Encoding Delete-Free Planning Tasks in
Domain-Independent Dynamic
°rogramming

Maria Desteffani
04. 03. 2025

Motivation

* Bridging Automated Planning and DIDP = out of interest ©

* DIDP is more powerful than our delete-free planning formalism -
possible advantages/disadvantages? Is it worth it?

Delete-Free Planning

* Branch of Automated Planning

* Finding sequences of actions which lead from an initial state to a goal
state

e Actions do not remove facts

We use delete-free STRIPS as a formalism

The Minimal Seed-Set Problem

Organism (petri dish) needs to
accumulate a certain set of nutrients

Delete-Free STRIPS

A delete-free STRIPS task is a tuple II = (V, I, G, A) containing:

Variables V Actions A

@ Initial state / @ Add nutrients

Goal states G

— Synthesize nutrients

Delete-Free STRIPS

A delete-free STRIPS task is a tuple II = (V, I, G, A) containing:

Actions A containing preconditions, add effects, cost

Add nutrients Synthesize nutrients

@ B
Needs

No preconditions Free!
Costs SS

Domain-Independent Dynamic Programming

Dynamic Programming: decompose complex problem into simpler
subproblems

e.g.: min. Knapsack problem:

a 0 [

What’s the 6 6
min. weight (((

needed? N
Y e
I-l

)

@)

Domain-Independent Dynamic Programming

Dynamic Programming: decompose complex problem into simpler
subproblems

e.g.: min. Knapsack problem:

a L |

What's the 6 6
min. weight e m
needed? ey RN {7

Domain-Independent Dynamic Programming

Dynamic Programming: decompose complex problem into simpler
subproblems

e.g.: min. Knapsack problem:

() @ L

What’s the 6 6

min. weight e m
needed? (@M X
af NN

Domain-Independent Dynamic Programming
(DIDP)

General framework for dynamic programming problems
— Allows for a separation of modeling and solving

We use Dynamic Programming Description Language (DyPDL) as a
modeling formalism

DyPDL

A DyPDL task is a tuple D = (V, s°, X, T, B, C, h) containing:

e State variables V - define states * Target state s - state whose value we
* Element variables want to compute
* Set variables

3
(oA

What's the

min. weight . @

needed?) y ((()))
I-l

DyPDL

A DyPDL task is a tuple D = (V, s°, X, T, B, C, h) containing:

* Constants K - state independent * Transitions J° containing:
variables * Preconditions
* Base cases B - simplest subproblem, e Effects
value immediately known * Costs
o o

(«D») %
©))) .

v

DyPDL

A DyPDL task is a tuple D = (V, s°, X, T, B, C, h) containing:

e State Constraint

e Dual bound h = heuristics

DyPDL — Variable-to-Variable Encoding
H:<V,I,G,A> 9 DVAR:<V' SO, :]C, T, B,) h)

We define:

e A DyPDL element variable
for each delete-free STRIPS
variable

 Target state s¥ expressing @

the same as /

e Base cases B expressing @ — v o

the same as G

DyPDL — Variable-to-Variable Encoding
H:<V,I,G,A> 9 DVAR:<V' SO, :]C, T, B,) h)

We define:
e A transition for each action

which:
e express the same

preconditions
o No preconditions Needs
Have equal cost Costs &4 A
e Effects express the
same as add effects

Add nutrients Synthesize nutrients

DyPDL — Variable-to-Variable Encoding
H:<V,I,G,A> 9 DVAR:<V' SO, :]C, T, B,) h)

e Constants K contain costs
of actions

e No dual bound h or state
constraint C

Motivation for the Second Encoding

Use a set variable instead of many element variables

e)

Possible advantages:
* Internal representation as a bitset possible = less memory

used
* Operations & comparisons on bitset = faster

DyPDL — Variable-to-Set Encoding
:<V,I,G,A> - DSET_<V S j(T B , h)

Difference to the VAR encoding:

e A DyPDL set variable . {
representing all delete-free
STRIPS variables

* Target state sY expressing the @
same as /

 Base cases B expressing the
same as G

What’s the difference between DyPDL and

delete-free ST

RIPS?

