Correlation Complexity and Different Notions of Width

Simon Dold
University of Basel

June 2, 2021

Classical Planning

SAS ${ }^{+}$Planning Task $\Pi=\langle V, I, O, \gamma\rangle$

- State variables V with finite domain
- Initial state I
- Operators O with precondition and effect
- Goal γ

Classical Planning

Task induces a graph called state space

- Nodes correspond to states
- Arcs correspond to operators

Example

Little/big endian binary countdown

$$
\begin{aligned}
V= & \left\{v, b_{0}, b_{1}\right\} \\
\operatorname{dom}(v)= & \{\text { undecided, little endian, big endian }\} \\
\operatorname{dom}\left(b_{0}\right)= & \operatorname{dom}\left(b_{1}\right)=\{0,1\} \\
I= & \left\{v \mapsto \text { undecided, } b_{0} \mapsto 1, b_{1} \mapsto 1\right\} \\
\gamma= & \left\{b_{0} \mapsto 0, b_{1} \mapsto 0\right\} \\
O= & \{\langle\{v \mapsto \text { undecided }\},\{v \mapsto \text { little endian }\}\rangle, \\
& \langle\{v \mapsto \text { undecided }\},\{v \mapsto \text { big endian }\}\rangle, \\
& \left\langle\left\{v \mapsto \text { big endian, } b_{0} \mapsto 1, b_{1} \mapsto 1\right\},\left\{b_{1} \mapsto 0\right\}\right\rangle, \\
& \cdots\}
\end{aligned}
$$

Example

Heuristic

A heuristic h assigns a value to each state. Lower values for 'better' states.

Simple Hill-climbing

Simple Hill-climbing is a heuristic search algorithm.
$s:=1$
while $\gamma \nsubseteq s$ do
if $\exists s^{\prime} \in \operatorname{succ}(s)$ with $h\left(s^{\prime}\right)<h(s)$ then
$s:=s^{\prime}$
else
return fail
return s

Simple Hill-climbing

Simple Hill-climbing is guaranteed to find a goal state if the heuristic is descending and dead-end avoiding (DDA).

- Descending: each reachable, solvable (non-goal) state has an improving successor.
- Dead-end avoiding: Only solvable successors are improving.

DDA Heuristic

Potential Heuristic

Weighted count of the partial assignments that agree with the given state.

$$
h^{p o t}(s)=\sum_{p \in \mathcal{P}}(w(p) \cdot[p \subseteq s])
$$

- \mathcal{P} set of all possible partial assignments
- w weight function

Potential Heuristic

Weighted count of the partial assignments that agree with the given state.

$$
h^{p \circ t}(s)=\sum_{p \in \mathcal{P}}(w(p) \cdot[p \subseteq s])
$$

- \mathcal{P} set of all possible partial assignments
- w weight function

Dimension of $h^{p o t}$ is maximal $|p|$ with $w(p) \neq 0$.

DDA Potential Heuristic

Correlation Complexity

Definition (Correlation Complexity)

The correlation complexity of a planning task Π is defined as the minimal dimension of all DDA potential heuristics for Π.

Correlation Complexity

Definition (Correlation Complexity)

The correlation complexity of a planning task Π is defined as the minimal dimension of all DDA potential heuristics for Π.

Measures how 'hard' a planning task is.

DDA Potential Heuristic

DDA Potential Heuristic

DDA Potential Heuristic

p	$w(p)$
$\mathrm{U}^{* *}$	4
$\mathrm{~L}^{* *}$	2
1 *	2
${ }^{* *} 1$	1

Dimension: 1 DDA? No! But. . .

Practically Descending and Dead-end Avoiding

If Simple Hill-climbing is guaranteed to find a goal state, then the heuristic is practically descending and dead-end avoiding (PDDA).

Practically Descending and Dead-end Avoiding

If Simple Hill-climbing is guaranteed to find a goal state, then the heuristic is practically descending and dead-end avoiding (PDDA).

- DDA \Rightarrow Simple Hill-climbing finds goal
- Simple Hill-climbing finds goal \Rightarrow PDDA

Practically Descending and Dead-end Avoiding

If Simple Hill-climbing is guaranteed to find a goal state, then the heuristic is practically descending and dead-end avoiding (PDDA).

- DDA \Rightarrow Simple Hill-climbing finds goal
- Simple Hill-climbing finds goal \Rightarrow PDDA

Practically Descending and Dead-end Avoiding

If Simple Hill-climbing is guaranteed to find a goal state, then the heuristic is practically descending and dead-end avoiding (PDDA).

- DDA \Rightarrow Simple Hill-climbing finds goal
- Simple Hill-climbing finds goal \Rightarrow PDDA

Practically Descending and Dead-end Avoiding

If Simple Hill-climbing is guaranteed to find a goal state, then the heuristic is practically descending and dead-end avoiding (PDDA).

