ta,b[v] =

−→
td,c[v] = 0 for each

v ∈ W . With aM = dM and bM = cM , we conclude that
−→
ta,b[v] =

−→
td,c[v] for all

v ∈M . This implies
−→
ta,b =

−→
td,c.

Therefore
−→
ta,b ∈ cone(R) ∩ cone(B) \ {−→0 } for each RB-split of Π with any

DDA potential heuristic.

The RB-split criterion detects a correlation complexity of at least 2 in cases
where the 4 states criterion does not. We consider Figure 8 again. Earlier, we
showed that the 4 states criterion does not detect that the correlation complexity
of this task is at least 2.

Using the vectorization, we see that the vector −→o1 = (1, 1, 1)> is element of B
and the vectors −→o2 = (1, 1, 0)>, −→o3 = (1, 0, 1)> and −→o4 = (0, 1, 1)> are elements
of R for each RB-split with a DDA heuristic.

We conclude that −→o1 ∈ cone(R) ∩ cone(B) for each DDA heuristic. So we
can use the RB-split criterion to detect that the task of Figure 8 is at least 2.

5.3 Linear Constraints

For a given planing task Π and a family H of heuristics on Π (for example the
family of heuristics that are DDA), we assume we have a black box. That black
box provides us with two sets of vectors R′ and B′ such that for each RB-split
〈R,B〉 of Π with h ∈ H it holds that each −→r ∈ R′ is an element of R and each
−→
b ∈ B′ is an element of B. (For the family of heuristics that are DDA the

black box could for example use action landmarks.)
To compute whether or not cone(R′) and cone(B′) do overlap we determine

if a hyperplane that contains
−→
0 and separates the elements for R′ and B′ exists.

Such a hyperplane implies that all vectors in cone(R′) are on one side of the
hyperplane and all vectors in cone(B′) on the other.

To construct such a hyperplane we use a linear program (LP) without ob-
jective function. We represent that LP as

A−→w ≥

(−→
0
−→
1

)

where A is a matrix of size n × m and −→w a vector in Rn. The relation ≥ is

element-wise and

(−→
0
−→
1

)
is the vector with |R′|-many 0’s followed by |B′|-many

1’s.
For our purpose we put m = |R′|+ |B′| and for each −→r ∈ R′ there is a row

−→r T in A and for each
−→
b ∈ B′ there is a row −

−→
b T in A.

Solving such an LP problem (or detecting the unsolvability) can be done
with time complexity polynomial in n. If no solution to the LP exists, then we
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know, from Theorem 5.15 that the convex cones are overlapping and therefore
each h ∈ H has to have a dimension of at least 2. The solution vector −→w is
the normal vector of the hyperplane that separates the cones. We can also
extract a 1-dimensional potential heuristic h� out of the vector −→w that assigns

to each vector −→r ∈ R′ a weight w(−→r ) ≥ 0 and to each vector
−→
b ∈ B′ a weight

w(
−→
b ) < 0. We extract h� by assigning each partial assignment of size 1 the

weight w({v 7→ 0}) = 0 and w({v 7→ 1}) = −→w [v].
We look at this process in detail for the family H of DDA heuristics on the

following example task and provide graphical interpretations.

V ={v1, v2, v3}
dom(v) ={0, 1} for all v ∈ V

O ={〈{v1 7→ 0, v3 7→ 0}, {v3 7→ 1}〉,
〈{v1 7→ 0, v2 7→ 0, v3 7→ 0}, {v1 7→ 1}〉,
〈{v1 7→ 1, v2 7→ 0, v3 7→ 0}, {v2 7→ 1, v3 7→ 1}〉,
〈{v1 7→ 0, v2 7→ 1, v3 7→ 0}, {v2 7→ 0, v3 7→ 1}〉,
〈{v1 7→ 0, v2 7→ 1, v3 7→ 1}, {v3 7→ 0}〉,
〈{v1 7→ 0, v2 7→ 1, v3 7→ 1}, {v1 7→ 1}〉,
〈{v1 7→ 1, v2 7→ 1, v3 7→ 1}, {v3 7→ 0}}

I ={v1 7→ 0, v2 7→ 0, v3 7→ 0}
γ ={{v2 7→ 1, v3 7→ 0}}

In this example the black box provides us the sets

R′ = {(0,−1, 0)>, (0,−1, 1)>, (−1,−1,−1)>}

and
B′ = {(1, 0, 0)>, (0, 0,−1)>, (1, 1, 0)>}.

Figure 11 shows a visual representation of this task, R′, and B′. We have
(0,−1, 0)> ∈ R′ because it represents the transition from 111 to 101 which
is the transition from a landmark to a dead-end. The vectors (1, 0, 0)> and
(0, 0,−1)> are in B′ because they represent action landmarks. For each DDA
heuristic the initial state has to have a greater value than the landmarks and
one goal state. Therefore (−1,−1,−1)> ∈ R′ and (1, 1, 0)> ∈ B′. The vector
(0,−1, 1)> is the sum of (0,−1, 0)> ∈ R′ and the inverse of (0, 0,−1)> ∈ B′.
Therefore (0,−1, 1)> ∈ R′.

Based on R′ and B′ we create the matrix A where each row corresponds to

a vector from R′ or B′. A =


0 −1 0
0 −1 1
−1 −1 −1
−1 0 0
0 0 1
−1 −1 0


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Figure 11: Top: 3D representation of the state space. Bottom: same state space
representation with vectors that are colored if detected by the black box. Red
color indicates vectors in R′, blue color indicates vectors in B′, dotted vectors
indicate that they are not corresponding to an arch in the state space.
(Graphic created in GeoGebra (Hohenwarter et al., 2013).)
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Figure 12: All 4 pictures show the same collection of objects from different
points of view. The red and blue vectors are the same as in Figure 11 but the
tail of each is at the origin. In orange, we see the convex cone of R′ and in dark
blue the convex cone of B′. The gray plane is the hyperplane that separates
the two cones and the black vector labeled w is the normal of this hyperplane.
Dashed lines indicate that the line is behind a different object.
(Graphic created in GeoGebra (Hohenwarter et al., 2013).)

