Planning using Lifted Task Representations

Augusto B. Corréa

augusto.blaascorreaCunibas.ch

5th of December, 2019

25

augusto.blaascorrea@unibas.ch

Planning in Blocksworld

Objects: A, B, C, D, Table

Predicates: on(?X, ?Y), clear(?X)
State: Set of ground atoms

Goal: Stack C right above B
» i.e., on(C, B)

So-

on(A, Table)
on(B, A)
on(D, Table)
on(C, D)
clear(B)
clear(C)

25

Planning in Blocksworld

Objects: A, B, C, D, Table

Predicates: on(?X, ?Y), clear(?X)
State: Set of ground atoms

Goal: Stack C right above B
» i.e., on(C, B)

Modify state = Apply an action

So-

on(A, Table)
on(B, A)
on(D, Table)
on(C, D)
clear(B)
clear(C)

25

Planning in Blocksworld

Action schema move(?X, ?Y, 72)

» Preconditions:
clear(?X), clear(?Z), on(?X,?Y),
XA £2Z.

» Effects:
on(?X,?2), —clear(?Z), —on(?X,?Y).

Ground action move(C, D, B) achieves the goal

How to obtain ground actions?

B
A
| Table |
So-
on(A, Table)
on(B, A)
on(D, Table)
on(C, D)
clear(B)

clear(C)

25

Grounding as a Bottleneck

For n blocks, there are O(n®) ground actions

25

Grounding as a Bottleneck

For n blocks, there are O(n®) ground actions

Even worse

» Organic Synthesis has action schemas with > 10 parameters
Instance #11 has 71 - 10'? ground actions
Solution length of only 2

25

Grounding as a Bottleneck

For n blocks, there are O(n®) ground actions

Even worse

» Organic Synthesis has action schemas with > 10 parameters
Instance #11 has 71 - 10'? ground actions
Solution length of only 2

There are better methods
» Most popular: Fast Downward grounding algorithm (Helmert 2009)
» It can only ground 8 instances of Organic Synthesis in 16 GB of memory.

Lifted Planning

What we consider lifted planning
» Planning without grounding
» Grounded atoms to represent states

How we plan in this thesis
» Heuristic Search
» Use database techniques to generate successors

25

Database Theory Background

v

v

v

v

Database Theory Background

Unnamed Relation: Tables without column names
Database: Set of unnamed relations

Relation: Table with column names (attributes)
Rows of these tables will be called as tuples

T T(X,Y)
0 O XY
0 1
1 1

- O O
_ a0

Selection (o)

Relational Algebra Operations

T(X.Y) ox=y(T(X,Y))
X Y X Y
0 0 0 0

1 1

25

Relational Algebra Operations

Projection ()

T(X,Y) Ty (T(X,Y))
X Y Y
0 0 0

y

25

Relation Algebra Operations

Join (x) and semi-join ()

T(X,Y) R(Y, 2) T(X,Y)x R(Y,Z2) T(X,Y)x R(Y,2)
XY Y Z XY yA X Y

0 O 0 2 0 O 2 0 0

0 1 0 5 0 O 5

1 1 2 3

Semi-join can work as a filter to guarantee global consistency

25

Query

What are the values of Y that occur simultaneously in T(X, Y) and R(Y,Z)?

T(X.Y) R(Y.2)
X Y Y Z
0 0 0 2
0 1 0 5
1 1 2 3

Queries can be solved using relational algebra

QYY) =ny(T(X,Y) x R(Y,2Z))

Q(Y)
Y
0

10/25

Conjunctive Queries

Logical perspective:

(3X)(3Z)T(X, Y) AR(Y, 2).

11/25

Conjunctive Queries

Logical perspective:

(3X)(3Z)T(X, Y) AR(Y, 2).

Some queries can be expressed using the following fragment
3Z))...3Zn)v(Xy, ... Xny Zyy .o Zp),

where (Xi,...,Xn, Z1,...,2Zp) is a conjunction of relations

11/25

Conjunctive Queries

Logical perspective:

(3X)(3Z)T(X, Y) AR(Y, 2).

