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Abstract

Most automated planners use heuristic search to solve the tasks. Usually, the planners
get as input a lifted representation of the task in PDDL, a compact formalism describing
the task using a fragment of first-order logic. The planners then transform this task
description into a grounded representation where the task is described in propositional
logic. This new grounded format can be exponentially larger than the lifted one, but
many planners use this grounded representation because it is easier to implement and
reason about.

However, sometimes this transformation between lifted and grounded representa-
tions is not tractable. When this is the case, there is not much that planners based on
heuristic search can do. Since this transformation is a required preprocess, when this
fails, the whole planner fails.

To solve the grounding problem, we introduce new methods to deal with tasks that
cannot be grounded. Our work aims to find good ways to perform heuristic search while
using a lifted representation of planning problems. We use the point-of-view of planning
as a database progression problem and borrow solutions from the areas of relational algebra
and database theory.

Our theoretical and empirical results are motivating: several instances that were
never solved by any planner in the literature are now solved by our new lifted planner.
For example, our planner can solve the challenging Organic Synthesis domain using a
breadth-first search, while state-of-the-art planners cannot solve more than 60% of the
instances. Furthermore, our results offer a new perspective and a deep theoretical study
of lifted representations for planning tasks.
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Chapter 1

Introduction

Planning is an important area of model-based Artificial Intelligence. Broadly speaking,
in a planning problem we want to find an action sequence leading from an initial state to a
certain goal. A more specific area of planning is classical planning. In this setting, there is
a finite set of deterministic actions that can be used and the information about the state
of the problem is completely observable. Several popular families of problems, called
domains can be formulated as classical planning tasks: e.g., Rubik’s cube, transporta-
tion problems, simulation of chemical reactions, etc. Ideally, one wants to find a single
planning algorithm, a planner, that can efficiently solve any possible domain of interest.
These planners are called domain-independent planners.

A common way to represent planning tasks is using a factored representation. A fact
is a statement about the problem that can be true or false in a given situation. We can
describe each state of the task as a set of facts indicating the information that is true in
this state. For example, consider the Blocksworld domain [Bacchus, 2001], illustrated
in Figure 1.1a. This problem involves a set of blocks, which are stacked on top of each
other, forming many stacks placed directly on a table. Starting from an arbitrary initial
configuration of blocks and stacks, the goal of the task is to find a sequence of move-
ments of the blocks leading to a given goal configuration. The only type of movement
allowed, in our definition of the problem, is to pick up a block without other blocks on
it and stack it on top of another block. We can represent the state shown in Figure 1.1a
with the following facts:

A is a block.
B is a block.
C is a block.
D is a block.
A is on the table.
D is on the table.
B is on top of A.
C is on top of D.
The top of B is clear.
The top of C is clear.

The representation of a state contains only the facts that are true in this state, called
the positive facts. These facts are obtained from a “universal set” of facts that could be
true in some state of the task. Facts contained in this “universal set” but not contained
in a state – e.g., A is on top of B – are assumed to be false. Similarly, the goal of the
planning task is also a set of facts. We say that we solve a planning task once we find a
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Figure 1.1: Examples of possible state, possible goal condition, and a potential goal state for a
Blocksworld task with four blocks.

sequence of actions leading from the initial state to a state where all goal facts are true.
In our example, let us assume that the state of Figure 1.1a is also the initial state, and
that goal is the following single fact:

C is on top of B.

Figure 1.1b illustrates this goal condition. To reach the goal, we need to find a sequence
of actions leading from the initial configuration to a configuration where the block C is
stacked on top of B. Once we find such a state, we say that we found a goal state. An
example of a goal state satisfying the single goal condition is depicted in Figure 1.1c.

To reach the goal state from the initial state, we can move block C from the top of
D and place it on top of B. It is possible to represent this movement in a single action.
A possible way to represent the actions of the task is to use a construction similar to an
if-then statement. In our running example, the action specified above would be defined
as follows

If the following facts are true in the current state....

• The top of B is clear.

• The top of C is clear.

• C is on top of D.

Then, the following facts are true in the successor state...

• C is on top of B.

• The top of B is not clear.

• C is not on top of D.

If the preconditions of the action are satisfied in a given state, we can decide to apply
it to this state and produce its respective effects. In contrast to states, actions can have
negated facts in their preconditions and effects. Intuitively, an action can only be applied
if all its preconditions are satisfied. If the state from Figure 1.1a had the position of
blocks C and D exchanged, then the preconditions “The top of C is clear” and “C is on top
of D” would be false in this state and the action would not be applicable. If the action
is applied, the positive facts in the action effects are added to the current state and the
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negative ones are removed. The new state (after additions and removals of facts) is a
successor state.

We now have a sequence of actions leading from our initial state, Figure 1.1a, to a
goal state, Figure 1.1c. (In this naive example, this sequence only consists of a single
action.) We say that this sequence is a plan of our task.

Planning tasks are rarely represented using natural language, as we did so far. In-
stead, they are usually represented in logical formalisms, such as the Planning Domain
Definition Language (PDDL) [McDermott, 2000]. In a PDDL planning task, the world is
modeled in terms of objects. The relations between these objects or their own charac-
teristics are described in the form of Boolean predicates. Such relations are changed by
actions, which modify these predicates directly. The initial state and the goal of a task
are also described in terms of such objects and predicates. The PDDL formalism is of
special interest because it is used in the International Planning Competition (IPC)1.

For example, in our Blocksworld domain, the objects are the blocks A, B, C, and D.
The predicates are on(?X,?Y), which represents that block ?X is directly placed on top
of block2 ?Y ; ontable(?X), which indicates that block ?X is placed directly on the table;
and the predicate clear(?X) representing that the top of block ?X is clear. Since there is
always a single table in any Blocksworld instance, we can represent this domain without
having an object for the table itself. Rewriting our initial state from Figure 1.1a using
these predicates, we achieve:

ontable(A)
ontable(D)
on(B, A)
on(C, D)
clear(B)
clear(C).

The goal condition of the task is represented analogously as on(C, B).
In planning, actions are also named. We can call the single action of our plan as

move(C, D, B). In natural language, one could interpret this name as “move C from the
top of D to the top of B”. We can then describe the action move(C,D,B) as follows,
separating it into preconditions and effects instead of if-then statements:

Preconditions:

• clear(B)

• clear(C)

• on(C, D)

Effects:

• on(C, B)

• ¬clear(B)

• ¬on(C, D)

1More information about the IPC and its previous editions can be found at http://www.
icaps-conference.org/index.php/Main/Competitions

2?X and ?Y are placeholders for objects of the task.

http://www.icaps-conference.org/index.php/Main/Competitions
http://www.icaps-conference.org/index.php/Main/Competitions
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where ¬F is the negation of fact F .
However, this is not how actions are generally defined in PDDL. To see why, let

us first assume we need to define a move action for every triple of blocks in our task,
like the action defined above. For a task with n blocks, we have O(n3) move actions.
Although this is still polynomial, this cubic growth makes the number of actions in
instances with more blocks become very large.

To overcome the large number of ground actions in a domain, we can use lifted ac-
tions. In this more compact representation, actions are described in first-order logic
action schemas, which do not necessarily specify objects of the task, but use free variables
that must be instantiated in order to obtain a ground action. Our action move(C,D,B) is
an instantiation of move(?X,?Y,?Z), where ?X, ?Y, and ?Z are free variables that are sub-
stituted with C, D, and B, respectively. This substitution of free variables for objects is
called grounding. An action specifying the exact objects it affects is called a ground action.

The following representation of the action move(?X, ?Y, ?Z) is an illustrative example
of an action schema:

Preconditions:

• clear(?Z)

• clear(?X)

• on(?X, ?Y)

• ?X 6= ?Y 6= ?Z.

Effects:

• on(?X, ?Z)

• ¬clear(?Z)

• ¬on(?X, ?Y).

(We add an extra precondition, ?X 6= ?Y 6= ?Z, indicating that the objects substituting
these three free variables must all be different.)

To be more compact, PDDL domains are defined by this first-order logic formal-
ism. However, most state-of-the-art planners use a fully grounded representation of the
tasks. To transform the lifted representation into a grounded representation, most plan-
ners need to perform a preprocessing grounding step. When grounding a PDDL task,
the planner enumerates a (sufficiently large) set of possible ground actions based on the
objects represented in the task instead of using the PDDL first-order representation. The
reason for so many planners to use grounded representations might be historical. Bonet
and Geffner [2001] introduced a planner based on heuristic search using grounded rep-
resentation. At the time, this planner was far better than any other planner. The main
idea of their planner is to solve a planning task by performing a search over all states
of the task, trying to find a plan. Because the number of states might be too large, the
search explores only the most promising states according to a heuristic function used
to estimate the distance from a state to the goal. This new approach motivated fur-
ther research in the same direction, which resulted in even better planners using this
representation [Hoffmann and Nebel, 2001; Helmert, 2006]. This positive-feedback loop
continues to motivate more researchers to consider this representation. Additionally, we
can also argue that, when considering heuristic search, it is easier to create better heuris-
tic functions when considering a completely grounded representation of the problem.
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Planning using grounded actions demonstrated to be a good choice until the IPC
2018. In this edition of the IPC, new domains that are particularly hard to ground were
introduced. In these domains, it is not necessarily difficult to find a plan, but it is very
hard to produce a grounded version of the planning task. These domains showed that
most planners using grounded actions cannot deal with the combinatorial explosion
caused by the instantiation of action schemas.

As mentioned before, our Blocksworld example would need O(n3) ground actions
for its move action schema. In fact, such an extension would still be relatively easy
to ground. However, in some other domains, it is possible that the grounded task is
exponentially larger than its PDDL representation [Erol et al., 1995].

Still, there are many alternatives and improvements to the grounding procedure
in the literature. The most used grounding method is probably the work by Helmert
[2009]. However, even such efficient techniques are not powerful enough to handle all
domains. An example of this is the Organic Synthesis domain [Masoumi et al., 2015;
Matloob and Soutchanski, 2016] used in the IPC 2018. In this domain, atoms are bonded
forming different molecules, and the objective is to find a plan from an initial set of
bonds to a goal molecule. Due to the symmetries and many parameters in every action
schema, even instances with very short plans generate millions of grounded actions us-
ing the algorithm proposed by Helmert (and quadrillions of grounded actions when
using a naive grounding method). Various techniques have been studied in the plan-
ning community in order to avoid the potentially huge overhead caused by grounding,
e.g., splitting of predicates and action schemas [Robinson et al., 2009; Areces et al., 2014],
partially grounded state spaces [Gnad et al., 2019], elimination of symmetries prior to
grounding [Röger et al., 2018]. Despite the performance improvements, these techniques
do not eliminate the scalability concern in grounding. As reported by Haslum [2007],
many planning domains are not particularly hard, but their difficulty arises from an “ac-
cidental complexity”, coming from the selected representation of the problem. Under
this perspective, it is expected that many simple domains will be excessively complex
and hard to ground just as a result of their representations.

In this thesis, we focus on a more drastic way to try to avoid the potential harm
caused by grounding: lifted planning. In lifted planning, we skip the preprocessing
grounding step and plan using the PDDL action schemas directly. We focus here on
the case of lifted planning using heuristic search. In practice, instead of preprocessing
all possible ground actions at first, we perform a grounding procedure in each state,
only generating ground actions that are applicable (i.e., with satisfied preconditions) in
the current state. There is an underlying trade-off in the decision between grounded
and lifted planning. While the grounding preprocessing might be expensive, its costs
might be amortized over all states. In contrast, using a lifted representation and gener-
ating ground actions for a specific state might be very cheap, but doing that for a large
number of states might be worse than preprocessing all actions.

We want to answer the question of how to efficiently perform lifted planning? The an-
swer we provide here relies on techniques from database theory. First, we must notice
that it is possible to reformulate our whole planning problem from the point-of-view of
databases [Lin and Reiter, 1997]. Going back to our Blocksworld example, we can repre-
sent a state of our task using a database perspective as follows. Instead of using a set of
ground atoms (i.e., facts), we represent a state as a collection of tables, each corresponding
to a specific predicate. The table for a specific predicate has an entry for each tuple of
objects that instantiate it on the corresponding state. For example, if on(B,A) is a true fact
in a state, then the tuple (B, A) instantiates the predicate on in this state and hence this
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tuple is an entry in the table corresponding to on. Following this, the state in Figure 1.1a
would then be represented using the following tables:

ontable

A
D

on

B A
C D

clear

B
C

Since a state is a collection of tables, we can see a successor state as an updated
collection of these tables. When applying an action to a state, we simply modify the
entries of each table accordingly to the effects of the action.

Now, we need to come up with a good way to find ground actions that are applicable
to a state. Consider the action schema move(?X, ?Y, ?Z). We can interpret the grounding
process as “find objects to substitute ?X, ?Y, and ?Z such that ?X and ?Z are in table clear
and the tuple (?X,?Y) is in the table on.” This is equivalent to performing a join program3

over these tables. A join of two tables produces a new table with all combinations of
entries that have equal values for the variables with the same name in both tables4. For
example, the join of clear(?X) with on(?X, ?Y) names the single free variable of clear with
the same name as the first free variable (i.e., first column in the table) of on. This join
would consist of all tuples in the on table such that the first element is also an entry
for the clear table. In the example above, this would be the tuples (B, A) and (C,D). To
conclude the grounding of the action, we need to join our intermediate table containing
{(B, A), (C, D)} to clear(?Z). Since the tables do not share a variable with the same name,
the join is equivalent to the Cartesian product of the tables. This produces a final table
with tuples (B, A, B), (B, A, C), (C, D, C), and (C, D, B). The first and the third ones violate
the inequality ?X 6= ?Z and are removed in a post-processing stage; the second and the
fourth tuples are applicable to our state. Grounding move(?X, ?Y, ?Z) with these two
applicable tuples, we obtain move(B, A, C) and move(C, D, B). If we apply move(B, A, C)
we will end up in a state where block B is stacked on top of block C. If we apply action
move(C, D, B), we obtain the state showed in Figure 1.1c.

In database terms, we could write the join program corresponding to the precondi-
tion of this action as:

clear(?Z) on clear(?X) on on(?X, ?Y)

This sequence of joins produces a new table with three columns, one for each object
being grounded. The entries in the resulting table are exactly the tuples instantiating
move(?X,?Y,?Z) into an applicable ground action, including the ground action belonging
to our plan, move(C,D,B).

This change in perspective shows also further good news: now we can see that it
is possible to generate all the ground applicable actions for a state efficiently, as long as
the join of the action preconditions is easy to compute. Luckily, the database community
has extensive results on this topic [Ullman, 1989; Gottlob et al., 2001].

In this thesis, we apply some of the most successful methods from the database the-
ory community to the setting of lifted planning. We first formalize the relation between
database theory and planning (Chapter 2) and discuss previous approaches from the
literature to deal with the problem of grounding (Chapter 3). We show that, for most

3Assuming that inequality constraints are post-processed. See Chapter 4.
4If both tables do not have a free variable with the same name, then the output of the join is a Cartesian

product of the tables.
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of the planning domains, lifted planning using database techniques to ground actions
at each state can be done efficiently (Chapter 4). Our work focuses mainly on how
to generate successors in tasks using lifted representation. Thus, our problem can be
stated as how to efficiently find the applicable ground actions in any arbitrary state of
the task given only the state and the action schemas. Our theoretical results show that,
in many domains, we might expect only a logarithmic overhead in the number of ap-
plicable actions (per state) in the worst case. In the cases where such joins cannot be
efficiently computed, we introduce simple strategies that still produce the ground ac-
tions quickly. Our strategies are implemented in a new lifted planner, which generates
successor states based on the join program approach (Chapter 5). In the Organic Syn-
thesis domain, which is considered to be the hardest domain to ground in all IPCs seen
so far, our planner is able to solve all its instances using a simple goal-counting heuris-
tic [Fikes and Nilsson, 1971]. In contrast, no planner using grounded representation
could solve more than half of its instances in the IPC 2018. In domains where ground-
ing is not necessarily a problem, our planner performs worse than grounded planners,
but the difference in performance is not as large as initially expected.



Chapter 2

Background

In this chapter, we formalize the definitions of planning and its relation to database the-
ory, introduced in Chapter 1. First, we begin by defining a planning task. Our definition
is formulated in order to be similar to STRIPS [Fikes and Nilsson, 1971] using PDDL, but
the results throughout the thesis can be generalized to other formalisms and definition
languages as well. Then, we introduce the details for grounded and for lifted planning,
together with some discussion about the usage of each one. This discussion is followed
by the introduction of heuristic search, which is probably the most common way to solve
planning problems and is also the focus of this thesis. Last, we show how to interpret
planning problems as database progressions, as demonstrated in the previous chapter.

2.1 Classical Planning

In classical planning, a world is modeled as discrete, deterministic, fully-observable, and
sequential. The objective of a planner is to find a sequence of actions transforming the
initial state of the modeled world into a state satisfying a specific goal condition. This
sequence of actions from the initial state to a goal state is what we call a plan.

