
Encoding Delete-Free Planning Tasks in
Domain-Independent Dynamic

Programming
Maria Desteffani

04. 03. 2025

Motivation

• Bridging Automated Planning and DIDP → out of interest ☺

• DIDP is more powerful than our delete-free planning formalism →
possible advantages/disadvantages? Is it worth it?

Delete-Free Planning

• Branch of Automated Planning

• Finding sequences of actions which lead from an initial state to a goal
state

• Actions do not remove facts

We use delete-free STRIPS as a formalism

The Minimal Seed-Set Problem

Organism (petri dish) needs to
accumulate a certain set of nutrients

Delete-Free STRIPS

A delete-free STRIPS task is a tuple Π = 〈𝑉, 𝐼, 𝐺, 𝐴〉 containing:

Initial state I

Variables V

Goal states G

Actions A

Add nutrients

Synthesize nutrients

Delete-Free STRIPS

A delete-free STRIPS task is a tuple Π = 〈𝑉, 𝐼, 𝐺, 𝐴〉 containing:

Actions A containing preconditions, add effects, cost

Add nutrients Synthesize nutrients

No preconditions
Costs $$

Needs
Free!

Domain-Independent Dynamic Programming

Dynamic Programming: decompose complex problem into simpler
subproblems

e.g.: min. Knapsack problem:

What’s the
min. weight
needed?

Domain-Independent Dynamic Programming

Dynamic Programming: decompose complex problem into simpler
subproblems

e.g.: min. Knapsack problem:

What’s the
min. weight
needed?

Domain-Independent Dynamic Programming

Dynamic Programming: decompose complex problem into simpler
subproblems

e.g.: min. Knapsack problem:

What’s the
min. weight
needed?

Domain-Independent Dynamic Programming
(DIDP)

General framework for dynamic programming problems

→Allows for a separation of modeling and solving

We use Dynamic Programming Description Language (DyPDL) as a
modeling formalism

DyPDL

A DyPDL task is a tuple 𝐷 = 〈𝒱, 𝑠0, 𝒦, 𝒯, ℬ, 𝒞, ℎ〉 containing:

• State variables 𝒱 - define states
• Element variables
• Set variables
• Numerical variables

• Target state 𝑠0 - state whose value we
want to compute

What’s the
min. weight
needed?

DyPDL

A DyPDL task is a tuple 𝐷 = 〈𝒱, 𝑠0, 𝒦, 𝒯, ℬ, 𝒞, ℎ〉 containing:

• Constants 𝒦 - state independent
variables

• Base cases ℬ - simplest subproblem,
value immediately known

• Transitions 𝒯 containing:
• Preconditions
• Effects
• Costs

DyPDL

A DyPDL task is a tuple 𝐷 = 〈𝒱, 𝑠0, 𝒦, 𝒯, ℬ, 𝒞, ℎ〉 containing:

• State Constraint 𝒞

• Dual bound h = heuristics

DyPDL – Variable-to-Variable Encoding
Π = 〈𝑉, 𝐼, 𝐺, 𝐴〉 → DVA𝑅 = 〈𝒱, 𝑠0, 𝒦, 𝒯, ℬ, 𝒞, ℎ〉

We define:
• A DyPDL element variable

for each delete-free STRIPS
variable

• Target state 𝑠0 expressing
the same as I

• Base cases ℬ expressing
the same as G

DyPDL – Variable-to-Variable Encoding
Π = 〈𝑉, 𝐼, 𝐺, 𝐴〉 → DVA𝑅 = 〈𝒱, 𝑠0, 𝒦, 𝒯, ℬ, 𝒞, ℎ〉

We define:
• A transition for each action

which:
• express the same

preconditions
• Have equal cost
• Effects express the

same as add effects

Add nutrients

No preconditions
Costs $$

Synthesize nutrients

Needs
Free!

DyPDL – Variable-to-Variable Encoding
Π = 〈𝑉, 𝐼, 𝐺, 𝐴〉 → DVA𝑅 = 〈𝒱, 𝑠0, 𝒦, 𝒯, ℬ, 𝒞, ℎ〉

• Constants 𝒦 contain costs
of actions

• No dual bound h or state
constraint 𝒞

Motivation for the Second Encoding

Use a set variable instead of many element variables

vs.

