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Abstract

Classical planning is an attractive approach to solv-
ing problems because of its generality and its relative
ease of use. Domain-specific algorithms are appeal-
ing because of their performance, but require a lot
of resources to be implemented. In this thesis we
evaluate concepts languages as a possible input lan-
guage for expert domain knowledge into a planning
system. We also explore mixed integer programming
as a way to use this knowledge to improve search ef-
ficiency and to help the user find and refine useful
domain knowledge.
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1 Introduction

The oft-repeated maxim “physics, not advice” (McDermott, 2000), states
that a specification of a planning domain should simply describe the physi-
cal properties of the domain and refrain from encoding advice to the planner
on how to solve tasks in the domain. This is sensible because the person
specifying the domain might have incorrect ideas about the best solution
strategies. It is a separation of concerns. The specification of domain and
planning are different problems and should not be intertwined. However,
the ultimate goal of planning should arguably be to help solve real-world
problems. They require close to no domain knowledge to be applied to a do-
main. All that is required, is that the problem is formulated in a format the
planning system can understand. A*(Hart et al., 1968) and greedy best-first
search in combination with an informative domain-independent heuristic are
considered the state of the art in optimal and suboptimal classical planning
respectively. But these approaches to problem-solving mostly can not com-
pete with domain-specific algorithms precisely because of their generality.
In this thesis we want to take a step towards finding a golden middle way
between classical planning and domain-specific solutions.

To do so we consider adding advice for the planner back in, but as a step
separate from the specification of the domain. In doing so, we will be stray-
ing very close to generalized planning, where domains of planning tasks with
a common underlying structure are automatically analyzed and the results
are used to solve individual tasks within that domain much more efficiently.
Francès et al. (2019a) presented one such attempt. They introduced an au-
tomated way to discover an informative heuristic1 in the form of a weighted
sum of features expressed in a concept language strictly less powerful than
first-order logic. They found that these features often represent aspects that
have a clear meaning to humans which makes them supremely suited a lan-
guage for humans to give advice to planning systems. A weakness of this
approach is that the expressiveness of the logic as well as how the features
can be combined to form a heuristic must be kept at a minimum to pre-
vent a blow-up of the search space of possible heuristics. This resulted in an
inability to express a useful heuristic for certain domains.

In this thesis, we will explore how useful concept languages are as a means
to express expert knowledge of a domain. We will consider a standard con-
cept language and a few extensions to this concept language, a few different
features based on these languages, as well as different ways of combining

1To be precise, the heuristics are guaranteed to be descending and dead-end avoiding
(Seipp et al., 2016).
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these features into the final heuristic and attempt to identify the advantages
and downsides of each extension.

We start by formalizing our setting by defining planning tasks, concept
languages, how these two can be combined, and what sort of features we
want to be able to express. We then describe a workflow that aides a do-
main expert with specifying informative features and automatically learns a
heuristic based on these features. On the practical side, we implement this
workflow as a tool and provide a few notes on the nuts and bolts. Finally,
we present some experimental results based on our attempts to use the tool
ourselves interspersed with fictitious dialogues between two people learning
to use the tool as a way to illustrate the capabilities and peculiarities of this
workflow.

2 Background

This section will formalize classical planning and the concept language we will
be using throughout the paper. We will then clarify how these two elements
can be combined. Finally, we will define the heuristics that are ultimately
the subject of this thesis.

2.1 Classical Planning

In this thesis, we will consider planning tasks which can be represented as a
tuple 〈P ,A, C,O, I,G〉. P is a set of predicate symbols with an associated
arity. A is a set of action schemas. C is a set of constants. If a ∈ A then
par(a) is a set of parameters, pre(a) any logical formula over the predicates
in P and their negations applied to par(a) ∪ C, and eff (a) a conjunction of
a subset of the same predicates and their negations. cost(a) ∈ R≥0 is called
the cost of an action schema. O is a set of objects. I is called the initial
state and is a full assignment of truth values to all predicates in P applied to
C ∪ O. G is the goal condition and is a consistent conjunction of a subset of
the same predicates and their negations applied to C ∪O. A and O together
induce the set of ground actions of the task. This set is obtained by replacing
the parameters par(a) in pre(a) and eff (a) of action schemas a by all possible
combinations of objects from O. The cost of a ground action is the same as
that of its action schema. We say two planning tasks are part of the same
domain if they share P , A, and C. In this case we call 〈P ,A, C〉 the domain
of the planning tasks.

Many classical planning tasks expressed in PDDL (McDermott et al.,
1998) fit our definition quite naturally. We consider predicates and types
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declared in a PDDL domain file to be the predicates of the task. Likewise,
the action schemas in the domain file are the action schemas in the planning
task. Objects defined in the domain file are considered constants, whereas
those defined in the task file make up the objects. The initial state and goal
as defined in PDDL are also simply the initial state and goal condition of
the task. PDDL contains some features which do not map cleanly onto our
definition of planning tasks, but these can be compiled away.

A planning task induces a state space 〈S, L, T, sI , SG〉. Every state s ∈ S
represents a unique assignment of truth values to all predicates in P applied
to C ∪ O. We call this assignment (or interpretation) I(s) and write I(s) �
ϕ if a formula ϕ holds under the interpretation I(s). Every label l ∈ L
corresponds to a ground action induced by A and O. We will call this
ground action act(l). T ⊆ S × L × S is the set of transitions such that
〈s, l, s′〉 ∈ T if and only if I(s) � pre(act(l)) and I(s′) � eff (act(l)) and the
set of predicates I(s) and I(s′) assign different truth values to is minimal.
sI ∈ S such that I = I(sI) is the initial state. SG ⊆ S consists of all states
s such that I(s) � G.

The successors succ(s) of a state s are all states s′ such that 〈s, l, s′〉 ∈ T
for any l ∈ L. A path between two states s0 and sn is a sequence 〈l1, . . . , ln〉
such that there exists a sequence of states 〈s1, . . . , sn−1〉 with 〈si−1, li, si〉 ∈ T
for all i ∈ {1, . . . n}. The cost of a path cost(〈l1, . . . , ln〉) is

∑n
i=1 cost(act(li)).

An optimal path between two states is a path with minimal cost. A plan is a
path from the initial state to any goal state. An optimal plan is a plan with
minimal cost. Reachable states are states to which a path from the initial
state exists and solvable states are states from which a path to any goal state
exists. We call a state alive if it is both solvable and reachable, but not a
goal state.

A heuristic for a planning task is a function h : S → R. The perfect
heuristic h∗ is the heuristic which is equal to the cost of an optimal path
between the state and any goal state. A generalized heuristic is a function
that is defined for all states of all tasks in a given domain.

2.2 Concept Languages

Concept languages or description logics are a family of logic-based represen-
tation languages, most of which are more expressive than propositional logic
but still decidable (Baader et al., 2007). Concept languages deal with indi-
viduals ; classes of individuals which are called concepts and can be thought of
as properties; and binary relationships between individuals which are called
roles. Members of the family of concept languages differentiate from one
another by which constructors for concepts and roles they allow. We will
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consider various concept languages which will all be supersets of the stan-
dard language SOI with the added constructor role-value-map.

Syntax. Concepts and roles are defined inductively based on finite sets
of named concepts, roles, and individuals. Top > and bottom ⊥ are both
concepts. Any named concept is a concept and any named role is a role. If
a1, . . . , an are named individuals, C and C ′ are concepts, and R and R′ are
roles, then the following holds: the negation or complement of a concept ¬C,
the union C tC ′ and the intersection C uC ′ of two concepts, the existential
restriction ∃R.C and the universal restriction ∀R.C of a concept by a role,
the nominal concept {a1, . . . , an}, and the role-value-map R = R′ are all
concepts. The inverse of a role R−1, the transitive closure of a role R+ and
the composition of two roles R ◦R′ are also roles.