A planning task is formally represented as a 5-tuple Π = (P,A, O, s0, γ). It has a
finite set of objects O, which represents the constant elements of the task. The interac-
tions among these objects are described using predicates symbols P . If P ∈ P is an n-ary
predicate and t1, . . . , tn are free variables, then P (t1, . . . , tn) is an atom. When we instan-
tiate (i.e., substitute) the variables of an atom P (t1, . . . , tn) with some objects in O, we
obtain a ground atom. A ground atom is equivalent to a (possible) fact about our task, as
posed in the previous chapter. Ground atoms indicate the properties of specific objects,
while the predicates are simply high-level specifications of these properties without re-
ferring to any specific object. The former is in propositional logic, while the latter is in
first-order logic.

Example 2.1. In the example from Chapter 1, we have O = {A, B, C, D} and the set P
contains the predicate symbols clear, on and ontable. An example of an atom in this case
is on(?X,?Y), where ?X and ?Y are free variables. Likewise, an example of a ground
atom is on(A,B), since A and B are objects from the set of objects O.1 4

A set of ground atoms is called a state. Put simply, a state is the set of properties that
are currently true in our model. The planning task has a given initial state, denoted as s0.
This initial state is interpreted as what the world looks like at the beginning of the task.

1We usually write free variables using a question mark (?) at the beginning, following the PDDL syntax.

8
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We also have a goal condition γ, which is also a set of ground atoms. Intuitively, γ is the
set of ground atoms that we want to make true. Throughout the thesis, we say that a set
of ground atoms A is satisfied in a state s iff A ⊆ s. In this way, any state satisfying this
goal condition is called as a goal state.

The way we transform the initial state into a goal state is by applying actions. The
actions are represented by a finite set of action schemas A. An action schema a[∆] ∈ A
has a set of free variables ∆, a precondition, an add list, and a delete list. Due to their
central role in this work, we define action schemas explicitly.

Definition 2.1 (Action Schema). Given a planning task Π = (P,A, O, s0, γ), an action
schema a[∆] ∈ A is a tuple (pre(a[∆]), add(a[∆]), del(a[∆])) where pre(a[∆]), add(a[∆]) and
del(a[∆]) are the precondition, the add list and the delete list of a[∆], respectively.

The precondition, the add and delete lists are finite sets of atoms defined overP , such that ∆ is
the finite set of free variables such that ∆ = free(pre(a[∆]))∪free(add(a[∆]))∪free(del(a[∆])),
where free(χ) is the set of free variables in a set χ.

We can instantiate an action schema a[∆] by substituting the free variables ∆ in its
precondition, add and delete lists by objects in O. By performing this instantiation, we
say that we are grounding the action schema. The result of this grounding procedure is
a grounded action a without free variables (sometimes referred only as action when the
context is clear). Note that, by grounding an action schema a[∆], its precondition, add
and delete lists become finite sets of ground atoms. The precondition of a grounded
action a is written pre(a), and similarly for the add and delete lists.

Example 2.2. In the Blocksworld example of Chapter 1, we grounded the action schema
move(?X, ?Y,? Z) into the grounded action move(C, D, B) by instantiating ?X to C, ?Y to
D, and ?Z to B. 4

A grounded action a is applicable to a state s if every ground atom in pre(a) is also
contained in s. When we apply a to s, we obtain a successor state s′, defined as s′ =
{s ∪ del(a)} \ add(a). The intuition is that if we apply an action to a state, we add to this
the properties (i.e., ground atoms) contained in the add list of the action and remove
those contained in its delete list. The set of all successors of state s is written succ(s).
Analogously, a sequence of grounded actions a1, . . . , an is applicable to a state s if each
ai is applicable to the state generated by applying a1, . . . , ai−1 from s. The goal of a
planner is to find a sequence of grounded actions a1, . . . , an applicable to s0 and leading
to some goal state sγ such that γ ⊆ sγ . This sequence of actions is called a plan.

Our definition is focused on STRIPS domains [Fikes and Nilsson, 1971], but it can
be generalized to other formalisms. The important aspect of such restriction is that we
do not consider conditional effects, axioms, and negated preconditions. Many planning
domains also use typed objects. We can easily remove the types by adding one new
predicate for each type, and setting the initial state and action preconditions consistent
with the original types for each object, similarly as performed by Helmert [2009].

However, there is still something missing in our planning task. To solve the task, we
need to find a plan for it, which consists of a sequence of grounded actions. But all we
have from the definition of Π is a set of action schemas. We say that our action schemas
are lifted (as opposed to grounded) and we want to obtain the grounded actions from
these schemas.

The most common method to obtain a set of grounded actions from a lifted repre-
sentation is to pre-compute a subset of all possible grounded actions and use this new
representation with grounded actions. Ideally, one wants to compute the minimal sub-
set of actions that can ever be part of any plan from s0 to some goal state. Unfortunately,
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(define (domain visit-all)
(:predicates (connected ?x ?y)

(at-robot ?x)
(visited ?x)
(cell ?x)

)
(:action move
:parameters (?curpos ?nextpos)
:precondition (and (at-robot ?curpos)

(connected ?curpos ?nextpos)
(cell ?curpos)
(cell ?nextpos))

:effect (and (at-robot ?nextpos)
(not (at-robot ?curpos))
(visited ?nextpos)))

)

Figure 2.1: Description of the Visit-All domain in PDDL. The section :predicates defines P ,
and :action defines a single action of A. (There can be multiple :action sections.)

this procedure is not easy and overapproximations are usually used. Thus, although the
description was given in a lifted representation, a planner compiles it into a grounded
representation of the task, which might increase the number of actions exponentially in
the number of action schemas [Erol et al., 1995]. This is what we call grounded planning:
we preprocess all action schemas to generate a set of grounded actions and use this new
set in the planning algorithm.

An alternative way to grounded planning is the so-called lifted planning. In this set-
ting, the state is still represented by a set of ground atoms, while the only information
regarding actions used by the planner is the set of lifted action schemas provided by
the domain description. The instantiation of the free variables of the action schemas is
performed while planning, not in a preprocessing stage.

There is always a trade-off between these two representations. In grounded plan-
ning, by pre-computing a set of grounded actions before actually executing a planning
algorithm, we might save the computational effort of instantiating all schemas in many
different iterations of the solver. On the other hand, by planning using lifted representa-
tion, we might save resources (e.g., memory) by not pre-grounding all action schemas,
since many of the instantiations will never be part of any plan.

Planning models are usually described using some description language. One of
the most used is PDDL [McDermott, 2000]. In PDDL, two different files are used to
describe the task: a domain and an instance file. The former includes all the high-level
characterizations of the problem, such as the action schemas and predicates. The latter,
as the name indicates, is an instantiation of the problem, where we define the set of
objects O, the initial state s0 and the goal condition γ.

Example 2.3 (Visit-All domain and instance). We illustrate the definitions above with
the Visit-All domain defined in Figure 2.1. In this domain, an agent must visit every
cell of a grid. The domain description is given in PDDL. We do not explain the PDDL
syntax in detail, since the elements needed for the formal definition of a domain are easy
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(define (problem grid)
(:domain visit-all)
(:objects

loc-x0-y0 loc-x0-y1 loc-x1-y0 loc-x1-y1
)
(:init (at-robot loc-x1-y1)

(visited loc-x1-y1)
(connected loc-x0-y0 loc-x1-y0)
(connected loc-x0-y0 loc-x0-y1)
(connected loc-x0-y1 loc-x1-y1)
(connected loc-x0-y1 loc-x0-y0)
(connected loc-x1-y0 loc-x0-y0)
(connected loc-x1-y0 loc-x1-y1)
(connected loc-x1-y1 loc-x0-y1)
(connected loc-x1-y1 loc-x1-y0)
(cell loc-x0-y0)
(cell loc-x0-y1)
(cell loc-x1-y0)
(cell loc-x1-y1))

(:goal (and (visited loc-x0-y0)
(visited loc-x0-y1)
(visited loc-x1-y0)
(visited loc-x1-y1)))

)

Figure 2.2: PDDL definition of an instance for the Visit-All domain. Section :object defines O,
section :init defines the initial state s0, and :goal defines the goal condition γ.

to observe. Note that we rewrite the predicates from PDDL syntax format (P ?x) to the
more classical notation of P(?x).

The domain defines the following elements

P ={connected, at-robot, visited, cell},
A ={move[?curpos, ?nextpos]},

where predicate connected is a binary predicate and the other three are unary predicates.
The action schema move[?curpos, ?nextpos] is the triple

pre(move[?curpos, ?nextpos]) = at-robot(?curpos) ∧ connected(?curpos, ?nextpos)
∧ cell(?curpos) ∧ cell(?nextpos)

add(move[?curpos, ?nextpos]) ={at-robot(?nextpos), visited(?nextpos)}
del(move[?curpos, ?nextpos]) ={at-robot(?curpos)}.

In words, the PDDL description has four predicate symbols indicating relations be-
tween objects: connected has two parameters and indicates whether two cells are con-
nected in the grid; at-robot indicates in which cell the robot currently is; visited indicates
whether a cell ?x has already been visited or not; cell identifies whether an object is a cell
or not. To modify our world, we have only one action, move, which takes two parame-
ters (intuitively, the current position of the agent and the position to where it wants to
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move) and checks where (i) the agent is really at ?curpos and (ii) ?nextpos is connected
to ?curpos. In PDDL, instead of add and delete lists, we have a conjunction of ground
atoms and negated ground atoms representing the effects of the action schema. With-
out loss of generality, this formula can also be seen as a set of ground atoms, where the
negated atoms correspond to the delete list and the positive ground atoms to the add
list. When this action is applied to our world, we remove the ground atoms indicating
that the robot is at ?curpos, add the ground atoms indicating the new position of the
agent and also add the information that the new cell has already been visited. Note that
the action is lifted: it is in first-order logic and it has free variables. In order to apply
this action into a state, we need to select which objects will instantiate the free variables
and then replace the free variables with these objects. In a single state, there might be
several different instantiations that lead to applicable grounded actions.

Figure 2.2 shows a possible Visit-All instance. The PDDL section objects defines all
the objects O. (Note that the agent is not represented by any object, but this is just a
modeling decision.) The init section defines the ground atoms that are true in the initial
state s0. This is a subset of the ground atoms based on P from the domain definition
grounded by the objectsO. In contrast to our definition, the goal section in PDDL defines
the goal condition γ as a conjunction of ground atoms. As done with the action schemas
effects, we can also interpret this conjunction as a set. Thus, we consider γ as a set of
ground atoms in this work. 4

In the next section, we go from how to represent planning tasks to how to solve plan-
ning tasks. We introduce heuristic search, the main technique applied by state-of-the-art
planners.

2.2 Planning as Heuristic Search

The most popular planning technique is state space search. This claim can be confirmed
when we look into the participants of the IPC 2018: only one of the 22 competitors did
not rely on heuristic search. A state space is a transition system containing all possible
states of a planning task Π, where two states s1 and s2 have a transition s1 → s2 iff s2 ∈
succ(s1) and this transition is labeled with the grounded action that generated s2 from
s1. It is straightforward to recognize that the task of finding a plan for Π is equivalent
to finding a path in the state space from the initial state to a goal state. Similarly, the
objective of optimal planning is to find the shortest of these paths.

Unfortunately, a state-space can have the size exponential in the number of atoms of
the task and thus a brute-force search becomes intractable. For example, in a planning
task of the Visit-All domain with n locations, the entire state space has 2n

2 · 2n · 2n · 2n
states. If we consider only the part of the state space that is reachable from the initial state,
the number of states decreases by at least by a factor of 2n

2
. However, such a solution

is still not tractable, since deciding which states are reachable is as hard as solving the
planning task itself.

To handle large state spaces, planners apply a heuristic search approach. The planner
uses some estimator to evaluate how promising it is that a given state leads the search
to a goal state. With this evaluator, the planner prioritizes the most promising states,
expecting that they lead the search to a goal state more quickly. A heuristic is formally
defined as a function mapping a state to a non-negative number, estimating the distance
from the state to its closest goal state or to infinity, when no such goal state can be
reached from the state. The quest to find good heuristics for planning is an important
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A B

0 1
1 1
2 2
3 1
3 3

(a) Relation R1(A,B).

B C

0 1
1 2
1 3
1 4
2 4

(b) Relation R2(B,C).

A

0
1
2
3

(c) πA(R1(A,B)).

A B

1 1
2 2
3 3

(d) σA=B(R1(A,B)).

Figure 2.3: Example of database relations and operations.

area of research.

Definition 2.2 (Heuristic). Given a state space S with set of states S, a heuristic is a function
h : S → R+

0 ∪ {∞}.

For a given state-space S with a set of states S and a state s ∈ S, we denote the
length of the shortest path from s to a goal state using h∗(s). A heuristic is said to be
admissible if it never overestimates the distance from s to the closest goal state. In other
words, h is admissible iff h(s) ≤ h∗(s) for every state s of the state space S. Admissible
heuristics are important because they can guarantee optimal solutions when used with
specific search algorithms, such as the A∗ algorithm [Hart et al., 1968]. When combined
with an admissible heuristic, A∗ guarantees an optimal solution, when a solution ex-
ists. When not interested in an optimal solution, one could use a greedy best-first search
(GBFS), introduced by Doran and Michie [1966], which usually is faster than A∗ but
does not guarantee optimality. Both algorithms are based on expansions: starting with a
list containing only the initial state s0, we iteratively select the most promising state s
(according to some arbitrary function) of this list and expand s. “Expand a state” means
that we generate all successors of s and place them on the list. We repeat this process
until we select a goal state for expansion, indicating that we found a path in the state
space from s0 to some goal state. We do not go into further details or the differences of
A∗ and GBFS and we refer the reader to the classic book by Russell and Norvig [2010]
for an introduction to search algorithms.

Heuristic search involves the question of whether we should use grounded or lifted
planning. The grounding effort in grounded planning is independent of the heuristic
since we compute a set of grounded actions without making use of any heuristic infor-
mation (at least, that is the case in the given methods in the literature, to the best of our
knowledge). In contrast, the grounding effort necessary in a lifted task representation
(with concrete states and lifted action schemas) is directly linked to the quality of the
heuristic and the number of expansions needed to achieve a goal state. In lifted plan-
ning, we instantiate the action schemas only when expanding a state. Since, in general,
more informative heuristics lead the search to a goal state more quickly and thus require
fewer expansions, they might help to minimize the overhead added by planning using
lifted representations.

2.3 A Database Theory Perspective

Next, we change our perspective with respect to planning. We reformulate the rep-
resentation of states and state spaces from the point-of-view of database theory, more
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specifically from relational algebra. The definitions and terminology we use are based
on the book by Ullman [1988; 1989].

2.3.1 Basics of Database Theory

We start by introducing the relational model. Let D be a domain and X = (X1, . . . , Xn) be
a sequence of names, also called as attributes. We define unique(X) = {Xi | 1 ≤ i ≤ n}
as the set of unique names in X . A named tuple is a function t : unique(X) → D. For a
specific tuple r = (a1, . . . , an) we define

tr(X) = {Xi 7→ ai | 1 ≤ i ≤ n}.

In our context, we define a database as a set of unnamed relations. An n-ary unnamed
relation R ⊆ Dn is a set of tuples over domain D for some n ∈ N0. Given an unnamed
relation R and attributes X , R(X) is an n-ary relation and is defined as

R(X) = {tr(X) | r ∈ R and tr(X) is well defined}.

When we want to specify the value of a single elementXi of X in a tuple r = (a1, . . . , an),
we write tr(Xi) = ai. We only use this notation when the sequence of names X in which
Xi belongs is clear from context.

Whenever we want to denote that a named relation has many named attributes, but
we do not care specifically about any of them, we denote these attribute names using
bold uppercase variables, such as in R(X). With some abuse of notation, we use set-
theory symbols to compare sequences of names. For example, if we want to indicate
that all attributes in Y are also in X (but not caring about order), we write Y ⊆ X . We
extend the same reason to the union and set difference operators.

It is useful to think of relations as tables with named columns (the attributes), where
each row is a tuple mapping a name to a value of a given domain. For example, as-
sume we have D = Z and R ⊆ D3 is defined as R = {(1, 1, 1), (0, 0, 1), (1, 2, 3)}. If
the attributes X are defined as X = (A,A,B), then the ternary relation R(X) has the
following named tuples:

R(X) = {t(1,1,1)(X), t(0,0,1)(X)},

where

t(1,1,1)(X) = {A 7→ 1, B 7→ 1},
t(0,0,1)(X) = {A 7→ 0, B 7→ 1}.

The third tuple of R, (1, 2, 3), is not part of R(X) because t(1,2,3)(X) is not well-defined.
In order to simplify the notation, we usually denote relations by simply using the

tuples corresponding to the named tuple functions. For example, we can write R(X)
simply as

R(X) = {(0, 0, 0), (1, 1, 1)}.

Example 2.4. Assume that a database has two relations R1(A,B) and R2(B,C), as
showed in Figure 2.3a and Figure 2.3b, respectively. The top-row of each column in-
dicates the attribute name. The former has two attributes, A and B, and has tuples
(0, 1), (1, 1), (2, 2), (3, 1) and (3, 3), where the first element of each tuple is the value for
attribute A and the second is the value for B. The latter also has two attributes, B and
C, and five tuples: (0, 1), (1, 2), (1, 3), (1, 4), and (2, 4), where the first value corresponds
to attribute B and the second to C. 4
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A B C

0 1 2
0 1 3
0 1 4
1 1 2
1 1 3
1 1 4
2 2 4
3 1 2
3 1 3
3 1 4

(a) R1(A,B) on R2(B,C).