Share some inherent similarities, BUT they are two different models:

e States in delete-free

STRIPS are sets of variables, in DyPDL they’re

variable assignments

e Goals are variable sets in delete-free STRIPS, but base cases consist of
conditions and values in DyPDL

* Cost gets computed differently

* Delete-free STRIPS cannot support state constraints or built in
heuristics (= dual bounds)

Adding a Dual Bound

Heuristics can be added as dual bounds, are a part of the model
- Maps each state s to the estimated cost to the nearest goal

Zero heuristic hY: ho(s) =0

Mod. Goal count R (s) = # unsatisfied goal vars

heuristic h9: max{# af fected vars}

Force Modification
Actions get forced as soon as their preconditions are satisfied
We immediately need to do one of the following:

- Apply the action —
—> Discard the action —

Actions can NEVER be forced again

—q

Force Modification — possible Advantage

Only a single action can be applied in any state instead of all applicable
ones = reduces branching factor

°
° o _
°
°

Chain of transitions will get longer though as applying/discarding a
single action uses two transitions (forcing + applying/discarding)

lgnore Modification

We never consider actions which do not add new facts

lgnore consider

S S

We explicitly enforce this using
a precondition instead of @ —
relying on the solver!

Experiments — Setup

* Use problems of optimal-strips suite from downward-benchmarks repository
» Use the Fast Downward translator to preprocess and relax problems
Use the DIDPPy Python interface to generate models, CAASDy solver

* We measure:
e Finished runs
* Runs terminated due to memory errors & timeouts
* Average memory usage
* Average nodes expanded
* Time score: value between 0 and 1

Time limit: 15 min., Memory limit: 3.5GB

Note: We use “VAR (encoding)” and “SET (encoding)” to denote the encodings

Experiment 1 — Baseline comparison

Hypothesis: SET uses less memory, solves more problems, better time score
as it can be represented with a bitset internally.

Finished Mem. Error Timeout Memory Time score Nodes exp.
VAR | 362 1407 78 43.05 MB 0.752 469.75
SET 346 1143 358 42.78 MB 0.735 469.75

Results: Neither perform great (solved 1/5 of all problems)
* VAR encoding finishes more problems
 Anomaly in spider-opt18-strips domain: SET encoding cannot correctly
identify these unsolvable tasks
* Time score better for VAR
* Memory usage similar, expanded nodes exactly the same

Experiment 2 — Heuristics Comparison

Comparing baseline performance with their performance using the zero heuristic
and modified goal count heuristic

Hypothesis:
* Both heuristics result in an improvement to all metrics
* Modified goal count heuristics improves performance more

» Zero heuristic should not improve solving much if at all

Experiment 2 — Heuristics Comparison

Heuristic Finished
None 362

VAR | Zero 509 (+147)
Goal 562 (+200)
None 346

SET | Zero 513 (+167)
Goal 566 (+220)

Results:
* both significantly improved the number of solved problems

Experiment 2 — Heuristics Comparison

Heuristic Time score
None 0.752

VAR | Zero 0.796 (+0.044)
Goal 0.796 (+0.044)
None 0.735

SET | Zero 0.769 (+0.034)
Goal 0.770 (+0.035)

Results:
* both significantly improved the number of solved problems
* VAR still has better time score, greater improvement

Experiment 2 — Heuristics Comparison

Heuristic Nodes exp.

None 469.75
VAR&SET | Zero 127.53 (-342.22)

Goal 105.71 (-364.04)

Results:

* both significantly improved the number of solved problems
* VAR still has better time score, greater improvement

* Nodes expanded still exactly the same, significantly better

Experiment 3 — Excluding Transitions

Comparing the ignore modification to the force modification (using
modified goal count heuristic)

Hypothesis:

* Ignore modification should not lead to a great improvement or
deterioration

* Force modification could be faster, use less memory due to decreased
branching factor

* Force modification could lead to more nodes expanded due to having
to use more transitions to apply an action

Experiment 3 — Excluding Transitions

Mod. Time score

VAR None 0.796

VAR Ignore 0.807

SET None 0.770
SET Ighore 0.782

Results:

* Nothing changed significantly = modification does not really do anything
* slightimprovement in time score though

