
Planning using Lifted Task Representations

Augusto B. Corrêa
augusto.blaascorrea@unibas.ch

5th of December, 2019

1 / 25

augusto.blaascorrea@unibas.ch

Planning in Blocksworld

Objects: A,B,C,D,Table

Predicates: on(?X,?Y), clear(?X)

State: Set of ground atoms

Goal: Stack C right above B
I i.e., on(C,B)

Modify state = Apply an action

D

C

A

B

Table

s0:

on(A,Table)
on(B,A)
on(D,Table)
on(C,D)
clear(B)
clear(C)

2 / 25

Planning in Blocksworld

Objects: A,B,C,D,Table

Predicates: on(?X,?Y), clear(?X)

State: Set of ground atoms

Goal: Stack C right above B
I i.e., on(C,B)

Modify state = Apply an action

D

C

A

B

Table

s0:

on(A,Table)
on(B,A)
on(D,Table)
on(C,D)
clear(B)
clear(C)

2 / 25

Planning in Blocksworld

Action schema move(?X, ?Y, ?Z)

I Preconditions:
clear(?X), clear(?Z), on(?X,?Y),
?X 6= ?Y 6= ?Z .

I Effects:
on(?X,?Z), ¬clear(?Z), ¬on(?X,?Y).

Ground action move(C, D, B) achieves the goal

How to obtain ground actions?

D

C

A

B

Table

s0:

on(A,Table)
on(B,A)
on(D,Table)
on(C,D)
clear(B)
clear(C)

3 / 25

Grounding as a Bottleneck

For n blocks, there are O(n3) ground actions

Even worse
I Organic Synthesis has action schemas with > 10 parameters

Instance #11 has 71 · 1012 ground actions
Solution length of only 2

There are better methods
I Most popular: Fast Downward grounding algorithm (Helmert 2009)
I It can only ground 8 instances of Organic Synthesis in 16 GB of memory.

4 / 25

Grounding as a Bottleneck

For n blocks, there are O(n3) ground actions

Even worse
I Organic Synthesis has action schemas with > 10 parameters

Instance #11 has 71 · 1012 ground actions
Solution length of only 2

There are better methods
I Most popular: Fast Downward grounding algorithm (Helmert 2009)
I It can only ground 8 instances of Organic Synthesis in 16 GB of memory.

4 / 25

Grounding as a Bottleneck

For n blocks, there are O(n3) ground actions

Even worse
I Organic Synthesis has action schemas with > 10 parameters

Instance #11 has 71 · 1012 ground actions
Solution length of only 2

There are better methods
I Most popular: Fast Downward grounding algorithm (Helmert 2009)
I It can only ground 8 instances of Organic Synthesis in 16 GB of memory.

4 / 25

Lifted Planning

What we consider lifted planning
I Planning without grounding
I Grounded atoms to represent states

How we plan in this thesis
I Heuristic Search
I Use database techniques to generate successors

5 / 25

Database Theory Background

I Unnamed Relation: Tables without column names
I Database: Set of unnamed relations
I Relation: Table with column names (attributes)
I Rows of these tables will be called as tuples

T

0 0
0 1
1 1

T(X,Y)

X Y

0 0
0 1
1 1

6 / 25

Database Theory Background

I Unnamed Relation: Tables without column names
I Database: Set of unnamed relations
I Relation: Table with column names (attributes)
I Rows of these tables will be called as tuples

T

0 0
0 1
1 1

T(X,Y)

X Y

0 0
0 1
1 1

6 / 25

Relational Algebra Operations

Selection (σ)

T(X,Y)

X Y

0 0
0 1
1 1

σX=Y (T (X ,Y))

X Y

0 0
1 1

7 / 25

Relational Algebra Operations

Projection (π)

T(X,Y)

X Y

0 0
0 1
1 1

πY (T (X ,Y))

Y

0
1

8 / 25

Relation Algebra Operations

Join (on) and semi-join (n)

T(X,Y)

X Y

0 0
0 1
1 1

R(Y, Z)

Y Z

0 2
0 5
2 3

T (X ,Y) on R(Y ,Z)

X Y Z

0 0 2
0 0 5

T (X ,Y)n R(Y ,Z)

X Y

0 0

Semi-join can work as a filter to guarantee global consistency

9 / 25

Query
What are the values of Y that occur simultaneously in T (X ,Y) and R(Y ,Z)?