A B

0 1
1 1
2 2
3 1

(b) R1(A,B) nR2(B,C).

B A

0 1
1 1
2 2

(c) R1(B,A) nR2(B,C).

Figure 2.4: Example of database join and semi-join operations.

We can use the relations of a database to infer further knowledge about it. In the
previous example, for instance, one might be interested to know which values of B in
R1(A,B) are also associated with some C in R2(B,C). (Spoiler: the answer is {1, 2}.)
We can formalize these inference procedures using database operations. Such operations
produce new relations that correspond to the ones we want to infer.

Cartesian Product. LetR and S be two relations of arity n andm and X = (X1, . . . , Xn),
Y = (Y1, . . . , Ym) be two sequences of names. Then the Cartesian product R(X) × S(Y )
is a relation over the names Z = (R.X1, . . . , R.Xn, S.Y1, . . . , S.Ym) with

R(X)× S(Y ) = {tt1×t2 | t1 ∈ R(X), t2 ∈ S(Y )}

where tt1×t2(R.Xi) = t1(Xi), for all 1 ≤ i ≤ n, and tt1×t2(S.Yi) = t2(Yi), for all 1 ≤ i ≤ m.

Projection. A projection πY (R(X)), where Y is a sequence of names such that all ele-
ments of Y are also contained in the sequence of names X , is defined as πY (R(X)) =
{t|Y | t ∈ R(X)}, where t|Y represents the function t restricted to the names of Y .

Selection. Given an equality comparison Xi = Xj for Xi, Xj ∈ X , we say that the
selection σXi=Xj (R(X)) is defined as

σXi=Xj (R(X)) = {t | t(Xi) = t(Xj)}.

If we have n equality comparisons E1, . . . , En, we can write σE1,...,En(R(X)) instead of
σE1(σE2(. . . (σEn(R(X))))).

Join. Let R and S be two relations of arity n and m and X = (X1, . . . , Xn), Y =
(Y1, . . . , Ym) be two sequences of names. Then the (natural) join R(X) on S(Y ) is a
relation over the names Z = X ∪ (Y \X) with

R(X) on S(Y ) ={t′ | t ∈ R(X)× S(Y ),

s.t. t(R.Xi) = t(S.Xi) for all Xi ∈ {X ∩ Y }}

where t′(Xi) = t(R.Xi), for all 1 ≤ i ≤ n, and t′(Yi) = t(S.Yi), for all Yi ∈ {Y \X}. As
in the projection, duplicated tuples are removed.
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Semi-join. A semi-join of R(X) by S(Y ) is the projection of the join R(X) on S(Y )
onto the attributes X . Using our notation, it is equivalent to πX(R(X) on S(Y )). The
semi-join operation of R(X) by S(Y ) is denoted as R(X) n S(Y ).

We illustrate these operations with a few examples.

Example 2.5. Figures 2.3c and 2.3d illustrate examples of the projection and selection
operations, respectively, over relation R1(A,B). The join and the semi-join operations
are shown in Figures 2.4a and 2.4b, based on R1(A,B) and R2(B,C) from Figure 2.3.
The Cartesian product operation is not illustrated.

Figure 2.4c shows the same semi-join operation as Figure 2.4b but switching the
attribute names of the first relation from (A,B) to (B,A). Note that although the set
of tuples in R1(A,B) and R1(B,A) still comes from the same unnamed relation R1, the
different sequence of names results in a different relation. 4

Imagine that we have two relations in our database: a relation P (I, V ), recording
the purchases by clients in some online store during the last week, with tuples (i, v)
where i is the ID number of the client and v is the value of the purchase; and a relation
R(I,D), recording the date where the clients first registered into the online store service,
with tuples (i, d) where i is the ID number of the client and d is the registration date.
Given these two relations, we might be interested to infer the registration dates from
clients who purchased any item in the last week. This type of question-based on the
knowledge in our database is called a query. Roughly speaking, a query is a formal
way to express a question about our database. The answer to a query Q(X) is always
a relation with attributes X . In this thesis, we work with a restricted type of queries,
called conjunctive queries [Ullman, 1989]. We introduce the logical view of queries first.
Formally, a conjunctive query is a first-order formula in the form

(∃Z1) . . . (∃Zm)ψ(X1, . . . , Xn, Z1, . . . , Zn),

where ψ(X1, . . . , Xn, Z1, . . . , Zn) is a conjunction of relations. The relation with the tuples
instantiating the free variables X1, . . . , Xn, such that the formula above is satisfied for
every tuple in the relation, corresponds to the answer of the query. In our online store
example, we can represent the registration dates from clients who purchased some item
in the last week by the first-order formula

(∃I)(∃V )(P (I, V ) ∧R(I,D)).

Instead of writing first-order logic sentences to represent queries, we use Prolog no-
tation [Kowalski, 1979]. For example, the query above can be rewritten using Prolog
notation as

Q(D) :− P (I, V ), R(I,D).

We say that Q(D) is the head of the query, while P (I, V ), R(I,D) are the body relations
of the query. The head of the query contains only the free variables of the formula. The
meaning of this query is to retrieve the possible values for the free variableD that (i) are
in the second element of some tuple inR(I,D) and (ii) are associated to some value of I
in R(I, V ) such that this value also occurs as the first element of some tuple in P (I, V ).
We also do not care about the values assigned to the variables I and V , since are not in
the head.
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(:action pick
:parameters (?ball ?room ?gripper)
:precondition (and (ball ?ball) (room ?room)

(gripper ?gripper) (at ?ball ?room)
(at-robby ?room) (free ?gripper))

:effect (and (carry ?ball ?gripper)
(not (at ?ball ?room))
(not (free ?gripper))))

Figure 2.5: PDDL action schema corresponding to the action of picking up a ball from a room
using a specific gripper.

We can interpret conjunctive queries using the database operations described above.
The logical conjunction between two relations is equivalent to the join of these relations.
The existential quantification over variables Z1, . . . , Zm is equivalent to projecting the
query only over variables X1, . . . , Xn in the head of the query. In our running example,
Q(D) is equivalent to the following relation:

πD(P (I, V ) on R(I,D)).

The query answer Q(D) is the relation containing only tuples satisfying the first-order
formula corresponding to the query.

An interesting practical aspect of conjunctive queries is that they can be computed
using only joins (or semi-joins), projections, and selections. However, this does not
mean that the computation is always tractable. It might happen that, while computing
the query answer, intermediate results have an exponential number of tuples in the size
of the final relation. We discuss the tractability issues of conjunctive queries in Chapter 4
in the context of classical planning.

Given this short introduction to database theory, we can start to show how these
definitions might help our understanding of planning.

2.3.2 Planning as Database Progression

The perspective used in this thesis is to consider states of the planning task as databases.
From this point-of-view, given a planning task Π = (P,A, O, s0, γ), we consider that
each predicate symbol P ∈ P corresponds to an unnamed relation in a given state s,
where a tuple (o1, . . . , on) with o1, . . . , on ∈ O is in P at state s iff P (o1, . . . , on) is true in
s. Intuitively, every state can be represented as a set of unnamed relations, where each
predicate corresponds to a single set of tuples. Thus, each state can be seen as a database
and the application of an action in a state can be seen as an update of the database.

Now, planning can be reformulated as finding a sequence of updates from an ini-
tial to a goal database. This reformulation is not novel in the literature. Lin and Reiter
[1997] define a state as a set of unnamed relations, each corresponding to a predicate
of the task. They interpret each STRIPS operator (i.e., action) as an update to such a
database and denote the task of planning as database progression from an initial state to a
goal. In their context, Lin and Reiter use situation calculus and even second-order logic
to express more powerful variants of STRIPS, while we use relational calculus and sim-
ply first-order logic fragments and focus on “canonical” STRIPS tasks (i.e., tasks where
preconditions are conjunctions, negative literals are forbidden in the preconditions, ef-
fects are sets of atoms).
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The reformulation of states as databases leads to an elegant view of action schemas
in lifted planning, as briefly demonstrated in Chapter 1. Applying one action to a state
is equivalent to updating the values of its unnamed relations. It turns out that verifying
which instantiations of an action schema are applicable to a state is equivalent to solving
a conjunctive query. We do that by representing the precondition of each action schema
as a conjunctive query, where each atom appearing in the precondition is represented
by a relation with attributes defined by the free variables of the action schema. Since we
consider that a precondition of a ground action is “satisfied” if all its atoms are true in a
state, we can also see it as a conjunctive formula over its ground atoms. Thus, finding
the tuples leading to instantiations where the preconditions are satisfied is equivalent
to solve a conjunctive first-order logic formula, which in turn can be represented by
some conjunctive query. Hence, we can consider the task of finding tuples satisfying a
precondition the same as answering the correspondent conjunctive query.

We illustrate our perspective with an example.

Example 2.6 (Gripper action schema). We show how to ground an action schema of the
Gripper domain. In this domain, a robot with some grippers must pick up a set of balls
from different rooms and transport them to another room. The action schema used is
shown in Figure 2.5. It corresponds to the action of picking up a ball with a specific
gripper in a given room. In a state s, we want to find which substitutions for the free
variables of the action schema satisfy the precondition. Since the predicate symbol of
each atom corresponds to an unnamed relation in the database, we perform the con-
junctive query

Q(?ball, ?room, ?gripper) :− ball(?ball), room(?room), gripper(?gripper),
at(?ball, ?room), at-robby(?room), free(?gripper).

The resulting relation is the set of tuples, where each tuple has one element correspond-
ing to each of the free variables of the query. For example, we could have the tuple
(b1, r1, g1) in the resulting relation for a state s, where the first parameter indicates a
substitution for ?ball, the second for ?room and the third for ?gripper. Since b1 is a pos-
sible substitution for ?ball resulting in a sequence of joins, it means that there is a tuple
containing b1 in the relation ball(?ball) and at(?ball, ?room) in a state s. Progressing this
reasoning to all elements of the tuple, we can see that every tuple found by this con-
junctive query in s represents an instantiation of the schema such that all atoms in the
precondition are in s when instantiated. In other words, every tuple present in the
resulting relation Q(?ball, ?room, ?gripper) is an instantiation of the free variables corre-
sponding to an applicable grounded action in s. By performing a conjunctive query for
each action schema in a state s, we obtain the exact grounded actions that are applicable
to s. 4

More formally, given an action schema a[∆] with precondition pre(a[∆]), we create a
query Q(X) where the sequence X has one attribute corresponding each free variable
in ∆. The body of the query has one relation for each atom in pre(a[∆]) with attributes
accordingly to X .

. . .
In Chapter 3, we present work related to this thesis. We discuss previous lifted

planning approaches and some techniques related to the question of grounded versus
lifted planning. Last, we also introduce some related work on database theory.
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In the following chapters, we investigate how to efficiently obtain the set of appli-
cable grounded action using queries based on the preconditions of the action schemas.
We also show that in most IPC domains, such queries can be efficiently computed.



Chapter 3

Related Work

Planning using lifted task representations has been an interesting topic of research in
the planning community in the last decades. Perhaps the closest work to our thesis is
the work by McDermott [1996]. McDermott proposes a heuristic estimator based on a
so-called regression-match graph, which estimates the number of operators necessary to
achieve each subgoal of the task by applying an inference method similar to backward-
chaining [Hewitt, 1969]. His representation of a lifted task uses concrete states and lifted
action schemas. This work was also the base for the introduction of planning as heuristic
search by Bonet and Geffner [2001] and the heuristics introduced by them, such as hadd,
are similar to the estimators used by McDermott.

Another important study of lifted planning was done by Ridder [2014]. Ridder pro-
poses a lifted representation very similar to the one used by McDermott, using lifted
actions and concrete state representation. Ridder also uses a so-called almost equiva-
lent relations between PDDL objects of a same type. Once such relations are encoun-
tered, it is possible to abstract several equivalent objects in a lifted representation. He
also demonstrates how to use such representation to compute a lifted version of the FF
heuristic [Hoffmann and Nebel, 2001] and several other heuristics based on abstractions.

Previous work also explores lifted representations using other planning techniques.
Among these, the VHPOP planner [Younes and Simmons, 2003] is perhaps the clos-
est to our work. VHPOP was influenced by UCPOP [Penberthy and Weld, 1992], an-
other partial-order planner from the early 1990s. In partial-order planning, the planner
searches for a plan in a plan space instead of performing a state-space search. VHPOP
combines partial-order planning with the heuristic estimate hadd introduced by Bonet
and Geffner [2001], adapted to the context of partial-order planning. Although the
heuristics implemented in VHPOP can deal with lifted and grounded actions, Younes
and Simmons use only grounded actions in their IPC participation. In their previous
work, Younes and Simmons [2002] also show that partial-order planning with lifted ac-
tions reduces the branching factor while searching in plan space and that it can be ben-
eficial in some circumstances. The work by Ridder [2014] is also based on ideas from
partial-order planning.

An important part of our work is the relationship between planning and database
theory. This relation is not novel though. For example, Helmert [2009] reformulates a
planning task into a Datalog program (see Ullman [1988] or Abiteboul et al. [1995]) in
order to compute a relaxed reachability analysis and uses more sophisticated database
techniques to perform this computation more quickly. As mentioned in Chapter 2, Lin
and Reiter [1997] study the possible interpretation of action schemas as mappings from
databases to databases. Using database theory terminology, Lin and Reiter define a
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state as a database, where each relation corresponds to a STRIPS predicate and the sets
of tuples in a relation are the tuples of objects instantiating such predicate in this state.
They interpret each STRIPS operator as an update to the database representing a state,
what they call a database progression. This is essentially the same interpretation used in
this thesis. They use situation calculus to introduce the idea of planning as database
progression and show that in many formalisms of planning (more precisely, in simple
extensions of STRIPS) we need to use second-order logic to be able to use such database
progression idea. Although Lin and Reiter, as in this thesis, use the interpretation that
a planning problem can be seen as a database progression problem, all their results are
proved using situation calculus. In our approach, however, we instead apply results
from database theory and rely on relational algebra and heuristic search to solve the
tasks.

Another important part of our thesis is to compare heuristic search planners using
both lifted and grounded representation. The state-of-the-art heuristic search planners
use grounded representations. Thus, they also need to use different techniques to try
to mitigate the overhead caused by grounding. Many of the heuristic search planners
are extensions of the Fast Downward planning system [Helmert, 2006]. Fast Downward
uses a finite domain representation (FDR) of the tasks and it is necessary to translate the
tasks from PDDL to SAS+ [Bäckström and Nebel, 1995]. The translation procedure used
in Fast Downward is introduced by Helmert [2009]. The complete procedure consists
of four steps: normalization, invariant synthesis, grounding, and FDR task generation.
The bottleneck (and probably the greatest improvement introduced by Helmert [2009])
is the grounding procedure. The key insight of this procedure is to only ground relaxed-
reachable actions, those actions that possibly can be applied in a task when ignoring (i)
the delete lists in the effects of actions, and (ii) negative preconditions. It is easy to check
that all actions necessary by some plan from the initial state must be relaxed-reachable.
As mentioned earlier, Helmert introduces a Datalog program to represent a planning
task without delete lists and negative preconditions. By computing the canonical model
of this Datalog program, we can identify which actions are relaxed-reachable and should
be grounded.

In fact, Helmert [2009] demonstrates empirically that his grounding procedure is sig-
nificantly better than the naive grounding approach (i.e., instantiating all possible com-
binations of grounded actions) in terms of the number of grounded actions and time.
It is possible to see that this still holds for some IPC 2018 domains. For example, the
first (and easiest) instance from the Organic Synthesis domain generates 4.3 · 106 actions
using the naive grounding by enumeration, while the method by Helmert generates
only 360 grounded actions. There are still cases, however, where scalability is an issue
even when using the methods by Helmert. In the same Organic Synthesis domain, there
are instances where the naive grounding approach instantiates approximately 71 · 1012

actions, while the method by Helmert generates 884, 400 grounded actions. Although
the latter is a significant improvement compared to the former, this is still above the
capabilities of most planners. Another interesting aspect is to compare the number of
grounded actions with the plan length of the same instances. In the eleventh instance of
the Organic Synthesis domain, for example, where the grounding method by Helmert
produces 884.400 grounded actions, we find an optimal plan with just three actions. By
comparing the number of grounded actions and the plan length, we can see that most
of the grounded actions are not used and thus any planner would be better off by not
grounding them.

Yet, there is still room for improvement with respect to grounding algorithms, such
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as symmetry-based task reduction [Röger et al., 2018] or grounding only parts of the
relaxed-reachable state space [Gnad et al., 2019]. The work by Röger et al. [2018] in-
troduces a preprocessing method able to capture object symmetries in the PDDL task
and then performs the grounding for the entire symmetric group, instead of individu-
ally grounding each object. Gnad et al. [2019] propose a partial ground method based
on learning. Although their method seems to improve results in many domains, it is
limited to domains where representative but small instances are easily generated. This
limitation is a significant constraint for domains that are inherently hard to ground even
for the smallest instances, such as the Organic Synthesis domain.

