Encoding Delete-Free Planning Tasks in Domain-Independent Dynamic Programming

Maria Desteffani

04.03.2025

Motivation

- Bridging Automated Planning and DIDP \rightarrow out of interest \odot
- DIDP is more powerful than our delete-free planning formalism → possible advantages/disadvantages? Is it worth it?

Delete-Free Planning

- Branch of Automated Planning
- Finding sequences of actions which lead from an initial state to a goal state
- Actions do not remove facts

We use **delete-free STRIPS** as a formalism

The Minimal Seed-Set Problem

Organism (petri dish) needs to accumulate a certain set of nutrients

• • •

Delete-Free STRIPS

A delete-free STRIPS task is a tuple $\Pi = \langle V, I, G, A \rangle$ containing:

Delete-Free STRIPS

A delete-free STRIPS task is a tuple $\Pi = \langle V, I, G, A \rangle$ containing:

Actions A containing preconditions, add effects, cost

No preconditions Costs \$\$ Synthesize nutrients

Domain-Independent Dynamic Programming

Dynamic Programming: decompose complex problem into simpler subproblems

e.g.: min. Knapsack problem:

Domain-Independent Dynamic Programming

Dynamic Programming: decompose complex problem into simpler subproblems

e.g.: min. Knapsack problem:

Domain-Independent Dynamic Programming

Dynamic Programming: decompose complex problem into simpler subproblems

e.g.: min. Knapsack problem:

What's the min. weight needed?

Domain-Independent Dynamic Programming (DIDP)

General framework for dynamic programming problems

 \rightarrow Allows for a separation of modeling and solving

We use **Dynamic Programming Description Language (DyPDL)** as a modeling formalism

DyPDL

A DyPDL task is a tuple $D = \langle \mathcal{V}, s^0, \mathcal{K}, \mathcal{T}, \mathcal{B}, \mathcal{C}, h \rangle$ containing:

- State variables ${\mathcal V}$ define states
 - Element variables
 - Set variables
 - Numerical variables

Target state s⁰ - state whose value we want to compute

DyPDL

A DyPDL task is a tuple $D = \langle \mathcal{V}, s^0, \mathcal{K}, \mathcal{T}, \mathcal{B}, \mathcal{C}, h \rangle$ containing:

- Constants \mathcal{K} state independent variables
- Base cases $\mathcal B$ simplest subproblem, value immediately known

- Transitions \mathcal{T} containing:
 - Preconditions
 - Effects
 - Costs

DyPDL

A DyPDL task is a tuple $D = \langle \mathcal{V}, s^0, \mathcal{K}, \mathcal{T}, \mathcal{B}, \mathcal{C}, h \rangle$ containing:

- State Constraint \mathcal{C}
- Dual bound *h* = heuristics

We define:

- A DyPDL element variable for each delete-free STRIPS variable
- Target state s^0 expressing the same as *I*
- Base cases \mathcal{B} expressing the same as G

DyPDL – Variable-to-Variable Encoding $\Pi = \langle V, I, G, A \rangle \rightarrow D_{VAR} = \langle \mathcal{V}, s^0, \mathcal{K}, \mathcal{T}, \mathcal{B}, \mathcal{C}, h \rangle$

We define:

- A transition for each action which:
 - express the same preconditions
 - Have equal cost
 - Effects express the same as add effects

DyPDL – Variable-to-Variable Encoding $\Pi = \langle V, I, G, A \rangle \rightarrow D_{VAR} = \langle \mathcal{V}, s^0, \mathcal{K}, \mathcal{T}, \mathcal{B}, \mathcal{C}, h \rangle$

- Constants ${\mathcal K}$ contain costs of actions
- No dual bound h or state constraint C

Motivation for the Second Encoding

Use a set variable instead of many element variables

Possible advantages:

- Internal representation as a bitset possible \rightarrow less memory used
- Operations & comparisons on bitset \rightarrow faster

Difference to the VAR encoding:

- A DyPDL set variable representing all delete-free STRIPS variables
- Target state s⁰ expressing the same as *I*
- Base cases *B* expressing the same as *G*

What's the difference between DyPDL and delete-free STRIPS?

Share some inherent similarities, BUT they are two different models:

- States in delete-free STRIPS are sets of variables, in DyPDL they're variable assignments
- Goals are variable sets in delete-free STRIPS, but base cases consist of conditions and values in DyPDL
- Cost gets computed differently
- Delete-free STRIPS cannot support state constraints or built in heuristics (= dual bounds)

Adding a Dual Bound

Heuristics can be added as dual bounds, are a part of the model \rightarrow Maps each state *s* to the estimated cost to the nearest goal

Zero heuristic
$$h^0$$
: $h^0(s) = 0$

Mod. Goal count heuristic h^g :

$$h^{g}(s) = \frac{\# unsatisfied \ goal \ vars}{\max\{\# \ affected \ vars\}}$$

Force Modification

Actions get forced as soon as their preconditions are satisfied 🔰 🔍 😐

We immediately need to do one of the following:

