Planning using Lifted Task Representations

Augusto B. Corrêa

augusto.blaascorrea@unibas.ch

5th of December, 2019

Planning in Blocksworld

Objects: A, B, C, D, Table
Predicates: on(?X, ?Y), clear(?X)

State: Set of ground atoms
Goal: Stack C right above B

- i.e., on (C, B)

Planning in Blocksworld

Objects: A, B, C, D, Table
Predicates: on(?X, ?Y), clear(?X)
State: Set of ground atoms
Goal: Stack C right above B

- i.e., on (C, B)

Modify state = Apply an action

S_{0} :

$$
\begin{aligned}
& \text { on }(A, \text { Table }) \\
& \text { on }(B, A) \\
& \text { on }(D, \text { Table }) \\
& \text { on }(C, D) \\
& \text { clear }(B) \\
& \text { clear }(C)
\end{aligned}
$$

Planning in Blocksworld

Action schema move(?X, ?Y, ?Z)

- Preconditions:
clear(?X), clear(?Z), on(?X,?Y),

$$
? X \neq ? Y \neq ? Z .
$$

- Effects:
on(?X,?Z), ᄀclear(?Z), ᄀon(?X,?Y).

Ground action move(C, D, B) achieves the goal
How to obtain ground actions?
S_{0} :

$$
\begin{aligned}
& \text { on }(A, \text { Table }) \\
& \text { on }(B, A) \\
& \text { on }(D, \text { Table }) \\
& \text { on }(C, D) \\
& \text { clear }(B) \\
& \text { clear }(C)
\end{aligned}
$$

Grounding as a Bottleneck

For n blocks, there are $O\left(n^{3}\right)$ ground actions

Grounding as a Bottleneck

For n blocks, there are $O\left(n^{3}\right)$ ground actions

Even worse

- Organic Synthesis has action schemas with > 10 parameters Instance \#11 has $71 \cdot 10^{12}$ ground actions
Solution length of only 2

Grounding as a Bottleneck

For n blocks, there are $O\left(n^{3}\right)$ ground actions

Even worse

- Organic Synthesis has action schemas with > 10 parameters Instance $\# 11$ has $71 \cdot 10^{12}$ ground actions
Solution length of only 2

There are better methods

- Most popular: Fast Downward grounding algorithm (Helmert 2009)
- It can only ground 8 instances of Organic Synthesis in 16 GB of memory.

Lifted Planning

What we consider lifted planning

- Planning without grounding
- Grounded atoms to represent states

How we plan in this thesis

- Heuristic Search
- Use database techniques to generate successors

Database Theory Background

Database Theory Background

- Unnamed Relation: Tables without column names
- Database: Set of unnamed relations
- Relation: Table with column names (attributes)
- Rows of these tables will be called as tuples

Relational Algebra Operations

Selection (σ)

$T(X, Y)$	
\mathbf{X}	\mathbf{Y}
0	0
0	1
1	1

$\sigma_{X=Y}(T(X, Y))$	
\mathbf{X}	\mathbf{Y}
0	0
1	1

Relational Algebra Operations

Projection (π)

$T(X, Y)$	
\mathbf{X}	\mathbf{Y}
0	0
0	1
1	1

Relation Algebra Operations

Join (\ltimes) and semi-join (\ltimes)

$T(X, Y)$	
\mathbf{X}	\mathbf{Y}
0	0
0	1
1	1

$R(Y, Z)$	
\mathbf{Y}	\mathbf{Z}
0	2
0	5
2	3

$T(X, Y) \bowtie R(Y, Z)$		
\mathbf{X}	\mathbf{Y}	
0	0	
0	0	

$T(X, Y) \ltimes R(Y, Z)$	
\mathbf{X}	\mathbf{Y}
0	0

Semi-join can work as a filter to guarantee global consistency

Query

What are the values of Y that occur simultaneously in $T(X, Y)$ and $R(Y, Z)$?