T(X,Y)

X Y

0 0
0 1
1 1

R(Y,Z)

Y Z

0 2
0 5
2 3

Q(Y)

Y

0

Queries can be solved using relational algebra

Q(Y) := πY (T (X ,Y) on R(Y ,Z))

10 / 25

Conjunctive Queries
Logical perspective:

(∃X)(∃Z)T (X ,Y) ∧ R(Y ,Z).

Some queries can be expressed using the following fragment

(∃Z1) . . . (∃Zm)ψ(X1, . . . ,Xn,Z1, . . . ,Zn),

where ψ(X1, . . . ,Xn,Z1, . . . ,Zn) is a conjunction of relations

Conjunctive queries are queries that can be represented as above
I More common notation:

Q(Y) :− T (X ,Y),R(Y ,Z).

I It can be solved using only selection, projection, and join*

11 / 25

Conjunctive Queries
Logical perspective:

(∃X)(∃Z)T (X ,Y) ∧ R(Y ,Z).

Some queries can be expressed using the following fragment

(∃Z1) . . . (∃Zm)ψ(X1, . . . ,Xn,Z1, . . . ,Zn),

where ψ(X1, . . . ,Xn,Z1, . . . ,Zn) is a conjunction of relations

Conjunctive queries are queries that can be represented as above
I More common notation:

Q(Y) :− T (X ,Y),R(Y ,Z).

I It can be solved using only selection, projection, and join*

11 / 25

Conjunctive Queries
Logical perspective:

(∃X)(∃Z)T (X ,Y) ∧ R(Y ,Z).

Some queries can be expressed using the following fragment

(∃Z1) . . . (∃Zm)ψ(X1, . . . ,Xn,Z1, . . . ,Zn),

where ψ(X1, . . . ,Xn,Z1, . . . ,Zn) is a conjunction of relations

Conjunctive queries are queries that can be represented as above
I More common notation:

Q(Y) :− T (X ,Y),R(Y ,Z).

I It can be solved using only selection, projection, and join*
11 / 25

Tractability of Conjunctive Queries

I Intermediate relations can have an exponential number of tuples
I In general, no efficient method exists

I Some queries are computable in time polynomial in the input and output
I Tractability depends on the structure

12 / 25

Tractability of Conjunctive Queries

I Intermediate relations can have an exponential number of tuples
I In general, no efficient method exists
I Some queries are computable in time polynomial in the input and output

I Tractability depends on the structure

12 / 25

Acyclicity

I Every query Q has an associated hypergraph HQ
I Every free variable is a node
I Every relation in the body is a hyperedge containing the nodes of its variables

I If HQ is acyclic, then computing Q is tractable
I Full reducer: Eliminate tuples not participating in the answer of Q

13 / 25

Acyclicity and Full Reducer

Idea: Filter out all “dangling tuples” in advance

Q(A,B,C,X) :− R(A,X),S(B,X),T (C,X)

X

A

B C

R(A,X)

S(B,X)

T(C,X)

R(A,X) :=R(A,X)n S(B,X)

S(B,X) :=S(B,X)n T (C,X)

T (C,X) :=T (C,X)n S(B,X)

S(B,X) :=S(B,X)n R(A,X)

Q(A,B,C,X) :=(T (C,X) on S(B,X)) on R(A,X)
Intermediate relations are monotonic =⇒ Q(A,B,C,X) is the largest relation

=⇒ Polynomial in the input and output

14 / 25

Acyclicity and Full Reducer
Idea: Filter out all “dangling tuples” in advance

Q(A,B,C,X) :− R(A,X),S(B,X),T (C,X)

X

A

B C

R(A,X)

S(B,X)

T(C,X)

R(A,X) :=R(A,X)n S(B,X)

S(B,X) :=S(B,X)n T (C,X)

T (C,X) :=T (C,X)n S(B,X)

S(B,X) :=S(B,X)n R(A,X)

Q(A,B,C,X) :=(T (C,X) on S(B,X)) on R(A,X)
Intermediate relations are monotonic =⇒ Q(A,B,C,X) is the largest relation

