
Encoding Delete-Free Planning Tasks in
Domain-Independent Dynamic

Programming
Bachelor Thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Artificial Intelligence Group

https://ai.dmi.unibas.ch/

Examiner: Prof. Malte Helmert

Supervisor: Florian Pommerening

Maria Desteffani

maria.desteffani@unibas.ch

2020-054-524

16. 02. 2025

Acknowledgments

Most of all, I would like to thank my supervisor Florian Pommerening for the great feedback

and suggestions, and for always patiently trying to help me understand the topics I just could

not grasp. I do not know how this thesis would have turned out without him. I would also

like to thank Prof. Malte Helmert and the Artificial Intelligence Group for giving me the

opportunity to write this thesis and dive into this topic. I have learned an incredible amount

from writing this thesis, but also realized that I still have a long way to go. I would also like

to thank my friends and family who never seemed to doubt me for a second. A special thank

you also goes to all the people in the ZG at the Department, especially those who have spent

these last few weeks there with me and have always shown me tremendous support, both in

general and during some particularly stressful times.

Abstract

Automated planning is a branch of Artificial Intelligence that focuses on finding sequences

of actions that achieve a given goal. Delete-free planning is a subset of automated planning

which plays an important role in the computation of many heuristics. Domain-Independent

Dynamic Programming (DIDP) is a framework for dynamic programming problems that

provides a general approach to solving combinatorial optimization problems. It is particu-

larly interesting because it allows for a separation of problem modeling and solving. In this

thesis we explore the encoding of delete-free STRIPS planning problems within the DIDP

framework using Dynamic Programming Description Language (DyPDL). We propose two

different encodings. In the variable-to-variable encoding, each planning variable is mapped

to an individual DyPDL variable. In contrast, the variable-to-set encoding uses a single

DyPDL set variable to represent all planning variables. We also introduce several optimiza-

tion techniques, including forcing transitions, filtering unproductive transitions and using

heuristic functions to guide the search. For our experiments, we measured the number of

completed runs, the number of runs terminated by memory errors or timeouts, the average

memory usage, a time score and the average number of expanded nodes. We show that the

performance of both encodings improved in all metrics when heuristics were added. How-

ever, the structural modifications resulted in no significant improvement and, in some cases,

even a decline in performance. Exploring other variants of structural modifications, and

especially the implementation of more powerful heuristics, is a promising topic for further

research to help optimize the current models.

Table of Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

2 Delete-Free Planning Tasks 3

3 Dynamic Programming 7

3.1 Domain-Independent Dynamic Programming 8

3.2 DyPDL Problems as State Spaces . 11

4 Delete-free Planning Tasks in DyPDL 13

4.1 Variable to Variable Encoding . 13

4.2 Variable to Set Encoding . 18

4.3 Forcing Transitions . 20

4.4 Ignoring Unproductive Transitions . 21

4.5 Possible Heuristics . 22

5 Experiments 24

5.1 Experimental Setup . 24

5.2 Baseline Variable-to-Variable and Variable-to-Set Encoding 26

5.3 Heuristics . 27

5.4 Excluding Transitions . 29

6 Conclusion 31

Bibliography 33

1
Introduction

Automated Planning is a branch of Artificial Intelligence that focuses on reasoning about

actions and their consequences to achieve a specific goal [4]. It is applied in various fields

such as logistics, robotics, puzzle solving or space exploration. A planning task includes

an initial state, a set of actions and one or more goal states. Finding a solution means

determining a sequence of actions that ends in a goal state. This sequence of actions is

called a plan. An example of a planning task is a robot vacuum cleaner that must clean a

house by navigating through each rooms as efficiently as possible while avoiding obstacles.

The available actions include moving forward, turning left or right, cleaning and stopping

cleaning.

The planning formalism used in this thesis is delete-free STRIPS, a simplified version of the

STRIPS formalism introduced by Fikes and Nilsson in 1971 [2]. In STRIPS, applying an

action transforms the current problem state into a new one by processing add and delete

effects. Add effects specify which facts are added to the current state and delete effects

specify which facts are removed. For example, when our vacuum robot moves from the

living room to the kitchen, it loses the fact that it is in the living room but gains the fact

that it is now in the kitchen. As the name implies, delete-free STRIPS ignores delete effects.

There are inherently delete-free problems, such as the minimal seed-set problem [3], where

an organism accumulates nutrients by having them added to it or by synthesizing existing

ones, never losing any previously acquired nutrients. While our vacuum robot problem is

not inherently delete-free, the delete-free version of the problem can still be useful as many

heuristics use the delete-free version of a planning task to estimate goal distance in the

original problem.

Dynamic Programming (DP) is an optimization method in which a complex problem is

decomposed into simpler subproblems [9]. The basic idea behind DP is to avoid redundant

computations by reusing solutions found from solving previous subproblems. An example

of a DP problem is the Fibonacci sequence, where each number is computed using the two

preceding ones, avoiding the recalculation of already known values. Domain-Independent

Dynamic Programming (DIDP), as introduced by Kuroiwa and Beck [7], creates a general

framework for optimization problems that allows for a separation of problem modeling and

Introduction 2

solving, whereas in the past DP problems historically were solved using problem-specific

algorithms. The formalism we use to model DIDP problems in this thesis is the Dynamic

Programming Description Language (DyPDL).

The goal of this thesis is to encode delete-free planning tasks within the DIDP framework,

using delete-free STRIPS and DyPDL as formalisms. The encodings must ensure that the

solution of the generated DyPDL task is equivalent to the solution of the original delete-free

STRIPS task.

In the following chapters,we first introduce delete-free planning and DIDP in more detail

and formally define the delete-free STRIPS and DyPDL formalisms. We then introduce two

different encodings, as well as two structural modifications and two heuristics. Finally, we

compare the encodings with and without the modifications and heuristics against each other

to determine which improve performance and which do not.

2
Delete-Free Planning Tasks

In this chapter we introduce fundamental concepts of delete-free planning. We start by

defining state spaces as a foundation for planning tasks. We then formally introduce delete-

free STRIPS as a planning formalism and illustrate its use with an example. Finally, we

also introduce heuristics, which play an important part in efficiently solving planning tasks.

A state space S is a directed, labeled, weighted graph. The definition of a state space

is a tuple S = ⟨S, L, cost, T, α, Γ⟩, where:

• S is the set of possible states.

• L is the set of labels.

• cost : L 7→ N0 assigns each label l ∈ L a cost.

• T ⊆ S × L × S is the deterministic transition relation. It contains tuples ⟨s, l, s′⟩
where s, s′ ∈ S are states and l ∈ L is a label.

• α is the initial state.

• Γ is the set of goal states.

Each node in the graph correspond to a state and each edge represents a labeled transition

with a weight given by the label’s cost. A solution corresponds to a path in the graph,

starting from the initial state α and ending in a goal state γ ∈ Γ. The sum of the cost of all

traversed edges used is the cost of the path. An optimal solution is a path of minimal cost.

If we have uniform cost, this corresponds to the shortest path in the graph. [11]

Here we introduce delete-free STRIPS as a description language for state spaces. A delete-

free STRIPS planning task is defined as a tuple Π = ⟨V, I, G, A⟩ and contains the following

[10]:

• A finite set of binary state variables V . States are represented as sets s ⊆ V .

• An initial state I ⊆ V .

Delete-Free Planning Tasks 4

• The goals G ⊆ V . For a state s to be a goal state, G ⊆ s must hold.

• A finite set of actions A where each a ∈ A is defined as a = ⟨pre(a), add(a), cost(a)⟩.

– pre(a) ⊆ V : These are the preconditions of a and consist of a subset of variables

of V . An action is applicable in a state s if pre(a) ⊆ s holds. Otherwise the

action is not applicable and can therefore not be applied.

– add(a) ⊆ V : These are the add effects of a and are a subset of variables of V .

Applying action a in a state s results in all variables of add(a) getting added

to s. After doing so, we reach the successor state of s, which we denote as

sJaK = s ∪ add(a).

– cost(a) ∈ N0: the immediate cost of applying action a.

The state space induced by a delete-free STRIPS task Π = ⟨V, I, G, A⟩ is:

S(Π) = ⟨SΠ, LΠ, costΠ, TΠ, αΠ, ΓΠ⟩ (2.1)

Each component is defined as follows:

• SΠ = 2V is the set of all possible states, each state s is represented by a subset of

variables.

• LΠ = A is the set of labels, corresponding to the set of actions A.

• costΠ : L 7→ N0 assigns a cost to each label such that cost(l) = cost(a) for all l = a ∈ A.

• TΠ contains tuples ⟨s, a, sJaK⟩ for all s, sJaK ∈ SΠ and a ∈ A where a is applicable

in s and sJaK is the successor state of s reached after applying a.

• αΠ = I is the initial state.

• ΓΠ = {γ ∈ SΠ | G ⊆ γ} represents the goal states.