- \rightarrow Apply the action • • • •

Actions can **NEVER** be forced again

Force Modification – possible Advantage

Only a single action can be applied in any state instead of all applicable ones \rightarrow reduces branching factor

Chain of transitions will get longer though as applying/discarding a single action uses two transitions (forcing + applying/discarding)

Ignore Modification

We never consider actions which do not add new facts

Experiments – Setup

- Use problems of optimal-strips suite from downward-benchmarks repository
- Use the Fast Downward translator to preprocess and relax problems
- Use the DIDPPy Python interface to generate models, CAASDy solver
- We measure:
 - Finished runs
 - Runs terminated due to memory errors & timeouts
 - Average memory usage
 - Average nodes expanded
 - Time score: value between 0 and 1
- Time limit: 15 min., Memory limit: 3.5GB

Note: We use "VAR (encoding)" and "SET (encoding)" to denote the encodings

Experiment 1 – Baseline comparison

Hypothesis: SET uses less memory, solves more problems, better time score as it can be represented with a bitset internally.

	Finished	Mem. Error	Timeout	Memory	Time score	Nodes exp.
VAR	362	1407	78	43.05 MB	0.752	469.75
SET	346	1143	358	42.78 MB	0.735	469.75

Results: Neither perform great (solved 1/5 of all problems)

- VAR encoding finishes more problems
 - Anomaly in *spider-opt18-strips* domain: SET encoding cannot correctly identify these unsolvable tasks
- Time score better for VAR
- Memory usage similar, expanded nodes exactly the same

Comparing baseline performance with their performance using the zero heuristic and modified goal count heuristic

Hypothesis:

- Both heuristics result in an improvement to all metrics
- Modified goal count heuristics improves performance more
- Zero heuristic should not improve solving much if at all

	Heuristic	Finished
	None	362
VAR	Zero	509 (+147)
	Goal	562 (+200)
	None	346
SET	Zero	513 (+167)
	Goal	566 (+220)

Results:

• both significantly improved the number of solved problems

	Heuristic	Time score
	None	0.752
VAR	Zero	0.796 (+0.044)
	Goal	0.796 (+0.044)
	None	0.735
SET	Zero	0.769 (+0.034)
	Goal	0.770 (+0.035)

Results:

- both significantly improved the number of solved problems
- VAR still has better time score, greater improvement

	Heuristic	Nodes exp.
	None	469.75
VAR&SET	Zero	127.53 (-342.22)
	Goal	105.71 (-364.04)

Results:

- both significantly improved the number of solved problems
- VAR still has better time score, greater improvement
- Nodes expanded still exactly the same, significantly better

Comparing the ignore modification to the force modification (using modified goal count heuristic)

Hypothesis:

- Ignore modification should not lead to a great improvement or deterioration
- Force modification could be faster, use less memory due to decreased branching factor
- Force modification could lead to more nodes expanded due to having to use more transitions to apply an action

Mod.	Time score
VAR None	0.796
VAR Ignore	0.807
SET None	0.770
SET Ignore	0.782

Results:

- Nothing changed significantly \rightarrow modification does not really do anything
- slight improvement in time score though

Mod.	Finished
VAR None	562
VAR Force	396 (-166)
SET None	566
SET Force	383 (-183)

Results:

• Significant decrease in solved problems

Mod.	Finished	Mem. Error	Timeout
VAR None	562	1266	19
VAR Force	396 (-166)	1074	377
SET None	566	995	286
SET Force	383 (-183)	738	726

Results:

• Significant decrease in solved problems, timeouts are an issue

Mod.	Memory (MB)	Nodes exp.
VAR None	33.64	105.71
VAR Force	55.29	1537.11
SET None	33.43	105.71
SET Force	53.62	1549.47

Results:

- Significant decrease in solved problems, timeouts are an issue
- Nodes expanded exploded, memory used rose
- Interestingly not the same amount of expanded nodes anymore

Mod.	Time score
VAR None	0.796
VAR Force	0.764
SET None	0.770
SET Force	0.741

Results:

- Significant decrease in solved problems, timeouts are an issue
- Nodes expanded exploded, memory used rose
- Interestingly not the same amount of expanded nodes anymore
- Time score also got worse

Experiments – General Results

- Baseline encodings are not good
- Dual bounds work great!
- Neither structural modification is worth it

Future Research

- Heuristics have proven to be useful → implementing more powerful heuristics is a promising direction
- Experiment with other kinds of structural modifications, try different directions
- Look into state constraints
- Could expand encodings for STRIPS instead of delete-free STRIPS

Summary

Encodings:

- Variable-to-Variable encoding
- Variable-to-Set encoding

(Potential) Optimizations:

- Zero heuristic & modified goal count heuristic
- Force modification & ignore modification

Experiment Results:

- Baseline models are not great by themselves
- Both heuristics result in a great improvement, mod. goal count heuristic works best
- Ignore modification does not help nor hinder much
- Force modification results in a clear deterioration