Correlation Complexity and Different Notions of Width

Simon Dold

University of Basel

June 2, 2021

Introduction	(P)DDA	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments	Conclusion
•00000	000000000		00000000	0000	O
Classica	l Plannin	g			

SAS⁺ Planning Task $\Pi = \langle V, I, O, \gamma \rangle$

- State variables V with finite domain
- Initial state I
- Operators O with precondition and effect
- $\bullet \ \operatorname{Goal} \, \gamma$

Introduction	(P)DDA	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments	Conclusion
00000	000000000		00000000	0000	O
Classica	l Plannin	g			

Task induces a graph called state space

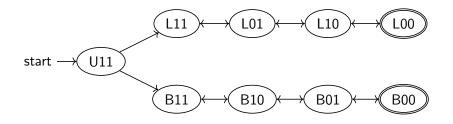
- Nodes correspond to states
- Arcs correspond to operators

Introduction 000000	(P)DDA 000000000	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments 0000	Conclusion O
Example	9				

Little/big endian binary countdown

 $V = \{v, b_0, b_1\}$ $dom(v) = \{$ undecided, little endian, big endian $\}$ $dom(b_0) = dom(b_1) = \{0, 1\}$ $I = \{v \mapsto \text{undecided}, b_0 \mapsto 1, b_1 \mapsto 1\}$ $\gamma = \{ b_0 \mapsto 0, b_1 \mapsto 0 \}$ $O = \{ \langle \{ v \mapsto \text{undecided} \}, \{ v \mapsto \text{little endian} \} \rangle,$ $\langle \{ v \mapsto \text{undecided} \}, \{ v \mapsto \text{big endian} \} \rangle$, $\langle \{v \mapsto \text{big endian}, b_0 \mapsto 1, b_1 \mapsto 1\}, \{b_1 \mapsto 0\} \rangle$...}

Introduction	(P)DDA	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments	Conclusion
000●00	000000000		00000000	0000	O
Example	9				



Introduction	(P)DDA	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments	Conclusion
0000●0	000000000		00000000	0000	O
Heuristi	С				

A **heuristic** *h* assigns a value to each state. Lower values for 'better' states.

Introduction	(P)DDA	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments	Conclusion
00000●	000000000		00000000	0000	O
Simple	Hill-climb	oing			

Simple Hill-climbing is a heuristic search algorithm.

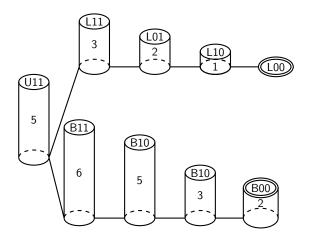
```
s := I
while \gamma \nsubseteq s do
 | if \exists s' \in succ(s) \text{ with } h(s') < h(s) \text{ then} 
 \mid s := s'
else
 \sqcup \text{ return fail}
return s
```

Introduction	(P)DDA	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments	Conclusion
000000	●00000000		00000000	0000	O
Simple	Hill-climb	ping			

Simple Hill-climbing is guaranteed to find a goal state if the heuristic is **descending** and **dead-end avoiding** (DDA).

- Descending: each reachable, solvable (non-goal) state has an improving successor.
- Dead-end avoiding: Only solvable successors are improving.

Introduction 000000	(P)DDA ○●○○○○○○○	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments 0000	Conclusion O
DDA H	euristic				



Introduction	(P)DDA	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments	Conclusion
000000	००●००००००		00000000	0000	O
Potentia	al Heurist	ic			

Weighted count of the partial assignments that agree with the given state.

$$h^{pot}(s) = \sum_{p \in \mathcal{P}} (w(p) \cdot [p \subseteq s])$$

- \mathcal{P} set of all possible partial assignments
- w weight function

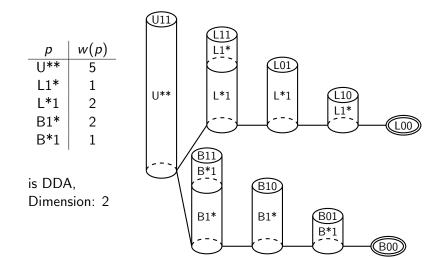
Introduction	(P)DDA	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments	Conclusion
000000	००●००००००		00000000	0000	O
Potentia	al Heurist	ic			

Weighted count of the partial assignments that agree with the given state.

$$h^{pot}(s) = \sum_{p \in \mathcal{P}} (w(p) \cdot [p \subseteq s])$$

- \mathcal{P} set of all possible partial assignments
- w weight function

Dimension of h^{pot} is maximal |p| with $w(p) \neq 0$.