Another popular method for reducing the grounding overhead is predicate and ac-
tion splitting. In the first paper proposing planning as a satisfiability problem, Kautz
and Selman [1992] propose to split predicates with three or more arguments in order to
facilitate the instantiation of these predicates for the SAT solver. They demonstrate in
practice that such splitting is useful and improves the performance of the solver. Still in
the context of planning as satisfiability, Robinson et al. [2009] propose a split representa-
tion of actions and showed that, similarly as demonstrated by Kautz and Selman, such
splitting increases the performance, despite the size increase of the logic formulations.
Cashmore et al. [2013] also show a split representation of planning tasks using quan-
tified Boolean formulas (QBF) and partially lifted representation of actions and states.
In the context of planning as heuristic search, Areces et al. [2014] propose an automatic
way to perform action schema splitting (using the PDDL representation) in order to re-
duce the number of parameters of each action schema. In practice, their method seems
very useful even for the IPC 2018 domains that are hard to ground. For instance, the Or-
ganic Synthesis domain is significantly easier to ground using such action split schema.
This was the strategy used in the IPC 2018 and most of the planners presented a better
performance in the split variant of the domain.

Other approaches to planning also make use of more sophisticated tools to deal with
grounding. An interesting case is the planner plasp [Gebser et al., 2011], which compiles
a PDDL planning task into an Answer Set Programming (ASP) problem [Simons et al.,
2002] and then uses a specialized ASP solver. Although not properly a lifted planner,
plasp makes use of the state-of-the-art ASP solvers and their efficient grounders to han-
dle larger tasks. Similarly, Zhou et al. [2015] introduce a new planner modeled using
Picat, a logic-based multiparadigm language, which uses tabled logic programming to
solve planning tasks. Due to this strategy, Picat avoids prior grounding and thus has a
lower memory consumption than most of the search-based planners.

. . .
The next chapter introduces our main contributions to lifted planning. Our focus

is on lifted successor generators and how to efficiently compute them in the context of
planning. We analyze several aspects of the complexity of conjunctive queries and show
that several planning domains are in tractable cases. Furthermore, we also introduce
extensions that are useful in the context of classical planning in order to improve the
performance of these successor generators.



Chapter 4

Lifted Successor Generators

In this chapter, we introduce the main ideas to generate successor states using only lifted
action schemas. This is one of the two main challenges for planning using heuristic
search with lifted task representations. (The other one is to come up with good heuris-
tics using only the actions schemas.) The essential problem here is not to generate a
successor per se, but to identify which instantiations of an action schema are applica-
ble to a given state. To do so, we must find the exact substitutions of free variables of
an action schema such that the preconditions of this action are satisfied in the current
state. In this sense, we are actually discussing methods to check the applicability of
actions using only their schemas. However, we call these methods as successor gener-
ator methods because some of them, in fact, change the set of transitions to successors
of some states. We introduce, for example, a method that identifies transitions leading
to the same successors while computing the applicable instantiations of a schema and
thus might reduce the branching factor of the state (i.e., number of transitions from this
state).

In grounded planning, we can simply iterate over all grounded actions and apply
those with preconditions satisfied. Thus, we always obtain all successor states of any
state in O(|G|) time, where G is the set of grounded actions. It is not uncommon that
planners also use specialized data structures to generate successors more efficiently. But
in grounded planning it is assumed that the grounding step was performed efficiently.
The overall quality of a planner relies not only on its planning component but also on its
grounding. For example, as mentioned in Chapter 3, a naive grounding enumerating all
possible grounded actions might generate more than 1012 actions in the Organic Synthe-
sis domain. This large number of actions might cause a planner to run out of resources
even though most of the actions are not useful in any plan.

This is a possible advantage of lifted planning. It might be useful to avoid the
grounding procedure in several circumstances and simply instantiate the lifted action
schemas to produce all applicable instantiations only when expanding a state. However,
a bad implementation might be even worse than the naive grounding by enumeration.

In this chapter, we study different methods with which we can implement lifted suc-
cessor generators. We start by analyzing the trivial methods to obtain successor states
in a lifted representation and end up presenting more refined methods. As previously
mentioned in Chapter 1, our methods make use of database theory results.

23
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4.1 Naive Successor Generators

The most straightforward method to implement a lifted successor generator is by brute-
forcing all action schema instantiations. Given an action schema a[∆] and a set of objects
O, we enumerate all instantiations of variables in ∆ by objects in O. This method is not
expected to perform well, except in very small instances. In fact, in the context of lifted
planning, this enumeration must be performed for every expanded state. This brute-
force successor generator is not considered in the rest of this work.

But this method can be easily improved. For example, we can use the information
of static predicates (i.e., predicates that never occur in the effect of any action) to re-
duce the set of candidate enumerations. These types of improvements are similar to
the ones described by Helmert [2009] in the context of grounding algorithms. In his
context, Helmert is able to reduce the number of grounded actions simply by checking
types and static preconditions and discarding partial instantiations of action schemas
that violate such conditions while computing the grounding. In the context of lifted
planning, these enhancements can also improve the performance of the brute-force gen-
erator.

We now come back to the perspective of planning as database progression. We can
bring some sophistication from relational algebra to our successor generators. A trivial
way to do so is to consider the precondition of an action schema as a conjunctive query.
The answer to this query contains only the tuples representing applicable instantiations
of the schema in this state. This idea was formally introduced in Chapter 2. The notion
behind this successor generator is that, for some action schema a[∆] in some state s,
each atom A in pre(a[∆]) has an unnamed relation in s associated to its predicate sym-
bol. Each atom A also has a corresponding relation in the precondition with attribute
names defined by the free variables. To find the instantiations of all free variables in
free(pre(a[∆])) satisfying all atoms in the precondition, we must perform the join pro-
gram over the relations representing these atoms. (Since we argued before that all free
variables appear in the preconditions because we preprocessed types, we can ignore
effects for now.)

This is what we call the join program successor generator. A join program can be seen
simply as a clever way to enumerate all applicable instantiations of free variables for an
action schema, but with the clear advantage that it automatically filters out inapplicable
instantiations as soon as it can. Hence, the join program successor generator is consid-
ered as a baseline in this thesis, since its efficiency (in theory) should not be worse than
the complete enumeration.

The join program for a given precondition can be defined in many different ways,
though. The key point here is that, in practice, the order in which the relations are joined
might lead to very different performances. It is common that bad orderings produce
intermediate results with size exponential in the input relations [Ullman, 1989]. In our
experiments (Chapter 5), we study different ordering methods for these join programs.

4.2 Full Reducer Successor Generator

The join program successor generator introduced in the previous section is extremely
dependent on the order of the join program. Luckily, there are some cases where we can
compute an optimal order for this program in a feasible time. This provides an “island
of tractability” for query answering problems [Gottlob et al., 2016]. This “island” is
defined based on the hypergraph topology of the conjunctive query. We next introduce
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Figure 4.1: Example of hypergraph for the query Q(A,B,C,X) :− R(A,X), S(B,X), T (C,X).

this tractable case in the context of general conjunctive queries and then briefly explain
its adaptation to planning.

4.2.1 Full Reducer

The efficiency for computing a conjunctive query depends on its hypergraph. A hyper-
graph H = (V, E) has a set of hypervertices V and a set of hyperedges E ⊆ 2V . A hyper-
graph is a structure similar to a graph, but where hyperedges can connect more than
two hypervertices. Every conjunctive query Q(X) has a hypergraph associated to it.
For every named attribute in X we have one associated hypervertex in V . Similarly, ev-
ery named relation E(X) in the body induces a hyperedge including the hypervertices
associated to the attributes X . In the next paragraphs, we omit the attribute names, but
they are still needed for the algorithm.

Hypergraphs can be classified as cyclic or acyclic. However, acyclicity of hypergraphs
is not uniquely defined [Goodman and Shmueli, 1982; Beeri et al., 1983; Fagin, 1983]. We
consider here the definition of α-acyclicity [Fagin, 1983], which can be tested in poly-
nomial time [Goodman and Shmueli, 1982; Tarjan and Yannakakis, 1984; Ullman, 1989].
We can compute the acyclicity of a hypergraph by iteratively selecting two hyperedges
E and F and testing whether the nodes in E \ F are unique to E. If they are, then we
say that E is an ear and remove the hyperedge E from the hypergraph. We call this an
ear removal and say that E was removed in favor of F . We repeat this procedure until we
fall into one of these two cases:

1. There is only one hyperedge remaining. In this case, the hypergraph and its corre-
sponding conjunctive query are acyclic.

2. There is no possible ear removal in the hypergraph. In this case, the hypergraph
and its corresponding conjunctive query are cyclic.

There might exist several sequences of ear removal for a same hypergraph. However,
any sequence of ear removals for an acyclic hypergraph leads to case (1). Analogously,
if the hypergraph is cyclic, it always ends in case (2) [Ullman, 1989].

Example 4.1. Let us say that we are interested to know if the hypergraph of the follow-
ing query acyclic:

Q(A,B,C,D,X) :− R(A,X), S(B,X), T (C,X).
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Figure 4.1 shows the hypergraph of Q(A,B,C,X). The algorithm presented above
works as follows. We select two hyperedges of the hypergraph arbitrarily, let us say
R(A,X) and S(B,X), and test whether the hypervertices contained inR(A,X)\S(B,X)
are unique to R(A,X). The only hypervertex in this set difference is A and A is unique
to R(A,X). Thus, R(A,X) is an ear and it is removed in favor of S(B,X).

Next, we select the two remaining hyperedges S(B,X) and T (C,X) and test whether
the hypervertices in S(B,X) \ T (C,X) are unique to S(B,X). Once again, the set dif-
ference contains only one hypervertex, in this case B. Since B is unique to S(B,X), we
remove S(B,X) in favor of T (C,X).

Now, we have only one hyperedge left in the hypergraph, indicating that the hyper-
graph is acyclic. (It represents the case (1.) above.) The order of ear removals was: (i)
R(A,X) was removed in favor of S(B,X); and (ii) S(B,X) was removed in favor of
T (C,X). 4

If the hypergraph is acyclic, we can obtain from this sequence of ear removals a spe-
cific sequence of semi-joins ensuring that no intermediate relation will be larger than the
input size plus the size of the final output relation. This order of semi-joins is computed
as follows: start with an empty sequence σ and start from the last ear removal, for each
ear removal of E in favor of F add F n E to the front of σ and E n F to the back of σ. In
each semi-join EnF , we update the relation E to the resulting relation of this semi-join,
and we denote it as E := E n F . In practice, we do not overwrite the relation E, but we
store the intermediate results of E after performing the semi-joins in auxiliary variables.

The sequence σ as described above is called the full reducer semi-join program of the
original query. A semi-join program fully reduces a relation E in the body of a given
queryQ(X) if it eliminates fromE all tuples not needed to answerQ(X) [Bernstein and
Goodman, 1981]. When we apply the full reducer semi-join program, all relations in the
body of the query become fully reduced.

After computing the full reducer, we compute a sequence of joins from the reversed
order of ears removals. If we removed ears in order R1, . . . , Rn then we compute the
final sequence of joins as Rn on . . . on R1 (from left to right). When we join Rn on . . . on
Ri+1 to Ri, the size of the intermediate relation cannot decrease, since every tuple of Ri
joins with one or more tuples of Rn on . . . on Ri+1. This occurs because the last semi-join
that updated Ri filtered all tuples that do not join with any tuple in Rn on . . . on Ri+1.
This is true because Ri was removed in favor of some Rj ∈ {Ri+1, . . . , Rk} and, by
definition of ear removal, Rj and Ri share at least one common attribute and the semi-
joins Ri n Rj and Rj n Ri worked as filters for the final relations. As a consequence of
this monotonic increase1, no intermediate relation can have more tuples than the final
relation (otherwise the monotonicity would be violated). We can see that such order
of semi-joins and joins never generates intermediate relations larger than the input and
output sizes. A more detailed explanation and intuition of the algorithm is given by
Ullman [1989].

Example 4.2. Given the hypergraph of Figure 4.1 and the order of ear removals from

1Technically, it can happen that the join of the intermediate relation with Ri produces an empty relation
(no tuple had matching values for the shared attributes). This is the special case the query has no tuple
satisfying the body rule.
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Example 4.1, the full reducer for this query is:

R(A,X) := R(A,X) n S(B,X)

S(B,X) := S(B,X) n T (C,X)

T (C,X) := T (C,X) n S(B,X)

S(B,X) := S(B,X) nR(A,X).

The final sequence of joins, computed after the full reducer, is:

T (C,X) on S(B,X) on R(A,X).

The result of the query Q(A,B,C,X) will be the relation computed from this join after
computing the full reducer. 4

In a broader view, acyclic conjunctive queries are very efficient to compute and the
amount of memory needed is polynomial in the input plus the output sizes. Finding the
full reducer semi-join program of a hypergraph can be done in linear time in the number
of hyperedges [Yu and Ozsoyoglu, 1979]. The complexity of evaluating the full reducer
semi-join program is O(kI log I), where I is the total input size and k is the number of
relations in the body of the query (i.e., number of hyperedges). Similarly, the complexity
of evaluating the final sequence of join operations is O(k(I log I + U logU)), where U is
the output size of the query answer [Ullman, 1989].

In contrast, cyclic conjunctive queries do not have such guarantees of efficiency, since
there is no full reducer semi-join program for them [Bernstein and Goodman, 1981].
When computing a cyclic conjunctive query, we might have intermediate states of the
computation that are exponentially larger than the final output. These very large inter-
mediate states cannot be always avoided and some cyclic queries have no ordering of
join operations that eliminates large intermediate states.

4.2.2 Full Reducers in Planning

The definition of acyclic and cyclic hypergraphs can easily be extended to the scope
of action schema instantiations as conjunctive queries. In other words, we can create
a hypergraph for the precondition of each action schema a[∆], where the nodes are
the free variables ∆ and the hyperedges correspond to the atoms in the preconditions
pre(a[∆]). A node corresponding to a free variable x of ∆ belongs to the hyperedge
corresponding to atom P (X) iff x is a free variable occurring in X . Then, we can use
the same algorithm described above to verify whether this action schema has an acyclic
precondition or a cyclic precondition.

As argued in the previous subsection, it holds that the intermediate relation size only
increases and no intermediate relation can have more tuples than the last relation U , the
output of the query. In our case, U contains only the instantiations of the action schema
that are applicable in the current state. Similarly, the total input size I is polynomial
in the size of the largest unnamed relation of the state (in the number of tuples) and
k is the number of atoms in the precondition. Consequently, the complexity of com-
puting the full reducer program, O(kI log I), is polynomial in the number of atoms in
the precondition times the size of the state. Furthermore, the time complexity for com-
puting the final sequence of joins is O(k(I log I + U logU)), which is still polynomial in
the size of the state and the number of applicable grounded actions. The baseline join
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:precondition (and (at ?player ?position)
(at ?stone ?from)
(clear ?to)
(move-dir ?position ?from ?dir)
(move-dir ?from ?to ?dir)
(is-goal ?to))

Figure 4.2: PDDL action schema corresponding to the action of pushing a stone to a goal position
in the Sokoban domain of IPC 2011.

program successor generator described before has time complexity O(Ik), as the size of
the intermediate relation can become exponentially long in k. In contrast, the successor
generator using complete enumeration has worst-case complexity ofO(n|O|), where n is
the arity of the action schema being instantiated and |O| is the number of objects in the
domain. Thus, for acyclic preconditions, the full reducer successor generator can be (in
theory) computed more efficiently than the previous methods.

In the rest of this work, we call this method full reducer successor generator. Although
right now it is a simple method to identify instantiations of action schemas which are
applicable to a given state, we extend it further in the next chapters.

We illustrate the definition of acyclic and cyclic preconditions using an action schema
example from the Sokoban domain. In this domain, a player has to push a set of stones
to goal positions.

Example 4.3 (“Push to goal” action in Sokoban). Figure 4.2 shows the conjunctive pre-
condition of the action schema where a ?player at ?position facing a ?stone from direction
?dir pushes it ?from some position ?to some goal position. Figure 4.3 shows the respec-
tive hypergraph representing this action schema. We do not represent relations with
one parameter because they can be filtered out by joining them with other relations that
share the same parameter without increasing the size of the non-unary relation (e.g.,
join is-goal(?to) and clear(?to) to move-dir(?from, ?to, ?dir) works as a filter for the latter).

In the following, we use aliases for the relations. These also work as copies of the
original relations into auxiliary variables, so we can modify them in the full reducer
program without overwriting the initial data. The aliases used are:

R1 := at(?player, ?position)
R2 := at(?stone, ?from)
R3 := move-dir(?position, ?from, ?dir)
R4 := move-dir(?from, ?to, ?dir).

It is possible to see that the hypergraph from Figure 4.3 is acyclic. One possible
sequence of ear removals is the following: remove R1 in favor of R3, remove R2 in
favor of R4, remove R3 in favor of R4. At the end of this sequence, only the hyperedge
R4 remains and thus the hypergraph is acyclic. (This falls into the case (1) described
earlier.)

To compute the full reducer σ we start from the last ear removal and add the update
of the ear to the back of σ and the update to the relation which the ear was removed to
its front. This makes the updated relation of the last ear removals to be in the middle of
the sequence, while the updated relation of the first ear removals are at the start and at
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?from

?stone ?to

?dir

?position ?player

at(?player, ?position)→ R1

at(?stone, ?from)→ R2

move-dir(?position, ?from, ?dir)→ R3

move-dir(?from, ?to, ?dir)→ R4

Figure 4.3: Hypergraph representing the conjunctive query checking whether the action schema
from Figure 4.2 is applicable.