Possible advantages:
• Internal representation as a bitset possible → less memory

used
• Operations & comparisons on bitset→ faster

DyPDL – Variable-to-Set Encoding
Π = 〈𝑉, 𝐼, 𝐺, 𝐴〉 → DSET = 〈𝒱, 𝑠0, 𝒦, 𝒯, ℬ, 𝒞, ℎ〉

Difference to the VAR encoding:
• A DyPDL set variable

representing all delete-free
STRIPS variables

• Target state 𝑠0 expressing the
same as I

• Base cases ℬ expressing the
same as G

What’s the difference between DyPDL and
delete-free STRIPS?
Share some inherent similarities, BUT they are two different models:

• States in delete-free STRIPS are sets of variables, in DyPDL they’re
variable assignments

• Goals are variable sets in delete-free STRIPS, but base cases consist of
conditions and values in DyPDL

• Cost gets computed differently

• Delete-free STRIPS cannot support state constraints or built in
heuristics (= dual bounds)

• …

Adding a Dual Bound

Heuristics can be added as dual bounds, are a part of the model

→Maps each state s to the estimated cost to the nearest goal

Zero heuristic ℎ0:

Mod. Goal count
heuristic ℎ𝑔:

ℎ0(𝑠) = 0

ℎ𝑔 𝑠 =
𝑢𝑛𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑔𝑜𝑎𝑙 𝑣𝑎𝑟𝑠

max{# 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑟𝑠}

Force Modification

Actions get forced as soon as their preconditions are satisfied

We immediately need to do one of the following:

→Apply the action

→Discard the action

Actions can NEVER be forced again

Force Modification – possible Advantage

Only a single action can be applied in any state instead of all applicable
ones→ reduces branching factor

Chain of transitions will get longer though as applying/discarding a
single action uses two transitions (forcing + applying/discarding)

Ignore Modification

We never consider actions which do not add new facts

Ignore consider

We explicitly enforce this using
a precondition instead of
relying on the solver!

Experiments – Setup

• Use problems of optimal-strips suite from downward-benchmarks repository

• Use the Fast Downward translator to preprocess and relax problems

• Use the DIDPPy Python interface to generate models, CAASDy solver

• We measure:
• Finished runs
• Runs terminated due to memory errors & timeouts
• Average memory usage
• Average nodes expanded
• Time score: value between 0 and 1

• Time limit: 15 min., Memory limit: 3.5GB

Note: We use “VAR (encoding)” and “SET (encoding)” to denote the encodings

Experiment 1 – Baseline comparison

Results: Neither perform great (solved 1/5 of all problems)
• VAR encoding finishes more problems

• Anomaly in spider-opt18-strips domain: SET encoding cannot correctly
identify these unsolvable tasks

• Time score better for VAR
• Memory usage similar, expanded nodes exactly the same

Hypothesis: SET uses less memory, solves more problems, better time score
as it can be represented with a bitset internally.

Finished Mem. Error Timeout Memory Time score Nodes exp.

VAR 362 1407 78 43.05 MB 0.752 469.75

SET 346 1143 358 42.78 MB 0.735 469.75

Experiment 2 – Heuristics Comparison

Comparing baseline performance with their performance using the zero heuristic
and modified goal count heuristic

Hypothesis:

• Both heuristics result in an improvement to all metrics

• Modified goal count heuristics improves performance more

• Zero heuristic should not improve solving much if at all

Experiment 2 – Heuristics Comparison
Heuristic Finished

None 362

VAR Zero 509 (+147)

Goal 562 (+200)

None 346

SET Zero 513 (+167)

Goal 566 (+220)

Results:
• both significantly improved the number of solved problems

Experiment 2 – Heuristics Comparison

Results:
• both significantly improved the number of solved problems
• VAR still has better time score, greater improvement

Heuristic Time score

None 0.752

VAR Zero 0.796 (+0.044)

Goal 0.796 (+0.044)

None 0.735

SET Zero 0.769 (+0.034)

Goal 0.770 (+0.035)

Experiment 2 – Heuristics Comparison

Results:
• both significantly improved the number of solved problems
• VAR still has better time score, greater improvement
• Nodes expanded still exactly the same, significantly better

Heuristic Nodes exp.