An example of a delete-free planning task is the minimal seed-set problem [3]. In the minimal

seed-set problem we have an organism with a set of required nutrients C. We start off with no

nutrients and can either add them for a cost or the organism can use chemical or metabolic

reactions r = (X, Y) to synthesize more nutrients for free. Here X is called the substrate,

these are the nutrients which need to be present for the reaction to happen. Y is the product

set, these are the nutrients which get produced by the reaction. Both are subsets of the

required nutrients: X, Y ⊆ C. The set of all possible reactions is the metabolic network

R. We further define a set of nutrients N as reachable from a subset Z of N if there is a

finite sequence of reactions to synthesize all the missing nutrients of N . It is important to

note here that nutrients do not get lost during reactions, each nutrient from the subset Z

already counts towards completing N , we do not need to synthesize them too. This planning

task is therefore inherently delete-free. A seed-set of a metabolic network is a subset of the

nutrients C from which the entirety of C is reachable. The minimal seed-set is the minimal

subset of C from which all nutrients C are reachable.

We can formulate the minimal seed-set problem as a delete-free STRIPS planning task

Πseed = ⟨Vseed, Iseed, Gseed, Aseed⟩ where:

Delete-Free Planning Tasks 5

• Vseed = C, each nutrient is a variable c ∈ C.

• Iseed = ∅ as we start with no nutrients present.

• Gseed = C as we want to accumulate all required nutrients C.

• For each c ∈ C we have an action ac and for each r ∈ R an action ar. Actions ac add

the nutrient c and actions ar use reaction r. They are defined as:

pre(ac) = ∅ pre(ar) = X

add(ac) = {c} add(ar) = Y

cost(ac) = 1 cost(ar) = 0

A solution to a delete-free STRIPS task consists of a sequence of applicable actions, meaning

each action must be applicable in the state it is applied in. Such a solution is also called a

plan. The cost of a plan is the sum of the costs of all actions used. An optimal plan is a

plan of minimal cost.

Lemma 1. An optimal plan of a delete-free STRIPS task Π corresponds to an optimal

solution in its induced state space S(Π).

Each node in the state space S(Π) represents a state of the delete-free STRIPS task, and

each edge corresponds to an action. All outgoing edges of a node represent the applicable

actions in the state that corresponds to the node. The initial state I in Π directly corre-

sponds to the starting node αΠ in S(Π), while the goal states G in Π correspond to the

set of goal nodes ΓΠ in S(Π). Each action in Π has a cost that matches the weight of its

corresponding edge in S(Π), and applying an action in Π is equivalent to traversing the

corresponding edge in S(Π).

A plan for a delete-free STRIPS task Π is a sequence of actions leading from the initial state

I to a goal state g ∈ G. In its induced state space S(Π), this corresponds precisely to a

path from αΠ to a goal state γ ∈ ΓΠ. Since the cost of a plan is the sum of the costs of its

actions, and the cost of a path in S(Π) is the sum of its edge weights, an optimal plan in Π

corresponds directly to the cheapest path in S(Π).

Thus, finding the cheapest plan in the delete-free STRIPS task Π is equivalent to finding

the cheapest path in its induced state space S(Π), and vice versa.

Finally, we will also introduce the concept of heuristics [11]. We define a heuristic h

for a state space S with states s ∈ S as a function:

h : s 7→ R+
0 ∪ {∞} (2.2)

A heuristic h maps each state to a nonnegative number or to infinity. The idea behind

heuristics is to estimate the distance, i.e., the cheapest path, to the nearest goal. The goal

of using heuristics is to help guide the search to focus on exploring promising paths.

A heuristic is called admissible if it never overestimates the true cost to the goal:

h(s) ≤ h∗(s) for all s ∈ S

Delete-Free Planning Tasks 6

where h∗ is the perfect heuristic which maps all states to the cost of the optimal solution or

∞ if there is none.

3
Dynamic Programming

In this chapter we introduce Dynamic Programming (DP) as a method for combinatorial

optimization where a complex problem is decomposed into a set of smaller and easier sub-

problems. Solutions to these subproblems are computed and used to determine a solution

to the original problem [9].

For illustration purposes we introduce the min 0-1 knapsack problem. Given are n items

X = {x0, x1, ..., xn−1} with a weight wi ∈ R+ and a utility ui ∈ R+ for i ∈ {0, 1, ..., n−1}.
We also have an empty bag and a target utility Utarget. Our task is to fill the bag with items

such that we reach or exceed the target utility while minimizing the weight. Each item can

only be used once, hence the 0-1 in the problem name.

When solving a DP problem s we take decisions from a set of applicable decisions D(s)[7].

Applying a decision d creates one or more subproblems sJdK. Taking another decision based

on one subproblem sJdK creates subproblems of the subproblem and so on. [9]

Each (sub-)problem s in a DP problem is assigned a value J(s) using the value function J.

The value of the original problem is the solution to the DP problem. For a minimization

problem J(s) is defined using a function F as [7]:

J(s) = min
d∈D(s)

F (d, {J(s′) | s′ ∈ sJdK}) (3.1)

We can also look at maximization problems using max instead of min, but we will focus

solely on minimization problems from here on out.

Transitions T are a special case of decisions where only one subproblem is generated [7].

The set of applicable transitions for a problem s are denoted as T (s). In the following we

will only consider transitions. The value function for DP problems using transitions is:

J(s) = min
τ∈T (s)

F (τ, J(sJτK)) (3.2)

We define a variable B ⊆ X in the min 0-1 knapsack problem which represents the already

’bagged’ items and denote the current total utility in the bag as U ∈ R+. A (sub-)problem

is represented by a tuple s = ⟨B, U⟩. We initially start with an empty bag, i.e., s = ⟨∅, 0⟩

Dynamic Programming 8

and can take a transition τ to add a specific item xi into it, creating the subproblem

sJτK = ⟨B ∪ {xi}, vi⟩. In the min 0-1 knapsack problem J(s) describes the minimal weight

needed to reach or exceed the target utility from state s. We define J(s) as :

J(⟨B,U⟩) =

0 if U ≥ Utarget,

∞ if B = X and U < Utarget,

min
xi∈X\B

(J(B ∪ {xi}, U + ui) + wi) otherwise.

The recursive value function in the knapsack problem differentiates between three cases.

First, if the target utility is reached the cost is zero as no other items need to be added.

Second, if all items where added and the target utility is still not reached, J(s) will be

infinity. Lastly, if neither of this is the case, J(s) will be recursively computed using the

value of the successor state.

3.1 Domain-Independent Dynamic Programming
Historically, solving DP-problems includes using problem-specific algorithms. Domain-

Independent Dynamic Programming (DIDP) [7] creates a more general framework for com-

binatorial optimization problems and can model a wide range of problems independently

from the solver. This removes the need to tailor the algorithm to the problem and we can

instead solve several or even all DIDP problems with the same algorithm.

The modeling formalism used in DIDP is Dynamic Programming Description Language

(DyPDL) [7] and is, as mentioned before, independent of the final solver used.

A DyPDL model is a tuple D = ⟨V, s0, K, T , B, C, h⟩ which consists of state vari-

ables V, a target state s0, a set of constants K, a set of transitions T , a set of base cases B, a
set of state constraints C and a dual bound h. We now describe the components in detail and

create a DyPDLmodel for the min 0-1 knapsack problemDk = ⟨Vk, s
0
k, Kk, Tk, Bk, Ck, hk⟩:

State Variables V: State variables are used to describe and define states. A full value

assignment to all state variables results in a state s. There are three different types of state

variables:

• Element variables reference objects. DIDP assumes a fixed amount of objects which

can then be referenced using their indices. The indices are assigned to element variables

as nonnegative integers.

• Set variables are assigned sets of nonnegative integers which reference several objects.

• Numerical variables are assigned real numbers. A numerical variable can further be

classified as a resource variable if it has a preference for a smaller or greater value.

In the min 0-1 knapsack problem B is a set variable and U is a numerical variable. A state

sk is described by a variable assignment to B and U .

Dynamic Programming 9

Target State s0: This is the target state of the problem. Solving a DIDP problem in-

volves determining its value.

The target state of the knapsack problem is s0k = ⟨∅, 0⟩, this is the state where the bag is

empty.

Constants K: Constants are state-independent values which never change. There are

four types of constants:

• Element constants contain nonnegative integers and represent the index of an object.

• Set constants contain sets of nonnegative integers and represent the indices of several

objects.

• Numeric constants contain real numbers.

• Boolean constants contain a boolean value.

It is also possible to have multidimensional tables of constants.

In the min 0-1 knapsack problem we have X as a set constant, Utarget as a numerical con-

stant and the multidimensional numerical constants wi and ui.

Expressions: To explain transitions, base cases, state constraints and the dual bound

we first introduce expressions. State variables and constants as well as computations using

them are called expressions. An expression e can be understood as a function which maps

a state s to a value e(s). Based on the value type of e(s) we can differentiate between four

different expressions:

• An Element Expressions maps to a nonnegative integer that represents the index of

an object. Element expressions can consist of element variables and constants. We

can also use arithmetic operations on them.

• A Set Expression maps to a set of nonnegative integers representing the indices of

several objects. We can use set variables and constants to build set expressions and

take the union, intersection or difference of several set expressions.