Introduction 000000	(P)DDA 0000●0000	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments 0000	Conclusion O
Correla	tion Com	plexity			

Definition (Correlation Complexity)

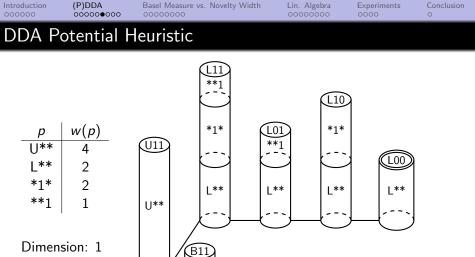
The **correlation complexity** of a planning task Π is defined as the minimal dimension of all DDA potential heuristics for Π .

Introduction 000000	(P)DDA 0000●0000	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments 0000	Conclusion O
Correlat	ion Com	plexity			

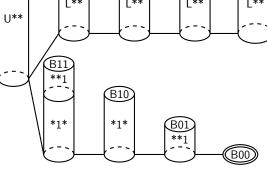
Definition (Correlation Complexity)

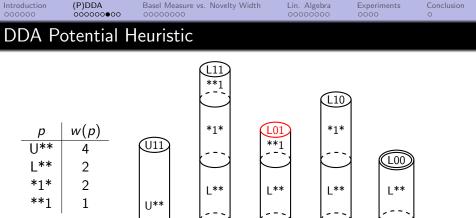
The **correlation complexity** of a planning task Π is defined as the minimal dimension of all DDA potential heuristics for Π .

Measures how 'hard' a planning task is.

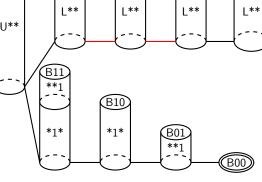


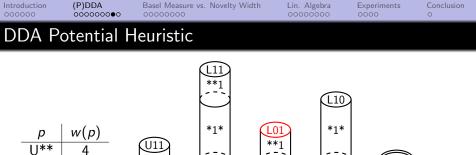
DDA?





Dimension: 1 DDA? No!





| **

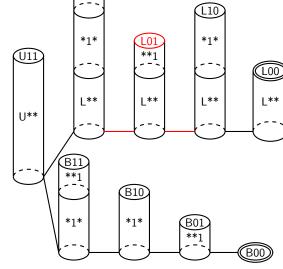
1

**1

2

2

1



If Simple Hill-climbing is guaranteed to find a goal state, then the heuristic is **practically descending and dead-end avoiding** (PDDA).

If Simple Hill-climbing is guaranteed to find a goal state, then the heuristic is **practically descending and dead-end avoiding** (PDDA).

- DDA \Rightarrow Simple Hill-climbing finds goal
- Simple Hill-climbing finds goal \Rightarrow PDDA

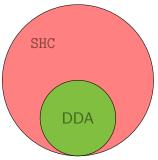
If Simple Hill-climbing is guaranteed to find a goal state, then the heuristic is **practically descending and dead-end avoiding** (PDDA).

- DDA \Rightarrow Simple Hill-climbing finds goal
- Simple Hill-climbing finds goal \Rightarrow PDDA

Practically Descending and Dead-end Avoiding

If Simple Hill-climbing is guaranteed to find a goal state, then the heuristic is **practically descending and dead-end avoiding** (PDDA).

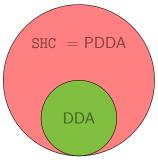
- DDA \Rightarrow Simple Hill-climbing finds goal
- Simple Hill-climbing finds goal \Rightarrow PDDA



Practically Descending and Dead-end Avoiding

If Simple Hill-climbing is guaranteed to find a goal state, then the heuristic is **practically descending and dead-end avoiding** (PDDA).

- DDA \Rightarrow Simple Hill-climbing finds goal
- Simple Hill-climbing finds goal \Rightarrow PDDA



Introduction	(P)DDA	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments	Conclusion
000000	000000000	•0000000		0000	O
Basel N	leasure				

Definition (Basel Measure)

The **Basel measure** of a planning task Π is defined as the minimal dimension of all PDDA potential heuristics for Π .