Some queries can be expressed using the following fragment
3Z))...3Zn)v(Xy, ... Xny Zyy .o Zp),

where (Xi,...,Xn, Z1,...,2Zp) is a conjunction of relations

Conjunctive queries are queries that can be represented as above
» More common notation:

Q(Y) — T(X,Y),R(Y,2).

» It can be solved using only selection, projection, and join*

11/25

Tractability of Conjunctive Queries

» Intermediate relations can have an exponential number of tuples
» In general, no efficient method exists

12/25

Tractability of Conjunctive Queries

» Intermediate relations can have an exponential number of tuples
» In general, no efficient method exists

» Some queries are computable in time polynomial in the input and output
» Tractability depends on the structure

12/25

Acyclicity

» Every query Q has an associated hypergraph Hq

» Every free variable is a node
» Every relation in the body is a hyperedge containing the nodes of its variables

» If Hqg is acyclic, then computing Q is tractable
» Full reducer: Eliminate tuples not participating in the answer of Q

13/25

Acyclicity and Full Reducer

Acyclicity and Full Reducer

Idea: Filter out all “dangling tuples” in advance

14/25

Acyclicity and Full Reducer

Idea: Filter out all “dangling tuples” in advance

Q(A, B, C, X) -~ R(A, X), S(B, X), T(C, X)

® R(A.X)

S(B,X) B

o< O
®o

T(C,X)

14/25

Acyclicity and Full Reducer

Idea: Filter out all “dangling tuples” in advance

Q(A, B, C, X) -~ R(A, X), S(B, X), T(C, X)

® R(AX) R(A, X) :=R(A, X) x S(B, X)

S(B,X) B

o< O
®o

X S(B, X) :=S(B, X) x R(A, X)

14/25

Acyclicity and Full Reducer

Idea: Filter out all “dangling tuples” in advance

Q(A, B, C, X) -~ R(A, X), S(B, X), T(C, X)

A
® R(AX) ® R(A, X) :=R(A, X) x S(B, X)
SEX) 5 X : S(B,X) =S(B, X) x T(C,X)
’ T(C,X) :=T(C,X) x S(B, X)
® * - S(B, X) =S(B, X) x R(A, X)

T(C,X)

14/25

Acyclicity and Full Reducer

Idea: Filter out all “dangling tuples” in advance

Q(A, B, C, X) -~ R(A, X), S(B, X), T(C, X)

A

@ RiAX ® R(A, X) :==R(A, X) x S(B, X)

S(B,X) B X c S(B, X) :=8(B,X) x T(C, X)

. c @ sy
T(C.X) ,X) ==S(B, 7

Q(A, B, C, X) =(T(C, X) x S(B, X)) x R(A, X)

14/25

Acyclicity and Full Reducer

Idea: Filter out all “dangling tuples” in advance

Q(A,B,C, X) :— R(A, X),S(B, X), T(C, X)

A

® R(AX) ® R(A, X) =R(A, X) x S(B, X)
SEX) 5 X : S(B, X) =8(B,X) x T(C, X)
o o o S(B.x) 8B v FLAX)

T(C,X) ’

Q(A,B,C, X) =(T(C,X) » S(B, X)) x R(A, X)
Intermediate relations are monotonic — Q(A, B, C, X) is the largest relation
= Polynomial in the input and output

14/25

Planning as Database Progression

15/25

v

v

v

v

Planning as Database Progression

States as databases

One unnamed relation per predicate

Tuple (a, b) is in table of a predicate P if P(a, b) is true in the state
Applying an action to a state = Update the database

on(A, Table) on clear
on(B, A)
on(D Table) A Table B
on(C, D) B A C
clear(B) D Table

C D

clear(C)

15/25

Successor Generation

16/25

Successor Generation

Preconditions of move(?X, ?Y, ?2):

clear(?X), clear(?Z), on(?X,?Y),?X #?Y #?Z.