• A Numeric Expression maps to a real number. Numeric expressions can be built with

numeric constants and numeric variables and we can use arithmetic operations. We

can also take the cardinality of a set expression.

• Conditions map to a boolean value. They consist of boolean constants and compar-

isons of element, set or numeric expressions and can use set operations. We can further

use the disjunction and conjunction of several conditions as a new condition. We can

also use the indicator function 1 over a condition to get an integer value.

For a condition c and a state s we say that state s holds under c if c(s) = ⊤, this can

be denoted by s |= c. If c(s) = ⊥, then c does not hold under s, denoted by s ⊭ c.

A state s holds under a set of conditions C if for all c ∈ C we have s |= c. This can

Dynamic Programming 10

be denoted as s |= C. If there is a c ∈ C for which s ⊭ c holds, then s does not hold

under C, we denote this by s ⊭ C.

Transition T : Transitions define how one state evolves to another state. The DyPDL

model only supports transitions, not decisions in general. A transition is defined as a tuple

τ = ⟨eff τ , costτ , preτ , forcedτ ⟩ containing effects, preconditions, cost expressions and a

forced transition boolean value.

• eff τ : Effects contain an expression e for each variable v ∈ V. Applying a transition τ

in a state s means to map each variable v to s(e(v)) using the corresponding expression

defined in the effects. The variable values s(e(v)) for all v ∈ V represent their values

in the successor state sJτK.

• costτ : The cost expression for state s is a numerical expression defined by the function

F (τ, J(sJτK) included in the value function J(s) as defined in (3.2). It describes the

computation of the value of state s using the current state as well as the value of a

successor state J(sJτK). From now on we will always assume that the costs defined by

F are of the form eτ + J(sJτK) where eτ is an arbitrary numerical constant.

• preτ : Preconditions are a set of conditions C. A state s can apply transition τ if

s |= C. In this case, τ is an applicable transition. The set of all applicable transitions

in a state s is denoted by s(T).

• forcedτ : Each transitions contains a boolean value which described whether a transi-

tion is forced or not. A forced transition must always take place if the preconditions

preT are met and will be preferred over other non-forced transitions. If there are

several forced transitions in T there must be a strict total order defined over them.

A transition τk ∈ Tk of the min 0-1 knapsack problem has the following components:

• eff τk : The set variable B gets updates by the expression B ∪ {xi} and the numerical

variable U by U + ui.

• costτk : The cost expression of a transition τk is wi + J(sJτK).

• preτk : The preconditions for transition τk are U < Utarget and B ̸= X.

• forcedτ : False as we do not have any forced transitions.

Base Cases B: A base case is a tuple containing a set of conditions B and a numeric

expression representing a cost associated with the base case. A base state is a state s where

s |= β for all conditions β ∈ B and therefore s |= B. Base states are the most trivial

subproblems of s and cannot be decomposed further.

In the min 0-1 Knapsack Problem we can define two base cases:

J(⟨B,U⟩) =

0, if U ≥ Utarget

∞, if B = X and U < Utarget

The base cases describe either reaching the target utility by the condition U ≥ Utarget or

adding all items and still not reaching target utility by B = X and U < Utarget.

Dynamic Programming 11

State Constraints C: State constraint are conditions which need to be satisfied by all

states in the model. States which do not satisfy one or several constraints are discarded.

We add a simple state constraint to the min 0-1 knapsack problem. We take the first j items

whose accumulated utility is equal or larger than Utarget:
∑j

i=0 ui ≥ Utarget. The sum of

the weight of these items is wmax =
∑j

i=0 wi. We now add a state constraint which states

that we do not allow any state where there is an item in the bag whose weight is larger than

wmax, so wmax < wk for k ∈ {j + 1, j + 2, ..., n− 1}.

Dual Bound h : Dual Bounds are optional lower or upper bounds for the value func-

tion J in a given state s. For minimization problems, lower bounds h(s) ≤ J(s) for all s are

used and for maximization problems upper bounds h(s) ≥ J(s) for all s. Dual bounds are

optional to include but can be helpful during solving.

In the min 0-1 Knapsack Problem we introduce a simple lower bound which estimates the

proximity to the goal using the lowest weight of any item not yet added to the bag as long

as the target utility Utarget is not reached. So h(s) = min
xi∈X\B

(wi).

3.2 DyPDL Problems as State Spaces
A DyPDL problem D = ⟨V, s0, K, B, T , C, h⟩ induces a state space:

S(D) = ⟨SD, LD, costD, TD, αD, ΓD⟩ (3.3)

The components are defined as follows:

• Each full variable assignment sD of the set of variables V is a state. All possible states,

i.e., all possible variable assignments build SD.

• LD = T is the set of labels.

• costD : LD 7→ R+ assigns a cost to each label. We always assume positive cost in this

thesis. As previously defined it holds for all τ ∈ T that costτ = eτ + J(sJτK). We

define costD(τ) = costD(l) = eτ for all τ ∈ LD.

• TD contains tuples ⟨s, l, sJlK⟩ for all labels l ∈ LD and states s, sJlK ∈ SD where it

holds that τ = l is applicable, i.e., the preconditions of τ hold and sJlK is the successor
state of s.

• αD = s0 is the initial state

• ΓD contains a goal state γ for every state sD that is a base state.

Lemma 2. Given a DIDP task D = ⟨V, s0, K, T , B, C, h⟩ and its induced state space

S(D) = ⟨SD, LD, costD, TD, αD, ΓD⟩, then an optimal solution J(s0) of D is equivalent

to the cost of an optimal solution in S(D).

Each node in the induced state space S(D) corresponds to a unique state of the DyPDL task

D, and each edge represents an applicable transition of that state. The edge weight in S(D)

Dynamic Programming 12

is determined by the immediate cost of a transition eτ . Unlike in the DyPDL formulation,

where the cost of a transition τ in a state s is recursively defined as eτ + J(sJτK), the state

space representation does not have to incorporate the values of successor states. Instead,

the cost of a solution in S(D) is obtained by summing up edge weights.

A solution to the DyPDL problem is the minimal cost required to reach a base state starting

from the target state. Computing this value involves finding a sequence of transitions of

minimal cost leading from the initial state s0 to a base state. In the corresponding state

space S(D), this corresponds exactly to finding a path from αD to a goal state γ ∈ ΓD. The

solution value J(s0) is given by the sum of transition costs used, which matches the sum of

edge weights along the corresponding path in S(D).

Thus, finding an optimal solution to the DyPDL problem is equivalent to finding an optimal

solution in its induced state space S(D) and vice versa.

4
Delete-free Planning Tasks in DyPDL

Delete-free planning tasks are well-suited to be expressed as DIDP problems using the

DyPDL formalism as they already have some inherent structural similarities. Modeling

them in DyPDL allows us to make use of the DIDP framework and therefore also using the

corresponding solvers. In this chapter we define how we can convert delete-free STRIPS

tasks into DyPDL models by defining the resulting DyPDL tuple using the original delete-

free STRIPS tuple. We will define two different encodings. The rough outline of the first

encoding is that we will represent the delete-free STRIPS variables V as DyPDL state

variables V, the initial state I as the target state s0, the goals G as base cases B and

actions A as transitions T . The second encoding is similar, except that we only have a

single set variable that will be representing all delete-free STRIPS variables. We will also

illustrate these encodings using the minimal seed-set problem, which was introduced as a

delete-free STRIPS planning task in chapter 2, and prove that solving the DyPDL problems

is equivalent to solving the delete-free STRIPS problems. Finally, we will also present two

structural modifications and two heuristics which may be used for optimization purposes.

We evaluate their effectiveness in chapter 5.

4.1 Variable to Variable Encoding
Let Π = ⟨V, I, G, A⟩ be a delete-free STRIPS task. We define a function d-stateVAR which

maps a delete-free STRIPS state sΠ to a DyPDL state sVAR:

d-stateVAR(sΠ)(v) =

1 if v ∈ sΠ

0 otherwise
(4.1)

Further, we define the DyPDL taskDVAR(Π) = ⟨VVAR, s
0
VAR, KVAR, BVAR, TVAR, CVAR, hVAR⟩

corresponding to Π where:

• VVAR = V where all v ∈ VVAR are element variables.

• s0VAR = d-stateVAR(I)

• KVAR = {0, 1} ∪ {cost(a) | a ∈ A}

Delete-free Planning Tasks in DyPDL 14

• BVAR = {⟨bG, 0⟩} with bG = {(v = 1) | v ∈ G}

• TVAR = {τa | a ∈ A} where τa = ⟨preτa , eff τa , costτa , False⟩
preτa = {(p = 1) | p ∈ pre(a)}

eff τa(v) =

1 if v ∈ add(a),

v otherwise

costτa = cost(a) + J(sJτaK) where s is the state τa is applied in.

We do not have any state constraints CVAR or dual bounds hVAR. We will now explain this

encoding and the function d-stateVAR in more detail.