Introduction	(P)DDA	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments	Conclusion
000000	000000000	•0000000	00000000	0000	O
Basel N	leasure				

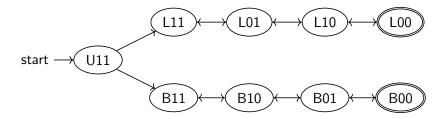
Definition (Basel Measure)

The **Basel measure** of a planning task Π is defined as the minimal dimension of all PDDA potential heuristics for Π .

Theorem

Basel measure \leq correlation complexity.

Introduction	(P)DDA	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments	Conclusion
000000	000000000		00000000	0000	O



Correlation complexity: 2 Basel measure: 1

Introduction	(P)DDA	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments	Conclusion
000000	000000000	00●00000		0000	O
Novelty	Width				

- Based on a modification of Breadth First Search.
- Not states in the closed list but partial assignments of size k.
- If p is not in the closed list, then p is **novel**.
- Novelty width is the smallest k that guarantees to finds a plan.
- Measures how 'hard' a planning task is.

Introduction	(P)DDA	Basel Measure vs.	Novelty Width	Lin. Algebra	Experiments	Conclusion
000000	000000000	0000000		00000000	0000	O
Novelty	Width A	lgorithm				

```
if \gamma \in I then
| return /
open := [I]
closed := \{p \mid p \subseteq I, |p| = k\}
while open is not empty do
    s := pop first element of open
    foreach s' \in \operatorname{succ}(s) do
        if \gamma \subset s' then
        return s'
        if \exists p^* \subseteq s' with |p^*| \leq k, p^* \notin closed then
             insert each p \subseteq s' with |p| = k in closed
             append s' to open
return fail
```

Introduction	(P)DDA	Basel Measure vs.	Novelty Width	Lin. Algebra	Experiments	Conclusion
000000	000000000	0000000		00000000	0000	O
Novelty	Width A	lgorithm				

```
if \gamma \in I then
 | return /
open := [I]
closed := \{p \mid p \subseteq I, |p| = k\} \leftarrow
while open is not empty do
     s := pop first element of open
     foreach s' \in \operatorname{succ}(s) do
         if \gamma \subset s' then
         return s'
         if \exists p^* \subseteq s' with |p^*| \leq k, p^* \notin closed then
             insert each p \subseteq s' with |p| = k in closed
             append s' to open
return fail
```

Introduction	(P)DDA	Basel Measure vs.	Novelty Width	Lin. Algebra	Experiments	Conclusion
000000	000000000	0000000		00000000	0000	O
Novelty	Width A	lgorithm				

```
if \gamma \in I then
 | return /
open := [I]
closed := \{p \mid p \subseteq I, |p| = k\} \leftarrow
while open is not empty do
     s := pop first element of open
     foreach s' \in \operatorname{succ}(s) do
         if \gamma \subset s' then
         return s'
         if \exists p^* \subseteq s' with |p^*| \leq k, p^* \notin closed then \leftarrow
              insert each p \subseteq s' with |p| = k in closed \leftarrow
              append s' to open
return fail
```

 Introduction
 (P)DDA
 Basel Measure vs. Novelty Width
 Lin. Algebra
 Experiments
 Conclusion

 Basel Measure vs. Novelty Width
 Novelty Width
 Novelty Width
 Novelty Width
 Novelty

Theorem

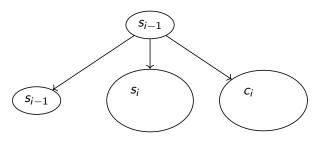
Basel measure \leq novelty width +1

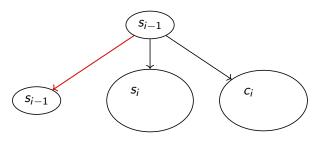
 Introduction
 (P)DDA
 Basel Measure vs. Novelty Width
 Lin. Algebra
 Experiments
 Conclusion

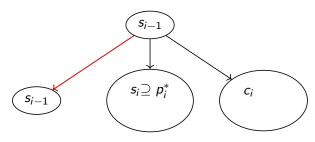
 Basel Measure vs. Novelty Width
 Novelty Width
 Novelty Width
 Novelty Width
 Novelty