16/25

Successor Generation

Preconditions of move(?X, ?Y, ?2):

clear(?X), clear(?Z), on(?X,?Y),?X #?Y #?Z.

Objects instantiating ?X, ?Y, ?Z are the tuples in

Q(?X,?Y,?Z) — clear(?X), clear(?Z), on(?X,?Y),?X #£?Y #?Z.

Instantiating of action schemas = Conjunctive query over the preconditions

16/25

Are the schemas in the IPC acyclic?

Precondition with acyclic hypergraph = Efficient successor generation

7125

Are the schemas in the IPC acyclic?

Precondition with acyclic hypergraph = Efficient successor generation

Benchmark Schemas Acyclic Avg. Proportion

IPC 1998-2018 59520 56668 (95.8%) 83.4%

Org. Synthesis — Original 760 65 (8.6%) 8.6%

17/25

Are the schemas in the IPC acyclic?

Precondition with acyclic hypergraph = Efficient successor generation

Benchmark Schemas Acyclic Avg. Proportion
IPC 1998-2018 59520 56668 (95.8%) 83.4%
Org. Synthesis — Original 760 65 (8.6%) 8.6%

» Many preconditions have cyclicity caused because of inequalities

» Considering acyclicity with inequalities increases proportion to 86.7%
» Organic Synthesis: 8.6% — 91.5%
» FPT algorithm for acyclic queries with inequalities

17/25

Existentially Quantified Variables

Q(A, B, C, X) :— R(A, X), S(B, X), T(C, X)
Precondition: R(A, X), S(B, X), T(C, X)

18/25

Existentially Quantified Variables

Q(A, B, C, X) — R(A, X), S(B, X), T(C, X)

Precondition: R(A, X), S(B, X), T(C, X)
Effect: P(X)

18/25

Existentially Quantified Variables

Q(A, B, C, X) — R(A, X), S(B, X), T(C, X)

Precondition: R(A, X), S(B, X), T(C, X)

Effect: P(X)
» Different instantiations of A, B, and C for a same X lead to a same successor
» Interested in the values of X. Other variables can be existentially quantified

18/25

Existentially Quantified Variables

Q(A, B, C, X) — R(A, X), S(B, X), T(C, X)

Precondition: R(A, X), S(B, X), T(C, X)

Effect: P(X)
» Different instantiations of A, B, and C for a same X lead to a same successor
» Interested in the values of X. Other variables can be existentially quantified

Q(X) = mx(Q(A, B, C, X)) = Not polynomial in the output size anymore!

18/25

Existentially Quantified Variables

Q(A,B,C,X) — R(A X),S(B, X), T(C, X)
Precondition: R(A, X), S(B, X), T(C, X)
Effect: P(X)

» Different instantiations of A, B, and C for a same X lead to a same successor
» Interested in the values of X. Other variables can be existentially quantified

Q(X) = mx(Q(A, B, C, X)) = Not polynomial in the output size anymore!

Yannakakis’ algorithm: Full reducer + join program interleaved with projections
» Project variables out as soon as possible
» Polynomial in the output and input sizes again (with overhead)

18/25

v

v

v

v

Experimental Results

IPC Benchmark (1056 instances, 53 domains)
» STRIPS domains with inequalities
Hard-to-ground Benchmark (418 instances, 6 domains)

» Organic Synthesis: Original, MIT, and Alkene
» Genome Edit Distance: Split and non-split
» Pipesworld-Tankage (non-spit)

30 minutes and 16 GiB
Source code is available online

19/25

Methods

» Successor generators based on join programs
» JA: Randomly ordered
» J: PDDL Order
» J<: Increasing arity
» Successor generators based on acyclicity of preconditions

» FRS<: Full reducer + Join program by arity
» Y: Full reducer + Yannakakis’ algorithm
» Cyclic preconditions: “partial reducer” + Join program by arity

» Compare to L-RPG and Fast Downward 19.06

20/25

What is the impact of the full reducer?