The inequality A−→w ≥

(−→
0
−→
1

)
corresponds to this system of linear inequalities:

0 · −→w [1]+ −1 · −→w [2]+ 0 · −→w [3] ≥ 0

0 · −→w [1]+ −1 · −→w [2]+ 1 · −→w [3] ≥ 0

−1 · −→w [1]+ −1 · −→w [2]+ −1 · −→w [3] ≥ 0

−1 · −→w [1]+ 0 · −→w [2]+ 0 · −→w [3] ≥ 1

0 · −→w [1]+ 0 · −→w [2]+ 1 · −→w [3] ≥ 1

−1 · −→w [1]+ −1 · −→w [2]+ 0 · −→w [3] ≥ 1

The vector −→w = (−1,−2, 1)> is a solution for this system of inequalities.
This vector is the normal vector of a hyperplane that separates the convex
cones of R′ and B′. A graphical interpretation of this is shown in Figure 12.

We extract a potential heuristic h� out of the vector −→w by choosing w({v1 7→
1}) = −→w [1] = −1, w({v2 7→ 1}) = −→w [2] = −2 and w({v1 7→ 1}) = −→w [3] = 1
(w({v1 7→ 0}) = w({v2 7→ 0}) = w({v3 7→ 0}) = 0). Calculating the value of
h�(s) for each state s in the task reveals that the heuristic is in fact DDA. We
see the individual heuristic values in Figure 13.
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Figure 13: State space from Figure 11 with heuristic values of h�, extracted
from the vector −→w = (−1,−2, 1)>.
(Graphic created in GeoGebra (Hohenwarter et al., 2013).)

The heuristic h� is not guaranteed to be DDA. For example, the vector−→
w′ = (−1, 0, 1)> is also a valid solution for the given system of linear inequalities
but the potential heuristic extracted from it is not DDA.

For this reason, we introduce a new measure similar to the correlation com-
plexity and present an algorithm to calculate a potential heuristic that is not
guaranteed to be DDA but using it guarantees to find the goal with Simple

Hill-climbing.
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6 Comparison

In this chapter, we first introduce the Basel measure. Afterward, we look at
the bounds that the correlation complexity, improvability width, novelty width,
and Basel measure provide on each other.

6.1 Basel Measure

The correlation complexity of a task is defined as the minimal dimension of a
potential heuristic that is DDA. This measure considers all alive states. This
can lead to non-intuitive results. We consider the crossing the river task but
with the modified initial state I = {F,R,C,B} that already agrees with the
goal γ. This task is intuitively easier than the original and has a novelty width
of 0 but the correlation complexity is 2. It did not change because the set of
alive states did not change.

To avoid this kind of non-intuitive results and be more comparable to the
novelty width, while also being comparable to the correlation complexity of the
task, we define the Basel measure (BM). To give an intuition for the Basel mea-
sure consider the following, hypothetical scenario. You are in Basel swimming
in the Rhine and a duck is floating towards you and asks you for direction to
Cologne. You tell it to simply go down the river because the Rhine flows from
Basel to Cologne. A swan comes by and asks you for the direction to Nijmegen.
You remember that the Rhine splits before reaching Nijmegen (see Figure 14).
So you cannot simply tell it to float down the river. It has to take the correct
turn at the branching point. A second duck arrives and asks for the direction
to the North sea. You know that all branches of the Rhine lead to the North
sea so you can give it the same answer as the first duck. You tell it to simply
go down the river because it does not matter if it ends up in the IJssel, the
Nederrijn-Lek, or the Waal. All of them lead to the goal of the second duck.

It is important that the duck does go down the river until it reaches its
goal. If it leaves the river and waddles some on the shore and decides to go to
Cologne then it might not work anymore to just go downwards. It might end
up at a local minimum. The suggestion to simply go downwards was based on
the starting position of the duck. The suggestion does not work for all positions
the duck might reach.

In this analogy the bird talking to you correspond to the agent that solves a
planning task, the latitude and longitude of a position corresponds to the state
and the elevation of the position corresponds to the heuristic value of the state.
The position where you are swimming corresponds to the initial state and all
positions in Cologne (respectively all positions in Nijmegen or all positions in
the North sea) correspond to the goal states.

If we have a descending dead-end avoiding heuristic, we can tell the agent to
simply go down the state space topology to reach their goal. We do not know
which exact path the agent will take but we know they will end up in a goal
state. For the correlation complexity, we look for a heuristic such that we can
tell the agent to simply go down the state space topology, no matter at which
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Figure 14: Map of the Rhine (Rijn) branching into the IJssel, the Nederrijn-Lek
and the Waal (Wikimedia Commons, 2014).

alive state they are. However, for the Basel measure, it is sufficient if it just
works for the state the agent is currently in.

We define the Basel measure as follows.

Definition 6.1 (Basel Measure). The Basel Measure of an alive state s in a
planning task Π is defined as the minimal dimension of all potential heuristics
for Π that guarantee to find a plan from s with Simple Hill-climbing. By
the Basel measure of a task Π, we mean the Basel measure of the initial state I
in this task.

The set of all potential heuristics for Π that guarantee to find a plan from s
with Simple Hill-climbing contains all DDA heuristics. We call a heuristic
on a planning task Π = 〈V, I,O, γ〉 that is guaranteed to find a plan from
state s with SHC a practically descending and dead-end avoiding (PDDA)
heuristic from s. A heuristic is PDDA for Π if it is PDDA from the initial state
I.

Analogous to the RB-split criterion for DDA heuristics and the correlation
complexity, we can create a second RB-split criterion for PDDA heuristics and
the Basel measure.

Theorem 6.2 (2nd RB-spilt criterion). Let Π be a planning task. If for each

potential heuristic hpot that is PDDA on Π there exists a −→x 6= −→0 such that
−→x ∈ cone(R) ∩ cone(B), where 〈R,B〉 is the RB-split of Π with hpot, then the
Basel measure of Π is at least 2.