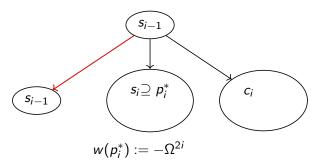
Proof sketch:

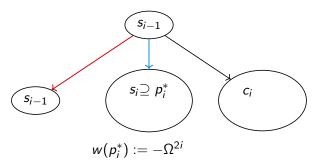
- states of plan found with novelty width algorithm: s_0, s_1, \ldots, s_L
- chose weights such that s_i is the only improving successor of s_{i-1}



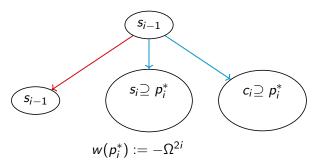




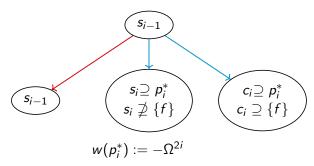


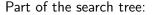


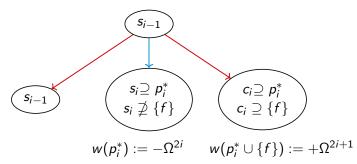
Part of the search tree:



Part of the search tree:







Introduction (P)DDA Basel Measure vs. Novelty Width Lin. Algebra coord Conclusion Conclusion Basel Measure vs. Novelty Width

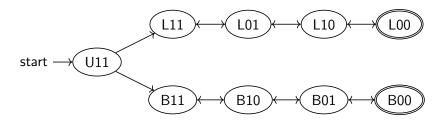
Simple Hill-climbing follows the plan found by the novelty width algorithm.

The heuristic is PDDA.

- $|p_i^*| = \text{novelty width}$
- $|p_i^* \cup \{f\}| = \text{novelty width } +1$

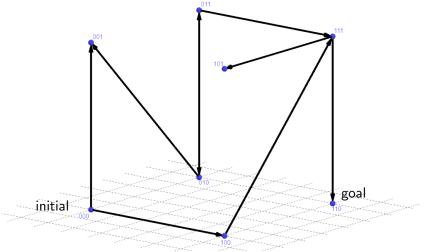
Basel measure is at most novelty width +1.

Introduction	(P)DDA	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments	Conclusion
000000	000000000		●0000000	0000	O
Example	2				



Correlation complexity: 2. Why not 1?

Introduction	(P)DDA	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments	Conclusion
000000	000000000		0●000000	0000	O
State S	pace in 3	D-Space			



Introduction	(P)DDA	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments	Conclusion
000000	000000000		00●00000	0000	O
Linear A	Algebra				

Definition (Vectorization)

Let $\Pi = \langle V, I, O, \gamma \rangle$ a planning task with only $\{0, 1\}$ domains. The vector $\overrightarrow{t_{s,s'}} \in \mathbb{R}^{|V|}$ is the **vectorization** from the state *s* to the state *s'* where

$$\overrightarrow{t_{s,s'}}[i] := s'(v_i) - s(v_i)$$

for each $i \in \{1, ..., |V|\}$.

Introduction	(P)DDA	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments	Conclusion
000000	000000000		00●00000	0000	O
Linear A	Algebra				

Definition (Vectorization)

Let $\Pi = \langle V, I, O, \gamma \rangle$ a planning task with only $\{0, 1\}$ domains. The vector $\overrightarrow{t_{s,s'}} \in \mathbb{R}^{|V|}$ is the **vectorization** from the state *s* to the state *s'* where

$$\overrightarrow{t_{s,s'}}[i] := s'(v_i) - s(v_i)$$

for each $i \in \{1, ..., |V|\}$.

Assume: $w(\{v \mapsto 0\}) = 0$ for each $v \in V$. For 1-dimensional potential heuristics:

$$h^{pot}(s') - h^{pot}(s) = \sum_{v_i \in V} w(\{v_i \mapsto 1\}) \cdot \overrightarrow{t_{s,s'}}[i]$$

Introduction 000000	(P)DDA 000000000	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments 0000	Conclusion O
Linear /	Algebra				

Definition (Vectorization)

Let $\Pi = \langle V, I, O, \gamma \rangle$ a planning task with only $\{0, 1\}$ domains. The vector $\overrightarrow{t_{s,s'}} \in \mathbb{R}^{|V|}$ is the **vectorization** from the state *s* to the state *s'* where

$$\overrightarrow{t_{s,s'}}[i] := s'(v_i) - s(v_i)$$

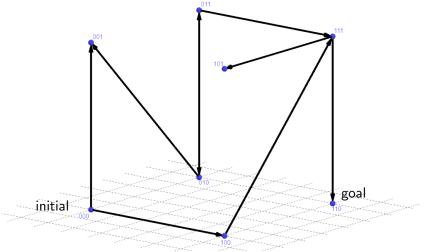
for each $i \in \{1, ..., |V|\}$.