Semantics. The semantics of this description logic are given by a universe
∆ and a model .M. This model maps every individual a to an object aM ∈ ∆,
every named concept C to a set of objects CM ⊆ ∆, and every named role
R to a relation between objects RM ⊆ ∆2. The interpretation of all other
concepts and roles is defined recursively as follows. As before, a1, . . . , an are
named individuals, C and C ′ are concepts, and R and R′ are roles.

>M = ∆,⊥M = ∅, (¬C)M = ∆\CM,

(C t C ′)M = CM ∪ C ′
M
, (C u C ′)M = CM ∩ C ′

M
,

(∃R.C)M = {x | ∃y : (x, y) ∈ RM ∧ y ∈ CM},
(∀R.C)M = {x | ∀y : (x, y) ∈ RM → y ∈ CM},

{a1, . . . , an}M = {aM1 , .., aMn },
(R = R′)M = {x | (x, y) ∈ RM ↔ (x, y) ∈ R′

M},
(R−1)M = {(x, y) | (y, x) ∈ RM},

R+M = {(x0, xn) | ∃x1, . . . xn−1

: (xi−1, xi) ∈ RM for all i ∈ {1, . . . , n}},
(R ◦R′)M = {(x, y) | ∃z : (x, z) ∈ RM ∧ (z, y) ∈ R′

M}.

Extensions. We also consider the following extensions to this base concept
language.

Definition 1 For all comparison operators ∼∈ {=, >,<,≥,≤} we define
qualified cardinality restrictions introduced by Hollunder and Baader (1991).
Let R be a role and C a concept, the interpretation of the qualified cardinality
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restriction ∼ n R.C is

(∼ n R.C)M = {x | #{y | (x, y) ∈ RM ∧ y ∈ CM} ∼ n}.

This extension of description logics is commonly referred to as Q.
We further introduce a way to deal with n-ary relations with n > 2. To

this end we introduce n-ary roles. When a role has an arity n which is higher
than two, we will make this explicit by indicating this with a subscript, for
instance: Rn. We extend .M such that RMn ⊆ ∆n. In order to make n-
ary roles work with the concept language we will define a constructor which
makes it possible to reduce the arity of a role. To make this useful, this
constructor will be a combination of a selection and a projection.

Definition 2 Let Rn be an n-ary role, m ≤ n a natural number, and C a
concept. The interpretation of the atomic selection of Rn, Rn

m∈C is

(Rn
m∈C)M = {(x1, . . . , xn) | xm ∈ CM}.

Definition 3 Let Rn be an n-ary role, and m ≤ n a natural number. The
interpretation of the projection of Rn, Rn

π̄(m) is

(Rn
π̄(m))M = {(x1, . . . , xm−1, xm+1, . . . , xn) | ∃xm.(x1, ..., xn) ∈ RMn }.

Using these two definitions, we can now define the partial restriction of an
n-ary role Rn[a1, . . . , an], where a1, . . . , an are either individuals or concepts.
For each ai, if ai is a concept, then we simply apply the selection .i∈ai to
the role, if it is an individual, we apply both the selection .i∈{ai} as well as
the projection .π̄(i). For example, if x is an individual and C a concept, the
complex role R3[>, x, C] would expand to ((R3

2∈{x})3∈C)π̄(2). It should be
noted that the projection and selection together form a generalization of the
existential restriction, but that the partial restriction does not.

We also introduce the universal quantifier and the existential quantifier
as

(∀a ∈ C.Rn)M =
⋂

x∈CM
Rn(a)M(a=x),

(∃a ∈ C.Rn)M =
⋃

x∈CM
Rn(a)M(a=x).

In these definitions, .M(a=x) denotes the model which is identical to .M with
the addition of the new named individual a such that aM = x. These quan-
tifiers are particularly useful when used in combination with the partial re-
striction. The introduction of the universal and existential quantifier and
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the partial restriction make the concept language much more expressive, at
the cost of a lot of nice computational guarantees which make concept lan-
guages attractive in the first place. However, we will only be concerned with
evaluating concepts and roles under a given interpretation, so this is of no
importance.

Finally, we introduce role intersection and role union which are defined
as

(R uR′)M = RM ∩R′
M
,

(R tR′)M = RM ∪R′
M
.

2.3 Concept Languages of Planning Tasks

We consider planning tasks represented in PDDL. We consider objects and
constants – objects which are defined in the domain file – to be individuals,
unary predicates to be named concepts, binary predicates to be named roles,
and n-ary predicates to be n-ary roles is n > 2. We consider the universe
to be constant across all states and to be identical to the set of individuals.
Every state s of the state space induced by the planning task defines a model
.M(s). aM(s) = a for all named individuals a and states s. For every named
concept C, CM(s) = {x | I(s) � C(x)}, and for every named role R, RM(s) =
{(x, y) | I(s) � R(x, y)}.

We also introduce a goal constructor .G which can be applied only to
named roles and concepts with the following semantics. If C is a named
concept and R is a named role and s is a state in a state space with a set of
goal states SG then

(CG)M(s) =
⋂
s′∈SG

CM(s′),

(RG)M(s) =
⋂
s′∈SG

RM(s′).

The concept language of a planning domain 〈P ,A, C〉 is the language which
has the concepts and roles derived from the predicates in P as its named
concepts and roles as well as the individuals derived from the constants in C
as its named individuals. We also introduce a named concept for each nullary
predicate that have the interpretation ∆ in states where the predicates hold
and ∅ in states where they do not.

2.4 Generalized Potential Heuristics

Francès et al. (2019a) introduced generalized potential heuristics as a weighted
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sum over features which map states to integers.

Definition 4 Let S be a set of states which are not necessarily part of the
same state space and F a set of features f : S → Z. Let w : F → R be
a weight function mapping features to weights. The value of the potential
heuristic with features F and weights w on a state s ∈ S is

h(s) =
∑
f∈F

w(f) · f(s).

In this thesis we will consider generalized potential heuristics which are well-
defined on all states s that are part of any state space induced by any planning
task belonging to the same domain. This requires that all the features must
be well-defined on the same states. To this end, we will express features in
terms of concepts and roles in the concept language of the domain. We call
these features the features of this planning domain. As a starting point, we
use the same features Bonet et al. (2016) introduced.

Definition 5 Let C and C ′ be concepts and R a role in the concept language
of a planning domain. The value of the cardinality feature |C| in the state
s is |CM(s)|. The value of the minimal distance feature dist(C,R,C ′) in s

is minn such that ∃x0, . . . xn with x0 ∈ CM(s), xn ∈ C ′M(s) and (xi−1, xi) ∈
RM(s) for all i ∈ {1, . . . , n}. If such a sequence of individuals x0, . . . xn does
not exist, we define the value to be 0.

Extensions. We will also consider the following extensions to the set of
possible features.

Definition 6 Let f1 and f2 be features of a planning domain. The value of
the product feature f1 · f2 in the state s is f1(s) · f2(s).

Definition 7 Let h be a generalized heuristic of the domain D. The value
of the heuristic feature fh in the state s in the domain D is h(s).

By allowing any generalized heuristic of the domain as a feature, we allow a
set of features to contain both human intuition about a domain and infor-
mation state of the art heuristics are good at detecting.