In this encoding, we encode each variable v ∈ V as an element variable v ∈ VVAR. For

function d-stateVAR we need to take into account that a delete-free STRIPS state sΠ is

represented as a set of variables sΠ ⊆ V . In DVAR(Π) however, we have an element variable

v ∈ VVAR for each v ∈ V and a state is a full variable assignment of all state variables. We

therefore model state sΠ by assigning 1 for all variables v ∈ sΠ and assign 0 to all variables

not included in sΠ.

Lemma 3. The function d-stateVAR is a bijection.

Proof. Suppose d-stateVAR is not injective, then there exist states s1 and s2 such that s1 ̸= s2

but d-stateVAR(s1)(v) = d-stateVAR(s2)(v) for all v ∈ V . From s1 ̸= s2 it follows that there

must be at least one variable v′ in which they differ. Without loss of generality, assume that

v′ ∈ s1 but v′ /∈ s2. Therefore d-stateVAR(s1)(v
′) = 1 and d-stateVAR(s2)(v

′) = 0, which

contradicts our assumption of d-stateVAR(s1)(v) = d-stateVAR(s2)(v) for all v ∈ V . The

function d-stateVAR is therefore injective.

The function d-stateVAR is surjective as for each DyPDL state sVAR we can define the

corresponding delete-free STRIPS state sΠ as sΠ = {v ∈ V | sVAR(v) = 1}.
As the function d-stateVAR is surjective and injective it follows that it is also bijective.

We use d-stateVAR to encode the initial state I as the target state s0VAR.

For our base cases BVAR we need tuples containing conditions and values. In delete-free

STRIPS we have goals G which consist of subsets of variables of V . These variables need

to be included in a state s for s to be a goal state. We create a condition (v = 1) for each

v ∈ G and use them as the conditions of our base case. The corresponding value is 0 since

we have reached the end of recursion, i.e., there is nothing more to solve left, therefore our

cost is 0.

To build the transitions TVAR we add one transitions τa for each action a ∈ A. To de-

fine the specific transitions we need to define the tuple ⟨preτa , eff τa , costτa , False⟩.
To define the preconditions preτa we need to specify a set of conditions. Looking at the

preconditions pre(a) of the corresponding action a we have a set of variables given. Similar

to what we did for the base cases, we will now add a condition (p = 1) for each p ∈ pre(a).

The set of all those conditions defines preτa .

Delete-free Planning Tasks in DyPDL 15

For the effects eff τa we need to specify expressions that update the state variables v ∈ VVAR

while the add effects add(a) of an action specify which variables will be added to the state

it was applied in. We can define an expression where we set each variable v to 1 if it is

included in add(a) or set it to its old value if it is not included in add(a). We do not have to

consider a case where a variable is being set to 0 since delete-free STRIPS tasks inherently

do not allow this.

To define the cost expression costτa we need to define a numerical expression eτa + J(sJτaK)
for a state s where eτa is a numerical constant and J(sJτaK) is the successor state of state

s. We can interpret eτa as the immediate cost of applying transition τa, which corresponds

to cost(a) of the corresponding action a.

We do not want the transitions to be forced, therefore we set the boolean flag to False.

Finally we will also define the constants KVAR by having a look at which constants were

used in the previous definitions. The only constants used are 0 and 1 as well as the costs of

actions cost(a) for all a ∈ A.

As an example, we will take a concrete instance of the minimal seed-set problem Πm and

use the previously defined encoding to create the corresponding DyPDL task DVAR(Πm).

Our minimal seed-set problem instance is defined as a tuple

Πm = ⟨Vm, Im, Gm, Am⟩ (4.2)

Where we have:

• we have four nutrients: Vm = {c1, c2, c3, c4}

• our initial state does not have any nutrients: Im = ∅

• our goal is to accumulate all nutrients: Gm = {c1, c2, c3, c4}

• we have actions and reactions Am = {ac1 , ac2 , ac3 , ac4 , ar1 , ar2} consisting of actions

aci for i ∈ {1, 2, 3, 4} to add a nutrient ci:

pre(aci) = ∅ add(aci) = {ci} cost(aci) = 1

and two reactions ar1 and ar2 defined as:

pre(ar1) = {c1, c2} add(ar1) = {c3} cost(ar1) = 0

pre(ar2) = {c3} add(ar2) = {c1, c4} cost(ar2) = 0

We now build the DyPDL task DVAR(Πm) = ⟨Vm, s0m, Km, Bm, Tm, Cm, hm⟩:

• As specified in the encoding, we use the variables Vm = C for our new state variables:

Vm = Vm = C with variables c ∈ C.

• Our target state s0m corresponds to the initial state Im where all nutrients are still

missing:

s0m = {c 7→ 0 | c ∈ C}

• For our constants we have 0 and 1. We do not have to add any more since the costs

of all our actions are always either 0 or 1 anyways:

Km = {0, 1}

Delete-free Planning Tasks in DyPDL 16

• We have one base case which is reached when all nutrients are present, i.e., all state

variables are set to 1:

Bm = {⟨{(c1 = 1), (c2 = 1), (c3 = 1), (c4 = 1)}, 0⟩}

• For each a ∈ Am we get a transition τ ∈ Tm. We first map the actions of adding a

nutrient to the transitions τci = ⟨preci , eff ci , costci , False⟩ for i ∈ {1, 2, 3, 4} and

define the preconditions, effects and cost expressions as:

preci = ∅

eff ci(v) =

1 if v = ci

v otherwise

costci = 1 + J(sJτK)
Further we define two transitions τr1 = ⟨prer1 , eff r1 , costr1 , False⟩ and
τr2 = ⟨prer2 , eff r2 , costr2 , False⟩ which represent the reactions ar1 and ar2 :

prer1 = {(c1 = 1), (c2 = 1)} eff r1(v) =

1 if v = c3

v otherwise
costr1 = 0 + J(sJτr1K)

prer2 = {(c3 = 1)} eff r2(v) =

1 if v ∈ {c1, c4}

v otherwise
costr2 = 0 + J(sJτr2K)

We do not have any state constraints and dual bounds. With this we have fully defined the

DyPDL task DVAR(Πm).

Finally, we prove that solving the DyPDL task DVAR(Π) is equivalent to solving the original

delete-free STRIPS task Π.

Theorem 1. Given a delete-free STRIPS task Π = ⟨VΠ, IΠ, GΠ, AΠ⟩ and a DyPDL task

DVAR(Π) = ⟨VVAR, s0VAR, KVAR, BVAR, TVAR, CVAR, hVAR⟩, then an optimal solution

of the DyPDL task DVAR(Π), i.e., J(s0VAR), is equal to the cost of an optimal plan of the

delete-free STRIPS task Π.

Proof. In the following we will use the induced state space of the delete-free STRIPS task

S(Π) = ⟨SSΠ, LSΠ, costSΠ, TSΠ, αSΠ, ΓSΠ⟩ introduced in (2.1) and the induced state

space of the DyPDL task S(DVAR(Π)) = ⟨SSVAR, LSVAR, costSVAR, TSVAR, αSVAR, ΓSVAR⟩
as defined in (3.3). We show that S(Π) is isomorphic to S(DVAR(Π)).

In Lemma 3 we established that the function d-stateVAR which maps delete-free STRIPS

states to DyPDL states is bijective. For readability we use d = d-stateVAR in this proof.

With d we have a valid bijection for all delete-free STRIPS and DyPDL states.

The initial states directly correspond to each other as by definition αSVAR = s0VAR = d(IΠ) =

d(αSΠ) holds. The same argumentation also holds for all other states, which is why we can

conclude ΓSVAR = {d(γ) | γ ∈ ΓSΠ} for the goal states and SSVAR = {d(s) | s ∈ SSΠ} for

states in general.

Next, we introduce a bijection λ : AΠ 7→ TVAR which maps an action a ∈ AΠ to a transition

τa ∈ TVAR. It follows that LSVAR = {τa | a ∈ AΠ} = {λ(a) | a ∈ AΠ} = {λ(l) | l ∈ LSΠ}.

Delete-free Planning Tasks in DyPDL 17

Further, we get a correspondence between the costs as it holds that costSVAR(λ(a)) =

costSVAR(τa) = eτa = costΠ(a) = costSΠ(a).

Finally, we need to ensure that ⟨d(s), λ(l), d(sJλ(l)K)⟩ ∈ TSVAR iff ⟨s, l, sJlK⟩ ∈ TSΠ

holds.

We first show that λ(l) = λ(a) is applicable in d(s) iff l = a is applicable in s by showing

both directions:

1. If action a is applicable in s, pre(a) ⊆ s holds. By definition d(s)(v) =

1 if v ∈ s

0 otherwise
.

It follows that in state d(s) it holds that (p = 1) for all p ∈ pre(a), which makes

λ(s) = τa applicable in s(d).

2. Transition λ(a) = τa is applicable in s, if p = 1 for all p ∈ pre(a). Looking at bijection

d this can only be the case if p ∈ s for all p ∈ pre(a), meaning pre(a) ⊆ s and therefore

making a applicable in s.