Assume: $w(\{v \mapsto 0\}) = 0$ for each $v \in V$. For 1-dimensional potential heuristics:

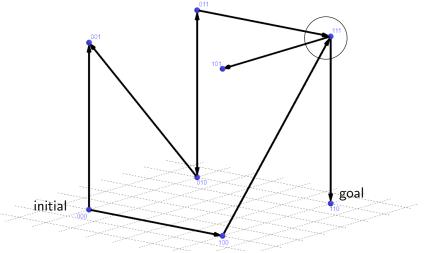
$$h^{pot}(s') - h^{pot}(s) = \sum_{v_i \in V} w(\{v_i \mapsto 1\}) \cdot \overrightarrow{t_{s,s'}}[i]$$

Weight function w corresponds to a linear mapping.

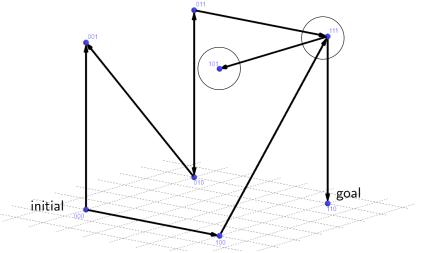
Introduction	(P)DDA	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments	Conclusion
000000	000000000	0000000	00000000	0000	O
State S	pace in 3	D-Space			

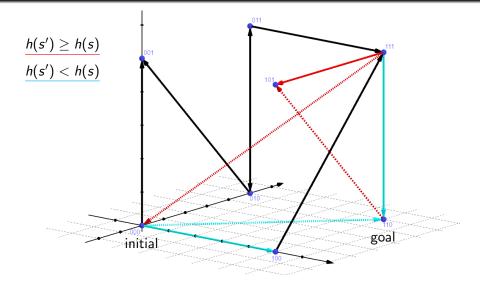


Introduction 000000	(P)DDA 000000000	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments 0000	Conclusion O
State S	pace in 3	D-Space			

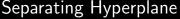


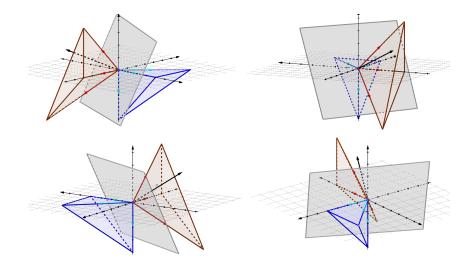
Introduction 000000	(P)DDA 000000000	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments 0000	Conclusion O
State S	pace in 3	D-Space			



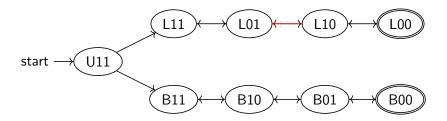


Separatir			000000000	0000	0
Introduction	(P)DDA	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments	Conclusion



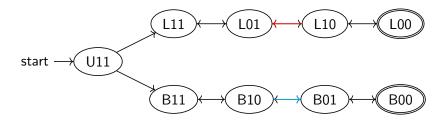


Introduction	(P)DDA	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments	Conclusion
000000	000000000		000000●0	0000	O
Example	9				



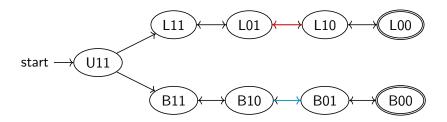
For each DDA heuristic: $h(L01) \ge h(L10) \Rightarrow \overrightarrow{t_{L10,L01}}$

Introduction	(P)DDA	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments	Conclusion
000000	000000000		000000●0	0000	O
Example	е				