Complexity. If X is a feature, role or concept consider its complexity K(X)
to be the size of its syntax tree. For example, K(dist(C,R,C ′)) = 1 +
K(C) + K(R) + K(C ′). The complexity of > and ⊥ is 0, the complexity of
all heuristic features, named concepts, named roles, and nominal concepts is
1. This definition differs slightly from the one introduced by Francès et al.
(2019a). They defined the complexity of a feature simply as the sum of the
complexities of all the involved concepts and roles. We deviate from their
definition because we introduced features which are defined inductively.
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3 Learning Heuristics

To quantify the value of extensions to the concept language and feature space
bring, we will learn several generalized potential heuristics with the features
that we expressed with them, and analyze their performance. Each of the
approaches takes as inputs a set of alive states from a common domain S and
a set of hand-crafted candidate features F of the same domain. We will find
heuristics h : S → R by solving some mixed integer program with variables
W = {wf ∈ R | f ∈ F} and consider h(s) to equal

∑
f∈F wf · f(s). The

expression f(s) here represents the value of the feature f in the state s. For
our first approach, we follow Francès et al. (2019a) and compute the simplest
heuristic which is descending and dead-end avoiding on S. We say a heuristic
h is descending on a state s if s has at least one successor with a heuristic
value that is less than h(s)− 1. We say a heuristic h is dead-end avoiding on
a state s if every unsolvable successor of s has a heuristic value greater than
or equal to h(s). A descending and dead-end avoiding heuristic on a set of
states S is a heuristic which is descending and dead-end avoiding on every
solvable, non-goal state in S. A heuristic with this property guides most
standard greedy algorithms directly to a goal. The mixed integer program
for this heuristic is a program Mstrict(S,F) with wf ∈ R they defined as

min
W

∑
f∈F

[wf 6= 0]K(f) subject to∨
s′∈succ(s)

h(s) ≥ h(s′) + 1 for all s ∈ S

∧
s′∈succ(s),
s′ unsolvable

h(s′) ≥ h(s) for all s ∈ S.

It is worth noting that neither this mixed integer program nor any of the
other two are linear. However, all three can be solved by modern MIP solvers
after some rewriting as described by Francès et al. (2019b). In broad terms,
it requires introducing indicator constraints for disjunctions and two binary
variables for the indicator function in the objective.

Since we do not expect to find a descending and dead-end avoiding heuris-
tic for more complex domains like Sokoban, we also introduce a version
of the above linear program with slack variables. This mixed integer pro-
gram Mslack(S,F) with variables wf ∈ R and additional slack variables
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us, vs,s′ ∈ R is defined as

min
W,u,v

∑
us,s′ +

∑
vs,s′ subject to∨

s′∈succ(s)

h(s) + us ≥ h(s′) + 1 for all s ∈ S

∧
s′∈succ(s),
s′ unsolvable

h(s′) + vs,s′ ≥ h(s) for all s ∈ S

us ≥ 0 for all s ∈ S
vs,s′ ≥ 0 for all s ∈ S, s′ ∈ succ(s), s′ unsolvable.

Note here that we no longer take the complexity of a feature into account
and simply compute the generalized potential heuristic which is closest to
being descending and dead-end avoiding using all the features provided. The
reasoning behind this is that, since the features are hand-crafted by a domain
expert, we expect most of them to be useful. Provided the set of states is
sufficiently large and varied, a feature f which is not informative will essen-
tially act as noise and will not be useful to minimize the slack variables. We
can, therefore, expect wf to be close to 0 and the domain expert can choose
to discard it at their discretion to make the heuristic more computationally
efficient and, hopefully, generalize better.

The final heuristic aims to locally approximate the perfect heuristic h∗.
We obtain this heuristic by solving the mixed integer program M∗(S,F)
with wf ∈ R and additional slack variables us,s′ , vs,s′ ∈ R

min
W,u,v

∑
|us,s′|+

∑
vs,s′ subject to∧

s′∈succ(s),
s′ solvable

h(s)− h(s′) + us,s′ = h∗(s)− h∗(s′) for all s ∈ S

∧
s′∈succ(s),
s′ unsolvable

h(s′) + vs,s′ ≥ max
t∈succ(s)∪{s}
t solvable

h(t) for all s ∈ S

vs,s′ ≥ 0 for all s ∈ S, s′ ∈ succ(s), s′ unsolvable.

The first type of constraint encapsulates how well the heuristic approximates
the perfect heuristic locally. A heuristic h which fulfills these constraints
with all us,s′ = 0 can only differ the perfect heuristic by a constant on all
states in S and their solvable successors. The second type of constraint deals
with unsolvable successors of solvable states. Since the value of the features,
and by extension of the heuristic, can only be a finite number, the heuristic
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can not indicate an unsolvable state by having an infinite value. Instead,
we strengthen the requirement from Mslack(S,F) and compare the value of
the heuristic for the unsolvable state to that for its predecessor and all of
its solvable successors. The same considerations about generalization and
computational efficiency we made for Mslack(S,F) apply here too.

The mixed integer program M∗(S,F) with wf ∈ R can be equivalently
expressed as the purely linear program

min
W,u,v

∑
s′∈succ(s),
s′ solvable

us,s′ +
∑

vs,s′ subject to

∧
s′∈succ(s),
s′ solvable

us,s′ ≥ h(s)− h∗(s)− h(s′) + h∗(s′) for all s ∈ S

∧
s′∈succ(s),
s′ solvable

us,s′ ≥ h(s′)− h∗(s′)− h(s) + h∗(s) for all s ∈ S

∧
s′∈succ(s),
s′ unsolvable

∧
t∈succ(s)∪{s}
t solvable

vs,s′ ≥ h(t)− h(s′) for all s ∈ S

us,s′ ≥ 0 for all s ∈ S, s′ ∈ succ(s), s′ solvable

vs,s′ ≥ 0 for all s ∈ S, s′ ∈ succ(s), s′ unsolvable.

3.1 Reporting Difficult States

When solving Mslack(S,F) and M∗(S,F), we can identify states which the
heuristic captures badly by considering the slack variables with the highest
value. We can automatically present the domain expert with these states and
their successors as well as the feature values and total heuristic value for these
states. These can serve as a basis for the expert to identify which important
aspects of the domain are not adequately expressed by the features they
specified. They can then extend F with features they expect might alleviate
the problem.

What results from these basic elements is an iterative process. The do-
main expert starts out by expressing some features F of the domain they
expect are significant. They can then solve one or both of the mixed inte-
ger programs Mslack(S,F) and M∗(S,F) with S being the alive states of
a few small tasks of the domain. After refining F as described above, the
expert can solve the mixed integer programs again with the new set of fea-
tures. When the resulting heuristic captures everything in the sample states
S reasonably well, the expert can add additional tasks and thereby expand
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S. These steps can be repeated until the expert is satisfied with the resulting
heuristic or improving upon it becomes infeasible due to the size of the mixed
integer program.

There are two logical improvements to this process which we do not ex-
plore in this thesis. The first is the ability to generate constraints incre-
mentally, sampling states from S randomly and adding more as needed.
However, we do give the domain expert the ability to manually specify a
sample rate that determines what portion of states from state spaces are
added into S. The second is the capacity to improve the heuristic using data
from states seen during searches with the heuristic. Francès et al. (2019a) in-
troduced approaches to incorporate these improvements into the calculation
of a descending and dead-end avoiding heuristic in their setting where the
feature pool is automatically generated and can grow unboundedly. These
approaches do not translate easily to a setting where the objective is to min-
imize slack variables and features are handcrafted. We, therefore, consider
these possible improvements to be the subject of future work.