Next, we ensure that applying an action and then translating it is equal to translating it

into a transition first and then applying it: d(sJlK) = d(sJaK) = d(s)Jλ(a)K = d(s)Jλ(l)K. We

start with d(sJaK). Using the definition of applying action a we get d(sJaK) = d(s ∪ add(a))

and by definition of d we end up with:

d(sJaK)(v) =

1 if v ∈ (s ∪ add(a))

0 otherwise
=

1 if v ∈ s or v ∈ add(a)

0 otherwise

We now consider d(s)Jλ(a)K. As d(sJλ(a)K) = d(sJτaK), with the definition d and the defini-

tion of applying τa we get:

d(s)JτaK(v) =

1 if v ∈ add(a)

d(s)(v) otherwise
=

1 if v ∈ s or v ∈ add(a)

0 otherwise

Therefore d(sJaK) = d(s)Jλ(a)K.

It follows that the delete-free STRIPS state space S(Π) is isomorphic to the the DyPDL

state space S(DVAR(Π)).

An optimal plan to a delete-free STRIPS problem Π corresponds to an optimal solution

in its induced state space S(Π), as stated in Lemma 1. As we have shown that the state

space graphs of Π and DVAR(Π) are isomorphic, this is also an optimal solution in the in-

duced state space of the DyPDL problem S(DVAR(Π)). Using Lemma 2 we follow that this

also represents an optimal solution in DVAR(Π).

Delete-free Planning Tasks in DyPDL 18

4.2 Variable to Set Encoding
Let Π = ⟨V, I, G, A⟩ be a delete-free STRIPS task. We define a trivially bijective function

d-stateSET which maps a delete-free STRIPS state sΠ to a DyPDL state sSET:

d-stateSET(s) = {X 7→ s} (4.3)

We define a DyPDL task DSET(Π) = ⟨VSET, s0SET, KSET, BSET, TSET, CSET, hSET⟩
corresponding to Π where:

• VSET = {X} where X is a set variable.

• s0SET = d-stateVAR(I)

• KSET = {cost(a) | a ∈ A} ∪ {pre(a) | a ∈ A} ∪ {add(a) | a ∈ A} ∪G

• BSET = {⟨bG, 0⟩} with bG = {(G ⊆ X)}

• TSET = {τa | a ∈ A} where τa = ⟨preτa , eff τa , costτa , False⟩ with:
preτa = {(pre(a) ⊆ X)}
eff τa(X) = X ∪ add(a)

costτa = cost(a) + J(sJτaK) where s is the state τa is applied in.

We do not have state constraints or dual bounds. We will now explain this encoding and

the function d-stateSET in more detail.

In this encoding we use a single set variable to represent all delete-free STRIPS variables. In

function d-stateSET we specify how a delete-free STRIPS state is being encoded as a DyPDL

state. Similar to how we represent delete-free STRIPS states, we also represent states as a

set. We use the set variable X which saves the indices of all variables v ∈ sΠ of a delete-free

STRIPS state sΠ for this purpose. In general, this encoding is very straightforward due to

this similarity.

We use the function d-stateSET to encode the initial state I as the target state s0SET.

We introduce a base case with value 0 which occurs when the goals G are a subset or

equal to the set variable X .

For the transitions TSET we add one transition τa = ⟨preτa , effτa , costτa , False⟩ for each

action a ∈ A. The new preconditions preτa contains one conditions stating that pre(a)

needs to be a subset or equal to X .

For the effects we need to define expressions to update the state variables. In delete-free

STRIPS, add(a) defines all variables which are added to state s when applying a in s. Sim-

ilarly, we add all variables from add(a) to the set variable X in effτa .

The cost of a transition is defined the same way as in the variable-to-variable encoding.

Finally, we define the constants KSET. Looking at all previous definitions, we see that

we need the costs, preconditions and add effects as well as the goals of Π as constants.

Delete-free Planning Tasks in DyPDL 19

As an example, we take the instance of the minimal-seed set problem Πm defined in (4.2)

and create the DyPDL task DSET(Πm) = ⟨Vm, s0m, Km, Bm, Tm, Cm, hm⟩ which looks as

follows:

• We have a set variable which will store the nutrients:

Vm = {X}

• In the initial state, we do not have any nutrients yet:

s0m = {X 7→ ∅}

• The constants consist of all possible action costs, preconditions and effects as well as

the goal:

Km = {0, 1, {c1, c2}, {c3}, {c1, c4}, {c1, c2, c3, c4}}

• We have one base case which is fulfilled when all nutrients are contained in X :

Bm = {⟨{c1, c2, c3, c4} ⊆ X , 0⟩}

• We introduce a transition for each action. Adding a nutrient results in the transitions

τci = ⟨preci , effci , costci , False⟩ for i ∈ {1, 2, 3, 4} where:

preci = ∅
eff ci(X) = X ∪ {ci}
costci = 1 + J(sJτciK) where s is the state τci is applied in

Next we define a transition τr1 = ⟨prer1 , eff r1 , costr1 , False⟩ and a transition

τr2 = ⟨prer2 , eff r2 , costr2 , False⟩ which represent the reactions ar1 and ar2 :

prer1 = {{c1, c2} ⊆ X} eff r1(X) = X ∪ {c3} costr1 = 0 + J(sJτr1K)
prer2 = {{c3} ⊆ X)} eff r2(X) = X ∪ {c1, c4} costr2 = 0 + J(sJτr2K)
Here s is the state the transition is applied in.

Finally, we prove that solving the DyPDL task DSET(Π) is equivalent to solving the original

delete-free STRIPS task Π.

Theorem 2. Given a delete-free STRIPS task Π = ⟨VΠ, IΠ, GΠ, AΠ⟩ and a DyPDL

task DSET(Π) = ⟨VSET, s0SET, KSET, BSET, TSET, CSET, hSET⟩, then an optimal plan of

the DyPDL task DSET(Π), i.e., J(s0SET), is equal to an optimal solution of the delete-free

STRIPS task Π.

Proof. In the following we will use the induced state spae of the delete-free STRIPS task

S(Π) = ⟨SSΠ, LSΠ, costSΠ, TSΠ, αSΠ, ΓSΠ⟩ as introduced in (2.1) and the induced state

space of the DyPDL task S(DSET(Π)) = ⟨SSSET, LSSET, costSSET, TSSET, αSSET, ΓSSET⟩
as defined in (3.3).

This proof proceeds in the same way as the proof for Theorem 1, for a more detailed

explanation of certain steps therefore please refer to the previous proof.

We already defined a bijective function d-stateSET in (4.3) which maps delete-free STRIPS

states to DyPDL states. We use d = d-stateSET for readability in this proof. It holds that

Delete-free Planning Tasks in DyPDL 20

SSSET = {d(s) | s ∈ SSΠ}.
Further, by definition αSSET = d(αSΠ) and ΓSSET = {d(γ) | γ ∈ ΓSΠ} hold.

We introduce a bijection λ : AΠ 7→ TSET which maps an action a ∈ AΠ to a transitions

τa ∈ TSET. Therefore LSSET = {λ(l) | l ∈ LSΠ}.

Further, it holds that costSSET = costSΠ.

Finally, we need to ensure that ⟨d(s), λ(l), d(sJλ(l)K)⟩ ∈ TSSET iff ⟨s, l, sJlK⟩ ∈ TSΠ.

We show that l = a is applicable in s iff λ(l) = λ(a) is applicable in d(s):

1. If a is applicable in s, then pre(a) ⊆ s holds. As d(s) = {X 7→ s}, it also holds that

pre(a) ⊆ X , which makes τa = λ(a) applicable in d(s).

2. If λ(a) = τa is applicable in d(s), then pre(a) ⊆ X holds. Looking at d, this is only

possible if pre(a) ⊆ s, which means a is also applicable in s.

Next, we show that d(sJlK) = d(sJaK) = d(s)Jλ(a)K = d(s)Jλ(l)K holds. By the definition of

applying an action and then the definition of translating we get d(sJaK) = d(s ∪ add(a)) =

{X 7→ (s ∪ add(a))}. When translating first and then applying the transition we get by

definition: d(s)Jλ(a)K = d(s)JτaK = {X 7→ (s ∪ add(a))}. Therefore d(sJaK) = d(s)Jλ(a)K.

It follows that the delete-free STRIPS state space S(Π) is isomorphic to the the DyPDL

state space S(DSET(Π)).

As defined in Lemma 1, an optimal plan to a delete-free STRIPS problem Π corresponds to

an optimal solution in its induced state space S(Π). As we have shown that the state space

graphs of Π and DSET(Π) are isomorphic, this is also an optimal solution in the induced

state space of the DyPDL problem S(DSET(Π)). Using Lemma 2 we follow that this also

represents an optimal solution in DSET(Π).

4.3 Forcing Transitions
For our first modification we introduce a new mechanic where as soon as a transition is

applicable it is forced to either be applied or ignored. Afterwards, a transition is marked as

considered and cannot be forced again. We first formally define the modification and then

explain it in more detail.

If we have a delete-free STRIPS task Π = ⟨V, I, G, A⟩ and one of the previously established

encodings Dπ = ⟨Vπ, s0π, Kπ, Bπ, Tπ, Cπ, hπ⟩ then we get a modified encoding

DπM
= ⟨VπM

, s0πM
, Kπ, BπM

, TπM
, Cπ, hπ⟩ with:

• VπM
= Vπ ∪ {A, f} where A is a set variable and f an element variable.