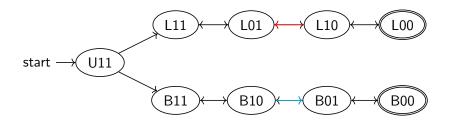
For each DDA heuristic: $h(L01) \ge h(L10) \Rightarrow \overrightarrow{t_{L10,L01}}$ $h(B01) < h(B10) \Rightarrow \overrightarrow{t_{B10,B01}}$

Introduction	(P)DDA	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments	Conclusion
000000	000000000		000000●0	0000	O
Example	е				



For each DDA heuristic: $h(L01) \ge h(L10) \Rightarrow \overrightarrow{t_{L10,L01}}$ $h(B01) < h(B10) \Rightarrow \overrightarrow{t_{B10,B01}}$ $\overrightarrow{t_{L10,L01}} = \overrightarrow{t_{B10,B01}} \neq \overrightarrow{0}$

Introduction	(P)DDA	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments	Conclusion
000000	000000000		000000●0	0000	O
Example	9				

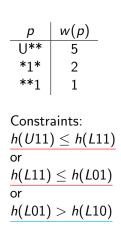


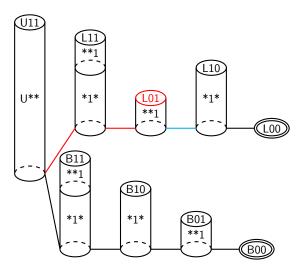
For each DDA heuristic: $h(L01) \ge h(L10) \Rightarrow \overrightarrow{t_{L10,L01}}$ $h(B01) < h(B10) \Rightarrow \overrightarrow{t_{B10,B01}}$ $\overrightarrow{t_{L10,L01}} = \overrightarrow{t_{B10,B01}} \neq \overrightarrow{0} \Rightarrow \text{no separating hyperplane exists} \Rightarrow h \text{ is at least 2-dimensional} \Rightarrow \text{ correlation complexity is at least 2.}$

Introduction	(P)DDA	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments	Conclusion
000000	000000000		0000000●	0000	O
Linear /	Algebra				

Detects correlation complexity of at least 2 on more tasks than other approaches in literature.

Find Tasks with Basel Measure 1





Introduction	(P)DDA	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments	Conclusion
000000	000000000		00000000	0000	O
Find Ta	sks with	Basel Measure 1			

- Mixed Integer Program to refine h.
- Refine until *h* is PDDA \Rightarrow Basel measure = 1.
- ${\, \bullet \,}$ or solution space is empty \Rightarrow Basel measure \geq 2.

Introduction	(P)DDA	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments	Conclusion
000000	000000000		00000000	00●0	O
Results					

task	Basel	task	Basel
Lask	measure	Lask	measure
grippor		visitall-	
gripper:		opt11-strips:	
prob01.pddl	≥ 2	problem02-full.pddl	1
prob02.pddl	≥ 2	problem02-half.pddl	1
prob03.pddl	≥ 2	problem03-full.pddl	1
prob04.pddl	≥ 2	problem03-half.pddl	≥ 2
movie:		pegsol-08-strips:	
prob01.pddl	1	p01.pddl	1
prob02.pddl	1	p02.pddl	≥ 2
prob03.pddl	1		
prob04.pddl	1		

Introduction	(P)DDA	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments	Conclusion
000000	000000000		00000000	000●	O
Results					

task	Basel measure	task	Basel measure
gripper:		visitall- opt11-strips:	
prob01.pddl	≥ 2	problem02-full.pddl	1
prob02.pddl	≥ 2	problem02-half.pddl	1
prob03.pddl	≥ 2	problem03-full.pddl	1
prob04.pddl	≥ 2	problem03-half.pddl	<u>≥ 2</u>
movie:		pegsol-08-strips:	
prob01.pddl	1	p01.pddl	1
prob02.pddl	1	p02.pddl	≥ 2
prob03.pddl	1		
prob04.pddl	1		

Introduction	(P)DDA	Basel Measure vs. Novelty Width	Lin. Algebra	Experiments	Conclusion
000000	000000000		00000000	0000	•
Conclus	ion				

- Basel measure \leq correlation complexity.
- Basel measure \leq novelty width +1.
- We can use linear algebra to detect a correlation complexity of at least 2.
- Some IPC tasks have Basel measure of 1.
- In practice translation can change the Basel measure.