4 Implementation

We implemented everything needed to formulate, evaluate, and refine these
generalized potential heuristics as described in the previous section using
Python and C++. The concepts were integrated into the Fast Downward
Planning System (Helmert, 2006). Features based on concepts can be formu-
lated in a manchester-like notation2, and be parsed and evaluated on states
by Fast Downward. The mixed integer programs and the general workflow
were implemented in a Python script using the CPLEX Python API 3. We
used version 12.10 CPLEX. The source code for this tool is available online
(de Graaff, 2020).

4.1 Notes on Implementation

There are a few things to keep in mind when implementing this process.
Firstly, the resulting heuristic is not guaranteed to always be positive. Using
such a heuristic, therefore, requires either a planner and search algorithm
which can handle negative heuristic values, or some lower bound on the
heuristic value to be added to the heuristic. The heuristic might not even be
a whole number. If the planner can only handle whole numbers the heuristic
might need to be rounded. To prevent this rounding from causing unforeseen

2https://www.w3.org/TR/owl2-manchester-syntax/
3https://pypi.org/project/cplex/
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trouble it is advisable to multiply the weights of such a heuristic with some
number to make all weights whole numbers or at least large enough that it
is unlikely to make two meaningfully different heuristic values round to the
same number.

Secondly, the inclusion of heuristic features opens the possibility of infi-
nite feature values. This must either be handled explicitly or modeled by a
sufficiently large positive number to work with the learning step. When a
safe heuristic is infinite on a state, the learned heuristic can also be infinite
on that heuristic, regardless of what weight is assigned to it. By default,the
Fast Downward planner only supports positive integers as heuristic values
and represents an infinite heuristic value has -1. We opted to allow make
changes that allow negative integers as well and represent infinity as a large
integer.

Finally, static information of a task, such as the types of objects in PDDL
and the value of variables that have only one reachable value which might
be filtered by a preprocessing step must be retained if it is to be used in the
concept-based features. Ideally, this should be stored separately, so that the
interpretation of concepts, roles, and features which are comprised entirely of
static named roles and concepts can be cached. Using the same mechanism,
we can also cache the interpretation of concepts, roles, and features that are
used multiple times. These two caching strategies can make for a tremendous
speed-up, ranging from an order of magnitude to linear in the number of
evaluated states and polynomial in the number of objects depending on the
task and features used. The Fast Downward planner also does not retain
static information when translating from PDDL to SAS by default (Helmert,
2009) and we opted to extend the translator to output the static information
as a separate file. We also implemented both caching strategies by tagging
expressions which are made up of only static components for state space-level
caching and tagging expressions which are used more than once in at least
two different parent expression for state-level caching.

5 Use Cases

In this section, we will illustrate how this process can work in praxis by
presenting fictitious back and forths between Amelia – a domain expert –
and Fred – who has prior knowledge of the system. After each dialogue we
will include a more formal discussion of the use of the tool for that domain.
This discussion will include some results from experiments to support some of
the sentiments raised in the dialogue. The main measure these experiments
will look at is the total evaluation score of the eager greedy search using the
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found heuristics. The evaluation score depends on the number of evaluations
a search algorithm needs to solve a task. It is 1 when the task required
no evaluations and exponentially approaches 0 as the number of evaluations
tends to infinity. If an algorithm fails to solve a task it also gets a score
of 0. This ensures that the results for the largest tasks don’t dominate the
other results and allows a fair comparison when not all algorithms were able
to solve all tasks. All heuristics were found on an Intel i5-7400 CPU with a
time limit of half an hour for CPLEX. If CPLEX exceeded the time limit, one
of the current best solutions was used, even if it was not provably optimal.
All experiments were run on Intel Xeon E5-2660 CPUs with a time limit of
5 minutes.

5.1 VisitAll

The setting of the domain VisitAll is an undirected graph. On this graph,
there is a single agent, which must visit every node in the graph.

Fred: Hopefully you’ve got a sense of how this system could help us
exploring general solutions for problem domains from that expla-
nation.

Amelia: I believe so.
Fred: Excellent. Just to get our feet wet, the first domain we’ll be

taking a look at is VisitAll.
Amelia: I’m familiar.
Fred: I’m told you’re an expert. What is the first thing that comes

to mind as a feature that might be helpful to the system?
Amelia: Well, since the goal is to visit all locations, the number of

unvisited locations is an obvious starting point.
Fred: That makes sense. We can express that as |¬visited|.
Amelia: Did you just speak in mathematical symbols?
Fred: I did; it’s a skill I picked up a few years ago.
Amelia: I bet that comes in handy in your profession. Another feature

I think we could. . . [Fred interrupts Amelia.]
Fred: I think we should start simple and see what the system does

with it. I’ve written up a file with your feature and we can try it
out on the smallest graph with just four locations.
[Fred shows Amelia the file visitall.cpt on his screen]

visitall.cpt

not_visited = not visited.
return {# not_visited }.
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[and then types the following into his console.]

./ general_optimizer.py
--domain visitall-opt11-strips
--tasks problem02-full
--samples-path ./ samples
--evaluators "concepts (./ concepts/visitall.cpt)"
--methods slack
--steps sample evaluate optimize

Fred: This shouldn’t take too long. [A few seconds later, the program has

finished running and the bottom of the console displays the following.]

state in task problem02 -full
slack: 1
values:
at_robot visited
loc_x1_y1 loc_x0_y1

loc_x1_y0
loc_x1_y1

features: [1]
h: 25
h*: 2
successors
operator: move loc -x1-y1 loc -x1-y0
values:
at_robot visited
loc_x1_y0 loc_x0_y1

loc_x1_y0
loc_x1_y1

features: [1]
h: 25
h* 1
operator: move loc -x1-y1 loc -x0-y1
values:
at_robot visited
loc_x0_y1 loc_x0_y1

loc_x1_y0
loc_x1_y1

features: [1]
h: 25
h* 1

feature weights are:
0: (# not_visited)
weight: 25

Fred: As expected, the heuristic isn’t perfect yet. The program is
telling us that when the robot is in the bottom right corner and
has visited the top right and bottom corner, neither moving up-
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wards nor moving to the left decreases the heuristic value. Can
you tell me the simplest feature that you think might help with
this problem?

Amelia: I expected as much. You mentioned a distance feature; can
you express the distance between the robot and the nearest un-
visited location?

Fred: Of course, that would be dist(at-robot , connected ,¬visited). Let
me try adding that. [Fred edits the visitall.cpt file to read]

visitall.cpt

not_visited = not visited.
distance_to_next = dist(at_robot , connected , not_visited ).
return {# not_visited , distance_to_next }.

[and then runs the program again.]
Fred: Now it found a descending heuristic for this task by assigned a

weight of 25 to the amount of unvisited locations and a weight of
one to the distance.

Amelia: Why 25?
Fred: That’s somewhat arbitrarily the maximum weight. These mixed

integer program solvers often prefer extreme values when the ex-
act value doesn’t affect their objective value. [Fred types away at

his keyboard and looks at his screen for a few seconds.] This seems to
work for bigger instances as well.

Amelia: This maximum weight of 25 will become a problem at some
point.

Fred: How so?
Amelia: When the graph becomes too large, the distance to the next

unvisited location might become larger than 25. May I produce
a revenge task for this heuristic?

Fred: Be my guest. [Fred turns his laptop towards Amelia, who starts

defining a task with 27 locations in a row and the robot starting on the

second location.]
Amelia: Try running the program on this. [Fred runs the program again.]
Fred: I see. When the robot visits the location at one end of the graph

and only the location on the other end is unvisited, the distance
becomes so large that visiting a new location doesn’t make up for
it.

Amelia: Exactly, and all you need to do to fix this problem is multiply
the number of unvisited locations with the diameter of the graph.
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Fred: Will simply the number of locations do as well? I don’t think
we can express the diameter of a graph.