GG

G

P

Figure 4.4: Positions of stones (crosshatched tiles), player (P tile), and goal position (G tiles).
Each tile is labeled x–y, where x is its column index (starting at 0) and y is its row index (starting
at 0). Top-leftmost tile is labeled 0–0, while the bottom-rightmost tile is called 4–1.

the end of σ. The full reducer σ would then be:

R3 :=R3 nR1

R4 :=R4 nR2

R4 :=R4 nR3

R3 :=R3 nR4

R2 :=R2 nR4

R1 :=R1 nR3.

To finish the computation of the query, we must take the full-join in the reverse order in
which we performed the ear removals. Since the ear removal order was R1, R2, R3 and
we ended with R4 still in the graph, the last sequence of joins is

R4 on R3 on R2 on R1.

When we join, lets say, R2 to R4 on R3, we cannot decrease the size of the rela-
tion being computed, because every tuple in the relation R2 joins with at least one
relation of R4 on R3, since R2, at(?stone, ?from), was an ear removed in favor of R4,
move-dir(?from, ?to, ?dir).

Now, we show how this method works for a concrete state. We use the state repre-
sented by Figure 4.4. We call this state as s in the next paragraphs. The representation of
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at

p 2–1
s1 2–0
s2 1–1
s3 3–1

(a) Relation at.

clear

0–0
1–0
3–0
4–0
0–1
4–1

(b) Relation clear.

is-goal

0–0
0–1
4–1

(c) Relation is-goal.

Figure 4.5: Unnamed relations of state s from Figure 4.4. Showing only those occurring in the
preconditions of the action schema of Figure 4.2. The object p indicates the player, and s1, s2, s3
indicate the stones. We omit the unnamed relation move-dir because of its excessive length, but
since it is a static predicate, its initial values should be clear.

s as a database is shown in Figure 4.5. The direction in which a move can be made are
denoted as N, S, E, W corresponding to north, south, east, and west, respectively. Note
the detail about different attribute names. Relations at(?player, ?position) and at(?stone,
?from) initially are identical to relation corresponding to the predicate symbol at in s.
However, as the sequence of operations proceeds, they start to differ due to its different
naming functions. The same can be said about relations with respect to the predicate
symbol move-dir.

We start by processing the unary relations. If two unary relations have a same free
variable X , we join them into a new relation. Then, we join this new relation to all
relations with higher arity also containing the free variable X . This removes all tuples
in whichX does not satisfy the unary predicates. This step serves as an early filter to the
relation with higher arity. In our example, we join is-goal(?to) to clear(?to). The resulting
relation is

is-goal(?to) on clear(?to)

?to

0–0
0–1
4–1

Then we join this relation to all high-arity relation containing the free variable ?to.
In this case, only move-dir(?from, ?to, ?dir). The filtered relation is

move-dir(?from, ?to, ?dir) := move-dir(?from, ?to, ?dir) on (is-goal(?to) on clear(?to))

From now on, we restart using the aliases previously defined. Hence, move-dir(?from,
?to, ?dir) is called R4 once again. The tuples of R4 after the operation above are
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R4

?from ?to ?dir

0–1 0–0 N
1–0 0–0 W
0–0 0–1 S
1–1 0–1 W
3–1 4–1 E
4–0 4–1 S

Once the unary relations are preprocessed, we apply the full reducer semi-join pro-
gram. The first semi-join in σ is R3 := R3 nR1:

R3 := R3 nR1

?position ?from ?dir

2–1 1–0 N
2–1 1–1 W
2–1 3–1 E

And the second semi-join R4 := R4 nR2 in σ:

R4 := R4 nR2

?from ?to ?dir

1–1 0–1 W
3–1 4–1 E

The third is R4 := R4nR3, which does not filter any tuple out of R4 and hence is not
showed. The fourth semi-join in σ is R3 := R3 nR4:

R3 := R3 nR4

?position ?from ?dir

2–1 1–1 W
2–1 3–1 E

The two last joins of the full reducer are R2 := R2 nR4 and R1 := R1 nR3, respectively.

R2 := R2 nR4

?stone ?from

s2 1–1
s3 3–1

R1 := R1 nR3

?player ?position

p 2–1

Finally, we can execute the final sequence of joins R4 on R3 on R2 on R1. The final
relation is the following:
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Benchmark Action Schemas Acyclic Precond Avg. Proportion

IPC 1998-2018 59520 56668 (95.8%) 83.4%

IPC 2018 18437 16005 (86.9%) 72.8%
IPC 2018 w/o Org. Synthesis 113 99 (87.7%) 78.1%

Org. Synthesis – Original 760 65 (8.6%) 8.6%
Org. Synthesis – Split 17564 15841 (90.2%) 90.2%

Table 4.1: Total number of action schemas, total number of acyclic preconditions using different
benchmarks, and average of the proportion of acyclic schemas per domain. Number inside
paranthesis indicates the ratio of acylic preconditions to the total number of action schemas. We
restrict to benchmarks for the optimal track (in editions where there was a division of tracks).
We also do not consider action schemas which are already grounded in the domain file (e.g.,
action schemas for the Trucks domain).

R4 on R3 on R2 on R1

?player ?stone ?position ?from ?to ?dir

p s2 2–1 1–1 0–1 W
p s3 2–1 3–1 4–1 E

which contains the only two tuples representing valid moves pushing stones to a goal
position in the current state. The first tuple is the instantiation where the player pushes
the stone at the left and the second tuple instantiates the action where the player pushes
the stone at his right side.

4

The full reducer successor generator deals with the case of action schemas where
the hypergraph of its precondition is acyclic. However, it gives no clue on how to deal
with the case where preconditions are cyclic. Unfortunately, this case might lead to
intermediate relations that are exponential in the size of the output and no efficient
algorithm is known.

In Section 4.3, we introduce methods to deal with cyclic preconditions. These meth-
ods try to apply strategies that minimize the size of intermediate relations when com-
puting the join program.

4.2.3 Case Study: Acyclicity of IPC domains

The full reducer successor generator is extremely useful when we have acyclic action
schemas. But are the preconditions of planning domains usually acyclic? If most of
the domains have action schemas with cyclic preconditions, the full reducer successor
generator might be useless.

We ran an experiment using the IPC domains to evaluate the proportion of cyclic and
acyclic preconditions over all action schemas. Table 4.1 shows the number of acyclic
preconditions in different benchmarks from the IPCs from 1998 to 2018. We consid-
ered the action schemas of all STRIPS domains used for the optimal tracks, excluding
those which are already grounded in the domain description. Only 4.2% of the action
schemas have cyclic preconditions when we consider all action schemas of all domains.
In total, we tested 65 different domains and 22 of them have at least one action schema
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Benchmark Action Schemas Acyclic Precond Avg. Proportion

IPC 1998-2018 59520 59367 (99.7%) 86.7%

Org. Synthesis – Original 760 695 (91.5%) 91.5%
Org. Synthesis – Split 17654 17654 (100.0%) 100.0%

Table 4.2: Total number of action schemas, total number of acyclic preconditions using different
benchmarks, and average of the proportion of acyclic schemas per domain. Number inside
paranthesis indicates the ratio of acylic preconditions to the total number of action schemas.

with cyclic preconditions. One domain is responsible for a large chunk of such cyclic
schemas. As one might guess, this domain is the hard-to-ground Organic Synthesis.
Once we exclude both variants of this domain (original and split) from the benchmark,
the number of actions with cyclic preconditions over all IPC domains is very small, only
113 of the 41.196 schemas.

We also verified the proportion of acyclic schemas per domain. The domains where
the proportion of acyclic action schemas is less than 50% are: Caldera, Data Network,
Elevators, Organic Synthesis, Pipesworld (Tankage and Notankage), Termes, TidyBot,
and Tetris. Of these domains, only Organic Synthesis and TidyBot have more than 10
action schemas. The most extreme case occurs in the Pipesworld Tankage (with the
no-split domain), where all action schemas are cyclic. The average proportion of acyclic
action schemas over all domains is 83.4%. This shows that although there is a significant
number of cyclic schemas, most of the instantiations can still be computed in tractable
time.

When we focus on the recent domains introduced in the IPC 2018, the proportion
of cyclic preconditions increases. Caldera (both versions), Data Network, Settlers, Spi-
ders, and Termes have action schemas with cyclic preconditions. The only two domains
tested from IPC 2018 where all action schemas have acyclic preconditions are Nurikabe
and Spider. It is important to remember that domains containing only grounded action
were not considered, which is the case of the Petri Nets Alignment domain introduced
in the IPC 2018.

Still, the Organic Synthesis domain raises a new interesting question. Focusing only
on the two variants of this domain, the original one and the one using action schema
splitting [Areces et al., 2014], we can see that the proportion of cyclic preconditions dras-
tically changes when we use the splitting technique. In the original version, 695 of the
760 action schemas have cyclic preconditions, a total of 91.4%. In the split version, 1.723
of the 17.564 preconditions are cyclic, only 9.8%. A similar behavior can be observed
in Caldera: the only cyclic precondition in the original Caldera formulation becomes
acyclic once the action schema splitting is performed. However, in this split version of
the Caldera domain, the splitting also introduces new cycles to preconditions that were
initially acyclic. The goal of the action schema splitting by Areces et al. is to reduce the
interface (i.e., number of parameters) of the action schemas. It might be the case that this
method also performs an underlying decomposition of the query in some special cases.
In database theory terms, a query decomposition is a reformulation of a query into a
new but equivalent query such that the latter presents a hypergraph topology which
is easier to evaluate, perhaps even becoming (fixed-parameter) tractable [Gottlob et al.,
2000, 2002].

Most of the cyclic preconditions in IPC domains occur due to inequality constraints.
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(Here we only consider 6= and not <.) In the results reported above, we treat the in-
equality predicate symbol like any other regular predicate symbol. However, inequality
constraints are native predicates in PDDL with a built-in semantics and indicate that
two parameters must be instantiated by different objects. These semantics are identical
to the built-in inequality predicate in relational algebra, for example. To illustrate, as-
sume that we have the atom !=(?a, ?b). This atom means that the objects substituting ?a
and ?b must be different. We can consider the notion of acyclic queries with inequalities
[Papadimitriou and Yannakakis, 1999], where the hypergraph does not consider built-in
inequality constraints. Unfortunately, even though our hypergraphs get simpler when
ignoring inequalities, the problem becomes NP-complete. In the literature, it is still
possible to find fixed-parameter tractable algorithms with respect to the query size for
acyclic queries with inequality constraints (e.g., Papadimitriou and Yannakakis [1999]).

In the planning scenario, we can also make use of this natural semantics of inequal-
ity predicates. However, since the relations usually do not have more than hundreds
of tuples, we can solve the inequalities issue with a simple post-processing stage. In
this post-processing, we interleave the join program with inequality checks. When com-
puting a join program, we can identify when relations containing free variables in a
single inequality constraint are joined. In this case, we loop over resulting tuples and
discard those violating the inequality constraints. Although this method is not tractable
in any fixed parameter, our experiments demonstrate that it is still efficient enough for
the planning problems tested (Chapter 5).

Using this extra stage, we can construct our hypergraph and analyze the acyclicity
of a query based only on the other relations which are not inequality constraints. By
adding this post-processing step, we also lose the guarantee that no intermediate re-
lation is larger than the final output. However, our experiments also show that this
sacrifice is a good trade-off. Table 4.2 shows the number of action schemas that are
acyclic when not considering inequality constraints on the hypergraph. The proportion
of cyclic action schemas over all action schemas decreases significantly. In particular,
the Organic Synthesis domain presents a reduction of more than 90% in the number of
cyclic action schemas. The number of domains with cyclic actions also falls from 22 to
20. Other domains also had a significant reduction in the number of cyclic schemas us-
ing this method: GED, Hiking, and TidyBot. The average proportion of acyclic schemas
overall domains increases from 83.4% to 86.7% when ignoring inequality constraints.

Furthermore, our experiments shows that such post-processing does not harm the
full reducer successor generator in any case, since most of the relations are relatively
small and this stage is computed very quickly.

4.3 Extensions

In this section, we present two extensions to the full reducer successor generator. The
main objective of these two extensions is to enhance the performance of the generator
in a few special (but common) cases.

The first extension deals with the case where we have free variables in the precondi-
tions of an action schema that are not affected by any effect. In formal terms, this is the
case where

∆ 6= free(add(a[∆])) ∪ free(del(a[∆])).

In this case, variables that are not in the add and delete lists could be existentially quanti-
fied in the precondition. However, many planners do not allow existentially quantified
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(:action dummy
:parameters (?a ?b ?c)
:precondition (and (S ?a)

(S ?b)
(S ?c))

:effect (and (not (S ?a)))
)

Figure 4.7: Action schema with three parameters, ?a, ?b, ?c, and only one occurs in the effect, ?a

variables in the preconditions. We show how the full reducer successor generator al-
ways detects such cases automatically and reduces in the number of applicable actions
in a state, without losing correctness or completeness.

The second extension tries to minimize the potential harm of the full reducer succes-
sor generator in cases where the action schema is acyclic. Our approaches to such cases
have no guarantee of any optimality and most of them are similar to the methods that
also enhance the naive successor generator.

4.3.1 Extension 1: Free Variables only in Preconditions

We motivate the use of this extension with an example. Although our example is hand-
tailored, we show later that several IPC domains have action schemas with free variables
only in the preconditions.

Example 4.4. In the example of Figure 4.7, we have an action schema with three param-
eters (?a, ?b, ?c) but only one occurs in the free variables of the effects.

Let s be a state of the planning task and assume that there are n ground atoms of
the type (S x) in s. Thus, the number of applicable instantiations of this schema in s
is n3. However, there are only n different successor states of s: the n instantiations of
parameter ?a, since it is the only one which is changed by some effect. All possible n2

combinations of instantiations of ?b and ?c for a fixed ?a lead to a same state, since ?b
and ?c are not affected. It means that s would have a branching factor (i.e., number of
outgoing transitions in the state space) of n3 but leading to only n different successors.

Our example is relatively small to maintain its simplicity. Note that as the number of
parameters in the action schema increases, the difference between the branching factor
and the number of different successors would also increase. 4

This situation actually occurs in several IPC domains. For example, the Organic Syn-
thesis domain has action schemas with 17 parameters where only four appear in some
atom in the effect lists. But not only the Organic Synthesis domain presents such com-
plicated situations. Domains such as Agricola, TidyBot, Woodworking, Data Networks,
and Satellite have several action schemas where at least four free variables in the param-
eters are not affected by the add and delete lists. We tested 76 STRIPS domains used in
all IPCs and in exactly half of them, 38, there was at least one action schema with free
variables in its preconditions which were not in the effects. This test also shows that if
a successor generator is able to avoid such unnecessary instantiations, it could have a
great improvement in performance in general. (In Chapter 5 we give more details about
this experiment.)
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Variables that do not show up in the effect can be existentially quantified. We do
not care about the values of existentially quantified variables, we simply care that a
valid instantiation for them exists. In fact, Francès and Geffner [2016] demonstrate that
existentially quantified variables arise naturally when modeling different planning and
domains and treating them differently can improve the performance of the planners.

We can adapt our full reducer successor generator to deal with this case. This exten-
sion can detect variables that should be existentially quantified in the precondition and
project them out from the query answer. Once again, we explain it with the example
shown in Figure 4.7. The query for this action schema is

Q(A,B,C) :− S(A), S(B), S(C).

However, since the effect simply affects the objects instantiated by the attribute A, we
simply do not care about the instantiations of B and C. What we really care about is
whether there is at least one tuple instantiating B and C for each possible value of A. In
other words, B and C can be existentially quantified in the precondition. Thus, we can
simply rewrite the query above as

Q(A) :− S(A), S(B), S(C).

This scenario is nothing more than a projection in the resulting relation of the query.
This is a so called project-join program [Ullman, 1989]. A project-join program is a con-
junctive query where only some free variables are of interest. For example, in the query

Q(X) :− R1(Y1), R2(Y2), . . . , Rn(Yn)

where X ⊂ Y1 ∪ . . . ∪ Yn, we only need to keep record of the free variables X , because
these are the values which we want to retrieve in the query answer. These are the so
called distinguished variables of the query, the ones occurring in the heads. In relational
algebra, this means that we are computing the conjunctive query using a join program
but projecting the tuples only into the distinguished variables.

A subtle modification in the full reducer successor generator is able to automati-
cally deal with project-join programs. Instead of applying a sequence of join operations
after executing the semi-join operations of the full reducer, we interleave the join opera-
tions with the necessary projections. This algorithm is called Yannakakis’ Algorithm for
project-join expressions [Yannakakis, 1981].

The algorithm for computing the project-join of a query Q(X) works as follows:

1. Compute and execute the full reducer of Q(X).

2. Compute the parse tree P of the original query, where every relation in the body
is a node and a relation R(Y ) is a child of S(Z) iff R(Y ) was an ear eliminated in
favor of S(Z).