=⇒ Polynomial in the input and output

14 / 25

Acyclicity and Full Reducer
Idea: Filter out all “dangling tuples” in advance

Q(A,B,C,X) :− R(A,X),S(B,X),T (C,X)

X

A

B C

R(A,X)

S(B,X)

T(C,X)

R(A,X) :=R(A,X)n S(B,X)

S(B,X) :=S(B,X)n T (C,X)

T (C,X) :=T (C,X)n S(B,X)

S(B,X) :=S(B,X)n R(A,X)

Q(A,B,C,X) :=(T (C,X) on S(B,X)) on R(A,X)
Intermediate relations are monotonic =⇒ Q(A,B,C,X) is the largest relation

=⇒ Polynomial in the input and output

14 / 25

Acyclicity and Full Reducer
Idea: Filter out all “dangling tuples” in advance

Q(A,B,C,X) :− R(A,X),S(B,X),T (C,X)

X

A

B C

R(A,X)

S(B,X)

T(C,X)

R(A,X) :=R(A,X)n S(B,X)

S(B,X) :=S(B,X)n T (C,X)

T (C,X) :=T (C,X)n S(B,X)

S(B,X) :=S(B,X)n R(A,X)

Q(A,B,C,X) :=(T (C,X) on S(B,X)) on R(A,X)
Intermediate relations are monotonic =⇒ Q(A,B,C,X) is the largest relation

=⇒ Polynomial in the input and output

14 / 25

Acyclicity and Full Reducer
Idea: Filter out all “dangling tuples” in advance

Q(A,B,C,X) :− R(A,X),S(B,X),T (C,X)

X

A

B C

R(A,X)

S(B,X)

T(C,X)

R(A,X) :=R(A,X)n S(B,X)

S(B,X) :=S(B,X)n T (C,X)

T (C,X) :=T (C,X)n S(B,X)

S(B,X) :=S(B,X)n R(A,X)

Q(A,B,C,X) :=(T (C,X) on S(B,X)) on R(A,X)
Intermediate relations are monotonic =⇒ Q(A,B,C,X) is the largest relation

=⇒ Polynomial in the input and output

14 / 25

Acyclicity and Full Reducer
Idea: Filter out all “dangling tuples” in advance

Q(A,B,C,X) :− R(A,X),S(B,X),T (C,X)

X

A

B C

R(A,X)

S(B,X)

T(C,X)

R(A,X) :=R(A,X)n S(B,X)

S(B,X) :=S(B,X)n T (C,X)

T (C,X) :=T (C,X)n S(B,X)

S(B,X) :=S(B,X)n R(A,X)

Q(A,B,C,X) :=(T (C,X) on S(B,X)) on R(A,X)

Intermediate relations are monotonic =⇒ Q(A,B,C,X) is the largest relation
=⇒ Polynomial in the input and output

14 / 25

Acyclicity and Full Reducer
Idea: Filter out all “dangling tuples” in advance

Q(A,B,C,X) :− R(A,X),S(B,X),T (C,X)

X

A

B C

R(A,X)

S(B,X)

T(C,X)

R(A,X) :=R(A,X)n S(B,X)

S(B,X) :=S(B,X)n T (C,X)

T (C,X) :=T (C,X)n S(B,X)

S(B,X) :=S(B,X)n R(A,X)

Q(A,B,C,X) :=(T (C,X) on S(B,X)) on R(A,X)
Intermediate relations are monotonic =⇒ Q(A,B,C,X) is the largest relation

=⇒ Polynomial in the input and output

14 / 25

Planning as Database Progression

I States as databases
I One unnamed relation per predicate
I Tuple (a,b) is in table of a predicate P if P(a,b) is true in the state
I Applying an action to a state = Update the database

on(A,Table)
on(B,A)
on(D,Table)
on(C,D)
clear(B)
clear(C)

on

A Table
B A
D Table
C D

clear

B
C

15 / 25

Planning as Database Progression

I States as databases
I One unnamed relation per predicate
I Tuple (a,b) is in table of a predicate P if P(a,b) is true in the state
I Applying an action to a state = Update the database

on(A,Table)
on(B,A)
on(D,Table)
on(C,D)
clear(B)
clear(C)

on

A Table
B A
D Table
C D

clear

B
C

15 / 25

Successor Generation

Preconditions of move(?X, ?Y, ?Z):

clear(?X), clear(?Z), on(?X , ?Y), ?X 6= ?Y 6= ?Z .