Amelia: I don’t see why not. [Fred edits the visitall.cpt one more time to]

visitall.cpt

not_visited = not visited.
distance_to_next = dist(at_robot , connected , not_visited ).
return {#T * #not_visited , distance_to_next }.

[and runs the program once more.]
Fred: That does seem to have fixed the issue. Are there any more

hidden problems like this?
Amelia: This heuristic now perfectly captures the strategy of always

moving towards the closest unvisited node. I don’t think there
are any more problems.

Fred: If there are, they would hopefully become evident while using
the heuristic. This heuristic should always lead directly to a goal,
so it should be obvious when it doesn’t.

Amelia: That’s an awfully imprecise guarantee.
Fred: It is; I’ve heard they will work on making it more concrete in

a future update.

Discussion. In this first foray into using this tool, Amelia and Fred dis-
covered a simple descending heuristic for the domain VisitAll. This dialogue
exemplifies what sorts of considerations one must make when using this tool
and shows what sort of help the tool provides. The VisitAll domain provides
a very strong argument for the inclusion of the multiplication feature since
a descending heuristic can not be expressed without it.

We compared the performance of the heuristic described in the dialogue
with the FF heuristic. The results can be found in Figure 1 and show that
the heuristic found dominates the FF heuristic entirely.
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Figure 1: Evaluation scores of eager greedy search with concept heuristic
and the FF heuristic for VisitAll tasks.

5.2 Logistics

The Logistics domain deals with packages which must be delivered from one
location to another. There are trucks which can transport packages within
cities and airplanes which can transport packages from one city to another
but only between airports. Loading a package into or out of a vehicle has a
cost of one, as do flying an airplane and driving a truck.

Amelia: Can I have a few minutes of your time?
Fred: Absolutely. What’s on your mind?
Amelia: I have been working on the Logistics domain with this plan-

ning tool and I am running in place somewhat.
Fred: What exactly is the problem?
Amelia: Well, I tried simply using the FF heuristic (Hoffmann, 2001)

as a starting point to see what the system would do with it. I
optimized it for two small tasks and one of the states on which
the heuristic does not descend had a successor which progressed
towards the goal where the only difference was that a truck drove
towards a package that needed to be transported. To capture the
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difference between those two states I added

real at := at t (in ◦ at)

right loc := package u ¬(real at = atG)

wrong loc := package u ¬right loc

at truck := ∃at .∃at−1.truck

at airplane := ∃at .∃at−1.airplane

at vehicle := at truck t at airplane

waiting packages := (∃at .location) u wrong loc u ¬at vehicle

as concepts and |waiting packages| as a feature.
Fred: Did that improve the heuristic?
Amelia: Yes, the sum of the slack variables went down from 492 to

126 on the two small tasks I was using. I then added

right city := package u (real at ◦ in-city = atG ◦ in-city)

wrong city := package u ¬right city

in truck := ∃in.truck

loaded := wrong loc u in truck

wrong city at airplane := wrong city u at airplane

as concepts and |loaded | and |wrong city at airplane| as features
as a direct response to some of the difficult states the system
reported. That took the slack variables down to 8. I could see
plainly from the reported states, that all I needed to add was

right city truck ready := right city u wrong loc u at truck

to obtain a descending heuristic on these two small states.
Fred: And did you?
Amelia: Yes. And the system even found a descending heuristic on a

slightly larger task as well. Namely,

25 · fFF + |waiting packages|+ 2 · |loaded |
−24 · |wrong city at airplane|+ 2 · |right city truck ready |.

Fred: That all sounds very promising so far.
Amelia: It definitely looked that way. I hoped that these four features

combined with the FF heuristic would be enough to make for a
descending heuristic on the entire domain.
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Fred: But they weren’t?
Amelia: Unfortunately, it didn’t result in a direct path towards the

goal for a larger task. As a consequence, I saw myself forced to
use more tasks, which made the optimization process a lot slower.

Fred: I see how that would get bothersome quickly. Did you know
you can specify a sample rate to significantly reduce the amount
of states used for the optimization?

Amelia: I found out about that out of necessity. I think I might still
have been stuck at that stage if I hadn’t. I had to scale up the
problems by quite a bit, but I eventually found a state where
loading a package into an airplane resulted in progress towards
the goal but did not decrease the heuristic value. So then I added

in airplane := ∃in.airplane

boarded := wrong city u in airplane

as concepts and |boarded | to the feature pool.
Fred: I take it that didn’t result in a descending heuristic either?
Amelia: It didn’t. In fact, the amount of expanded states increased

for the largest task in the suite. And that’s where I’m stuck
right now. I have been including more and bigger tasks into the
optimization process but am failing to find an example of it failing
to be descending. I finally decided that perhaps, the FF heuristic
and the features are not actually complementing each other nicely
and started an optimization with just the features I have found,
but that has been running for a few hours now.

Fred: What sort of output are you getting from the tool?
Amelia: The output suggests that the slack will be somewhere be-

tween 1 and 5, which makes it doubly frustrating that it also
suggest the process is running out of memory. If it finished run-
ning, I’m sure I would get some useful states out of it.

Fred: It doesn’t actually need to finish running.
Amelia: Come again?
Fred: You can interrupt the MIP solver and it will still report difficult

states depending on the best solution it found so far. [Amelia

presses Ctrl + C on her keyboard and her screen displays some states with

a non-zero slack variable.]
Amelia: That certainly would have been useful knowledge a few hours

ago.

20



Fred: Well, you know it now. You can also set a time limit for the
MIP solver if you are not around to interrupt it manually. Is the
output at all useful to you?

Amelia: Absolutely. [Amelia points at her screen.] From this state I can
see that I’ll need to disambiguate whether a package is waiting
for a truck in the wrong city or in the right city.

Fred: Wow, you’ve gotten very quick at interpreting the output.
Amelia: I hope so, but I also expected something along these lines.

While the program was running, I contemplated the features I
had so far and figured out and wrote down what I think is a
descending heuristic based on them. [Amelia pulls up a text file.]

Logistics.cpt

real_at = at or (in:at).

right_city = package and (real_at:in_city == at_g:in_city ).
wrong_city = package and not right_city.
right_location = package and (real_at == at_g).
wrong_location = package and not right_location.

at_airport = real_at some airport.

at_truck = at some at- some truck.
at_airplane = at some at- some airplane.

in_truck = in some truck.
in_airplane = in some airplane.
in_vehicle = in_truck or in_airplane.

wrong_city_waiting = wrong_city and not at_airport
and not at_truck and not in_truck.

wrong_city_truck_ready = wrong_city and not at_airport
and at_truck.

wrong_city_loaded = wrong_city and not at_airport
and in_truck.

in_truck_at_airport = wrong_city and at_airport
and in_truck.

at_right_airport = wrong_city and at_airport
and not at_airplane and not in_vehicle.

at_right_airplane = wrong_city and at_airplane.
boarded = wrong_city and in_airplane.
landed = right_city and in_airplane.
right_city_waiting = right_city and wrong_location

and not at_truck and not in_vehicle.
right_city_truck_ready = right_city and wrong_location

and at_truck.

21



right_city_loaded = right_city and wrong_location
and in_truck.

arrived = right_location and in_truck.
delivered = right_location and not in_vehicle.

return {
#wrong_city_waiting ,
#wrong_city_truck_ready ,
#wrong_city_loaded ,
#in_truck_at_airport ,
#at_right_airport ,
#at_right_airplane ,
#boarded ,
#landed ,
#right_city_waiting ,
#right_city_truck_ready ,
#right_city_loaded ,
#arrived ,
#delivered

}.