- DDA \Rightarrow Simple Hill-climbing finds goal
- Simple Hill-climbing finds goal \Rightarrow PDDA

Basel Measure

Definition (Basel Measure)

The Basel measure of a planning task Π is defined as the minimal dimension of all PDDA potential heuristics for Π.

Basel Measure

Definition (Basel Measure)

The Basel measure of a planning task Π is defined as the minimal dimension of all PDDA potential heuristics for Π.

Theorem

Basel measure \leq correlation complexity.

Correlation complexity: 2
Basel measure: 1

Novelty Width

- Based on a modification of Breadth First Search.
- Not states in the closed list but partial assignments of size k.
- If p is not in the closed list, then p is novel.
- Novelty width is the smallest k that guarantees to finds a plan.
- Measures how 'hard' a planning task is.

Novelty Width Algorithm

if $\gamma \in I$ then
L return /
open $:=[/]$
closed $:=\{p|p \subseteq I,|p|=k\}$
while open is not empty do
$s:=$ pop first element of open
foreach $s^{\prime} \in \operatorname{succ}(s)$ do
if $\gamma \subseteq s^{\prime}$ then
return s^{\prime}
if $\exists p^{*} \subseteq s^{\prime}$ with $\left|p^{*}\right| \leq k, p^{*} \notin$ closed then insert each $p \subseteq s^{\prime}$ with $|p|=k$ in closed append s^{\prime} to open
return fail

Novelty Width Algorithm

if $\gamma \in I$ then
L return /
open $:=[/]$
closed $:=\{p|p \subseteq I,|p|=k\} \leftarrow$
while open is not empty do
$s:=$ pop first element of open
foreach $s^{\prime} \in \operatorname{succ}(s)$ do
if $\gamma \subseteq s^{\prime}$ then
return s^{\prime}
if $\exists p^{*} \subseteq s^{\prime}$ with $\left|p^{*}\right| \leq k, p^{*} \notin$ closed then insert each $p \subseteq s^{\prime}$ with $|p|=k$ in closed append s^{\prime} to open
return fail

Novelty Width Algorithm

if $\gamma \in I$ then
L return /
open $:=[/]$
closed $:=\{p|p \subseteq I,|p|=k\} \leftarrow$
while open is not empty do
$s:=$ pop first element of open
foreach $s^{\prime} \in \operatorname{succ}(s)$ do
if $\gamma \subseteq s^{\prime}$ then
return s^{\prime}
if $\exists p^{*} \subseteq s^{\prime}$ with $\left|p^{*}\right| \leq k, p^{*} \notin$ closed then insert each $p \subseteq s^{\prime}$ with $|p|=k$ in closed \leftarrow append s^{\prime} to open
return fail

Basel Measure vs. Novelty Width

Theorem
Basel measure \leq novelty width +1

Basel Measure vs. Novelty Width

Proof sketch:

- states of plan found with novelty width algorithm: $s_{0}, s_{1}, \ldots, s_{L}$
- chose weights such that s_{i} is the only improving successor of s_{i-1}

Basel Measure vs. Novelty Width

Part of the search tree:

Basel Measure vs. Novelty Width

Part of the search tree:

Basel Measure vs. Novelty Width

Part of the search tree:

Basel Measure vs. Novelty Width

Part of the search tree:

Basel Measure vs. Novelty Width

Part of the search tree:

Basel Measure vs. Novelty Width

Part of the search tree:

Basel Measure vs. Novelty Width

Part of the search tree:

Basel Measure vs. Novelty Width

Part of the search tree:

Basel Measure vs. Novelty Width

Simple Hill-climbing follows the plan found by the novelty width algorithm.
The heuristic is PDDA.

- $\left|p_{i}^{*}\right|=$ novelty width
- $\left|p_{i}^{*} \cup\{f\}\right|=$ novelty width +1

Basel measure is at most novelty width +1 .

Example

Correlation complexity: 2 . Why not 1 ?

State Space in 3D-Space

Treat state variables as dimensions.

Linear Algebra

Definition (Vectorization)

Let $\Pi=\langle V, I, O, \gamma\rangle$ a planning task with only $\{0,1\}$ domains. The vector $\overrightarrow{t_{s, s^{\prime}}} \in \mathbb{R}^{|V|}$ is the vectorization from the state s to the state s^{\prime} where

$$
\overrightarrow{t_{s, s^{\prime}}}[i]:=s^{\prime}\left(v_{i}\right)-s\left(v_{i}\right)
$$

for each $i \in\{1, \ldots,|V|\}$.