Experiment 3 — Excluding Transitions

Mod. Finished

VAR None | 562

VAR Force | 396 (-166)

SET None 566
SET Force 383 (-183)

Results:
* Significant decrease in solved problems

Experiment 3 — Excluding Transitions

Mod. Finished Mem. Error | Timeout
VAR None | 562 1266 19

VAR Force | 396 (-166) 1074 377
SET None | 566 995 286
SET Force | 383 (-183) 738 726

Results:
* Significant decrease in solved problems, timeouts are an issue

Experiment 3 — Excluding Transitions

Mod. Memory (MB) | Nodes exp.
VAR None | 33.64 105.71
VAR Force | 55.29 1537.11
SET None |33.43 105.71
SET Force | 53.62 1549.47

Results:

* Significant decrease in solved problems, timeouts are an issue
 Nodes expanded exploded, memory used rose

* Interestingly not the same amount of expanded nodes anymore

Experiment 3 — Excluding Transitions

Mod. Time score

VAR None | 0.796

VAR Force | 0.764

SET None 0.770
SET Force 0.741

Results:

* Significant decrease in solved problems, timeouts are an issue
 Nodes expanded exploded, memory used rose

* Interestingly not the same amount of expanded nodes anymore
* Time score also got worse

Experiments — General Results

* Baseline encodings are not good
* Dual bounds work great!
* Neither structural modification is worth it

Future Research

* Heuristics have proven to be useful 2 implementing more powerful
heuristics is a promising direction

* Experiment with other kinds of structural modifications, try different
directions

* Look into state constraints
* Could expand encodings for STRIPS instead of delete-free STRIPS

summary

(Potential) Optimizations:

e Zero heuristic & modified goal
count heuristic

* Force modification & ignore
modification

Encodings:

* Variable-to-Variable encoding
* Variable-to-Set encoding

Experiment Results:

* Baseline models are not great by themselves

* Both heuristics result in a great improvement, mod. goal count
heuristic works best

* I[gnore modification does not help nor hinder much
 Force modification results in a clear deterioration

	Default Section
	Folie 1: Encoding Delete-Free Planning Tasks in Domain-Independent Dynamic Programming
	Folie 2: Motivation
	Folie 3: Delete-Free Planning
	Folie 4: The Minimal Seed-Set Problem
	Folie 5: Delete-Free STRIPS
	Folie 6: Delete-Free STRIPS
	Folie 7: Domain-Independent Dynamic Programming
	Folie 8: Domain-Independent Dynamic Programming
	Folie 9: Domain-Independent Dynamic Programming
	Folie 10: Domain-Independent Dynamic Programming (DIDP)
	Folie 11: DyPDL
	Folie 12: DyPDL
	Folie 13: DyPDL
	Folie 14: DyPDL – Variable-to-Variable Encoding
	Folie 15: DyPDL – Variable-to-Variable Encoding
	Folie 16: DyPDL – Variable-to-Variable Encoding
	Folie 17: Motivation for the Second Encoding
	Folie 18: DyPDL – Variable-to-Set Encoding
	Folie 19: What’s the difference between DyPDL and delete-free STRIPS?
	Folie 20: Adding a Dual Bound
	Folie 21: Force Modification
	Folie 22: Force Modification – possible Advantage
	Folie 23: Ignore Modification
	Folie 24: Experiments – Setup
	Folie 25: Experiment 1 – Baseline comparison
	Folie 26: Experiment 2 – Heuristics Comparison
	Folie 27: Experiment 2 – Heuristics Comparison
	Folie 28: Experiment 2 – Heuristics Comparison
	Folie 29: Experiment 2 – Heuristics Comparison
	Folie 30: Experiment 3 – Excluding Transitions
	Folie 31: Experiment 3 – Excluding Transitions
	Folie 32: Experiment 3 – Excluding Transitions
	Folie 33: Experiment 3 – Excluding Transitions
	Folie 34: Experiment 3 – Excluding Transitions
	Folie 35: Experiment 3 – Excluding Transitions
	Folie 36: Experiments – General Results
	Folie 37: Future Research
	Folie 38: Summary