Amelia: It consists of a number of concepts that correspond to mu-
tually exclusive states a package can be in. A package moving
down the list of features is always progress towards the goal, so
assigning them weights 0 through 12 should result in a descending
heuristic.

Fred: Wait, if you figured this out already, why were you still running
the program?

Amelia: For one thing, I was hoping it might help me discover a dif-
ferent solution. Mostly, I wanted to see if I could have stumbled
upon this solution if I hadn’t thought it up by simply following
the procedure.

Fred: I see. It’s encouraging to know that it works, especially now
that you know you can interrupt the program and still get usable
results.

Amelia: Yes, I feel confident applying this approach to a more chal-
lenging problem after this experience. I am a bit worried that
I didn’t see any continuous improvements when trying out the
heuristics I found along the way on larger instances though.

Fred: I wouldn’t be so quick to jump to that conclusion. We should
probably run some experiments to see if adding more features
improves performance or not.

22



Number of Features
Method 1 2 3 4 5 6 7 8 9 10 11 12

blind 3.38
slack 3.32 3.61 4.08 2.00 2.54 5.59 2.06 8.48 11.01 13.50 3.66 22.97
h∗ 3.32 3.61 4.08 4.45 4.45 5.60 4.42 7.65 7.65 10.40 9.66 15.01

FF 23.09
FF-slack 23.09 23.10 23.19 23.17 23.45 23.40 23.28 23.18 23.23 22.84 23.12 23.23
FF-h∗ 23.09 23.09 23.09 23.09 23.09 23.09 22.49 22.49 22.49 22.49 22.49 22.49

Table 1: Evaluation scores of Logistics heuristics.
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Figure 2: Evaluation scores of Logistics heuristics.

Discussion. When working on the Logistics domain, Amelia and Fred in-
dependently discover the same descending heuristic for the Logistics domain
Francès et al. (2019a) discovered. It should of course be stressed that this is
a fictitious conversation and we were aware of the existence of this heuristic
when we used this tool on the Logistics domain. That being said, we believe
the tool significantly lowers the time and planning knowledge required. For
a domain like Logistics the output of the tool genuinely provides actionable
outputs along every step of the way as it is depicted in the dialogue.

We performed the experiment Fred alludes to at the end of the conversa-
tion. We learned four different heuristics based on 12 different sets of features.
We started with just |wrong city waiting | and added the other features ex-
cluding |delivered | one by one in the order they are listed in the Logistics.cpt.
The heuristics were trained on all states of three tasks with 2 packages, a
random sample of 10% of all tasks of two states with 3 packages, a random
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sample of 5% of all states of two tasks with 4 packages, and a random sample
of 2% of all states of one task with 5 packages. For each set of features we
learned the heuristic using bothMslack andM∗, once using just the features
and once including the heuristic feature hFF .

The results can be found in Table 1, where the former are named slack
and h∗ and the latter FF-slack and FF-h∗. The heuristics which aimed to
add to the FF heuristic did not differ meaningfully from it in terms of state
evaluations. The evaluation scores for the heuristics which did not use the
FF heuristic as a feature can also be seen in Figure 2. Both approaches show
a clear positive trend with more features added, but the heuristics found by
Mslack appear to be much more volatile than those found by M∗.

These results suggest that there is value in both variants of the learn-
ing step. Another advantage of M∗ is that it is much quicker since it is a
strictly linear program, whereas Mslack requires indicator constraints. Solv-
ing Mslack optimally for the full feature set and a task with 3 packages and
2,744 states takes 37.72 seconds, solvingM∗ instead takes only 3.78 seconds.
When using sampling to reduce the state space to approximately 20% re-
duces the times to 0.25 seconds and 0.05 seconds respectively. Despite this
drastic speed-up, Mslack still found a heuristic which provably descends on
the entire domain when trained on the sample of 20% of the states.

5.3 TERMES

The TERMES domain models a small robot that must build structures much
larger than itself out of uniform blocks. The blocks can only be placed on
the floor or be stacked directly on top of each other, and no overhangs are
possible. This means that the state of the construction area can be fully
represented by specifying the number of blocks at each space. The robot can
move from one space to a neighboring space as long as the height difference
is no larger than one block. The robot can carry at most one block at a time.
When the robot is carrying a block, it can place it down at a neighboring
space that has the same height as the space the robot is on. Likewise, the
robot can pick up a block from a neighboring space if the height of that space
is one more than that of its current location and the robot is not currently
carrying a block. A specific location functions as a depot, where the robot
can destroy a block it is carrying and create a block and start carrying it if
it is currently not carrying a block.

Fred: TERMES is quite a bit harder than the domains we have looked
at so far, so I’m interested to see what we can achieve with this
tool.
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Amelia: It really is.
Fred: To help us out a bit, I have written a custom state renderer

which we can pass to the tool. It turns the output from this into
this [Fred shows Amelia his screen.]

at height 2 2
pos_0_1 (pos_0_0 , n2) 0r 1

(pos_0_1 , n0)
(pos_1_0 , n2)
(pos_1_1 , n1)

Amelia: That is definitely a lot easier to read. As for features, I think
we should probably start with something simple like a feature
which counts towers which are the correct height. Something like

correct height := position u height = heightG .

Fred: Good idea, that should already improve things a bit. It’s pos-
sible it will be somewhat counterproductive when towers need to
be built to serve as ramps for other towers, but it should be us-
able. [Fred runs the optimizer.] That’s unexpected, the optimizer
assigned a weight of 1 to the feature.

Amelia: That is weird. Making a tower the right height generally is
progress, so it should really have a negative weight. I think this is
the worst possible heuristic it could have found using this feature.

Fred: Perhaps there is a bug in the tool?
Amelia: Could be. Is there a way to restrict the weights?
Fred: I could change the bounds in the source code, that shouldn’t

be too hard.
Amelia: Could you restrict the weights to negative numbers and run

it again?
Fred: Of course. [Fred edits a file and runs the tool again. It takes less

long this time.] Now it found a solution with a negative weight
and the sum of the slack values is exactly the same. [Fred runs a

search algorithm.] But the negative weight makes for pretty good
performance and the heuristic with a positive weight is as terrible
as one would expect.

Amelia: That is strange.
Fred: In a way it makes sense since the tool is just looking for a

heuristic that descends on as many states as possible. A heuristic
that descends in exactly the wrong direction is a pretty good
solution.
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Amelia: That doesn’t make much sense to me. If it doesn’t matter in
which direction it descends, how can we expect it to find a good
heuristic at all?

Fred: The goals don’t have to have a neighbor with a lower heuristic
value, so they can act as sinks.

Amelia: That explains why this isn’t working then. The problem
we’re learning from requires the robot to build a single tower with
a height of 2; the last move it makes to reach a goal must always
be destroying a block at a depot. Since the feature we defined
can’t distinguish between states where the robot is holding a block
and those where it isn’t, the feature can’t distinguish between any
goal state and its predecessors.

Fred: That makes a lot of sense. The goals don’t really act as sinks,
so the direction in which the heuristic descends is irrelevant.

Amelia: I wonder if behavior similar to this shows up often and it’s
usually difficult to identify the problem simply because it is ob-
fuscated. That could potentially be disastrous in a domain like
this where the effects of an action are highly context-dependent.

Fred: If that’s true, it would explain the results of our experiments
of the Logistics domain somewhat. Be that as it may, how about
we try to alleviate this problem by adding a new feature?

Amelia: We don’t have to solve it by adding a feature, we could also
add a task where the last action can be placing a block. Any task
which requires a tower with height one to be built should work.