3. Traverse P in a bottom-up order. Whenever we visit a relation R(Y ) such that
S(Z) is its parent, we replace the latter by the relation

S′(W ) := πW (R(Y ) on S(Z)),

where W = Z ∪ (Y ∩X).

4. Once the tree traversal reaches the root node of P , apply a projection on the dis-
tinguished attributes X in the relation of the root node.
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The crucial step in Yannakakis’ algorithm is the third step. Once a relation S(Z) is
joined with all its children, its result is equivalent to the complete join of S(Z) and all
its children, projected only on the attributes Z and whatever distinguished attributes
appear in its descendants of the parse tree.

This project-join algorithm is quadratic in the sum of the input size I and the out-
put size U [Yannakakis, 1981; Ullman, 1989]. However, the output size in this case is
slightly different. The output size of this algorithm is the number of different tuples
only considering the distinguished attributes, instead of all attributes. Hence, in queries
such as the one for Example 4.4, the output size is significantly smaller when consider-
ing only the different tuples over the distinguished attributes. Note that when applying
Yannakakis’ algorithm to generate successors, we are not only checking the applicable
instantiations for a given action schema but also projecting out the instantiations which
generate duplicated successors. This is the reason why we consider our methods as
successor generators, instead of simply calling them “generators of applicable actions”.
Also, when using Yannakakis’ algorithm, we lose the guarantee that no intermediate re-
lation has size bounded by the output size. Still, we can guarantee that no intermediate
relation will be larger than 2IU [Ullman, 1989].

Example 4.5 (Ullman [1989]). We start with five relations R1(C,D,E), R2(B,C,D),
R3(D,E,G), R4(A,B,C), and R5(B,F ). The query considered is

Q(A,G) = R1(C,D,E) on R2(B,C,D) on R3(D,E,G) on R4(A,B,C) on R5(B,F ).

Assume that the full reducer program was already computed and evaluated and thus
all the relations are already fully reduced. The parse tree of the full reducer of Q(A,G)
is

R1(C,D,E)

R2(B,C,D)

R4(A,B,C) R5(B,F )

R3(D,E,G)

In our example, let the fully reduced relations be the following

R1(C,D,E)

C D E

c1 d1 e1
c1 d2 e1

R2(B,C,D)

B C D

b1 c1 d1
b1 c1 d2

R3(D,E,G)

D E G

d1 e1 g1
d1 e1 g2
d2 e1 g1

R4(A,B,C)

A B C

a1 b1 c1
a2 b1 c1

R5(B,F )

B F

b1 f1
b2 f1

The algorithm starts visiting the nodes of the parse tree bottom-up. Let us start by
the node representing relation R4(A,B,C). We join it with its parent R2(B,C,D). The
resulting relation has attributes B,C,D, the attributes of the parent node, plus attribute
A, since it is the only distinguished attribute in the child. We denote this new relation
as S2,4(A,B,C,D) and replace R2(B,C,D) with it. Next, we join the recently replaced
relation S2,4(A,B,C,D) with the other child R5(B,F ). Since F is not distinguished and
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B is already in the parent node, the resulting relation still contains just A,B,C, and D.
This new relation is denoted S2,4,5(A,B,C,D) and replaces S2,4(A,B,C,D) in the tree.
The tuples in S2,4,5(A,B,C,D) are

S2,4,5(A,B,C,D)

A B C D

a1 b1 c1 d1
a1 b1 c1 d2
a2 b1 c1 d1
a2 b1 c1 d2

Now, the third layer of the parse tree is already visited and we move forward to
the second layer. Let S2,4,5(A,B,C,D) be the first node visited in this layer. This node
is joined with its parent node R1(C,D,E). We project into the new relation only the
attributes of the parent, C,D,E, plus the distinguished attribute of S2,4,5(A,B,C,D),
which in this case is only A. The new relation is S1,2,4,5(A,C,D,E) replaces the root
node. Now, the only relation still not joined to the root is R3(D,E,G). We join it with
S1,2,4,5(A,C,D,E), resulting in the relation S1,2,3,4,5(A,C,D,E,G). Attribute G is kept
in the new relation because it is distinguished. Now all the relations in the second layer
are already joined to their parents. We proceed to the root node next. Once we visit
the root node, we simply project its relation S1,2,3,4,5(A,C,D,E,G) to the distinguished
attributes. This leads to the relation that is the output of the algorithm, Q(A,G). We
show S1,2,4,5(A,C,D,E), S1,2,3,4,5(A,C,D,E,G), and the output relationQ(A,G) below.
Note that Q(A,G) is just a projection of S1,2,3,4,5(A,C,D,E,G) over the distinguished
attributes, but it contains only 4 tuples while S1,2,3,4,5(A,C,D,E,G) has 6.

S1,2,4,5(A,C,D,E)

A C D E

a1 c1 d1 e1
a1 c1 d2 e1
a2 c1 d1 e1
a2 c1 d2 e1

S1,2,3,4,5(A,C,D,E,G)

A C D E G

a1 c1 d1 e1 g1
a1 c1 d1 e1 g2
a1 c1 d2 e1 g1
a2 c1 d1 e1 g1
a2 c1 d1 e1 g2
a2 c1 d2 e1 g1

Q(A,G)

A G

a1 g1
a1 g2
a2 g1
a2 g2

4

Modifications

There are three modifications that we need to perform to use the Yannakakis’ algorithm
in the case of planning.

(i) A planner must describe the plan as a sequence of ground actions, where the ob-
jects match exactly the respective parameters of the action schemas. Thus, in order
to have a ground action, we need to keep track of at least one object for each non-
distinguished variable in each tuple of the query. For example, if we project a
relation R into the distinguished variables X and this projects out the attribute
A, we must still keep track of at least one matching value of attribute A for each
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remaining tuple of πX(R). In practice, for each combination of objects of the pro-
jected attributes, we keep a complete tuple containing all attributes, including the
ones being projected out.

(ii) The inequalities are also not part of the original algorithm. Although there are al-
gorithms for such purpose in the literature [Papadimitriou and Yannakakis, 1999],
we stick to the simple post-processing of inequalities. It is important, though, that
the projection is performed after the computation of the inequalities.

When we compute the projection, we still keep at least one value for the attributes
projected out. Suppose that, we keep only a tuple violating an inequality con-
straint, while there were other tuples that do not violate this inequality. If this is
the case, the post-processing of inequalities will remove this tuple later. But this
removal can make an action inapplicable and hence the task unsolvable.

When the inequalities are processed prior to the projection, we ensure that the
remaining tuples do not violate any constraint and will not be removed unsafely.

(iii) Because of our inequality post-processing, it might occur that two distinguished
variables are in a single inequality constraint, so we need to process them in every
join of the tree. This post-processing forbids us to assume the original upper-bound
of 2UI in the intermediate relations.

4.3.2 Extension 2: Efficiently Instantiating Cyclic Preconditions

In this section, we discuss strategies for the case of action schemas with cyclic precon-
ditions. The main goal here is to find a strategy that minimizes the chance of producing
intermediate relations with size exponential in the size of the join program. In practice,
these strategies define an order to perform the join program over all relations in the
precondition.

In this work, we are interested in what we call static strategies. Such strategies or-
der the join program based on the structure of the query and not based on the tuples
of the relations. In contrast to static strategies, there are dynamic strategies, which also
consider the characteristics of the relations when ordering the join program. For exam-
ple, we could order our join program based on the number of tuples in each relation.
Although dynamic strategies can be very good for cyclic queries, they present the draw-
back that they must be recomputed at every single state of our search. Trying to avoid
this possible overhead, we limit ourselves to static strategies in this work. However, we
emphasize that dynamic strategies might have a performance at least as good as our
static strategies.

Naive Join

The first and most straightforward strategy is to simply perform a complete join pro-
gram of the predicates in the precondition in any arbitrary order. For example, the
order in which the predicates are given or randomized order.

Ordered Naive Join

A simple extension of the Naive Join is to order the join program by the arity of its
predicates. For example, one could start by joining the relations with the lowest arity
first. Intuitively, by joining relations of lower arity first, we might keep our intermediate
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relations more compact with respect to its arity and cardinality. It can also be useful to
also consider free variables in each predicate when ordering or breaking ties since this
would avoid the case where the relations do not share any free variable and hence a
Cartesian product is performed.

Semi-Join Program + Secondary Strategy

Another option is to use a semi-join program first and then perform a join program.
For example, we could use the fact that we always precompute a semi-join program
when testing whether a precondition is acyclic or not and reuse this semi-join program
to filter out our relations before the full join. In this scenario, we try to compute a full
reducer but we fail (i.e., at some point there is no possible ear removal in the hypergraph
but there are still hyperedges left). However, previous ear removals are meaningful
because they semi-join relations that have a common free variable and thus filter out
tuples from these relations. Hence, we can keep this semi-join program and apply it
before computing the join of all relations. To order this last complete join, we can rely on
one of the other strategies mentioned in this section. This semi-join and join programs
can be preprocessed for each action schema and the strategies reused in each state.

When discussing the experimental results of our methods, in Chapter 5, we show
that the instantiation of cyclic preconditions is not the bottleneck of our approach and
thus the methods introduced here are sufficient for a good performance.

. . .
In the next chapter, we present the experimental results comparing our different

methods introduced in this chapter. We also introduce some results comparing different
ways to represent states. We will also compare our lifted planning methods to well-
established grounded planners.



Chapter 5

Experiments

In this section, we describe the experimental results of our lifted successor generators.
We first show the results comparing different ways to represent states in a lifted planner.
Then, we compare the different successor generators using the lifted action representa-
tion introduced before. We conclude the chapter presenting a comparison of our best
lifted successor generator to state-of-the-art grounded planners.

We implemented a planner prototype using the lifted successor generators and the
extensions previously described. The source code of the planner is available online1.
The planner has two main components: (i) a translator component, based on the trans-
lator from Fast Downward [Helmert, 2006, 2009]; and (ii) a search component imple-
mented from scratch. Our planner first translates a task from PDDL to an intermediate
representation, compiling types into unary predicates and filtering out trivially inap-
plicable action schemas (e.g., if an action schema needs an object of type T but there
is no object with such type in the task.) The search component performs a heuristic
search over this translated task. We implemented a breadth-first search and a GBFS in
the search component. The search component is written in C++ 17 and it is integrated
with Lab [Seipp et al., 2017] for experiments.

Our planner supports an extension of STRIPS allowing equalities and inequalities in
preconditions. The main benchmark used consists of all domains using such formalism
from all optimal tracks of the IPCs. As previously mentioned, we could also support
negative preconditions simply by transforming the domains into positive normal form.
In total, this benchmark has 1560 instances over 53 different domains. In some specific
experiments, we also used larger benchmarks, or benchmarks from the satisficing track
of the IPCs or even domains which were never part of the IPC. These larger benchmarks
are described in detail in their specific experiments. All experiments were run on an
Intel Xeon Silver 4114 processor running at 2.2 GHz. Each task was allowed total time
of 30 minutes and a total memory usage of 16 GB.

5.1 State Representation

Our first question in the empirical part is how to represent a state. We consider two types
of representations: complete and sparse. In the complete representation, a state is simply
a sequence of bits, each bit associated with a ground atom. However, since we do not
perform any grounding, we must find an efficient way to obtain an overapproximation
of the reachable ground atoms of the planning task. A possible way is to enumerate a

1https://zenodo.org/record/3539283#.XcrXsNF7kUE
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Figure 5.1: Comparison of state size in the number of ground atoms and processing time for
the method enumerating all possible ground atoms only based on type restrictions and the one
based on types and also on the soft reachability analysis.

sufficiently large list of ground atoms when translating the task. Unfortunately, it is not
obvious how to perform an efficient enumeration in terms of the computation time and
the number of ground atoms produced.

Our first experiment attempts to find the number of ground atoms generated in each
of the tasks of our benchmark using a complete state representation. A simple way to
use complete states without grounding is to enumerate all possible ground atoms. In
PDDL tasks where type information is also given, we can narrow down this enumera-
tion to only consider ground atoms that satisfy the type requirements. Unfortunately,
this leads to large states in many domains. For example, in the Logistics98 domain,
many tasks need more than 20 kilobytes per state. The task with the most number of
objects in this domain needs approximately 40 kilobytes per state.

To avoid the excessive creation of ground atoms, we implemented a soft reachability
analysis. Our analysis is an overapproximation of the one performed by Helmert [2009].
In a brief description, our analysis is similar to a breadth-first search over a reachability
graph. This reachability graph G = (V,E) is created as follows: for every n-ary pred-
icate P (t1, . . . , tn) of the task, we create n nodes 〈P, i〉 for 1 ≤ 1 ≤ n. Let a[∆] be an
action schema where predicate P (t1, . . . , tn) appears in the precondition and a predicate
Q(s1, . . . , sm) appears in the effect. If ti = sj for 1 ≤ i ≤ n, 1 ≤ j ≤ m, then we add an
edge from 〈P, i〉 to 〈Q, j〉 in E. Note that it might happen that the predicate symbols P
and Q are the same and that ti might be a constant or a free variable of ∆. Similarly, if sj
occurs only in the effect, then we add an edge from all other nodes to 〈Q, j〉. We define
E as the set that contains all edges added following this description.

Once G is created, we verify which nodes are reachable from every other node. We
use a strong notion of reachability, where a node u ∈ G is reachable from node v ∈ G if
there is a path from v to u. If node 〈Q, j〉 ∈ G can be reached from 〈P, i〉 ∈ G then we
assume that every object instantiating the i-th argument of a ground atom with predicate
symbol P can instantiate a predicate with symbol Q as its j-th argument. We perform
this analysis based on the ground atoms given in the initial state s0.

This can be seen as an overapproximation of a relaxed reachability analysis per-
formed by Helmert [2009] where we split each Datalog rule with a body of length n into
n new rules with atomic bodies and remove those in which the free variables of the rule
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Figure 5.2: Comparison of initial state size in the number of ground atoms and processing time
for the method enumerating all possible ground atoms only based on types and the soft reacha-
bility analysis and the method generating a sparse representation of the initial state.

head are not present in the body.
Figure 5.1a compares the size of the state when enumerating the ground atoms based

only on the restrictions on types and when also performing the reachability analysis.
We can see a reduction in size in exactly 200 instances. The time spent in the translation
component when using each method is shown in Figure 5.1b. We can observe that the
reachability analysis is a good trade-off: the computation of the reachability graph and
its analysis is not expensive and in most cases, it is still cheaper than to enumerate all
possible ground atoms.

However, Figure 5.1a also demonstrates that even with the soft reachability analysis,
some states are still too large to be represented. The problem with our soft reachability
analysis is that when a free variable or constant appears only in the effect, then the only
safe assumption we can perform is that any object might reach it. This is too weak
for efficient reachability analysis. Hence, even though our soft reachability analysis
improves the state size representation, it is still not practical.

In contrast to the complete representation, a sparse state representation simply rep-
resents a state as a set of relations, where each relation is a set of tuples, as in the database
theory interpretation. In this case, the size of a state using this sparse representation is
not constant during the whole search and, hence, some implementation optimizations
are not possible. Yet, the sparse state representation has the advantage that the number
of ground atoms in any state is bounded by the size of reachable atoms. This guarantees
that the number of ground atoms considered in the sparse case is never larger than in
the complete case. However, since we do not know the ground atoms in advance, we
cannot use a single bit per ground atom in the sparse case.

We compared the method using type constraints and the soft reachability analysis
with the scenario of using a sparse state representation. In this experiment, we compare
the state sizes in the number of atoms and consider only the initial state of each task
(since the sparse representation has variable size). Figures 5.2a and 5.2b show the state
size in the number of ground atoms and the processing time of the translator component
for each method over the 1560 tasks of our benchmark. As expected, the sparse repre-
sentation is smaller in general. Also, since we do not perform any translation procedure
exclusively in the state representation in the sparse case, we end up needing less time to
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translate the task.
Although the sparse representation is smaller in the number of ground atoms used,

it might also generate overhead due to more complicated data structures. For example,
we could use one bit per ground atom in the complete state representation. On the other
hand, the sparse representation needs to represent every ground atom as a pair (i, t)
where i is an integer identifying the predicate and t is a tuple of integers representing
the objects instantiating it. Assume that in a state s all n ground atoms of the task are
true. The complete state representation needs Θ(n) bits to represent this state, while
the sparse representation would need O(nab) bits, where a is the maximum arity of any
predicate and b is the number of bits used to represent an integer. (Here, we are also not
considering extra bits used to represent data structure more compactly, such as extra
pointers.) In order to amortize the space consumption, we can use a packed representation
of the ground atoms. For example, we can keep the list of already expanded states
using packed representations of the ground atoms. This packed representation hashes
every tuple of each relation into an integer of b bits using a perfect hash function. Then,
it also hashes the set of hashed tuples (now represented as integer numbers) of every
relation into another integer. Thus, the packed version of a sparse state representation
uses O(br) bits, where r is the number of relations in the state2. Besides that, the time
overhead of the sparse representation is also significant. Let us say that we want to check
whether a ground atom is true in a given state s. In the complete case, this ground atom
is represented by an index in a bit-mask and we can check it in constant time. In the
sparse case, if we use a hash set data structure as a container for the ground atoms, we
have the worst-case complexity of O(n) (although the amortized complexity is O(1)).