$T(X, Y)$	
\mathbf{X}	\mathbf{Y}
0	0
0	1
1	1

$R(Y, Z)$	
\mathbf{Y}	\mathbf{Z}
0	2
0	5
2	3

$\overline{Q(Y)}$
\mathbf{Y}
0

Queries can be solved using relational algebra

$$
Q(Y):=\pi_{Y}(T(X, Y) \bowtie R(Y, Z))
$$

Conjunctive Queries

Logical perspective:
$(\exists X)(\exists Z) T(X, Y) \wedge R(Y, Z)$.

Conjunctive Queries

Logical perspective:

$$
(\exists X)(\exists Z) T(X, Y) \wedge R(Y, Z)
$$

Some queries can be expressed using the following fragment

$$
\left(\exists Z_{1}\right) \ldots\left(\exists Z_{m}\right) \psi\left(X_{1}, \ldots, X_{n}, Z_{1}, \ldots, Z_{n}\right)
$$

where $\psi\left(X_{1}, \ldots, X_{n}, Z_{1}, \ldots, Z_{n}\right)$ is a conjunction of relations

Conjunctive Queries

Logical perspective:

$$
(\exists X)(\exists Z) T(X, Y) \wedge R(Y, Z)
$$

Some queries can be expressed using the following fragment

$$
\left(\exists Z_{1}\right) \ldots\left(\exists Z_{m}\right) \psi\left(X_{1}, \ldots, X_{n}, Z_{1}, \ldots, Z_{n}\right)
$$

where $\psi\left(X_{1}, \ldots, X_{n}, Z_{1}, \ldots, Z_{n}\right)$ is a conjunction of relations
Conjunctive queries are queries that can be represented as above

- More common notation:

$$
Q(Y):-T(X, Y), R(Y, Z) .
$$

- It can be solved using only selection, projection, and join*

Tractability of Conjunctive Queries

- Intermediate relations can have an exponential number of tuples
- In general, no efficient method exists

Tractability of Conjunctive Queries

- Intermediate relations can have an exponential number of tuples
- In general, no efficient method exists
- Some queries are computable in time polynomial in the input and output
- Tractability depends on the structure

Acyclicity

- Every query Q has an associated hypergraph H_{Q}
- Every free variable is a node
- Every relation in the body is a hyperedge containing the nodes of its variables
- If H_{Q} is acyclic, then computing Q is tractable
- Full reducer: Eliminate tuples not participating in the answer of Q

Acyclicity and Full Reducer

Acyclicity and Full Reducer

Idea: Filter out all "dangling tuples" in advance

Acyclicity and Full Reducer

Idea: Filter out all "dangling tuples" in advance

$$
Q(A, B, C, X):-R(A, X), S(B, X), T(C, X)
$$

R(A, X)
S(B,X)

T(C,X)

Acyclicity and Full Reducer

Idea: Filter out all "dangling tuples" in advance

$$
Q(A, B, C, X):-R(A, X), S(B, X), T(C, X)
$$

R(A, X)

$$
R(A, X):=R(A, X) \ltimes S(B, X)
$$

S(B,X)

$$
S(B, X):=S(B, X) \ltimes R(A, X)
$$

Acyclicity and Full Reducer

Idea: Filter out all "dangling tuples" in advance

$$
Q(A, B, C, X):-R(A, X), S(B, X), T(C, X)
$$

R(A, X)

$$
\begin{aligned}
& R(A, X):=R(A, X) \ltimes S(B, X) \\
& S(B, X):=S(B, X) \ltimes T(C, X) \\
& T(C, X):=T(C, X) \ltimes S(B, X) \\
& S(B, X):=S(B, X) \ltimes R(A, X)
\end{aligned}
$$