Fred: That’s quite ingenious, how about we try both?
Amelia: Good idea. Simply |has block | should do the trick. has block

is a nullary predicate, so it will either be the top concept or the
bottom concept. [Fred runs the tool again.]

Amelia: That seems to have worked. The feature now has a negative
weight.

Amelia: Looking at the output, it seems like one way to improve the
heuristic would be to have a feature that counts up how many
blocks each tower has too much or is missing. Although I’m not
sure how to write a feature like that.

Fred: I don’t think that’s possible. The maximum total number of
missing blocks does not scale linearly with the number of objects
The multiplication feature is the only way to express concepts
which are not linear in the number of objects and it is too coarse
to express the exact number of blocks.

Amelia: Are you sure that it is impossible?
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Fred: Absolutely. It can only express composite numbers and the
number of blocks might be a prime number.

Amelia: We could manually specify features for towers which are one
block off, two blocks off and so on. If we define pred := succ−1

we can define

one too high := position u height ◦ succ = heightG

one too low := position u height ◦ pred = heightG

and similar concepts for different numbers. The first component
of a member of the succ relation is the successor of the second
component, that makes these two

Fred: The only tasks we are learning from have a maximum height
of three, so there is no reason to add more than three of these. I
don’t expect this will generalize very well.

Amelia: I don’t either.
Fred: But we can run the tool regardless and see what we get back. I

think this will likely take a while, so we can consider what other
features we might want to add while the program is busy.

Amelia: What might be helpful is a feature that involves the position
of the robot. So far we’ve ignored that entirely and most reported
states differ only by the position of the robot.

Fred: Maybe we can measure the distance of the robot to something?
Like we did for the VisitAll domain.

Amelia: That is likely not very helpful since how good a certain po-
sition depends on whether the robot is carrying a block or not.
If it is, it should move towards a position where it should place
a block, if it doesn’t it should move towards a position where it
should take one.

Fred: I think we can express a conditional like that. Something along
the lines of

dist(at u has block ,traversable, constructable)

dist(at u ¬has block ,traversable, deconstructable)

would work. The role traversable needs to represent two neigh-
bors with a height difference of at most one and constructable
and deconstructable concepts where a bock should be placed or
removed respectively.
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Amelia: traversable seems easy enough to define, but constructable
and deconstructable seem very hard and I don’t like how the use-
fulness of these distance features depend so much on the accuracy
of these two concepts.

Fred: It’s definitely not ideal. Does

traversable :=∃x ∈ numb.(

neighbor [∃height .{x},∃height .{x}]
uneighbor [∃height ◦ succ.{x},∃height .{x}]
uneighbor [∃height .{x},∃height ◦ succ.{x}])

seem right to you?
Amelia: That’s more complex than I thought it would be, but that

does seem right. I think constructable and deconstructable will
be especially hard because it won’t be sufficient to consider the
goal height and current height of the towers.

Fred: I see what you mean. If we did that we might encourage the
robot to deconstruct ramps that it needs to build taller towers.
Or rather, those situations might lead to the feature not being
useful at all. Kumar et al. (2014) discuss an interesting concept in
their attempt to create a domain-specific algorithm for TERMES.
They consider towers to cast a shadow in all directions. If a
position is n spaces removed from a tower with height h > n,
then the shadow of that tower is h− n at that position.

Amelia: And then we could use that height to capture whether it
might be useful to exceed the target height of a tower?

Fred: Exactly, you most definitely never want to exceed the maximum
of the target height and the highest shadow cast by another tower,
so that should be a useful feature.

Amelia: I think we will only be able to implement this up to a fixed
distance.

Fred: You’re right, I don’t see how we could express this accurately
for a tower of arbitrary size, but we could, for instance, consider
shadows up to a distance of at most three, which allows us to deal
with towers with a maximum height of four and it should still be
better than no feature at all for higher towers.

Amelia: Right first we need to find towers that should cast a shadow
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and the starting height of those shadows. How about

too high := height u (heightG ◦ pred+)

too low := (height ◦ pred+) u heightG

initial shadow height := too high t too low?

Fred: So that contains all towers that do not have the goal height and
associates it with the maximum of its current height and its goal
height?

Amelia: Getting the shadow height for the neighbors of these towers
is then quite straightforward.

shadow 1 height := neighbor ◦ initial shadow height ◦ succ

shadow 2 height := shadow 1 height

t neighbor ◦ shadow 1 height ◦ succ

shadow 3 height := shadow 2 height

t neighbor ◦ shadow 2 height ◦ succ

Fred: Won’t those roles contain multiple heights for the same position
if more than one of its neighbors have the incorrect height?

Amelia: I think you’re right about that, but we can filter out every-
thing but the highest height for each position.

height aux := heightG t shadow 3 height

max height := ∃p ∈ position.(

height aux [{p},¬∃pred+ ◦ height aux−1.{p}])

Fred: And then we can define one over max height , one under max height
and so on similarly to how we defined one too high.

Amelia: Exactly, though I don’t think that’s enough to use for the
distance feature, we need to make sure a block can actually be
placed or removed.

Fred: The concepts

constructable := under max heightu
∃height u (neighbor ◦ height).numb

deconstructable := over max heightu
∃height u (neighbor ◦ height ◦ succ).numb

ensure that the tower has a neighbor that is the same height if a
block needs to be placed and a neighbor that is one block lower
if a block needs to be removed.
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Amelia: A final feature I can think to add is one that counts the towers
which are the wrong height and can not currently be reached by
the robot.

wrong height unreachable := position u ¬correct height

u ¬∃traverasable+.at

Fred: Yes, it definitely seems like a good idea to discourage that sit-
uation from arising. I think we should probably test what sort of
heuristic we can get from this now.

Discussion. In this exchange, Amelia and Fred encountered some of the
limits of what can be expressed by the concept language. The partial re-
striction, role intersection and union as well as the existential quantifier are
needed a few times to express certain features. Ultimately, they discover that
the multiplication feature is not sufficient to express some useful features of
the TERMES domain and have to resort to a kludge which breaks down
when the tasks get too big. It would be possible to express the number of
missing and excessive blocks if the cardinality feature were expanded to roles.
However, we suspect the shadow height could still not be expressed for an
arbitrarily high maximum tower height.

Table 2 shows the evaluation score of various heuristics based on the
features found by Amelia and Fred. We added multiple features at once in
the following order:

1. |correct height | and |(∃too low .numb) u has block |

2. |∃too low .numb| and |∃too high.numb|

3. |one too low |, |two too low |, and |three too low |

4. |one over max height |, |two over max height |,
|three over max height |, |one under max height |,
|two under max height |, and |three under max height |

5. dist(at u has block , traversable, constructable)
and dist(at u ¬has block , traversable, deconstructable)

6. |wrong height unreachable|

7. |constructable| and |deconstructable|
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Number of Features
Method 2 4 7 13 15 16 18

blind 0.05
slack 4.83 1.03 0.00 0.31 0.00 0.00 0.00
h∗ 5.11 1.92 3.75 0.37 0.00 0.00 0.00

FF 9.58
FF-slack 8.20 9.23 10.72 4.36 4.46 3.65 2.70
FF-h∗ 8.99 8.74 9.92 7.95 7.41 4.64 3.64

Table 2: Evaluation scores of TERMES heuristics.
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Figure 3: Evaluation scores of TERMES heuristics.
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Figure 4: Total slack value of Logistics heuristics found by two different
mixed integer programs.