None 469.75

VAR&SET Zero 127.53 (-342.22)

Goal 105.71 (-364.04)

Experiment 3 – Excluding Transitions

Comparing the ignore modification to the force modification (using
modified goal count heuristic)

Hypothesis:

• Ignore modification should not lead to a great improvement or
deterioration

• Force modification could be faster, use less memory due to decreased
branching factor

• Force modification could lead to more nodes expanded due to having
to use more transitions to apply an action

Experiment 3 – Excluding Transitions

Mod. Time score

VAR None 0.796

VAR Ignore 0.807

Results:
• Nothing changed significantly →modification does not really do anything
• slight improvement in time score though

SET None 0.770

SET Ignore 0.782

Experiment 3 – Excluding Transitions

Mod. Finished

VAR None 562

VAR Force 396 (-166)

SET None 566

SET Force 383 (-183)

Results:
• Significant decrease in solved problems

Experiment 3 – Excluding Transitions

Mod. Finished Mem. Error Timeout

VAR None 562 1266 19

VAR Force 396 (-166) 1074 377

SET None 566 995 286

SET Force 383 (-183) 738 726

Results:
• Significant decrease in solved problems, timeouts are an issue

Experiment 3 – Excluding Transitions

Results:
• Significant decrease in solved problems, timeouts are an issue
• Nodes expanded exploded, memory used rose
• Interestingly not the same amount of expanded nodes anymore

Mod. Memory (MB) Nodes exp.

VAR None 33.64 105.71

VAR Force 55.29 1537.11

SET None 33.43 105.71

SET Force 53.62 1549.47

Experiment 3 – Excluding Transitions

Results:
• Significant decrease in solved problems, timeouts are an issue
• Nodes expanded exploded, memory used rose
• Interestingly not the same amount of expanded nodes anymore
• Time score also got worse

Mod. Time score

VAR None 0.796

VAR Force 0.764

SET None 0.770

SET Force 0.741

Experiments – General Results

• Baseline encodings are not good

• Dual bounds work great!

• Neither structural modification is worth it

Future Research

• Heuristics have proven to be useful → implementing more powerful
heuristics is a promising direction

• Experiment with other kinds of structural modifications, try different
directions

• Look into state constraints

• Could expand encodings for STRIPS instead of delete-free STRIPS

Summary
Encodings:

• Variable-to-Variable encoding

• Variable-to-Set encoding

(Potential) Optimizations:

• Zero heuristic & modified goal
count heuristic

• Force modification & ignore
modification

Experiment Results:

• Baseline models are not great by themselves

• Both heuristics result in a great improvement, mod. goal count
heuristic works best

• Ignore modification does not help nor hinder much

• Force modification results in a clear deterioration

	Default Section
	Folie 1: Encoding Delete-Free Planning Tasks in Domain-Independent Dynamic Programming
	Folie 2: Motivation
	Folie 3: Delete-Free Planning
	Folie 4: The Minimal Seed-Set Problem
	Folie 5: Delete-Free STRIPS
	Folie 6: Delete-Free STRIPS
	Folie 7: Domain-Independent Dynamic Programming
	Folie 8: Domain-Independent Dynamic Programming
	Folie 9: Domain-Independent Dynamic Programming
	Folie 10: Domain-Independent Dynamic Programming (DIDP)
	Folie 11: DyPDL
	Folie 12: DyPDL
	Folie 13: DyPDL
	Folie 14: DyPDL – Variable-to-Variable Encoding
	Folie 15: DyPDL – Variable-to-Variable Encoding
	Folie 16: DyPDL – Variable-to-Variable Encoding
	Folie 17: Motivation for the Second Encoding
	Folie 18: DyPDL – Variable-to-Set Encoding
	Folie 19: What’s the difference between DyPDL and delete-free STRIPS?
	Folie 20: Adding a Dual Bound
	Folie 21: Force Modification
	Folie 22: Force Modification – possible Advantage
	Folie 23: Ignore Modification
	Folie 24: Experiments – Setup
	Folie 25: Experiment 1 – Baseline comparison
	Folie 26: Experiment 2 – Heuristics Comparison
	Folie 27: Experiment 2 – Heuristics Comparison
	Folie 28: Experiment 2 – Heuristics Comparison
	Folie 29: Experiment 2 – Heuristics Comparison
	Folie 30: Experiment 3 – Excluding Transitions
	Folie 31: Experiment 3 – Excluding Transitions
	Folie 32: Experiment 3 – Excluding Transitions
	Folie 33: Experiment 3 – Excluding Transitions
	Folie 34: Experiment 3 – Excluding Transitions
	Folie 35: Experiment 3 – Excluding Transitions
	Folie 36: Experiments – General Results
	Folie 37: Future Research
	Folie 38: Summary