• s0πM
= s0π ∪ {A 7→ ∅, f 7→ −1}.

• TπM
= {fa | a ∈ A} ∪ {ta | a ∈ A} ∪ {ia | a ∈ A} where:

fa = ⟨prefa , efffa , costfa , True⟩ with:

Delete-free Planning Tasks in DyPDL 21

– prefa = (a /∈ A) ∪ preτa

– eff fa(f) = a eff fa(A) = A eff fa(v) = v for all v ∈ Vπ.

– costfa = 0

ta = ⟨preta , eff ta , costτa , False⟩ with:

– preta = {(f = a)}

– effta(v) = effτa for all v ∈ Vπ eff ta(A) = (A ∪ {a}) eff ta(f) = −1

ia = ⟨preia , effia , costia , False⟩ with:

– preia = {(f = a)}

– effia(v) = v for all v ∈ Vπ eff ia(A) = A ∪ {a} effia(f) = −1

– costia = 0

There are no dual bounds or heuristics. We will now explain the modification in further

detail.

In the set of variables VπM
we add a new set variable A. It will be used to track which

action were already considered by storing their indices. We also add the element variable f

which tracks which action is currently being forced. If there is none, f will have value −1.

In the target state A is empty as no action has been considered yet. Variable f is as-

signed value −1 as no action is forced at the moment.

For each action a ∈ A we have three transitions: forcing an action fa, applying an ac-

tion ta and ignoring an action ia.

The forced transition fa checks whether the preconditions of action a hold and a /∈ A. If

this is the case, element variable f is set to a, this transition has no cost. The order over

the forced transitions fa for a ∈ A is simply the order in which the actions are defined in

the delete-free STRIPS task.

Transition ta checks whether a is currently being forced, i.e., f = a. If this is the case, then

the effects of τa can be applied as normal, a is marked as considered by adding it to set

variable A and f is freed up by assigning it −1. The transition costs are the same as for

costτa .

Transition ia also checks if f = a holds, but it only adds a to A and frees f by assigning −1

to it. It will not update any other state variable but also does not cost anything.

Using these transitions it is ensured that an action gets considered as soon as it is applicable

and we then decide whether to apply it for a cost or ignore it for free, afterwards it can

never be forced again and can therefore also never be considered again.

4.4 Ignoring Unproductive Transitions
The second modification is to only consider transitions whose effects actually change state

variables. Given are a delete-free STRIPS task Π = ⟨V, I, G, A⟩, as well as the DyPDL task

Delete-free Planning Tasks in DyPDL 22

DVAR = ⟨VVAR, s0VAR, KVAR, BVAR, TVAR, CVAR, hVAR⟩ resulting from the variable-to-

variable encoding and the DyPDL taskDSET = ⟨VSET, s
0
SET, KSET, BSET, TSET, CSET, hSET⟩

resulting from the variable-to-set encoding.

Each transition τa = ⟨preτa , effτa , costτa , forcedτa⟩ ∈ TVAR of the DyPDL task DVAR(Π)

is changed to a transition τ ′a = ⟨pre′τa , effτa , costτa , forcedτa⟩ where:

pre′τa = preτa ∪
∑

v∈VVAR

1(v ̸= effτa(v)) > 0

We keep all current preconditions but add a new one which states that the sum of variables

getting assigned a new value when applying τa is larger than 0.

In the variable-to-set encoding each transition τa = ⟨preτa , effτa , costτa , forcedτa⟩ ∈ TSET of

the DyPDL task DSET gets replaced with a transition τ ′′a = ⟨pre′′τa , effτa , costτa , forcedτa⟩
where:

pre′′τa = preτa ∪ (add(a) \ X) ̸= ∅

This ensures that no transition is considered where the set variable X already contains all

variables which it would acquire after applying the effects of the transition.

4.5 Possible Heuristics
The third possible modification is to add a dual bound to the models. We can use heuristics

for this purpose. We again consider a delete-free STRIPS task Π = ⟨VΠ, IΠ, GΠ, AΠ⟩ and
the DyPDL encodings DVAR(Π) = ⟨VVAR, s0VAR, KVAR, BVAR, TVAR, CVAR, hVAR⟩ and
DSET(Π) = ⟨VSET, s0SET, KSET, BSET, TSET, CSET, hSET⟩ as introduced in chapter 4.1

and chapter 4.2. Here we introduce two simple heuristics: The first heuristic is the trivial

zero heuristic:

h0(s) = 0

It assigns each state s the value 0. For both encodings the zero heuristic can be directly

implemented as a dual bound h0(s) = 0 for all states s.

The zero heuristic h0 is trivially admissible.

The second heuristic we introduce is a modified version of the goal count heuristic:

hg : s 7→ R+

hg(s) =
unsatisfied goal variables

max {# affected variables}
The heuristic hg assigns each state s a value resulting from dividing the amount of not

satisfied goal variables by the maximal number of affected variables any transition has.

The modified goal count heuristic hg can be implemented as a dual bound hg
VAR in the

variable-to-variable encoding and a dual bound hg
SET in the variable-to-set encoding:

hg
VAR(s) =

∑
v∈GΠ

1(v ̸= 1)

max{
∣∣add(a)∣∣ | a ∈ AΠ}

for all states s

hg
SET(s) =

∣∣GΠ \ X
∣∣

max{
∣∣add(a)∣∣ | a ∈ AΠ}

for all states s

Delete-free Planning Tasks in DyPDL 23

Each transition can at most effect max {# affected variables} = k goal variables. If we have

an optimal sequence of transitions, we still need at least # unfulfilled goal variables
k transition

to reach the goal. Since hg is exactly defined as this lower bound, it follows that we cannot

overestimate the distance to the goal. Therefore, hg is admissible.

5
Experiments

To evaluate the practical performance of the proposed encodings and modifications, we con-

duct several experiments on preexisting STRIPS benchmarks. In this chapter we first present

the general experimental setup as well as the metrics chosen to measure performance. After-

wards, we present different hypotheses regarding the performance of different configurations

of the variable-to-variable encoding introduced in chapter 4.1 and the variable-to-set encod-

ing introduced in chapter 4.2 as well as the modifications introduced in chapters 4.3, 4.4

and the heuristics from chapter 4.5.

5.1 Experimental Setup
The experiments are based on existing benchmark problems formulated in Planning Domain

Definition Language (PDDL) which serve as input. We used the optimal-strips suite of the

downward-benchmark repository [1]. We use the Fast Downward translator [5] to preprocess

the PDDL files into a suitable internal representation and remove the delete effects of all

problems. We use the DIDPPy Python interface [8] to implement the variable-to-variable

and variable-to-set encoding as well as all modifications. DIDPPy provides multiple solvers

to choose from, and while the official website [8] recommends the Complete Anytime Beam

Search solver (CABS), we did not end up using it as CABS is not complete. Instead we

use the Cost-Algebraic A* Solver for DyPDL (CAASDy), which uses the dual bound as a

heuristic. CAASDy is complete and, if we provide an admissible heuristic, also optimal. As

both the zero heuristic and the modified goal count heuristic are admissible, we are guaran-

teed to get optimal solutions when using them.

We further use the Python package Lab [12] to run different configurations of the encodings

and modifications on the benchmark problems.

We ran experiments on all domains of the suite except for the petri-net-alignment-opt18-

strips, quantum-layout-opt23-strips and snake-opt18-strips domains as the Fast Downward

translator classifies them as unsolvable when delete-effects are removed which requires fur-

ther investigation.

Experiments 25

For each problem run, we set a time limit of 15 minutes and a memory limit of 3.5GB

and measured the following metrics:

• Finished runs: We measure the amount of problems successfully solved without

running out of time or memory. A higher number implies a more stable and efficient

configuration.

• Memory errors: We measure the amount of runs terminated by memory errors to

identify configurations which are especially memory intense.

• Timeouts: We also measure the amount of runs which terminate due to exceeding

the time limit. Combined with the previous metric of measuring memory errors we

can find out which configuration are more memory and which more time intense. This

can serve as a guideline as to what optimization methods could be interesting to look

into in the future.

• Time score: Instead of measuring the absolute time a run needs we calculate a score

for each run. We use the score which was originally used for measuring time in the

agile tracks of the International Planning Competition in 2023 [6]:

score : R+ 7→ [0, 1]

score(t) =

1 if t < 1

0 if t > 900

1− log(t)
log(900) otherwise

If a solution is found in less than a second, the run receives a score of 1. If it exceeds

the time limit of 15 minutes (900 seconds), the run receives a score of 0. A run which

takes anything in between gets a score logarithmically scaled between those values.

We use the arithmetic mean of all individual runs in a domain to get a score for the

entire domain. Using the arithmetic mean of all domain scores we get a score for the

overall time performance.

• Memory used: We measure the total amount of memory used for each run in MB

and use it to calculate the geometric mean of each domain. To get an overall score we

use the geometric mean over all domains. The amount of memory used indicates how

resource efficient a specific configuration is.