Still, we decided to stick with the sparse representation in our implementation. The
main reason for that is because this representation fits our successor generators more
intuitively, which is the focus of this work.

5.2 Comparison of Lifted Successor Generators

Our next experiment compares different methods to generate successors. We first tested
the following methods:

(i) Naive Join Program (J): Join the relations using the predicate order as given by
the PDDL definition of the action schema.

(ii) Randomly Ordered Join Program (JR): Join the relations using a randomly or-
dered join program. Results averaged over three runs.

(iii) Join Program ordered by arity (J<): Join the relations ordered by the ascending
arity of their predicates.
For this method, we also tested ordering the join program by descending arities,
but this led to worse results.

(iv) Full Reducer (FRSJ,<): For acyclic preconditions, perform the full reducer and then
the join program in the order established by the ear removals.
For cyclic preconditions, perform the semi-join program computed until no ears
were left in the hypergraph, then computes a join program over all relations or-
dered by arity.
We also tested some different strategies for cyclic preconditions in the method

2In our experiments, we had to use a long representation of integers using b = 64.



5.2. COMPARISON OF LIFTED SUCCESSOR GENERATORS 45

Domain # of tasks J J< FRSJ,<

depot 22 2 3 3
freecell 80 13 7 13
gripper 20 6 7 7
nomystery-opt11-strips 20 7 6 6
organic-synthesis-opt18-strips 20 11 10 19
parcprinter-08-strips 30 9 8 8
pegsol-opt11-strips 20 16 16 15
pipesworld-notankage 50 13 11 12
pipesworld-tankage 50 8 6 6
scanalyzer-08-strips 30 10 8 9
scanalyzer-opt11-strips 30 7 4 6
sokoban-opt08-strips 30 10 13 13
sokoban-opt11-strips 20 8 10 10
woodworking-opt08-strips 30 7 6 7
woodworking-opt11-strips 20 2 0 2
zenotravel 20 5 7 7

Other domains 1274 355 355 355

Total 1560 454 443 464

Table 5.1: Number of solved instances per domain using a breadth-first search with the three
different successor generator methods based on database techniques. Showing only domains
where there was difference in coverage between different methods.

FRSJ,<, such as ignoring the semi-join program, joining first the ears removed in
the final join program, and also randomly ordering the join program. However,
these also led to worse results.

In all methods, inequality constraints are post-processed.
Our first results compare these four different methods using a breadth-first search

over all instances in our benchmark.

Coverage: As one might expect, a breadth-first search does not perform well in most of
the IPC domains and thus all methods have very low coverage. The randomly ordered
naive join, JR, has the worst coverage, 350.0 on average. The join program ordered by
arity, J<, has the second-worst coverage, with 443 instances solved. The join program
ordered by the PDDL definition solves 464 tasks. The best method concerning coverage
is the full reducer successor generator, FRSJ,<. This method achieved a total coverage of
464.

Among the best three methods, very few domains had a difference in coverage. Ta-
ble 5.1 compares the coverage between J , J<, and FRSJ,< in domains where at least
one method obtained different total coverage. Most of them present a difference of at
most three instances. The only exception in this case is the most interesting result: the
Organic Synthesis domain has a jump from 10 to 19 instances solved when using the
successor generator based on the full reducer. Most of the Organic Synthesis instances
have considerably short plans and grounding the actions is the critical point to solve
the domain. If we sum up the time needed for FRSJ,< to solve these 19 instances, it is
below one minute. The instance not solved by FRSJ,< ran out of memory. For the other
two methods, a few instances also ran out of memory while trying to instantiate action
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schemas during the search. However, it is remarkable that our worst method presented
in Table 5.1 for this domain, J<, already solves 2 more instances than any planner in
the IPC 2018. This demonstrates that even our worst lifted method is already powerful
enough to solve the domain and indicates that the Organic Synthesis domain is hard
only due to the grounding.

On the other hand, the randomly ordered join program, JR, was only able to solve
two instances of the Organic Synthesis domain. This shows that although our methods
based on database techniques can enhance the performance in this domain, it is still
necessary to consider some information about the structure of the precondition (i.e.,
query) when instantiating it.

Comparing JR and J : The comparison between JR and J raises an interesting ques-
tion. Do the IPC domain descriptions contain some underlying model information that
helps the successor generators? We claim that yes, this happens in practice. Our hy-
pothesis is that when users are modeling a specific domain, they tend to think about
the domain with respect to its objects instead of the predicates. Hence, the user ends up
(unconsciously) “clustering” predicates related containing the same free variable when
defining the preconditions and effects. In this manner, J uses these “clusters” to avoid
joins between relations without a common free variable (which induce Cartesian prod-
ucts over the relations). In contrast, the randomization provided by JR breaks such
clusters and creates more situations where the Cartesian product is necessary, leading
to larger intermediate relations that significantly slow down the planner.

To prove this hypothesis, we measured the hit rate of free variables doing the join
program when using J and JR. When performing a join program R1 on R2 on . . . Rn, we
say that we have a hit when a free variable in Ri was already part of some other relation
R1, R2, . . . , Ri−1. Similarly, we count as a miss when the free variable was not part of
any relation in R1, R2, . . . , Ri−1. The hit rate of an action schema is the proportion of
hits compared to the sum of hits and misses. Using J (and ignoring grounded actions),
we have an average hit rate of 0.95 in our benchmark. The randomized method JR

has an average hit rate of 0.87. This corroborates with our hypothesis, showing that
there might be bias during modeling planning domains that “clusters” objects when
describing action schemas. It might be also useful to consider this kind of bias when
ordering (or breaking ties) in our join programs.

Memory and Time Consumption: We also compared the peak memory usage and
time for all methods. The results for peak memory consumption are presented in the
plots of Figure 5.3. We show only the results comparing FRSJ,< to the other two best
methods, J and J<. In most of the instances, all methods present similar memory us-
ages. However, FRSJ,< is significantly more efficient in the Organic Synthesis domain.
For the instances that J and J< also solve, FRSJ,< never reaches 20 MB, while the other
methods have a peak close to 10 GB, caused exclusively by larger intermediate relations
while generating successors. This is not surprising: FRSJ,< avoids extremely large in-
termediate relations while instantiating actions and ends up needing less memory in
general.

When comparing total search time, we observe a similar behavior. Most of the in-
stances present a similar total search time, but the Organic Synthesis instances need less
time when using FRSJ,<. (In fact, most of the Organic Synthesis instances are solved
very quickly and are placed in the left-bottom corner of the plot.) Although one might
expect that the FRSJ,< method would be slower due to the additional overhead of com-
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Figure 5.3: Peak memory usage in KB for different successor generator methods. Showing only
instances solved by at least one method. Organic Synthesis instances are marked in blue.
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Figure 5.4: Total search time in seconds for different successor generator methods. Showing only
instances solved by at least one method. Organic Synthesis instances are marked in blue.

puting a semi-join program prior to the full join program, the method is competitive in
all instances. Interestingly, this overhead seems to be a good trade-off, since it leads to
smaller intermediate relations and hence quicker join programs.

Largest Intermediate Relation: To better evaluate the differences between the meth-
ods, we ran an experiment computing the largest intermediate relation obtained when
generating successors for the initial state of every task. In this way, we can compare
our methods not only with respect to solved instances. Broadly speaking, a method
with lower intermediate relations consumes less memory and generally presents bet-
ter performance. Although the initial state might not be representative of most of the
states in the search, we expect the results to generalize up to some point throughout the
search. Figure 5.5 shows the plots comparing FRSJ,< to JR and J<. The results for J are
very similar to the ones for J<, so only the second one is shown. The instances marked
in blue circles contain action schemas with cyclic preconditions. As expected, FRSJ,< is
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Figure 5.5: Largest intermediate relations when expanding s0 for different successor generator
methods. Showing only instances solved by at least one method. Instances with action schemas
with cyclic preconditions are marked in blue.

superior to the other two methods when considering instances with only acyclic precon-
ditions. It is also interesting to note that FRSJ,< performs better than JR and J< in most
instances with cyclic preconditions as well. This indicates that our extension for cyclic
preconditions is informed enough. In a few domains, J< has better performance than
FRSJ,<. This happens for cyclic action schemas which have no applicable instantiation
to the initial state and that, simply by chance, J< is able to detect it earlier than FRSJ,<

(e.g., there is an empty intermediate relation earlier in the join program of J< than in
FRSJ,<). In Figure 5.5 we can also observe instances without cyclic schemas but with
very large intermediate relations. All these instances are from the Childsnack domain.
The largest instances of this domain have close to 5000 applicable operators in the initial
state and the largest intermediate relations is actually the final one for all cases. In fact,
all methods have the same largest intermediate relation in these tasks, which are the
final applicable tuples.

Cyclic action schemas: Focusing only on the strategy for cyclic action schemas, we in-
vestigated how much of the total search time is spent instantiating cyclic action schemas
for tasks that were solved given our resource limits. The good news is that in most cases
our strategies have a very good performance and are not the bottleneck of our planner,
as one could expect. Considering the 86 tasks with cyclic actions that took more than
1 second to be solved, only 12 of them spent more than 10% of the time instantiating
cyclic action schemas. The domains with the highest ratio were NoMystery, Hiking,
and Freecell. Only NoMystery had instances where the instantiation of cyclic schemas
used more than 20% of the time, reaching a maximum of 51% in an instance solved
in 67 seconds. We expect that by scaling up the instance sizes this proportion would
also increase. There are several other strategies that could be implemented to mitigate
the issue with cyclic action schemas if needed. One of the main strategies (although
not tested in our work) would be to implement hypertree decomposition [Gottlob et al.,
2002]. Such decomposition strategies are widely used not only in the database commu-
nity but also in the scope of constraint programming problems [Vardi, 2000; Gottlob et
al., 2016]. Hypertree decompositions are fixed-parameter tractable and it might be inter-



5.3. COMPARISON TO THE YANNAKAKIS’ PROJECT-JOIN METHOD 49

100 101 102 103 104 105 106 107 108

Generations

0.0

0.2

0.4

0.6

0.8

1.0

A
v
g
. 
%

 o
f 

d
if
fe

re
n
t 

su
cc

e
ss

o
rs

Figure 5.6: Plot comparing the number of states generated and the average proportion of differ-
ent successors over all states of each instance.

esting to study it in the context of classical planning. For our current scenario, however,
due to the size of most of the IPC problems, our heuristic strategies based on static anal-
ysis of the preconditions already have a good performance and are not critical to our
planner.

5.3 Comparison to the Yannakakis’ Project-Join Method

Yannakakis’ algorithm introduced in Chapter 4 has a potential gain for instances where
many free variables appear only in the precondition of the action schemas. Although
many instances present a potential gain, it is not clear whether this translates into prac-
tice for the IPC instances. Trying to quantify this amount, we ran an experiment where,
for each state expanded in the search, we count the number of ground actions that lead
to a different successor. In the end, we compute the proportion of instantiations that
led to duplicates over all states in the search space. In other words, we are comparing
the proportion of the generations that could be saved by using Yannakakis’ algorithm,
which would avoid multiple instantiations of actions leading to the same state (except
for self-loops). The results are shown in the plot of Figure 5.6. Most of the instances
present zero or close to zero gain when using Yannakakis’ algorithm instead of FRSJ,<.
Yet, several instances would be considerably benefited by Yannakakis’ algorithm. In
particular, the Organic Synthesis domain has instances where only 6% of its instantia-
tions lead to unique successors. Additionally, a few large instances also have potential
gains close to 40%. In tasks with millions of states expanded, saving 20% of the state
generations might lead to a significant performance boost. Also, we expect that this
might contribute to an increase in the coverage by solving larger instances.

Unfortunately, the successor generator using the Yannakakis’ algorithm, denoted
from here on as Y , did not translate the potential gains into practice. In our experiment,
Y solves 461 tasks, while FRSJ,< solves 464. In fact, Y barely reduced the number of
states generated on average overall domains. Figure 5.7a shows a plot comparing the
number of states generated before the last layer using each method. We can see that for
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Figure 5.7: Generated states and total search time (in seconds) for FRSJ,< and Y .

most of the instances, Y and FRSJ,< generate a very similar number of states. The main
reduction, in proportion, is in Organic Synthesis, as expected. In the other domains,
the gain was not significant. Besides that, both methods need almost the same search
time in all solved tasks, as shown in Figure 5.7b. Although Y is superior to J and J<,
we do not have any evidence that it pays off compared to FRSJ,<. The main reason for
that is the overhead added by Y in comparison to FRSJ,<. The Yannakakis’ algorithm
has an asymptotic complexity on the product of the input and output relations, while
the FRSJ,< method has time complexity polynomial on the sum of the input and output
relations.

Later on, however, we show that Y can improve coverage as soon as the size of the
domains scale up.

5.4 Comparison to State-of-the-Art Grounded Planners

We also compared the performance of our two best methods, FRSJ,< and Y , to state-
of-the-art grounded planners. We compare our methods to Fast Downward [Helmert,
2006], which is the base of most planners using heuristic search. The version of Fast
Downward used was 19.06. In order to have a better comparison, we also implemented
the goal-count heuristic Fikes and Nilsson [1971] in our planner. The goal-count heuristic
is an action-independent heuristic that simply counts the number of ground atoms in the
goal condition γ that are not satisfied in the state s being evaluated. This heuristic can be
seen as an edit distance metric between a state and the goal condition. Intuitively, this
heuristic assumes a state with more goal ground atoms is closer to a goal state. Thus,
we compare our two best methods and Fast Downward using a breadth-first search
algorithm and a GBFS guided by the goal-count heuristic. We provide the experimental
results for the former first.

Our best method FRSJ,< is competitive with Fast Downward using a breadth-first
search in some domains. In 42 of the 53 domains, the difference in coverage between
FRSJ,< and Fast Downward was 5 instances or fewer. (We are not counting domains
where one of the methods had coverage of 0.) Fast Downward solves 638 instances
and FRSJ,< solves 464. Most of the domains are very easy to ground and thus it pays
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Figure 5.8: Total time in seconds for FRSJ,< and Fast Downward for different search methods.
Showing only instances solved by at least one method. Organic Synthesis instances are marked
in blue. Time for Fast Downward considers translator and search components time.

off to use the Fast Downward grounding procedure. However, as already known, Fast
Downward has issues when grounding larger domains, such as Organic Synthesis. In
this domain, particularly, Fast Downward can only ground eight of the 20 instances,
while FRSJ,< and Y can solve 19 of them. This shows that, although grounded planners
might be expected to perform better on average, a lifted planner using our techniques is
still capable of solving problems on which a grounded planner has no chance.

The behavior is similar when using GBFS with the goal-count heuristic. While both
FRSJ,< and Y solve 1050 instances, Fast Downward can solve 1213. Once again, the
only where our methods achieve higher coverage is Organic Synthesis. In this scenario
using a GBFS, the difference between our lifted planner and a grounded planner such
as Fast Downward is even larger: Fast Downward can solve the same eight instances
with breadth-first search and with GBFS, since its bottleneck is the grounding and not
the search, while our methods equipped with GBFS can solve all 20 instances now. It is
also interesting to notice the impressive performance of Y with the goal-count heuristic:
it solves the entire Organic Synthesis domain in less than five seconds.

Another important question is whether our planner is able to compete with Fast
Downward in terms of time and memory consumption. Figure 5.8 shows the plots com-
paring the total time of FRSJ,< and Fast Downward for different search methods. (For
Fast Downward, total time indicates the sum of translation and search times.) In fact,
Fast Downward is almost always faster than our planner. The only exception (besides
tasks with very short running time) is the Organic Synthesis domain. This confirms
that, for small and medium-size instances, the grounding costs are amortized during
the search. When compared to Y , we observe the exact same trend. The same behavior
occurs with respect to memory usage: except for small tasks and the Organic Synthesis
domain, Fast Downward always needs less memory than FRSJ,< and Y .

5.5 Hard-to-Ground but Easy-to-Plan Domains

Although our methods are competitive with Fast Downward, our previous experiments
make us wonder whether the Organic Synthesis domain is the only domain where our
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BFS GBFS

# of Inst. FRSJ,< Y FD FRSJ,< Y FD L-RPG

Organic Synthesis 56 44 44 20 47 50 20 14
Original 20 8 8 1 11 14 1 0
Alkene 18 18 18 17 18 18 17 14
MIT 18 18 18 2 18 18 2 0

Genome Edit Distance 312 44 44 46 312 312 312 113
Multi-step 156 22 22 24 156 156 156 48
Multi-step, split 156 22 22 22 156 156 156 65

Pipesworld Tankage 50 11 10 14 22 22 20 10

Total 418 99 98 80 381 384 352 137

Table 5.2: Coverage for the three different hard-to-ground domains. Comparing our two
best methods, FRSJ,< and Y , to Fast Downward (FD) with two different search configuration:
breadth-first search (BFS), and greedy best-first search using goal-count as heuristic (GBFS).
Showing also the results for the L-RPG planner. For each search configuration, the best method
in each domain is highlighted.

approaches are successful. To investigate this hypothesis, we compared our methods to
Fast Downward in benchmarks with larger instances.