The heuristics were trained on the full state space of four small TERMES
tasks. As can be plainly seen, while adding some features allows a significant
improvement over blind search in this regard and a modest improvement over
the FF heuristic with the right set of features, adding more eventually greatly
diminishes the performance of all heuristics. The heuristics which attempt
to improve on the FF heuristic quickly become markedly worse than the FF
heuristic itself and the heuristics using only the features become worse than
a blind heuristic, solving not a single task within the time limit. In both
cases, the heuristic found byM∗ deteriorates less quickly. It is possible that
this discrepancy is caused by problems similar to the one Amelia and Fred
discovered when they used only the first feature. This is somewhat supported
by the differences between the unsuccessful runs with the two heuristics. The
smallest task was solved by a blind search with a plan length of 36 in just
over a second. The heuristic found byM∗ using the first five sets of features
failed to improve upon the heuristic value it found after just under a minute
at a search depth of 136. By contrast, the heuristic found byMslack reached
its lowest heuristic value in just 16 seconds at a search depth of 300. This
conjures up an image of a guide who very confidently leads you in a myriad of
wrong directions until they get stuck entirely. We saw this same tendency in
different runs, but more a more in-depth study would need to be conducted
to make any definite statements on this matter.

Perhaps more interesting than the difference between the two approaches
is the similarity. The fact that they both perform worse when adding more
features beyond a certain point suggests that they either do not approximate
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the right kind of heuristic, or that they approximate this kind of heuristic in
the wrong way. Wilt and Ruml (2016) showed that simply approaching h∗ is
not a guarantee for improved performance in sub-optimal planning, even if
it is approached very well. As can be seen in Figure 4, the total slack value
did generally decrease with more features, but in both cases there is still
considerable room for improvement. Unsurprisingly, M∗ especially did not
approach h∗ well at all. For both approaches, adding the two distance features
caused the biggest drop of the slack value, but made the performance of the
heuristic worse. We also tried adding these features as the third set of features
instead of the fifth set. This resulted in lower slack values, as depicted by the
lonely data points in Figure 4. ForMslack this had no measurable impact on
the performance since neither the original third heuristic nor this alternative
one solved any tasks. ForM∗ this reduced the score down to 1.22 from 3.75
original third heuristic.

Finally, it is also noteworthy that the total slack value actually increased
when we added the penultimate set of features. This is due to the fact that
the solver hit the time limit for all but the smallestMslack program and there
is no guarantee that any of the heuristics it found are optimal. By contrast,
the solver found the optimal solution for Mslack every single time.

A set of features may exist which would have resulted in a heuristic with
fantastic performance. It is also possible that this set of features could plau-
sibly be found by a human with the help of this tool. However, this tool is
intended to be used by fallible humans who can not be expected to find the
perfect features unaided.

5.4 Sokoban

The Sokoban domain is modeled after a game of the same name. In this
game, agents must push stones onto predefined goal spaces. An agent can
only push one stone at a time, and can only push a stone away from itself
when it occupies a neighboring position and moves to the original position of
the stone by doing so. Agents can move free of cost to unoccupied neighboring
spaces, but pushing a stone in any direction has a cost of 1. The goal is for
every stone to occupy a goal space with a minimal amount of stone pushes.

For the International Planning Competition 2018 Sokoban was encoded
using a ternary predicate MOVE -DIR in such a way that the interpretation
of MOVE -DIR(p1 , p2 , dir) is that p1 is connected p2 in the direction dir .
This provides a very good argument for allowing n-ary roles since it eliminates
the requirement to compile away these roles and separates the concerns of
modeling a domain and specifying knowledge about it.
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We implemented the following concepts and roles and features:

connected := ∃dir ∈ direction.MOVE -DIR[>,>, dir ]

stone location := ∃at−1.stone

non goal stone := stone location u ¬IS -GOAL

free stone := stone location u (≥ 2 connected .clear)

player location := ∃at−1.player

freeable := clear t free stone t player location

free move dir := MOVE -DIR[freeable, freeable, dir ]

push dir := ∃dir ∈ direction.(

free move dir−1 ◦ free move dir ◦ free move dir)

and the following features based on those concepts and roles:

|non goal stone|
dist(player location, connected , non goal stone)

dist(non goal stone, push dir , is goal u ¬stone location) · |location|
|stone location u stone location| · |location| · |location|.

The role push dir shows another reason why the existential quantifier and
partial restriction are valuable additions to the concept language and free stone
shows an example of a qualified cardinality restriction. It could also be used
to detect corridors with a concept like (= 2 connected .location) as well as
rooms with (> n neighborhood .location) for some natural number n and some
role neighborhood which should associate each location with some the loca-
tions around it. Disappointingly, we were not able to get a useful heuristic
out of these features. However, this is not particularly surprising considering
the problems we faced with the TERMES domain.

Culberson (1999) showed that Sokoban is PSPACE-complete and Jung-
hanns and Schaeffer (2001) demonstrated that adding sophisticated, domain-
specific knowledge can provide an orders-of-magnitude improvement to search
efficiency for Sokoban. So it is possible that with a better learning step this
problem could be tackled, but that would probably require a considerable
effort.

6 Future Work

There are many ways left to improve the tool created for this thesis. We
have already mentioned the biggest issue, namely that M∗ and Mslack do
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not appear to result in heuristics that are good for satisficing planning when
the features supplied to them are not good enough. It would certainly be
worth it to study exactly what type of combination of features makes the
resulting heuristic perform worse. Additionally, there are several avenues
available to improve the learning portion of this system. A better MIP
may exist which would alleviate the problems we have encountered with our
approach and a better understanding of what exactly causes these problems
would certainly help there. Rovner (2020) presents one such MIP based on
the Goal Distance Rank Correlation introduced by Wilt and Ruml (2016) in
the setting of potential heuristics for non-generalized planning. Alternatively,
one could attempt to learn a heuristic which explicitly maximizes the Goal
Distance Rank Correlation. This is not possible with linear programming
but could likely be achieved by using a neural network for the learning. This
would have the added advantage that the range of heuristics that can be
expressed in terms of a set of features greatly increases. As a result, there
could be less pressure on the expert to provide the perfect features. The
downside to this approach would be a significant loss of the explicability of
the heuristic.

Another potential way to make more of the imperfect features supplied by
the user is to augment the set of features with combinations of the supplied
concepts and roles and features. As an example, in the VisitAll domain this
could have resulted in the system discovering that the multiplication of the
number of nodes and the distance to the nearest unvisited node is useful
before the user does.

To increase the productivity of those working with the tool, it would be
beneficial if it were possible to explore the state spaces and try out concepts
on states. Instead of simply printing a few difficult states after finding a
heuristic, the tool could enter an interactive mode where the user can specify
new features and concepts as well as query for states and look at the heuristics
arising from different solutions the solver found.

The concept language and features presented in this thesis could also use
more work. There are a few features that we considered but did not end up
evaluating. We will list all three of them here for posterity. They are the
maximum distance between two concepts along a role, the weighted minimum
distance between two concepts along a role where the weight of an edge is
determined by the distance between the two individuals along a second role,
and the role cardinality. It is also thinkable that concept languages are not
the right tool for this task and it would be better to allow users to specify
features in a Turing complete scripting language.

Finally, it would also be invaluable to use the states encountered during
actual searches to improve the heuristic.
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7 Conclusion

The main results of this thesis are a tool which makes specifying domain
knowledge in the form of concept languages significantly easier. We demon-
strated that someone without much planning expertise can plausibly find
a general solution to an entire domain of problems using this tool. We also
considered some extensions to the concept language that has most often been
used in planning. Most notably, we introduced a novel way to incorporate
n-ary predicates into concept languages.

Unfortunately, we were not able to use this tool to find a good heuristic
for any domain classical planning typically struggles with. But we did set
a baseline that still has multiple possible avenues for improvement in the
future.
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