Acyclicity and Full Reducer

Idea: Filter out all "dangling tuples" in advance

$$
Q(A, B, C, X):-R(A, X), S(B, X), T(C, X)
$$

- $\mathrm{R}(\mathrm{A}, \mathrm{X})$

T(C,X)

$$
\begin{aligned}
R(A, X) & :=R(A, X) \ltimes S(B, X) \\
S(B, X) & :=S(B, X) \ltimes T(C, X) \\
T(C, X) & :=T(C, X) \ltimes S(B, X) \\
S(B, X) & :=S(B, X) \ltimes R(A, X) \\
Q(A, B, C, X) & :=(T(C, X) \bowtie S(B, X)) \bowtie R(A, X)
\end{aligned}
$$

Acyclicity and Full Reducer

Idea: Filter out all "dangling tuples" in advance

$$
Q(A, B, C, X):-R(A, X), S(B, X), T(C, X)
$$

- R(A, X)

A

S(B,X)

T(C,X)

$$
\begin{aligned}
R(A, X) & :=R(A, X) \ltimes S(B, X) \\
S(B, X) & :=S(B, X) \ltimes T(C, X) \\
T(C, X) & :=T(C, X) \ltimes S(B, X) \\
S(B, X) & :=S(B, X) \ltimes R(A, X) \\
Q(A, B, C, X) & :=(T(C, X) \bowtie S(B, X)) \bowtie R(A, X)
\end{aligned}
$$ Intermediate relations are monotonic $\Longrightarrow Q(A, B, C, X)$ is the largest relation \Longrightarrow Polynomial in the input and output

Planning as Database Progression

Planning as Database Progression

- States as databases
- One unnamed relation per predicate
- Tuple (a, b) is in table of a predicate P if $P(a, b)$ is true in the state
- Applying an action to a state = Update the database

```
on(A, Table)
on(B,A)
on(D, Table)
on(C,D)
clear(B)
clear(C)
```


Successor Generation

Successor Generation

Preconditions of move(?X, ?Y, ?Z):

$$
\operatorname{clear}(? X), \text { clear }(? Z), \text { on }(? X, ? Y), ? X \neq ? Y \neq ? Z
$$

Successor Generation

Preconditions of move(?X, ?Y, ?Z):

$$
\text { clear }(? X), \text { clear }(? Z), \text { on }(? X, ? Y), ? X \neq ? Y \neq ? Z
$$

Objects instantiating ? $X, ? Y, ? Z$ are the tuples in

$$
Q(? X, ? Y, ? Z):-\operatorname{clear}(? X), \text { clear }(? Z), \text { on }(? X, ? Y), ? X \neq ? Y \neq ? Z
$$

Instantiating of action schemas = Conjunctive query over the preconditions

Are the schemas in the IPC acyclic?

Precondition with acyclic hypergraph \Longrightarrow Efficient successor generation

Are the schemas in the IPC acyclic?

Precondition with acyclic hypergraph \Longrightarrow Efficient successor generation

Benchmark	Schemas	Acyclic	Avg. Proportion
IPC 1998-2018	59520	$56668(95.8 \%)$	83.4%
Org. Synthesis - Original	760	$65(8.6 \%)$	8.6%

Are the schemas in the IPC acyclic?

Precondition with acyclic hypergraph \Longrightarrow Efficient successor generation

Benchmark	Schemas	Acyclic	Avg. Proportion
IPC 1998-2018	59520	$56668(95.8 \%)$	83.4%
Org. Synthesis - Original	760	$65(8.6 \%)$	8.6%

- Many preconditions have cyclicity caused because of inequalities
- Considering acyclicity with inequalities increases proportion to 86.7%
- Organic Synthesis: $8.6 \% \rightarrow 91.5 \%$
- FPT algorithm for acyclic queries with inequalities

Existentially Quantified Variables

$$
Q(A, B, C, X):-R(A, X), S(B, X), T(C, X)
$$

Precondition: $R(A, X), S(B, X), T(C, X)$

Existentially Quantified Variables

$$
Q(A, B, C, X):-R(A, X), S(B, X), T(C, X)
$$

Precondition: $R(A, X), S(B, X), T(C, X)$
Effect: $P(X)$

Existentially Quantified Variables

$$
Q(A, B, C, X):-R(A, X), S(B, X), T(C, X)
$$

Precondition: $R(A, X), S(B, X), T(C, X)$
Effect: $P(X)$

- Different instantiations of A, B, and C for a same X lead to a same successor
- Interested in the values of X. Other variables can be existentially quantified