Proof. The existence of −→x 6= −→0 such that −→x ∈ cone(R) ∩ cone(B) implies that
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cone(R) and cone(B) are overlapping. This implies, with the contrapositive of
Theorem 5.14 that dim(h) 6= 1. We conclude that the dimension of each hpot

that is PDDA on Π is at least 2. Therefore, the Basel measure of Π is at least
2.

The set of PDDA heuristics for Π contains the set of DDA heuristics for
Π. The BM is therefore upper bounded by the correlation complexity and the
correlation complexity is lower bounded by the BM. The maximal BM over all
alive states is not guaranteed to be the correlation complexity of the task, we
consider the following planning task as a counterexample. A binary counter
that counts from 11 down to 00 but it is first decided if a little endian or big
endian counting is used.

U11start

L11 L01 L10 L00

B11 B10 B01 B00

Figure 15: State space of the little/big endian binary counter. The first symbol
inside the node indicates the assignment of v with U for undecied, L for little
endian and B for big endian. The second symbol shows the assignment of b0
and the third of b1.
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V ={v, b0, b1}
dom(v) ={undecided, little endian,big endian}

dom(b0) =dom(b1) = {0, 1}
O ={〈{v 7→ undecided}, {v 7→ little endian}〉,
〈{v 7→ undecided}, {v 7→ big endian}〉,
〈{v 7→ big endian, b0 7→ 1, b1 7→ 1}, {b1 7→ 0}〉,
〈{v 7→ big endian, b0 7→ 1, b1 7→ 0}, {b1 7→ 1}〉,
〈{v 7→ big endian, b0 7→ 1, b1 7→ 0}, {b0 7→ 0, b1 7→ 1}〉,
〈{v 7→ big endian, b0 7→ 0, b1 7→ 1}, {b0 7→ 1, b1 7→ 0}〉,
〈{v 7→ big endian, b0 7→ 0, b1 7→ 1}, {b1 7→ 0}〉,
〈{v 7→ big endian, b0 7→ 0, b1 7→ 0}, {b1 7→ 1}〉,
〈{v 7→ littel endian, b0 7→ 1, b1 7→ 1}, {b0 7→ 0}〉,
〈{v 7→ littel endian, b0 7→ 0, b1 7→ 1}, {b0 7→ 1}〉,
〈{v 7→ littel endian, b0 7→ 0, b1 7→ 1}, {b0 7→ 1, b1 7→ 0}〉,
〈{v 7→ littel endian, b0 7→ 1, b1 7→ 0}, {b0 7→ 0, b1 7→ 1}〉,
〈{v 7→ littel endian, b0 7→ 1, b1 7→ 0}, {b0 7→ 0}〉}
〈{v 7→ littel endian, b0 7→ 0, b1 7→ 0}, {b0 7→ 1}〉}

I ={v 7→ undecided, b0 7→ 1, b0 7→ 1}
γ ={b0 7→ 0, b1 7→ 0}

Figure 15 provides a visualization of the task.
For all states s with (v 7→ little endian) the weights w(b0 7→ 1) = 1 and

w(b1 7→ 1) = 2 provide a potential heuristic of dimension 1 that is PDDA from
s.

For all other states s′ the weights w(v 7→ undecided) = 1, w(b0 7→ 1) = 2
and w(b1 7→ 1) = 1 provide a potential heuristic of dimension 1 that is PDDA
from s′.

However, the correlation complexity of the task is at least 2 since the op-
erators 〈{v 7→ big endian, b0 7→ 1, b1 7→ 0}, {b0 7→ 0, b1 7→ 1}〉 and 〈{v 7→
littel endian, b0 7→ 0, b1 7→ 1}, {b0 7→ 1, b1 7→ 0}〉 are both critical but inverse of
each other.

To evaluate the Basel measure of a given task in practice, we use the the-
oretical results from Chapter 5. There, we assumed to have a black box for a
family H of heuristics. This black box provides us with two sets of vectors R′

and B′ such that for each RB-split 〈R,B〉 of Π with h ∈ H it holds that each
−→r ∈ R′ is an element of R and each

−→
b ∈ B′ is an element of B.

For the family of heuristics that are PDDA for Π, this black box could use
action landmarks.

In some tasks there are no action landmarks. The task in Figure 7 is an
example for that. Therefore, we investigate how we can deal with disjunctive
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action landmarks (DALMs).

Definition 6.3 (Disjunctive Action Landmark). A set D of operators is called
a disjunctive action landmark of a task if each plan of this task contains at least
one of the operators in D.

A given DALM D = {o1, o2, . . . , ot} induces the constraint
∨t
i=1
−→w · −→oi < 0.

The interpretation of this constraint is that at least one operator of D has to
strictly improve the heuristic value. To express such constraints, we use a mixed
integer program (MIP), instead of an LP, as we did previously because a MIP
is more expressive. However, solving a MIP is NP-complete (Schrijver, 1998).

This approach can find a valid −→w where the extracted potential heuristic hw

does not guarantee to be PDDA fro Π. To tackle this problem, we refine the
solution in a similar fashion as Francès et al. (2019). The main difference is that
they stop to refine further as soon as they find a plan. We refine until we find
a PDDA heuristic (or detect that no PDDA heuristic exists).

Algorithm 6: Local Optimum Search

Data: planning task 〈V, I,O, γ〉, heuristic h
Result: descending path π to a local optimum, set of operators Ô that

are applicable in IJπK
1 open := [makeRootNode(I)]
2 while open is not empty do
3 node := pop last element of open
4 s := node.state
5 N := {o ∈ O | h(sJoK) < h(s), o applicable in s, sJoK * γ}
6 if N = ∅ then
7 return extractPath(node), {o ∈ O | o applicable in s}
8 end
9 foreach o ∈ N do

10 n′ := makeNode(s, o, sJoK) append n′ to open
11 end

12 end
13 return None

To refine the solution, we do a search with Algorithm 6 (Local Optimum

Search) for a path to a local optimum ŝ that is reachable from the initial state
by a path π, where π consists only of operators that improve the heuristic value
and π does not visit any goal state. The existence of such a state implies that
the heuristic hw is not PDDA. A necessary condition for hw to be PDDA is
that ŝ has a successor that improves the heuristic value or at least one of the
operators in π does not improve the heuristic. We express that as the constraint∨

o∈π

−→w · −→o ≥ 0 ∨
∨

o applicable in ŝ

−→w · −→o < 0.
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We add this constraint to the MIP and update −→w . This way, we eventually end
up with hw being PDDA or the MIP becomes unsolvable which implies that no
potential heuristic of dimension 1 that is PDDA exists for this task.