Objects instantiating ?X, ?Y, ?Z are the tuples in

Q(?X , ?Y , ?Z) :− clear(?X), clear(?Z), on(?X , ?Y), ?X 6= ?Y 6= ?Z .

Instantiating of action schemas = Conjunctive query over the preconditions

16 / 25

Successor Generation

Preconditions of move(?X, ?Y, ?Z):

clear(?X), clear(?Z), on(?X , ?Y), ?X 6= ?Y 6= ?Z .

Objects instantiating ?X, ?Y, ?Z are the tuples in

Q(?X , ?Y , ?Z) :− clear(?X), clear(?Z), on(?X , ?Y), ?X 6= ?Y 6= ?Z .

Instantiating of action schemas = Conjunctive query over the preconditions

16 / 25

Successor Generation

Preconditions of move(?X, ?Y, ?Z):

clear(?X), clear(?Z), on(?X , ?Y), ?X 6= ?Y 6= ?Z .

Objects instantiating ?X, ?Y, ?Z are the tuples in

Q(?X , ?Y , ?Z) :− clear(?X), clear(?Z), on(?X , ?Y), ?X 6= ?Y 6= ?Z .

Instantiating of action schemas = Conjunctive query over the preconditions

16 / 25

Are the schemas in the IPC acyclic?

Precondition with acyclic hypergraph =⇒ Efficient successor generation

Benchmark Schemas Acyclic Avg. Proportion

IPC 1998-2018 59520 56668 (95.8%) 83.4%

Org. Synthesis – Original 760 65 (8.6%) 8.6%

I Many preconditions have cyclicity caused because of inequalities
I Considering acyclicity with inequalities increases proportion to 86.7%
I Organic Synthesis: 8.6%→ 91.5%

I FPT algorithm for acyclic queries with inequalities

17 / 25

Are the schemas in the IPC acyclic?

Precondition with acyclic hypergraph =⇒ Efficient successor generation

Benchmark Schemas Acyclic Avg. Proportion

IPC 1998-2018 59520 56668 (95.8%) 83.4%

Org. Synthesis – Original 760 65 (8.6%) 8.6%

I Many preconditions have cyclicity caused because of inequalities
I Considering acyclicity with inequalities increases proportion to 86.7%
I Organic Synthesis: 8.6%→ 91.5%

I FPT algorithm for acyclic queries with inequalities

17 / 25

Are the schemas in the IPC acyclic?

Precondition with acyclic hypergraph =⇒ Efficient successor generation

Benchmark Schemas Acyclic Avg. Proportion

IPC 1998-2018 59520 56668 (95.8%) 83.4%

Org. Synthesis – Original 760 65 (8.6%) 8.6%

I Many preconditions have cyclicity caused because of inequalities
I Considering acyclicity with inequalities increases proportion to 86.7%
I Organic Synthesis: 8.6%→ 91.5%

I FPT algorithm for acyclic queries with inequalities

17 / 25

Existentially Quantified Variables

Q(A,B,C,X) :− R(A,X),S(B,X),T (C,X)

Precondition: R(A,X),S(B,X),T (C,X)

Effect: P(X)

I Different instantiations of A,B, and C for a same X lead to a same successor
I Interested in the values of X . Other variables can be existentially quantified

Q(X) = πX (Q(A,B,C,X)) =⇒ Not polynomial in the output size anymore!

Yannakakis’ algorithm: Full reducer + join program interleaved with projections
I Project variables out as soon as possible
I Polynomial in the output and input sizes again (with overhead)

18 / 25

Existentially Quantified Variables

Q(A,B,C,X) :− R(A,X),S(B,X),T (C,X)

Precondition: R(A,X),S(B,X),T (C,X)
Effect: P(X)

I Different instantiations of A,B, and C for a same X lead to a same successor
I Interested in the values of X . Other variables can be existentially quantified

Q(X) = πX (Q(A,B,C,X)) =⇒ Not polynomial in the output size anymore!