Linear Algebra

Definition (Vectorization)

Let $\Pi=\langle V, I, O, \gamma\rangle$ a planning task with only $\{0,1\}$ domains. The vector $\overrightarrow{t_{s, s^{\prime}}} \in \mathbb{R}^{|V|}$ is the vectorization from the state s to the state s^{\prime} where

$$
\overrightarrow{t_{s, s^{\prime}}}[i]:=s^{\prime}\left(v_{i}\right)-s\left(v_{i}\right)
$$

for each $i \in\{1, \ldots,|V|\}$.
Assume: $w(\{v \mapsto 0\})=0$ for each $v \in V$.
For 1-dimensional potential heuristics:

$$
h^{p o t}\left(s^{\prime}\right)-h^{p o t}(s)=\sum_{v_{i} \in V} w\left(\left\{v_{i} \mapsto 1\right\}\right) \cdot \overrightarrow{t_{s, s^{\prime}}}[i]
$$

Linear Algebra

Definition (Vectorization)

Let $\Pi=\langle V, I, O, \gamma\rangle$ a planning task with only $\{0,1\}$ domains. The vector $\overrightarrow{t_{s, s^{\prime}}} \in \mathbb{R}^{|V|}$ is the vectorization from the state s to the state s^{\prime} where

$$
\overrightarrow{t_{s, s^{\prime}}}[i]:=s^{\prime}\left(v_{i}\right)-s\left(v_{i}\right)
$$

for each $i \in\{1, \ldots,|V|\}$.
Assume: $w(\{v \mapsto 0\})=0$ for each $v \in V$.
For 1-dimensional potential heuristics:

$$
h^{p o t}\left(s^{\prime}\right)-h^{p o t}(s)=\sum_{v_{i} \in V} w\left(\left\{v_{i} \mapsto 1\right\}\right) \cdot \overrightarrow{t_{s, s^{\prime}}}[i]
$$

Weight function w corresponds to a linear mapping.

State Space in 3D-Space

Treat state variables as dimensions.

State Space in 3D-Space

Treat state variables as dimensions.

State Space in 3D-Space

Treat state variables as dimensions.

Planning Task in 3D-Space

Separating Hyperplane

Example

For each DDA heuristic:
$h(L 01) \geq h(L 10) \Rightarrow \overrightarrow{t_{L 10, L 01}}$

Example

For each DDA heuristic:
$h(L 01) \geq h(L 10) \Rightarrow \overrightarrow{t_{L 10, L 01}}$
$h(B 01)<h(B 10) \Rightarrow \overrightarrow{t_{B 10, B 01}}$

Example

For each DDA heuristic:
$h(L 01) \geq h(L 10) \Rightarrow \overrightarrow{t_{L 10, L 01}}$
$h(B 01)<h(B 10) \Rightarrow \overrightarrow{t_{B 10, B 01}}$
$\overrightarrow{t_{L 10, L 01}}=\overrightarrow{t_{B 10, B 01}} \neq \overrightarrow{0}$

Example

For each DDA heuristic:
$h(L 01) \geq h(L 10) \Rightarrow \overrightarrow{t_{L 10, L 01}}$
$h(B 01)<h(B 10) \Rightarrow \overrightarrow{t_{B 10, B 01}}$
$\overrightarrow{t_{L 10, L 01}}=\overrightarrow{t_{B 10, B 01}} \neq \overrightarrow{0} \Rightarrow$ no separating hyperplane exists $\Rightarrow h$ is at least 2-dimensional \Rightarrow correlation complexity is at least 2 .

Linear Algebra

Detects correlation complexity of at least 2 on more tasks than other approaches in literature.

Find Tasks with Basel Measure 1

p	$w(p)$
U**	5
${ }^{1}{ }^{*}$	2
${ }^{* *} 1$	1
Constraints:$h(U 11) \leq h(L 11)$	
or	
$h(L 11) \leq h(L 01)$	
$\begin{aligned} & \text { or } \\ & h(L 01)>h(L 10) \end{aligned}$	

Find Tasks with Basel Measure 1

- Mixed Integer Program to refine h.
- Refine until h is PDDA \Rightarrow Basel measure $=1$.
- or solution space is empty \Rightarrow Basel measure ≥ 2.

Results

task	Basel measure	task	Basel measure
gripper:		visitall- opt11-strips:	
prob01.pddl	≥ 2	problem02-full.pddl	1
prob02.pddl	≥ 2	problem02-half.pddl	1
prob03.pddl	≥ 2	problem03-full.pddl	1
prob04.pddl	≥ 2	problem03-half.pddl	≥ 2
movie:		pegsol-08-strips:	
prob01.pddl	1	p01.pddl	1
prob02.pddl	1	p02.pddl	≥ 2
prob03.pddl	1		
prob04.pddl	1		

Results

task	Basel measure	task	Basel measure
gripper:		visitall- opt11-strips:	
prob01.pddl	≥ 2	problem02-full.pddl	1
prob02.pddl	≥ 2	problem02-half.pddl	1
prob03.pddl	≥ 2	problem03-full.pddl	1
prob04.pddl	≥ 2	problem03-half.pddl	≥ 2
prob01.pddl	1	pegsol-08-strips:	
prob02.pddl	1	p02.pddl	1
prob03.pddl	1		≥ 2
prob04.pddl	1		

Conclusion

- Basel measure \leq correlation complexity.
- Basel measure \leq novelty width +1 .
- We can use linear algebra to detect a correlation complexity of at least 2.
- Some IPC tasks have Basel measure of 1 .
- In practice translation can change the Basel measure.