6.2 Basel Measure vs. Novelty Width

The Novelty Width of a task provides an upper bound for the Basel measure,
too. For the constructive proof, we use discriminating facts.

Definition 6.4 (Discriminating Facts). Let s, s′ be states. If s 6= s′ then there
exists at least one fact (v 7→ d′) ∈ s′ with (v 7→ d′) /∈ s. We call the set
of such facts the discriminating facts from s to s′. We denote the set of
discriminating facts as δ(s, s′) := s′ \ s.

Theorem 6.5. The Basel measure is upper bounded by the novelty width +1.

Proof. We look at the search tree of a Novelty Width Algorithm with input
width k that found the plan π for a planning task Π = 〈V, I,O, γ〉. That plan
π traverses through the states π0, π1, . . . , πL with π0 = I.

To guarantee that a Simple Hill-climbing traverses through the same
states we create a potential heuristic h were each successor s ∈ succ(πi−1)\{πi}
holds h(πi−1) ≤ h(s) and h(πi−1) > h(πi) for i ∈ {1, . . . , L}.

Let p∗i be one arbitrarily chosen partial assignment that was novel in πi
with |p∗i | = k. We can split succ(πi−1) into the disjoint sets {πi}, {πi−1} ∩
succ(πi−1), Si, Ci, Zi with:

• Si := {si ∈ succ(πi−1) | p∗i ⊆ si, si 6= πi)}

• Ci := {ci ∈ succ(πi−1) | p∗i * ci, p
∗
i−1 ⊆ ci, ci 6= πi−1}

• Zi := {zi ∈ succ(πi−1) | p∗i * zi, p
∗
i−1 * zi}

The set Si contains the successors that also agree with the novel assignment
p∗i . The set Ci contains the successors that also agree with the assignment p∗i−1
that was novel in the πi−1 and do not agree with the novel assignment p∗i . The
set Zi contains the successors that do not agree with p∗i nor with p∗i−1.

Let δ∗(s, s′) be one arbitrarily chosen element from the discriminating facts
δ(s, s′). Let Fi := {δ∗(πi, si) | si ∈ Si}. If a successor x of πi−1 agrees with a
fact in Fi, then we know that x 6= πi. Let Ti := {δ∗(πi−1, ci) | ci ∈ Ci}. If a
successor x of πi−1 agrees with a fact in Ti, then we know that x 6= πi−1.

Let Qi := {p∗i ∪ {fi} | fi ∈ Fi} and Gi := {p∗i−1 ∪ {ti} | ti ∈ Ti}. The
idea is to give p∗i a negative weight to have a low heuristic value for the state
πi but also giving all p∗i ∪ {fi} in Qi a higher positive weight to steer Simple

Hill-climbing away from the states in Si.
It could be the case that one ci ∈ Ci agrees with more pj with j < i−1 than

πi−1 does. This would lead to more negative summands in the evaluation of
the potential heuristic, which could lead to h(ci) < h(πi−1). This would allow
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Simple Hill-climbing to take the wrong successor. To compensate that we
give all p∗i−1 ∪ {ti} in Gi a high weight.

Let n := |V | be the number of state variables in the considered task and
the auxiliary constant Ω :=

(
n
k+1

)
+ 2. We chose the weights for the potential

heuristic with w(p∗i ) := −Ω2·i, w(qi) := +Ω2·i+1 for all qi ∈ Qi and w(gi) :=
+Ω2·i−1 for all gi ∈ Gi. (For all other partial assignments the weight is 0.)

Looking at the partial assignments p∗j for j ∈ {1, . . . , L}. We know p∗j does
not agree with any πi, si ∈ Si, ci ∈ Ci or zi ∈ Zi where i < j because p∗j is
novel in πj . We know p∗j does not agree with any ci ∈ Ci where i = j due to
the definition of Ci. We know p∗j does not agree with any zi ∈ Zi where i = j
or i = j + 1 due to the definition of Zi.

Each si ∈ Si and πi agrees with the partial assignments p∗j where i = j.
Each ci ∈ Ci agrees with the partial assignments p∗j where i = j + 1.

Looking at the partial assignments qj ∈ Qj for j ∈ {1, . . . , L} we know that
all states that agree with qj agree with p∗j , too. We know qj ∈ Qj does not
agree with any πi, ci ∈ Ci or zi ∈ Zi where i < j because p∗j is novel in πj . We
know qj does not agree with πi where j = i because qj contains one fact that
disagrees with πi. We know qj does not agree with any ci ∈ Ci where i = j
because qj agrees with p∗i and ci does not. We know qj does not agree with any
zi ∈ Zi where i = j because qj agrees with p∗i and zi does not. Each si ∈ Si
agrees with at least one qj ∈ Qj if i = j.

Looking at the partial assignments gj ∈ Gj for j ∈ {1, . . . , L} we know that
all states that agree with gj agree with p∗j−1, too. We know gj ∈ Gj does not
agree with any πi, si ∈ Si, ci ∈ Ci or zi ∈ Zi where i < j − 1 because p∗j−1 is
novel in πj−1. We know gj does not agree with πi where i = j − 1 because gj
contains one fact from Tj that disagrees with πi. We know gj does not agree
with any ci ∈ Ci where i = j− 1 because gj agrees with p∗i and ci does not. We
know gj does not agree with any zi ∈ Zi where i = j− 1 because gj agrees with
p∗i and zi does not. Each ci ∈ Ci agrees with at least one gj ∈ Gj if i = j.