IPC Benchmark # of Inst. JBE U U FRY< FD
organic-synthesis-opt18 20 2 11 10 19 8
Total 1560 352.3 454 443 464 586

BFS in the IPC benchmark

21/25

What is the impact of the full reducer?

IPC Benchmark # of Inst. JAJ J< FRY< FD
organic-synthesis-opt18 20 2 11 10 19 8
Total 1560 352.3 454 443 464 586
BFS in the IPC benchmark
Search Time in seconds Search Time in seconds
unsolved |- unsolved |-

103 ? 103 F (] (=

< 1 , ;: 10? ol

E 101% E 10' F ’ : ,

100 f] 100 :

107! - e . ; 1 107! . ; 1

10°" 10° 10t 10* 10° S 101 100 10" 10* 10% U
J J<

21/25

What if we only consider variables
in the effects?

What if we only consider variables
in the effects?

Generations before the last layer

T T T T T T

unsolved [. -

107 |- B

» Significant improvement only in
vy 10°F o i . .
= Organic Synthesis
£ 0] °* 3 . » Structure of the task eliminates
[] . .
. duplication
w0, 8
10~1 |

1 1 1 1 |
10—1 101 103 105 10711118.

22/25

What about hard-to-ground domains?

What about hard-to-ground domains?

BFS GBFS
Hard-to-ground Benchmark #oflInst. FR< Y FD FR*< Y FD
Genome Edit Distance 312 44 44 46 312 312 312
Organic Synthesis 56 44 44 20 47 | 50 20
Pipesworld Tankage 50 11 10 14 22 22 20
Total 418 99 98 80 381 384 352

Hard-to-ground domains using BFS and GBFS with goal-count

23/25

What about hard-to-ground domains?

BFS GBFS
Hard-to-ground Benchmark #oflInst. FR< Y FD FR*< Y FD
Genome Edit Distance 312 44 44 46 312 312 312
Organic Synthesis 56 44 44 20 47 | 50 20
Pipesworld Tankage 50 11 10 14 22 22 20
Total 418 99 98 80 381 384 352

Hard-to-ground domains using BFS and GBFS with goal-count

» J and J< have coverage similar to Fast Downward

» Y and FRS/< are faster than Fast Downward in almost all instances
» Fast Downward memory and time consumption is dominated by the translator
23/25

What about other lifted planners?

» L-RPG: Lifted planner using a lifted version of FF (Ridder 2013)

24/25

What about other lifted planners?

» L-RPG: Lifted planner using a lifted version of FF (Ridder 2013)

Total time in seconds

GED

unsolved ? « GED Split =
I'|® Org.Synt. MIT 1 GBFS
103 E|m Org.Synt. Alkene ' - &/7
[| ¢ Org.Synt. Orig. ¥ | # of Inst. FR < Y L-RPG
102 ; * Pipesworld Tank. ;
E 3 = GED 312 312 312 113
I § i Org.Synt. 56 47 = 50 14
107 i Pipes. Tank. 50 22 22 10
0ol R Total 418 381 | 384 137
i ¥ ok % E

24/25

Conclusion & Future Work

Conclusion:
» New successor generator methods using lifted representations

v

Lifted successor generation is tractable in several domains
Well-suited for domains where grounding is a bottleneck
Good performance in the hard-to-ground domains tested

v

v

25/25

Conclusion & Future Work

Conclusion:
» New successor generator methods using lifted representations

v

Lifted successor generation is tractable in several domains
Well-suited for domains where grounding is a bottleneck
Good performance in the hard-to-ground domains tested

v

v

Future Work:
» Lifted heuristics
» Partially-grounded actions to eliminate acyclicity
» Other database techniques

25/25

	Motivation
	Planning and Database Theory
	Experimental Results
	Conclusion and Future Work