First, we investigated whether our methods are still competitive with Fast Down-
ward in the instances used for the satisficing tracks of the IPCs, which are usually larger
than the tasks from the optimal tracks. We used 730 instances over 33 different bench-
marks used in the IPCs that use the extended STRIPS formalism supported by our plan-
ner. We compared only FRSJ,< and Y to Fast Downward, using once again two different
search methods, a breadth-first search and a GBFS with the goal-count heuristic. When
using the breadth-first search, FRSJ,< solves 67 tasks while Y solves 66. (The only in-
stance solved by FRSJ,< and not by Y was a Scanalyzer instance which ran out of time
with Y .) Fast Downward solves 94 instances with the same search configuration. When
we use GBFS with goal-count, FRSJ,< solves 239 instances while Y solves 234. Once
again, Fast Downward is superior, solving 338 instances.

When using a breadth-first search, 17 domains have at least one instance solved by
some method. When using a GBFS, this number increases to 25. In both configurations,
our methods have the same coverage as Fast Downward in only 5 of these domains.
(Although the set of 5 domains is different using breadth-first search and GBFS.) In one
domain, though, we achieve better coverage. This domain is, once again, the Organic
Synthesis domain. The Organic Synthesis instances used for the satisficing track of the
IPC 2018 are significantly harder than the ones used for the optimal track. This time, our
best method is Y and it can only solve 12 of the 20 instances when using breadth-first
search. However, this is still far superior to Fast Downward, since it only solves 3 of
the 20 instances using this search method. Furthermore, Y with GBFS and goal-count
solves a total of 18 instances, while the same setting does not improve coverage for Fast
Downward.

The domains from the satisficing tracks of the IPCs are harder than the ones used for
the optimal track, but they are not necessarily hard-to-ground and easy-to-plan. Most
of these domains were developed to challenge planners without focusing on ground-
ing and preprocessing. Thus, our last experiment focuses only on domains that are
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Figure 5.9: Total time (in seconds) for Y and Fast Downward with GBFS and the goal-count
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extremely challenging to ground. The domains supported by our planner are the fol-
lowing:

• Organic Synthesis: We consider here not only the IPC instances, but the entire set
of 56 instances3. The set of instances is further divided into three subsets: “Organic
Synthesis Original”, “Organic Synthesis MIT”, and “Organic Synthesis Alkene”.
Note that some of these 56 instances were also used for the IPC 2018.

• Pipesworld Tankage (no-split): The Pipesworld Tankage domain, used in the IPC
2004 [Hoffmann and Edelkamp, 2005], with the original non-split action schemas.
This domain was provided in two versions, one with regular action schemas and
one where the action schemas were splitted manually to reduce the number of
free variables of some schemas. The non-split version is considerably harder to
ground.

• Genome Edit Distance: This domain was introduced by Haslum [2011] as a chal-
lenging practical application of planning. The domain was introduced in different
formulations. The hardest formulation is the single-step version, but this version
contains axioms, conditional effects, negated preconditions, and functions. Un-
fortunately, our planner cannot deal with all these extensions of STRIPS. Hence,
we focus on the two versions of the so-called relational multi-step formulation
(split and non-split). Although grounded planners can ground all instances using
these formulations, the grounding still consumes a significant amount of time and
resources.

3The instances can be found at http://www.cs.ryerson.ca/~mes/publications/. This set of
instances was designed by Dr. Russell Viirre and converted into PDDL by Hadi Qovaizi. The authors also
thank Prof. Mikhail Soutchanski for his assistance.

http://www.cs.ryerson.ca/~mes/publications/
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Figure 5.10: Peak memory (in kilobytes) for Y and Fast Downward with GBFS and the goal-
count heuristic in the hard-to-ground domains. The value reported for Fast Downward is the
peak memory considering all components (translator and search).

The two first blocks of Table 5.2 shows the coverage for all combinations of methods
and search methods tested over these domains. Focusing on the runs using breadth-
first search, we can see that our methods are competitive with Fast Downward in all
domains and achieve a better coverage overall. In the Genome Edit Distance and the
Pipesworld domain, our methods have a slightly lower coverage than Fast Downward
though. This changes completely when we add the goal-count heuristic information to
the search. Then, the search itself is not the bottleneck of the planner anymore, but now
the bottleneck is the grounding. In this way, our methods can search over the state space
very quickly, while Fast Downward first needs to ground the task, which consumes a lot
of time and memory. For example, all tasks in the Organic Synthesis domain that Fast
Downward failed to solve (considering both configurations), ran out of memory. The
same is true for the Pipesworld domain. In this domain, there were four tasks (over 50)
where our methods found a plan but Fast Downward was not able to ground the task.

In these hard-to-ground domains, our methods have faster run times even in the
instances which Fast Downward can ground. Figure 5.9 shows the total time spent by
Y and by Fast Downward in the configuration using GBFS with goal-count. The lifted
method is faster than Fast Downward in most of the tasks. Particularly in the Genome
Edit Distance (no-split) domain, the grounding process takes too long and dominates the
total time. This plot also shows that the splitted versions end up reducing the benefits
of our methods.

When comparing peak memory, our methods are also superior in these domains.
Figure 5.10 compares the peak memory for Y and for Fast Downward with GBFS and
the goal-count heuristic. All the instances of the Genome Edit Distance (split) domain
use the same amount of memory in Fast Downward because they only need the amount
of memory that the planner pre-allocates. Comparing the plots of Figure 5.9 and Fig-
ure 5.10, we can see some similarities. In most of the time, the tasks where Fast Down-
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Figure 5.11: Total time (in seconds) for Y , with GBFS and the goal-count heuristic, and for L-RPG
in the hard-to-ground domains.

ward used more memory are also the ones where it also needed more time. In fact, in
these instances, both the run time and memory usage were dominated by the translator
component. This supports the main claim of our work: the lifted methods introduced
here are more adequate tools for domains where the grounding the main bottleneck. If
these tasks were scaled up, Fast Downward would probably not be able to finish the
grounding, while our lifted planner still has chance to solve them.

5.6 Comparison to Lifted Planners

We also compared our methods to the L-RPG planner [Ridder, 2014]. The L-RPG plan-
ner might be considered the state-of-the-art heuristic search planner using lifted repre-
sentations. As explained before, it uses a lifted representation of action schemas together
with a grounded representation of states. Furthermore, it also computes equivalence re-
lations between the objects of the task in order to find symmetrical objects and speed-up
the search. It is worth to note that, in contrast to our methods, the L-RPG planner was
implemented to test heuristics using lifted representations and it does not focus on suc-
cessor generation, as we do here.

The coverage of L-RPG is showed in the last column of Table 5.2. We tested the best
configuration of L-RPG, which uses a lifted version of the FF heuristic [Hoffmann and
Nebel, 2001]. We can see that both of our methods when used together with GBFS, solve
more instances than L-RPG. In fact, our methods also solve more instances than L-RPG
even when using a breadth-first search, except for the Genome Edit Distance domains.
These results show that, in these hard-to-ground domains, the successor generation is
one of the biggest challenges. They also demonstrate that even a better-informed heuris-
tic is not useful in such domains if the successor generation is not efficient.

We also compared the time usage of our methods and L-RPG. Figure 5.11 shows
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the total time for Y , using GBFS with goal-count, and L-RPG. Our method is far more
efficient than L-RPG in all cases. Once again, these results show that in these domains
a more efficient successor generation method is more important than a more informed
heuristic. Since these tasks have plans which are easy to find, the goal-count heuristic is
informed enough to guide the search. In the case of L-RPG with FF, the heuristic is also
informed, but the successor generation method by L-RPG becomes the bottleneck.

5.7 Limitations

Our method is competitive with grounded planners in “easy-to-ground and easy-to-
plan” problems and it outperforms Fast Downward in “hard-to-ground and easy-to-
plan” domains. However, are our methods already good enough for “hard-to-ground
and hard-to-plan” tasks?

Unfortunately not. We tested our methods in the STRIPS domains introduced by
Gnad et al. [2019]. These domains are based on IPC domains but scaled up significantly.
For example, their “Blocksworld large” domains have instances with more than 100
blocks. We tested 100 instances of these domains (Blocksworld, Depots, Satellite, and
TPP) and we were not able to solve any, independently of our search algorithm. The
main cause for this bad performance is simply that the state space is too large and, given
our available heuristics, our planner cannot handle them. This shows a relation between
heuristic quality and the performance of a lifted planner: a bad heuristic will lead to
more expansions and, since every new state expanded needs to have its action schemas
instantiated by the lifted planner, this cause a lot of harm to the planner. It is safe to say
that a bad heuristic is more harmful to a lifted planner, where the grounding overhead
is per expaded state, then to a grounded planner, where the grounding overhead is
constant to the task.



Chapter 6

Conclusion

Discussion

In this thesis, we introduced a new approach to planning using lifted representations.
We focused on the problem of successor generation in planning, which is an important
operation in planners based on heuristic search. In our study, using a perspective of
planning as successive database progressions, we used well-known and very success-
ful techniques from database theory and relational algebra to create a lifted planner.
We showed how, given a state s, the enumeration of all applicable instantiations of an
action schema can be understood as a database query, where the state is the database
and the action preconditions form the query. We demonstrated how to apply query an-
swering techniques to perform this instantiation during the search. Furthermore, we
showed that a very large percentage of standard problems result in queries that are
acyclic, which is a positive result, since this represents a special case where the worst-
case complexity for computing the query is reduced from exponential in the size of
the state to polynomial in the size of the state and the number of applicable actions.
We implemented successor generators based on database techniques specific for acyclic
queries (e.g., full-reducer program and Yannakakis’ algorithm). We conducted an exten-
sive empirical analysis of the performance of our prototype implementation over several
benchmarks, including domains from the IPCs and domains that were too hard to be in-
cluded in these competitions. Perhaps surprisingly, our planner is competitive with the
most popular grounded planner, Fast Downward. It also outperforms the L-RPG plan-
ner, which can be considered the state-of-the-art planner using heuristic search with a
lifted representation. To the best of our knowledge, our planner is the first planner able
to scale up to domains such as Organic Synthesis. Table 6.1 shows an overview (with
respect to coverage) of the results presented in this thesis.

Our main contribution is not the lifted planner itself, but a conceptual contribution
for planning using lifted representations. Our theoretical and empirical analysis sheds
new light on a topic that has not been much explored by the planning community. We
showed that indeed and perhaps contradicting the folklore, lifted planning is not in-
herently worse than grounded planning and it can achieve very good performance in
several benchmarks. In our opinion, the purpose of a lifted planner is to increase the
number of problems that can be solved using automated planning, and not necessarily
to compete with grounded planners. The characteristics of planners using lifted repre-
sentations simply make them more suitable to a different “spectrum” of problems than
grounded planners. While grounded planners are better suited to problems where the
search is the bottleneck, our method is better suited to problems where grounding is the
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BFS GBFS

# of Inst. FRSJ,< Y FD FRSJ,< Y FD

IPC – Optimal Track 1560 464 461 586 1050 1050 1168
IPC – Satisficing Track 730 67 66 94 239 234 338
Hard-to-ground Domains 418 99 98 80 381 384 352

Table 6.1: Summary of the coverage results presented in this thesis. The coverage is grouped for
each distinct benchmark set used.

critical part.
We believe that our method can be extended to deal with problems that are hard-

to-ground and hard-to-plan. There is a lot of room for improvement in our method, in
particular concerning better heuristics for lifted representations. There was no advance-
ment in this area in recent years and we believe this is mainly due to historical reasons.
In particular, because the winners of the early editions of the IPC were grounded plan-
ners. We expect that, given our motivating results on the potential of lifted planners,
this might stimulate research on the direction of heuristics for lifted representations.
Additionally, lifted planning might sound more challenging than grounded planning
also simply because, theoretically, the planner might need to solve a NP-complete prob-
lem at every state (i.e., finding the applicable actions). As shown in our experiments,
additional complexity does not translate into a huge overhead in practice and these NP-
complete problems are fairly simple in almost all domains tested. This phenomenon is
not necessarily surprising since several other research areas (e.g., SAT and Operations
Research) have developed very efficient techniques to solve problems that are very hard
in theory.1

In summary, this work introduces a new way to think about lifted planning and
demonstrates that there is still many possibilities for improvements in this area.

Future Work

We conclude this work by presenting some ideas for future work that can help both
lifted and grounded planners.

Heuristics for Lifted Representations

There are two main issues when computing heuristics in a lifted representation: (i) we
do not have the grounded actions and hence many structures (e.g., causal graph and
domain-transition graphs [Helmert, 2004]) are also not easy to compute; and (ii) the
computation of a heuristic might be as expensive as grounding the entire state space.
For example, the heuristic introduced by McDermott [1996] performs some kind of

1The author cannot resist to quote Vardi [2010] – “When I was a graduate student, SAT was a "scary"
problem, not to be touched with a 10-foot pole. Garey and Johnson’s classical textbook showed a long sad line of
programmers who have failed to solve NP-complete problems. Guess what? These programmers have been busy!
[...] Today’s SAT solvers, which enjoy wide industrial usage, routinely solve SAT instances with over one million
variables. How can a scary NP-complete problem be so easy? What is going on? [...] Indeed, SAT does seem hard
in the worst case. There are SAT instances with a few hundred variables that cannot be solved by any existant SAT
solver. "So what?" shrugs the practitioner, "these are artificial problems" – and hope the same occurs to lifted
planning.
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backward-chaining from the goal atoms until it reaches the ground atoms which are
true in the state being evaluated. This backward-chaining works by regressing each fact
in the goal and, for this regression, it is necessary to ground the action schemas. For
larger problems, the heuristic might be too expensive to compute and its cost per state
might be similar to grounding the entire task.

In this work, we used goal-count because it is an estimate that does not rely on ac-
tions. A possible choice for future implementation in this direction is to use estimates
based on the width of the tasks [Lipovetzky and Geffner, 2012, 2014]. These techniques
have shown good performance in several planning domains and do not need any in-
formation about transitions in the state space of the structure of the problem. In fact,
Francès et al. [2017] show that using width-based search methods as black-box evalu-
ators, having access only to the structure of the states and the atoms in the goal, can
overperform state-of-the-art planners in suboptimal planning.

Last, we can consider heuristics using partially grounded actions, where only part
of the free variables are instantiated. This approach is similar to abstract some of the
transitions in the state space. It is, however, not clear how to decide which free variables
to abstract without having much knowledge of the state space structure.

Representational Features

The formulations supported by our planner right now are very restrictive. There are,
however, some features extending the STRIPS formalisms that can be easily integrated
into our approach. Conditional effects and universally quantified effects can be seen as
conjunctive queries. Negated preconditions can be preprocessed or, alternatively, we
can create “complementary” relations for relations that appear negated in some precon-
dition.

Axioms are not so trivial to adapt to our planner, but we can use other database tech-
niques to deal with them. We can represent the axioms as a set of Datalog rules [Ullman,
1988]. In a given state, the extensional database (EDB) of the Datalog program is rep-
resented by the state relations itself, while the intentional database (IDB), which are the
inference rules, are the axioms. We can then evaluate axioms (possibly with negation
and recursion) using traditional Datalog methods.

Structural Decompositions of Action Schemas

As shown in Chapter 5, some instances had more than 30% of this run-time spent on the
instantiation of cyclic action schemas. In our benchmarks, we treated it as acceptable
because the size of these instances is considerably small. However, as we aim at scaling
up the size of instances solvable by our planner, it might be interesting to look into better
successor generator methods for cyclic action schemas. The main idea in this part is to
try to analyze and apply structural decompositions of action schemas [Gottlob et al.,
2000, 2001, 2002]. This can lead to further insights about the hardness of instantiating
cyclic action schemas. For example, it might be more efficient to use fixed-parameter
tractable algorithms based on the hypertree width of the action schemas or even some
other heuristic approaches that do not rely on decomposition Gottlob et al. [2002, 2016].

The idea of partially grounding actions might also be useful to turn cyclic action
schemas into acyclic ones. For example, if we are able to identify free variables that,
if removed from the hypergraph of the query, would make the hypergraph acyclic, we
could ground only these free variables by some enumeration strategy (also creating sev-
eral distinct copies of the action schema, one for each possible combination of values
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instantiating the free variables) and then use our techniques for acyclic queries to eval-
uate them more quickly. Although this might be slightly more expensive, in particular,
because we would have several copies of each schema, this also has the potential to
reduce the memory usage of cyclic action schemas, once they turn acyclic.

Magic-Sets and Grounding

The most popular grounding method in planning is already based on database tech-
niques [Helmert, 2009]. As mentioned in Chapter 3, Helmert formulates the planning
task as a Datalog program and uses the minimal model of this Datalog program as a rep-
resentation of the relaxed-reachable state space. However, finding this minimal model
is very expensive and time consuming for many domains.

Using more advanced database techniques, we can also try to improve this ground-
ing procedure. One common optimization in Datalog programs are the so-called magic-
sets [Bancilhon et al., 1986]. Magic-sets introduce new predicates to the Datalog pro-
gram to speed-up the computation of its minimal model. This rewriting of the program
allows a faster computation of the minimal model using forward chaining (i.e., bottom-
up computation) and simultaneously cuts down the irrelevant intermediate facts pro-
duced during the computation. This optimization technique is not only useful in rela-
tional databases but also in Answer Set Programming [Alviano et al., 2012], for example.
When applied to the Datalog program used to ground the relaxed-reachable state, this
optimization could lead to savings in time and memory.
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