For any state s the heuristic is evaluated with

h(s) =

L∑
j=0

−Ω2j · [p∗j ⊆ s] +

L∑
j=0

∑
q∈Qj

Ω2j+1 · [q ⊆ s] +

L∑
j=0

∑
g∈Gj

Ω2j−1 · [g ⊆ s].

Since p∗j does not agree with any πi where j > i we know that

h(πi) =

i∑
j=0

−Ω2j · [p∗j ⊆ πi] +

i∑
j=0

∑
q∈Qj

Ω2j+1 · [q ⊆ πi] +

i∑
j=0

∑
g∈Gj

Ω2j−1 · [g ⊆ πi].

For the lower bound, we consider the case that πi agrees with all partial
assignments with a negative weight and none of the partial assignments with a
positive weight. We conclude the lower bound:

i∑
j=0

−Ω2j + 0 + 0 ≤ h(πi).
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For the upper bound we considering that p∗i agrees with πi and there are(
n
k+1

)
partial assignments of size k+1 that agree with a given state. We conclude

the upper bounds:

h(πi) ≤ −Ω2·i +

(
n

k + 1

)
· Ω2·(i−1)+1 + 0 ≤ 0,

h(πi) ≤ −Ω2·i +

(
n

k + 1

)
· Ω2·(i−1)+1 + 0

≤ −(Ω · Ω2·i−1) +

(
n

k + 1

)
· Ω2·i−1 + 0

< −Ω2·i−1 for Ω >

(
n

k + 1

)
+ 1

≤
i−1∑
j=0

−Ω2·j

≤ h(πi−1).

(3)

For any si ∈ Si there is at least one q ∈ Qi that agrees with si. This implies
the lower bound:

h(si) ≥
i∑

j=0

−Ω2·j + Ω2·i+1 + 0

≥ −2 · Ω2·i + Ω2·i+1 for Ω > 2

≥ 0 for Ω > 2

≥ h(πi−1).

(4)

For any ci ∈ Ci there is at least one g ∈ Gi that agrees with ci. The partial
assignment p∗i does not agree with ci. This implies the lower bound:

h(ci) ≥
i−1∑
j=0

−Ω2·j + 0 + Ω2·i−1

≥ −2 · Ω2·i−2 + Ω2·i−1 for Ω > 2

≥ 0 for Ω > 2

≥ h(πi−1).

(5)

The partial assignments p∗i and p∗i−1 do not agree with any zi ∈ Zi. We

know from (3) that
∑i−1
j=0−Ω2·j ≥ h(πi). This implies the lower bound:

h(zi) ≥
i−2∑
j=0

−Ω2·j + 0 + 0

≥ h(πi−1).

(6)
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We conclude that each successor s ∈ succ(πi−1) \ {πi} holds h(πi−1) ≤ h(s)
and h(πi−1) > h(πi). This implies that πi is the only successor of πi−1 that
passes the progressCheck of SHC with reference = πi−1. The heuristic h forces
SHC to follow the plan evaluated by NWA. This implies that h guarantees to find
a plan from I with SHC. The partial assignments with non-zero weights are of
size k and k + 1. We conclude that the Basel measure of Π is less or equal to
k + 1.

This approach of creating a PPDA heuristic is not practical. It requires
calculating a plan beforehand and the weights are exponential to the length of
the plan.

Note that NWA can find a plan with k smaller than the novelty width. We
remember, the smallest k for which a NWA finds a satisficing plan is the effective
novelty width. In the proof of Theorem 6.5 it is not used that k is the novelty
with but only that NWA with input width k found a (satisficing) plan π.

Corollary 6.6. The Basel measure is upper bounded by the effective novelty
width +1.

Proof. Same as the proof for Theorem 6.5

We showed a way to produce a potential heuristic that leads with Simple

Hill-climbing to a goal state for a task Π with a dimension that is 1 larger
than the (effective) novelty width of Π. So the BM of a task is upper bounded by
the (effective) novelty width +1. However, we did not answer if this bound is a
non-strict inequality. Is there a task where the BM is larger than the (effective)
novelty width?

The answer is yes. We show this with the bit shift task as an example task
with a BM of 2 and (effective) novelty width of 1.

000start 001 010 100

011

Figure 16: State space of the bit shift task. A node with label xyz represents the
state {b2 7→ x, b1 7→ y, b0 7→ z}. The transitions corresponding to the operator
that is dangerous and critical is indicated in red.
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V ={b0, b1, b2}
dom(b0) =dom(b1) = dom(b2) = {0, 1}

O ={〈{b0 7→ 0, b2 7→ 0}, {b2 7→ 1}〉,
〈{b1 7→ 0, b2 7→ 1}, {b1 7→ 1, b2 7→ 0}〉,
〈{b0 7→ 0, b1 7→ 1, b2 7→ 0}, {b0 7→ 1, b1 7→ 0}〉}

I ={b0 7→ 0, b1 7→ 0, b2 7→ 0}
γ ={b2 7→ 1}

In Figure 16 it is easy to see that the operator indicated in red is critical and
dangerous. Each PDDA potential heuristic hpot for this task has to fulfill the
inequalities hpot(000) > hpot(001) and hpot(010) ≤ hpot(011). This implies that
the vector −→x = (0, 0, 1)> an element of R and of B of the RB-split 〈R,B〉. We
conclude, with the 2nd RB-split criterion that the BM of this task is at least 2.

With weights w(b0 7→ 1) = −1, w(b1 7→ 1) = −2, w(b2 7→ 1) = −4, and
w(b0 7→ 1, b1 7→ 1) = +3 (all other weights are 0), we see that the BM is exactly
2.

Starting from the state 000 each successor provides a novel fact, except the
state 011. Since this state space has only one state with branching and one of
them is pruned by NWA and all successor, except this pruned one, provide novel
facts we conclude that the (effective) novelty width of the bit shift task is 1.

The (effective) novelty width is not bounded by the Basel measure. For
example, the binary counter task has the (effective) novelty width equal to the
number of bits used but the correlation complexity and Basel measure is 1.