Yannakakis’ algorithm: Full reducer + join program interleaved with projections
I Project variables out as soon as possible
I Polynomial in the output and input sizes again (with overhead)

18 / 25

Existentially Quantified Variables

Q(A,B,C,X) :− R(A,X),S(B,X),T (C,X)

Precondition: R(A,X),S(B,X),T (C,X)
Effect: P(X)

I Different instantiations of A,B, and C for a same X lead to a same successor
I Interested in the values of X . Other variables can be existentially quantified

Q(X) = πX (Q(A,B,C,X)) =⇒ Not polynomial in the output size anymore!

Yannakakis’ algorithm: Full reducer + join program interleaved with projections
I Project variables out as soon as possible
I Polynomial in the output and input sizes again (with overhead)

18 / 25

Existentially Quantified Variables

Q(A,B,C,X) :− R(A,X),S(B,X),T (C,X)

Precondition: R(A,X),S(B,X),T (C,X)
Effect: P(X)

I Different instantiations of A,B, and C for a same X lead to a same successor
I Interested in the values of X . Other variables can be existentially quantified

Q(X) = πX (Q(A,B,C,X)) =⇒ Not polynomial in the output size anymore!

Yannakakis’ algorithm: Full reducer + join program interleaved with projections
I Project variables out as soon as possible
I Polynomial in the output and input sizes again (with overhead)

18 / 25

Existentially Quantified Variables

Q(A,B,C,X) :− R(A,X),S(B,X),T (C,X)

Precondition: R(A,X),S(B,X),T (C,X)
Effect: P(X)

I Different instantiations of A,B, and C for a same X lead to a same successor
I Interested in the values of X . Other variables can be existentially quantified

Q(X) = πX (Q(A,B,C,X)) =⇒ Not polynomial in the output size anymore!

Yannakakis’ algorithm: Full reducer + join program interleaved with projections
I Project variables out as soon as possible
I Polynomial in the output and input sizes again (with overhead)

18 / 25

Experimental Results

I IPC Benchmark (1056 instances, 53 domains)
I STRIPS domains with inequalities

I Hard-to-ground Benchmark (418 instances, 6 domains)
I Organic Synthesis: Original, MIT, and Alkene
I Genome Edit Distance: Split and non-split
I Pipesworld-Tankage (non-spit)

I 30 minutes and 16 GiB
I Source code is available online

19 / 25

Methods

I Successor generators based on join programs
I JR : Randomly ordered
I J: PDDL Order
I J<: Increasing arity

I Successor generators based on acyclicity of preconditions
I FRSJ,<: Full reducer + Join program by arity
I Y : Full reducer + Yannakakis’ algorithm
I Cyclic preconditions: “partial reducer” + Join program by arity

I Compare to L-RPG and Fast Downward 19.06

20 / 25

What is the impact of the full reducer?
IPC Benchmark # of Inst. JR J J< FRSJ,< FD

organic-synthesis-opt18 20 2 11 10 19 8

Total 1560 352.3 454 443 464 586

BFS in the IPC benchmark

10−1 100 101 102 103

10−1

100

101

102

103

uns.

unsolved

J

F
R
S
J
,<

Search Time in seconds

10−1 100 101 102 103

10−1

100

101

102

103

uns.

unsolved

J<

F
R
S
J
,<

Search Time in seconds

21 / 25

What is the impact of the full reducer?
IPC Benchmark # of Inst. JR J J< FRSJ,< FD

organic-synthesis-opt18 20 2 11 10 19 8

Total 1560 352.3 454 443 464 586

BFS in the IPC benchmark

10−1 100 101 102 103

10−1

100

101

102

103

uns.

unsolved

J

F
R
S
J
,<

Search Time in seconds

10−1 100 101 102 103

10−1

100

101

102

103

uns.

unsolved

J<

F
R
S
J
,<

Search Time in seconds

21 / 25

What if we only consider variables
in the effects?

10−1 101 103 105 107
10−1

101

103

105

107

uns.

unsolved

Y

F
R
S
J
,<

Generations before the last layer

I Significant improvement only in
Organic Synthesis

I Structure of the task eliminates
duplication

22 / 25

What if we only consider variables
in the effects?

