CONCEPT LANGUAGES AS EXPERT INPUT FOR GENERALIZED PLANNING

BSc Thesis Presentation Rik de Graaff

—_

Solving your problem

Domain specific solution

- Fast
- Takes development time
- Hard to get right

General solver (planning)

- Easy
- Highly optimized
- Requires just the right setup

A middle way?

A middle way?

Identify interesting features

PDDL

package(package1)

at(package1, position1) at(truck1, position1) at(truck2, position2) at(airplane, airport2)

in-city(position1, city1)
in-city(airport1, city1)
in-city(position2, city2)
in-city(airport2, city2)

Concept languages

package \rightarrow { package1 }

at \rightarrow { (package1, position1), (truck1, position1), (truck2, position2), (airplane, airport2) }

in-city \rightarrow { (position1, city1), (airport1, city1), (position2, city2), (airport2, city2) }

Concept languages

truck \sqcup airplane truck \sqcap airplane \neg truck

 $in \circ at \\ at = at_G$

∃at.airport ∀in.truck

Features

- Cardinality: |*C*|
- Distance: dist(C, R, C')
- Multiplication: $f_1 \cdot f_2$

Features

#packages at wrong location with truck

 $|package \sqcap \neg(at = at_G) \sqcap \exists at.truck| = 0$

Features

#packages at wrong location with truck

 $|package \sqcap \neg(at = at_G) \sqcap \exists at.truck| = 1$

Using features

- Fully explore small instances
- Learn a heuristic

Approach a descending heuristic

Minimize $\sum slack$ subject to $h(s) + slack \le h(s') + 1$ for all states s and some successor s'

Locally approach h*

Minimize $\sum |slack|$ subject to $h(s) - h(s') + slack = h^*(s) - h^*(s')$ for all states *s* and all successors *s'*

Implementation

- Python command line tool
- Fast Downward
- CPLEX

Example

 $|package \sqcap \neg(at = at_G) \sqcap \exists at. truck|$

state in task test slack: 1 values: in at (airplane1, airport2) (package1, truck1) (truck1, airport1) (truck2, position2) features: [0] h: 0 h*: 9 successors operator: unload-truck package1 truck1 airport1 values: at (airplane1, airport2) (package1, airport1) (truck1, airport1) (truck2, position2) features: [0] h: 0 h* 8

Example

 $|package \sqcap \neg(at = at_G) \sqcap \exists at. truck|$

state in task test slack: 1 values: in at (airplane1, airport2) (package1, truck1) (truck1, airport1) (truck2, position2) features: [0] h: 0 h*: 9 successors operator: unload-truck package1 truck1 airport1 values: at (airplane1, airport2) (package1, airport1) (truck1, airport1) (truck2, position2) features: [0] h: 0 h* 8

Workflow

Results

- General upward trend
- h* more stable

Logistics problems

- With truck at airport $\rightarrow -6$
- In truck at airport \rightarrow -5
- In truck at destination \rightarrow -4

TERMES

source: https://www.harvardmagazine.com/2017/11/robobee-harvard

TERMES

- Downward trend
- h* more robust

Conclusion

- Reasonably efficient and highly usable implementation
- Specifying domain knowledge
- Incorporating domain knowledge

Future work

- Automatically augment feature set
- Different learning objective
 - Goal Distance Rank
 Correlation
- Neural net for learning
- Interactive mode
- Scripting language

Using features

Fully explore small instances
 Learn a heuristic

Implementation

- Python command line tool
- Fast Downward
- CPLEX

Extensions of Concept Languages

- n-ary roles
 - selection + projection
 - existential and universal quantifier
- role disjunction + conjunction
- Qualified cardinality restrictions
 - > 2 connected.clear
- Heuristic feature

n-ary roles

MOVE-DIR location location direction

connected = $\exists x \in dir. MOVE-DIR[T, T, x]$

VISITALL