6.3 Basel Measure vs. Persistent Hamming Improvability
Width

To compare the novelty width with the Basel measure, we adjusted the weights
in a way that forces SHC to follow the plan that a NWA found. This approach is
problematic for an IWA because an IWA can produce plans with cycles. Consider
the example in Figure 17.
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0000start

1000

1001

0001

1011

0111

Figure 17: State space of a task that produces a cyclic plan with IWA. A node
with label wxyz represents the state {b0 7→ w, b1 7→ x, b2 7→ y, b3 7→ z}.

The initial state of this task is {b0 7→ 0, b1 7→ 0, b2 7→ 0, b3 7→ 0} and
γ = {b1 7→ 1, b2 7→ 1, b3 7→ 1}. The persistent Hamming improvability width
of this task is 2. From the initial state only the state 1000 is reachable. This
state does not pass the progressCheck so the successors of 1000 that differ
only on 2 variables to 0000 are considered. There is only 1001 because 1011 and
0111 differ on 3 variables to 0000. On 1001 the progressCheck passes. The
next state 0001 does not pass the progressCheck so we visit 1000 again. The
successors of 1000 (that are not duplicates in this moment) are 1011 and 0111.
However, 0111 differs on 3 variables to 1001 so it is not considered. Leaving
us with 1011, which differs only on one variable to 1001. So we get to 1011,
which passes the progressCheck. The only successor of 1011 is, yet again, 1000.
The available successors are now 0111 and 1001 (it is not a duplicate anymore
because if the progressCheck passes the closed set refreshes). However, 1001
does not pass the progressCheck leaving us with 0111. This state is a goal
state and therefore the search ends.

The BM for this task is 1. Consider the weights w({b0 7→ 1}) = −1, w({b1 7→
1}) = −3, w({b3 7→ 1}) = 1, and 0 for all other weights.

There is also an example task where the BM is 1 greater than the persistent
Hamming improvability width.

The example task in Figure 18 is a modification of the Gray code counter.
With γ = {v0 7→ 1, v1 7→ 1} we see that the persistent Hamming improvability
width is 2. The state 0110 is reachable without visiting a state that has a Ham-
ming distance greater than 2 to 0000. The state 0110 passes the progressCheck.
The goal state 1110 is reachable from 0110 without visiting a state that has a
Hamming distance greater than 2 to 0110. Therefore, the persistent Hamming
improvability width is 2. We see that the task contains the Gray code counter
of size 3 and we already know that this task has correlation complexity of 3.
Since there is no branching (besides going back), the BM for this task is 3, as
well.
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0000start

0001

0011

0010 0110

0111

0101

0100

1110

Figure 18: State space of the modified Gray code counter task of size 3. A node
with label wxyz represents the state {v0 7→ w, v1 7→ x, v2 7→ y, v3 7→ z}.

6.4 Improvability Width vs. Novelty Width

We saw that the BM has an upper bound based on the novelty width. Unfor-
tunately, we cannot find such a bound for general tasks with the novelty width
and improvability width. To support this claim, we show that it is possible to
produce a task with arbitrary (Hamming) improvability width but fixed novelty
width and vice versa.

V ={b1, . . . , bn}
dom(bi) ={0, 1} for all i ∈ {1, . . . , n}

O ={〈{b1 7→ 0, . . . , bn 7→ 0}, {b1 7→ 1, . . . , bn 7→ 1}〉}
I ={b1 7→ 1, . . . , bn 7→ 1}
γ ={b1 7→ 1}

This task has only two reachable states. The distance between these states
is n so the (persistent) (Hamming) width is n. Each fact in the successor is
novel so the novelty width is 1.

Looking at Figure 19 we see a state space of the planning task with only one
goal fact described below.
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V ={c1, . . . , cm, b1, b2, b3}
dom(bi) ={0, 1} for all i ∈ {1, 2, 3}
dom(ci) ={R,W} for all i ∈ {1, . . . ,m}

O ={〈{c1 7→ R, c2 7→ R, . . . , cm−1 7→ R, cm 7→ R, b1 7→ 0, b2 7→ 0, b3 7→ 0},
{c1 7→ R, c2 7→ R, . . . , cm−1 7→ R, cm 7→ R, b1 7→ 0, b2 7→ 1, b3 7→ 1}〉,
〈{c1 7→ R, c2 7→ R, . . . , cm−1 7→ R, cm 7→ R, b1 7→ 0, b2 7→ 0, b3 7→ 0},
{c1 7→W, c2 7→ R, . . . , cm−1 7→ R, cm 7→ R, b1 7→ 0, b2 7→ 1, b3 7→ 0}〉,
〈{c1 7→ R, c2 7→ R, . . . , cm−1 7→ R, cm 7→ R, b1 7→ 0, b2 7→ 0, b3 7→ 0},
{c1 7→ R, c2 7→W, . . . , cm−1 7→ R, cm 7→ R, b1 7→ 0, b2 7→ 1, b3 7→ 0}〉,
...,

〈{c1 7→ R, c2 7→ R, . . . , cm−1 7→ R, cm 7→ R, b1 7→ 0, b2 7→ 0, b3 7→ 0},
{c1 7→ R, c2 7→ R, . . . , cm−1 7→W, cm 7→ R, b1 7→ 0, b2 7→ 1, b3 7→ 0}〉,
〈{c1 7→ R, c2 7→ R, . . . , cm−1 7→ R, cm 7→ R, b1 7→ 0, b2 7→ 0, b3 7→ 0},
{c1 7→ R, c2 7→ R, . . . , cm−1 7→ R, cm 7→W, b1 7→ 0, b2 7→ 1, b3 7→ 0}〉,
〈{c1 7→ R, c2 7→ R, . . . , cm−1 7→ R, cm 7→ R, b1 7→ 0, b2 7→ 0, b3 7→ 0},
{c1 7→ R, c2 7→ R, . . . , cm−1 7→ R, cm 7→ R, b1 7→ 0, b2 7→ 0, b3 7→ 1}〉,
〈{c1 7→ R, c2 7→ R, . . . , cm−1 7→ R, cm 7→ R, b1 7→ 0, b2 7→ 0, b3 7→ 1},
{c1 7→ R, c2 7→ R, . . . , cm−1 7→ R, cm 7→ R, b1 7→ 0, b2 7→ 1, b3 7→ 0}〉,
〈{c1 7→ R, c2 7→ R, . . . , cm−1 7→ R, cm 7→ R, b1 7→ 0, b2 7→ 1, b3 7→ 0},
{c1 7→ R, c2 7→ R, . . . , cm−1 7→ R, cm 7→ R, b1 7→ 1, b2 7→ 0, b3 7→ 0}〉,