10−1 101 103 105 107
10−1

101

103

105

107

uns.

unsolved

Y

F
R
S
J
,<

Generations before the last layer

I Significant improvement only in
Organic Synthesis

I Structure of the task eliminates
duplication

22 / 25

What about hard-to-ground domains?

BFS GBFS

Hard-to-ground Benchmark # of Inst. FRSJ,< Y FD FRSJ,< Y FD

Genome Edit Distance 312 44 44 46 312 312 312
Organic Synthesis 56 44 44 20 47 50 20
Pipesworld Tankage 50 11 10 14 22 22 20

Total 418 99 98 80 381 384 352

Hard-to-ground domains using BFS and GBFS with goal-count

I J and J< have coverage similar to Fast Downward
I Y and FRSJ,< are faster than Fast Downward in almost all instances

I Fast Downward memory and time consumption is dominated by the translator

23 / 25

What about hard-to-ground domains?

BFS GBFS

Hard-to-ground Benchmark # of Inst. FRSJ,< Y FD FRSJ,< Y FD

Genome Edit Distance 312 44 44 46 312 312 312
Organic Synthesis 56 44 44 20 47 50 20
Pipesworld Tankage 50 11 10 14 22 22 20

Total 418 99 98 80 381 384 352

Hard-to-ground domains using BFS and GBFS with goal-count

I J and J< have coverage similar to Fast Downward
I Y and FRSJ,< are faster than Fast Downward in almost all instances

I Fast Downward memory and time consumption is dominated by the translator

23 / 25

What about hard-to-ground domains?

BFS GBFS

Hard-to-ground Benchmark # of Inst. FRSJ,< Y FD FRSJ,< Y FD

Genome Edit Distance 312 44 44 46 312 312 312
Organic Synthesis 56 44 44 20 47 50 20
Pipesworld Tankage 50 11 10 14 22 22 20

Total 418 99 98 80 381 384 352

Hard-to-ground domains using BFS and GBFS with goal-count

I J and J< have coverage similar to Fast Downward
I Y and FRSJ,< are faster than Fast Downward in almost all instances

I Fast Downward memory and time consumption is dominated by the translator
23 / 25

What about other lifted planners?
I L-RPG: Lifted planner using a lifted version of FF (Ridder 2013)

10−1 100 101 102 103

10−1

100

101

102

103

uns.

unsolved

L-RPG

Y

Total time in seconds

GED

GED Split

Org.Synt. MIT

Org.Synt. Alkene

Org.Synt. Orig.

Pipesworld Tank.

GBFS

of Inst. FRSJ,< Y L-RPG

GED 312 312 312 113
Org.Synt. 56 47 50 14
Pipes. Tank. 50 22 22 10

Total 418 381 384 137

24 / 25

What about other lifted planners?
I L-RPG: Lifted planner using a lifted version of FF (Ridder 2013)

10−1 100 101 102 103

10−1

100

101

102

103

uns.

unsolved

L-RPG

Y

Total time in seconds

GED

GED Split

Org.Synt. MIT

Org.Synt. Alkene

Org.Synt. Orig.

Pipesworld Tank.

GBFS

of Inst. FRSJ,< Y L-RPG

GED 312 312 312 113
Org.Synt. 56 47 50 14
Pipes. Tank. 50 22 22 10

Total 418 381 384 137

24 / 25

Conclusion & Future Work

Conclusion:
I New successor generator methods using lifted representations
I Lifted successor generation is tractable in several domains
I Well-suited for domains where grounding is a bottleneck
I Good performance in the hard-to-ground domains tested

Future Work:
I Lifted heuristics
I Partially-grounded actions to eliminate acyclicity
I Other database techniques

25 / 25

Conclusion & Future Work

Conclusion:
I New successor generator methods using lifted representations
I Lifted successor generation is tractable in several domains
I Well-suited for domains where grounding is a bottleneck
I Good performance in the hard-to-ground domains tested

Future Work:
I Lifted heuristics
I Partially-grounded actions to eliminate acyclicity
I Other database techniques

25 / 25

	Motivation
	Planning and Database Theory
	Experimental Results
	Conclusion and Future Work