• Nodes expanded: We measure the amount of expanded nodes as a hardware-

independent measure of search efficiency. Fewer expanded nodes indicate that the

configuration focused on promising paths and avoided unnecessary exploration. Due

to this, the amount of expanded nodes is also a measure of heuristic quality. We are

also interested to see if other modifications also an influence too. We use the geometric

mean over all runs as a measure for the entire domain. The geometric mean over all

domains is used as a general score.

We only consider runs where all configurations finished for measuring average memory use,

average number of nodes expanded and the time score.

Experiments 26

5.2 Baseline Variable-to-Variable and Variable-to-Set Encoding
In our first experiment we compare the variable-to-variable (VAR) and variable-to-set en-

coding (SET) without any additional modifications.

We expect that the SET encoding uses less memory as we only have a single set vari-

able which can be represented as a bitset internally. The SET encoding should therefore

also lead to less memory errors and end up solving more problems. The time score may also

be a bit better for the SET encoding as set comparisons should be faster than processing

single variables. Further, we expect the amount of expanded nodes to be very similar with

no encoding being significantly more efficient. Table 5.1 shows the result of the experiment

finished mem. error timeout memory time score nodes exp.

VAR 362 1407 78 43.05 MB 0.752 469.75
SET 346 1143 358 42.78 MB 0.735 469.75

Table 5.1: The performance of the variable-to-variable encoding (VAR) vs. the
variable-to-set encoding (SET). The table shows the metrics described in chapter 5.1

In general, we can see that neither encoding performed great. Both where only able to solve

roughly a fifth of all problems with the VAR encoding solving 362 and the SET encoding

solving 346 of 1847 total problems. The amount of runs finished in the individual domains

was very similar, but with one exception. While the VAR encoding managed to solve all

20 problems of the ”spider-opt18-strips” domain, the SET encoding solved none due to 5

timeouts and 15 memory errors. We can therefore follow that for this domain in particular

the VAR encoding is a better fit. It remains to be seen whether the SET encoding may

manage to solve this domain if we add heuristics or other modifications.

The SET encoding results, as expected, in less memory errors, having runs terminated 1143

times due to them compared to 1407 times for the VAR encoding. However, the SET encod-

ing experiences far more timeouts with 358 to 78 in the VAR encoding. This suggests that

while SET reduces memory-related failures, it does not improve overall stability. Looking

at individual domains, we gather that runs which failed due to memory errors in VAR also

failed in SET, but due to a timeout instead. Tasks which ran out of memory before the

time limit may have also ran into a timeout if they had had enough memory. The mean

memory usage for SET was also lower than for VAR, but not to a significant degree with

42.78 MB vs. 43.05 MB. This could partially be explained by the fact that we have a lot

more constants in the SET encoding which also take up memory and therefore equalize the

advantage of using set variables. However, the constants alone should not outweigh the

expected benefits of SET to this degree.

The time score of both encodings have a difference of 0.017, the VAR encoding ended up

being better with 0.752 vs 0.735 in the SET encoding. Our initial assumption that computa-

tions using set-variables is faster than processing single variables is therefore not necessarily

true.

The mean of expanded nodes is completely identical across all domains. The search there-

fore seems to proceed the exact same way for both encodings.

Experiments 27

We conclude that both the baseline VAR and SET encoding do not perform well and would

almost certainly benefit from heuristics or other modifications. With the exception of the

”spider-opt18-strips” domain, they overall solve about the same amount of problems and

do not have significant differences regarding memory usage and nodes expanded. The time

score of VAR was however better than SET. Combined with the fact that SET could not

solve the ”spider-opt18-strips” domain, we would recommend using VAR over SET if no

other modifications are added.

5.3 Heuristics
In this experiment we investigate the influence of the zero heuristic and the modified goal

count heuristic. We combine both heuristics with both encodings, resulting in four different

configurations. We also look at whether one encoding experiences a greater improvement

using a certain heuristic than the other encoding.

We expect an improvement to all metrics with both heuristic, while the modified goal count

heuristic should make a significantly greater improvement than the zero heuristic. While

the zero heuristic does not seem useful in theory, the official DIDPPy website [8] mentions

the importance of using any heuristic at all, even if it is the zero heuristic. Due to this

reason, we should see at least a slight improvement to all metrics. We do not expect a

certain heuristic to perform better on one encoding than on the other. Table 5.2 shows the

results of this experiment.

Encoding Heuristic finished mem. error timeout memory time score nodes exp.

VAR
baseline 362 1407 78 43.05 MB 0.752 469.75
zero 509 1316 22 34.55 MB 0.796 127.53
goal 562 1266 19 33.64 MB 0.796 105.71

SET
baseline 346 1143 358 42.78 MB 0.735 469.75
zero 513 1053 286 34.47 MB 0.769 127.53
goal 566 995 281 33.43 MB 0.770 105.71

Table 5.2: The performance of the VAR and SET encodings without heuristics, with the
zero heuristic and with the goal heuristic. The table shows the metrics described in
chapter 5.1

Both the zero heuristic and the modified goal count heuristic improve performance over

all metrics compared to the baseline for both VAR and SET. The modified goal heuristics

achieves the best results across all metrics, which was expected. The VAR encoding could

solve 147 more problems using the zero heuristic and 200 more using the modified goal

count heuristic. While the zero heuristic solves 40.6% more problems, the modified goal

count heuristic solves 55.2% more problems. This is similar in the SET encoding where we

can solve 167 more problems using the zero heuristic and 220 more using the modified goal

count heuristic. The zero heuristic offers an increase of 48.3% and the modified goal count

heuristic one of 63.6%. We can observe that the SET encoding in general profits slightly

more off of using heuristics than the VAR encoding, but there is no specific domain in which

SET is significantly better than VAR now. Interestingly, the zero heuristic performs almost

as well as the modified goal count heuristic as it only offers an additional increase of about

Experiments 28

15% in both encodings. As the zero heuristic theoretically should not offer many benefits,

the improvement is likely due to how the DIDPPy python package works internally. Know-

ing this, the modified goal count heuristics increase of 55.2% for VAR and 63.6% for SET

is less due to the heuristic being inherently powerful and more due to how DIDPPy works.

However, we also need to take into account that simply looking at percentages could be

misleading here as the still unsolved problems in the optimal-strips suite will get more and

more difficult, therefore possibly distorting how great of an increase 15% really is. Over-

all, the modified goal count heuristic definitely performs better than the zero heuristic. As

the modified goal count heuristic is in essence a very simple heuristic best used for smaller

problems, a more powerful heuristic may potentially lead to a greater improvement over all

metrics.

The zero heuristic managed to reduce the amount of memory errors by 91 for VAR and by

90 for SET. The modified goal count heuristic resulted in a reduction of 141 for VAR and

148 for SET. There are no particular domains in which one encoding profited more off of

the heuristics than the other.

The amount of timeouts is reduced by 56 for VAR and 72 for SET using the zero heuristic.

The modified goal count heuristic reduces them by 59 for VAR and 77 for SET. Similarly to

the memory errors, there was no specific domain in which one encoding got a significantly

greater improvement in timeouts, but the SET encoding did overall get a greater reduction

in timeouts for both heuristics. Despite using heuristics, the SET encoding is still not able

to solve the ”spider-opt18-strips” domain.

The mean memory usage is almost identical for the VAR encoding and SET encoding us-

ing either heuristic. Once again, comparing using no heuristic to the zero heuristic offers

a greater jump in performance than comparing the zero heuristic with the modified goal

count heuristic. While the zero heuristic results in a decrease of about 19-20%, the modified

goal count heuristic only offers an additional 1-2% increase. This again indicates that the

modified goal count heuristic is not very powerful.

The time score increased for both heuristics in both encodings, as expected. Both heuristics

result in an increase of 0.044 for VAR and in an increase of 0.034-0.035 for SET, so VAR

does seem to profit more off of using these specific heuristics.

The nodes expanded are once again exactly the same in VAR and SET, no matter which

heuristic is used. When heuristics are added we can see a great improvement, just as ex-

pected. Once again, the zero heuristic does not perform significantly worse than the goal

heuristic offering a decrease of 72.6% while the modified goal count heuristic results in a

decrease of 77.5%.

We conclude that adding heuristics, no matter how simple they may be, result in a sig-

nificant performance boost to both encodings. The modified goal count heuristic improved

performance more than the zero heuristic, therefore we recommend to always use it when

running experiments with our models. Interestingly, the improvement from not using a

heuristic to using the zero heuristic is greater than the improvement we get when switching

from the zero heuristic to the modified goal count heuristic. However, as the difficulty of

unsolved problems in the optimal-strips suite only increases the more problems are being

Experiments 29

solved, the modified goal count heuristic should not be underestimated. As these simple

heuristics already lead to a great improvement, exploring and implementing more powerful

heuristics is a very promising direction for future work.

5.4 Excluding Transitions
In the final experiment we want to see whether we can improve performance by excluding

certain actions. We use the modification which forces transitions to be either applied or

discarded forever once they become applicable from chapter 4.3 and the modification which

ignores transitions which do not affect any state variables when applied from chapter 4.4.