I ={c1 7→ R, c2 7→ R, . . . , cm−1 7→ R, cm 7→ R, b1 7→ 0, b2 7→ 0, b3 7→ 0}
γ ={b1 7→ 1}

This task has m facts that have to stay untouched during the only plan of
this task.

For each partial assignment of size less than |V |−1 that agrees with the 3rd
state of the plan,

p ( {c1 7→ R, . . . , cm 7→ R, b1 7→ 0, b2 7→ 1, b3 7→ 0}, |p| < |V | − 1

there exists a state s ∈ succ(I) such that p ( s. The smallest partial assignment
that is novel in the 3rd state is {c1 7→ R, . . . , cm 7→ R, b2 7→ 1, b3 7→ 0} (missing
only the fact b1 7→ 0). Therefore, the smallest partial assignment that is novel in
the 3rd state has size |V |−1 = m+2. So the novelty width of the task is m+2.
Each state in the plan differs only on one fact from the initial state. Therefore,
the (persistent) Hamming improvability width is 1. The plan changes only 3
facts, therefore the (persistent) improvability width is 3.
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RR...RR000start

RR...RR001

WR...RR010

RW...RR010

...

RR...WR010

RR...RW010RR...RR010

RR...RR100

RR...RR011

Figure 19: State space of a task with arbitrarily large novelty width but constant
(persistent) (Hamming) improvability width. A node with label wx...yzabc rep-
resents the state {c1 7→ w, c2 7→ x, . . . , cm−1 7→ y, cm 7→ z, b1 7→ a, b2 7→ b, b3 7→
c}.
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7 Experimental Results

We implemented the Local Optimum Search in the Fast Downward6 planning
system (Helmert, 2006) and tested how often the initial heuristic has to be
refined until a PDDA heuristic was found or the MIP was unsolvable. The do-
mains we investigated are Gripper (IPC 1998), VisitAll (IPC 2011), Blocks (IPC
2000), Pegsol (IPC 2008), and Movie (IPC 1998). The first 3 listed domains
have a correlation complexity of at most 2 for each task (Seipp et al., 2016).

We investigated each instance of these domains. First with additional initial
constraints that were created with DALMs from the implementation of Büchner
et al. (2021a,b) based on hm landmarks (Keyder et al., 2010) and RHW land-
marks (Richter et al., 2008) and second without any previous knowledge of the
task. To evaluate the MIP, we used IBM CPLEX 20.1. All calculations were
performed on an Intel Xeon Silver 4114 processor running at 2.2 GHz at sci-
CORE7 scientific computing center at the University of Basel. We set the time
limit to 1800 seconds (30 minutes) and the memory limit to 3.5 GiB.

We list the number of binary variables, continuous variables, and iterations
used to detect whether or not the BM of the task is 1 as well as the runtime.
In Table 7 and Table 8, we see the individual results.

The number of continuous variables in the MIP is the number of facts in the
task and the number of weights for the potential heuristic.

We see for the domains Gripper and Blocks that they have, for all tested
instances, a Basel measure of 2. In the VisitAll domain, we get for problem03-
-half.pddl a Basel measure of 2. The task has an agent that starts in the
middle of a 3 by 3 grid. Goal is to visit location 0−0, 0−2, 1−1, 2−0, and 2−1.
A potential heuristic of dimension 1 with the weight w(location-x-y-is-visited 7→
true}) = −1 for each location would provide a PDDA heuristic. However, Fast
Downward removes in the translation the location-x-y-is-visited variables if they
are not goal variables. The translator removes them because they are not part
of the goal nor in any precondition and therefore seemingly irrelevant. However,
the translated task has a BM of 2 while the original one has a BM of 1.

The Basel measure is 1 for all tested instances of the Movie domain. This
aligns with the intuition of this simple domain. Here we see that the initial con-
straints created with DALMs, are beneficial for the number of binary variables
as well as the number of iterations.

In most cases, the usage of the constraints from the DALMs reduces the
number of iterations needed to detect whether or not the BM of the task is 1.
However, they cause, in most cases, the usage of more binary variables.

The difference in the runtime shows that the constraints from the DALMs
are beneficial in most cases. In the cases where the calculation was faster with-
out initial constraints, the difference is less than 35%. The exception to this
is p02.pddl from the Pegsol domain. The calculation with the additional con-
straints did not finish in the 1800 seconds limit and the calculation without

6http://www.fast-downward.org
7http://scicore.unibas.ch/
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additional constraints took 1578 seconds. Therefore, we do not know if the
difference there is also in this 35% margin.