We refer to them as the force modification and ignore modification in this chapter. We test

both modifications on both encodings and always use the modified goal count heuristic.

The base encodings only contain one transitions for each delete-free STRIPS action, which is

to apply it. The force transition modification however contains three transitions per action,

one to force it, one to apply it and one to discard it. Forcing an action allows it to either be

applied or discarded. Discarding it results in a new state where the action is never appli-

cable again. This leads to a higher branching factor. While this causes potential overhead,

it is also more powerful than the ignore modification. The force modification will therefore

lead to more nodes being expanded and more memory used but could also speed runs up

and allow for more of them to finish. The ignore modification is not expected to result in a

great improvement, ideally the solver will ignore unproductive transitions anyways. If this

is not the case, then we could see a slight improvement in time needed to solve problems

and nodes expanded, but overall we do not expect a great difference compared to not using

a modification at all. The results from this experiment are shown in table 5.3.

Encoding Heuristic finished mem. error timeout memory time score nodes exp.

VAR
regular 562 1266 19 33.64 MB 0.796 105.71
ignore 562 1251 34 34.86 MB 0.807 105.71
force 396 1074 377 55.29 MB 0.764 1537.11

SET
regular 566 995 286 33.43 MB 0.770 105.71
ignore 566 981 300 33.72 MB 0.782 105.71
force 383 738 726 53.62 MB 0.741 1549.47

Table 5.3: The performance of the VAR and SET encodings using no modification, the
ignore modification and the force modification. All runs used the modified goal count
heuristic. The table shows the metrics described in chapter 5.1

We immediately see that the ignore modification does not have a meaningful impact. The

slight changes we do see are similar for both encodings. There were no changes in the

amount of runs finished and while there were slightly less memory errors terminating runs,

we did see more timeouts. The mean memory usage rose a tiny bit, but not significantly.

However, the time score did actually improve by about 0.011-0.012. While this modifica-

tion is definitely not harmful as it even improves the time score, it will also not help runs

significantly enough that it is worth using.

Looking at the force modification we however see a clear deterioration to almost all metrics.

In VAR, 166 less problems were solved, in SET 183. That is a deterioration of 29.5% resp.

Experiments 30

32.3%. Neither the ignore modification nor the force modification enabled the SET encoding

to solve the domain ”spider-opt18-strips” while the VAR encoding could still solve it with

both modifications. This is still the only domain in which such a drastic difference could be

found between the two encodings.

The memory errors did decrease by 192 in VAR and 257 in SET, but the timeouts increased

drastically. Runs which would have ran out of memory usually ended up crashing due to a

timeout instead. We have an increase of 358 timeouts in VAR and 440 in SET compared

to not using a modification. Mean memory usage also increased by more than 20MB for

both encodings and the time score sunk by about 0.03 from not using modifications. The

amount of nodes expanded increased by more than 1450% in both encodings, going from

105.71 to 1537.11 in VAR and up to 1549.47 in SET. The expected advantaged of the force

modification therefore do not outweigh the significant overhead it causes, resulting in more

timeouts, more memory used, a worse time score and more nodes expanded.

Neither the ignore modification nor the force modification have therefore proven to be use-

ful. The ignore modification did not change any metric significantly enough to be worth

considering and the force modification lead to a clear deterioration, probably due to its

overhead. It lead to a an increase in timeouts, mean memory used, nodes expanded and to

a worse time score. While these structural modifications did not improve performance, we

still expect researching further modifications to be fruitful as we have only looked at two

different possibilities.

6
Conclusion

This thesis explored the encoding of delete-free planning tasks within the framework of

Domain-Independent Dynamic Programming (DIDP). Our objective was to demonstrate

how delete-free STRIPS problems can be formulated in Dynamic Programming Description

Language (DyPDL). We introduced two different encoding methods, the variable-to-variable

and the variable-to-set encoding. The variable-to-variable encoding maps each delete-free

STRIPS variable to a DyPDL variable while the variable-to-set encoding maps all delete-

free STRIPS variables to a single set variable. This allows us to use set comparisons during

solving instead of having to compare single variables.

To improve the performance of our encodings, we introduced two structural modifications

and two heuristics. The force modification forces a transition to either be applied or dis-

carded once it becomes applicable. After this, the transition may never be forced again and

can therefore not be applied at a later point in time. The ignore modification does not con-

sider unproductive transitions. If a transitions does not change a single state variable when

applied, we ignore it. The heuristics we introduced were the trivial zero heuristic, which

assigns each state the value 0, and the modified goal count heuristic, where the amount of

not satisfied goal variables is divided by the maximal number of state variables a transition

affects.

We implemented our encodings and modifications using the DIDPPy Python interface [8]

and tested them on the optimal-strips suite from the downward-benchmarks repository [1].

In our first experiment we compared the variable-to-variable mapping to the variable-to-

set mapping without adding any modifications or heuristics. Our hypothesis was that the

variable-to-set encoding would result in better performance as the set variable could be in-

ternally represented as a bitset and therefore saving memory. We concluded that this was

not the case, instead both performed in a very similar manner. Neither of them performed

well overall.

The second experiment showed how the zero heuristic and the modified goal count heuristic

influence performance for both encodings. Both heuristics significantly improved the perfor-

mance of both encodings. Interestingly, the performance jump between using no heuristic

and using the zero heuristic was greater than the jump between the zero heuristic and the

Conclusion 32

modified goal count heuristic.

In our final experiment, we investigated how discarding transitions influences solving by

comparing the ignore modification with the force modification. While the ignore modifica-

tion did not have a significant impact on the performance, the force modification resulted

in a clear degradation of overall performance.

In conclusion, while both encodings are viable, they do not perform well overall. In fu-

ture work, introducing new and more powerful heuristics to the encodings is a promising

way to further optimize the models. Finding new and more efficient encodings is also a

possible direction for future research. While structural modifications did not end up fruitful

in this thesis, looking into them further is also an interesting approach as we only scratched

the surface of what is possible in DIDP.

Bibliography

[1] AI Group - University of Basel. Downward Benchmarks, 2025. URL https://github.

com/aibasel/downward-benchmarks. Accessed: 2025-02-12.

[2] Richard E Fikes and Nils J Nilsson. STRIPS: A new approach to the application of

theorem proving to problem solving. Artificial intelligence, 2(3-4):189–208, 1971.

[3] Avitan Gefen and Ronen Brafman. The Minimal Seed Set Problem. In Proceedings of

the International Conference on Automated Planning and Scheduling, volume 21, pages

319–322, 2011.

[4] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory and prac-

tice. Elsevier, 2004.

[5] Malte Helmert. The Fast Downward Planning System. Journal of Artificial Intelligence

Research, 26:191–246, 2006.

[6] IPC 2023. IPC 2023: The International Planning Competition (Classical Track), 2025.

URL https://ipc2023-classical.github.io/. Accessed: 2025-02-12.

[7] Ryo Kuroiwa and J Christopher Beck. Domain-Independent Dynamic Programming:

Generic State Space Search for Combinatorial Optimization. In Proceedings of the

International Conference on Automated Planning and Scheduling, volume 33, pages

236–244, 2023.

[8] Kuroiwa, Chen, Beck. DIDPpy Documentation, 2025. URL https://didppy.

readthedocs.io/en/stable/. Accessed: 2025-02-12.

[9] Art Lew and Holger Mauch. Dynamic Programming: A Computational Tool. volume 38

of Studies in Computational Intelligence. Springer Science & Business Media, 2006.

[10] Florian Pommerening and Malte Helmert. Optimal Planning for Delete-Free Tasks

with Incremental LM-cut. In Proceedings of the International Conference on Automated

Planning and Scheduling, volume 22, pages 363–367, 2012.

[11] Stuart J Russell and Peter Norvig. Artificial Intelligence: a modern approach. Pearson,

2016.

[12] Jendrik Seipp, Florian Pommerening, Silvan Sievers, and Malte Helmert. Downward

Lab. https://doi.org/10.5281/zenodo.790461, 2017.

https://github.com/aibasel/downward-benchmarks
https://github.com/aibasel/downward-benchmarks
https://ipc2023-classical.github.io/
https://didppy.readthedocs.io/en/stable/
https://didppy.readthedocs.io/en/stable/
https://doi.org/10.5281/zenodo.790461

	Acknowledgments
	Abstract
	Table of Contents
	1 Introduction
	2 Delete-Free Planning Tasks
	3 Dynamic Programming
	3.1 Domain-Independent Dynamic Programming
	3.2 DyPDL Problems as State Spaces

	4 Delete-free Planning Tasks in DyPDL
	4.1 Variable to Variable Encoding
	4.2 Variable to Set Encoding
	4.3 Forcing Transitions
	4.4 Ignoring Unproductive Transitions
	4.5 Possible Heuristics

	5 Experiments
	5.1 Experimental Setup
	5.2 Baseline Variable-to-Variable and Variable-to-Set Encoding
	5.3 Heuristics
	5.4 Excluding Transitions

	6 Conclusion
	Bibliography