In some cases of the Blocks domain, the constraints from the DALMs reduced
the runtime by orders of magnitude.

task
binary
variables

continuous
variables

iterations BM runtime (s)

DALMs none DALMs none DALMs none
gripper:

prob01.pddl 62 27 24 25 22 ≥ 2 191 130
prob02.pddl 91 39 34 39 44 ≥ 2 510 434
prob03.pddl 120 51 44 57 74 ≥ 2 853 785
prob04.pddl 156 63 54 78 112 ≥ 2 1279 1759
prob05.pddl 173 - 64 83 - ≥ 2 1428 -
prob07.pddl 226 - 84 99 - ≥ 2 1598 -

visitall-opt11-strips:

problem02-full.pddl 19 20 10 5 9 1 2 18
problem02-half.pddl 8 8 6 3 4 1 1 2
problem03-full.pddl 80 - 25 34 - 1 192 -
problem03-half.pddl 55 56 17 37 35 ≥ 2 673 513

blocks:

probBLOCKS-4-0.pddl 54 48 30 16 51 ≥ 2 125 712
probBLOCKS-4-1.pddl 48 39 30 23 28 ≥ 2 218 175
probBLOCKS-4-2.pddl 58 48 30 26 40 ≥ 2 270 529
probBLOCKS-5-0.pddl 24 57 42 3 85 ≥ 2 2 1160
probBLOCKS-5-1.pddl 60 66 42 26 107 ≥ 2 267 1419
probBLOCKS-5-2.pddl 76 57 42 70 85 ≥ 2 1199 1297
probBLOCKS-6-0.pddl 99 78 56 74 94 ≥ 2 1275 1454
probBLOCKS-9-0.pddl 64 - 110 4 - ≥ 2 2 -
probBLOCKS-9-2.pddl 56 - 110 4 - ≥ 2 2 -
probBLOCKS-10-0.pddl 58 - 132 3 - ≥ 2 2 -
probBLOCKS-10-2.pddl 73 - 132 4 - ≥ 2 2 -

pegsol-08-strips:

p01.pddl 26 22 60 10 11 1 32 26
p02.pddl - 90 100 - 66 ≥ 2 - 1578

Table 7: Number of binary variables, continuous variables, and iterations used
to detect the Basel measure as well as the seconds of runtime. The columns for
binary variables, iterations, and runtime are split to compare the usage of initial
constraints based on the disjunctive action landmarks (DALMs) in contrast to
using no initial constraints (none).
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task
binary
variables

continuous
variables

iterations BM runtime (s)

DALMs none DALMs none DALMs none

movie:

prob01.pddl 10 17 14 2 15 1 3 7
prob02.pddl 10 17 14 2 39 1 4 17
prob03.pddl 10 17 14 2 37 1 4 17
prob04.pddl 10 17 14 2 18 1 4 9
prob05.pddl 10 17 14 2 48 1 5 44
prob06.pddl 10 17 14 2 35 1 5 19
prob07.pddl 10 17 14 2 38 1 6 42
prob08.pddl 10 17 14 2 11 1 6 9
prob09.pddl 10 17 14 2 11 1 6 9
prob10.pddl 10 17 14 2 22 1 7 28
prob11.pddl 10 17 14 2 13 1 7 10
prob12.pddl 10 17 14 2 28 1 7 36
prob13.pddl 10 17 14 2 38 1 8 45
prob14.pddl 10 17 14 2 44 1 8 60
prob15.pddl 10 17 14 2 10 1 9 11
prob16.pddl 10 17 14 2 11 1 9 12
prob17.pddl 10 17 14 2 11 1 9 12
prob18.pddl 10 17 14 2 33 1 9 64
prob19.pddl 10 17 14 2 11 1 10 13
prob20.pddl 10 17 14 2 27 1 10 76
prob21.pddl 10 17 14 2 11 1 10 14
prob22.pddl 10 17 14 2 23 1 11 22
prob23.pddl 10 17 14 2 24 1 11 41
prob24.pddl 10 17 14 2 30 1 12 86
prob25.pddl 10 17 14 2 7 1 12 14
prob26.pddl 10 17 14 2 30 1 13 91
prob27.pddl 10 17 14 2 14 1 13 32
prob28.pddl 10 17 14 2 25 1 13 45
prob29.pddl 10 17 14 2 11 1 15 17
prob30.pddl 10 17 14 2 11 1 14 18

Table 8: Number of binary variables, continuous variables, and iterations used
to detect the Basel measure as well as the seconds of runtime. The columns for
binary variables, iterations, and runtime are split to compare the usage of initial
constraints based on the disjunctive action landmarks (DALMs) in contrast to
using no initial constraints (none).
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8 Conclusion

8.1 Discussion

In this thesis, we investigated the correlation complexity by Seipp et al. (2016).
We introduced the 4 states criterion as well as the 8 states criterion, these
criteria are useful to detect a lower bound of the correlation complexity of a
task.

By translating the state space into a vector space, we showed the relation
of 1-dimensional potential heuristics and linear maps. With this approach, we
connected classical planning with linear algebra. This way we are able to deduce
the relation of the heuristic value of two states by the relations of the heuristic
value of other states. We formulated the RB-split criterion with this connection.
It is useful to detect a correlation complexity of at least 2. These criteria are
more general than the criteria introduced by Seipp et al. (2016).

We also introduced the Basel measure, a new measure for the complexity of
a classical planning task that is a lower bound to the correlation complexity.
It measures how large the partial assignments of a potential heuristic for a
task have to be such that Simple Hill-climbing always finds a goal. The
comparison to the novelty width (Lipovetzky and Geffner, 2012) showed that
the Basel measure is upper bounded by the novelty width +1.

Our experiment shows that the Basel measure is at least 2, for some IPC
tasks. The experiment showed that the Basel measure is 1 for some small
IPC tasks by calculating a potential heuristic that finds a plan with Simple

Hill-climbing. However, the problem of finding the weights for such a poten-
tial heuristic efficiently remains open.

8.2 Future Work

In Chapter 4, we introduced the 4 states criterion to detect a correlation com-
plexity of at least 2 as well as the 8 states criterion to detect a correlation
complexity of at least 3. This seems like the first instances of a more general
pattern. Further investigation might reveal a 2n states criterion that detects a
correlation complexity of at least n for any n ∈ N.

We translated the state space into a vector space. This invites to translate
the operator effects into transformation matrices. Investigation in this direction
could reveal more connections from planning to linear algebra.

The experiment used more binary variables for the MIP if the constraints
created with DALMs were used. The number of binary variables could be
reduced by only using some of the DALMs. This could reduce the time to
calculate the MIP.

Seipp et al. (2016) suggested studying the correlation complexity in a wider
set of benchmark domains to improve the understanding of what makes planning
hard a what makes easy planning easy. With the RB-split criterion, we have a
new strong tool in the arsenal to do so.
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