Existentially Quantified Variables

$$
Q(A, B, C, X):-R(A, X), S(B, X), T(C, X)
$$

Precondition: $R(A, X), S(B, X), T(C, X)$
Effect: $P(X)$

- Different instantiations of A, B, and C for a same X lead to a same successor
- Interested in the values of X. Other variables can be existentially quantified

$$
Q(X)=\pi_{X}(Q(A, B, C, X)) \Longrightarrow \text { Not polynomial in the output size anymore! }
$$

Existentially Quantified Variables

$$
Q(A, B, C, X):-R(A, X), S(B, X), T(C, X)
$$

Precondition: $R(A, X), S(B, X), T(C, X)$
Effect: $P(X)$

- Different instantiations of A, B, and C for a same X lead to a same successor
- Interested in the values of X. Other variables can be existentially quantified

$$
Q(X)=\pi_{X}(Q(A, B, C, X)) \Longrightarrow \text { Not polynomial in the output size anymore! }
$$

Yannakakis' algorithm: Full reducer + join program interleaved with projections

- Project variables out as soon as possible
- Polynomial in the output and input sizes again (with overhead)

Experimental Results

- IPC Benchmark (1056 instances, 53 domains)
- STRIPS domains with inequalities
- Hard-to-ground Benchmark (418 instances, 6 domains)
- Organic Synthesis: Original, MIT, and Alkene
- Genome Edit Distance: Split and non-split
- Pipesworld-Tankage (non-spit)
- 30 minutes and 16 GiB
- Source code is available online

Methods

- Successor generators based on join programs
- J^{R} : Randomly ordered
- J: PDDL Order
- $J^{<}$: Increasing arity
- Successor generators based on acyclicity of preconditions
- $F R^{S J,<}$: Full reducer + Join program by arity
- Y : Full reducer + Yannakakis' algorithm
- Cyclic preconditions: "partial reducer" + Join program by arity
- Compare to L-RPG and Fast Downward 19.06

What is the impact of the full reducer?

IPC Benchmark	\# of Inst.	J^{R}	J	$J^{<}$	$F R^{S J,<}$	FD
organic-synthesis-opt18	20	2	11	10	19	8
Total	1560	352.3	454	443	464	586

BFS in the IPC benchmark

What is the impact of the full reducer?

IPC Benchmark	\# of Inst.	J^{R}	J	$J^{<}$	$F R^{S J,<}$	$F D$
organic-synthesis-opt18	20	2	11	10	19	8
Total	1560	352.3	454	443	464	586

BFS in the IPC benchmark

What if we only consider variables in the effects?

What if we only consider variables in the effects?

Generations before the last layer

- Significant improvement only in Organic Synthesis
- Structure of the task eliminates duplication

What about hard-to-ground domains?

What about hard-to-ground domains?

Hard-to-ground Benchmark	\# of Inst.	BFS			GBFS		
		$F R^{\text {SJ, }}$	Y	FD	$F R^{S J,<}$	Y	FD
Genome Edit Distance	312	44	44	46	312	312	312
Organic Synthesis	56	44	44	20	47	50	20
Pipesworld Tankage	50	11	10	14	22	22	20
Total	418	99	98	80	381	384	352

Hard-to-ground domains using BFS and GBFS with goal-count

What about hard-to-ground domains?

Hard-to-ground Benchmark	\# of Inst.	BFS			GBFS		
		$F R^{S J,<}$	Y	FD	$F R^{S J,<}$	Y	FD
Genome Edit Distance	312	44	44	46	312	312	312
Organic Synthesis	56	44	44	20	47	50	20
Pipesworld Tankage	50	11	10	14	22	22	20
Total	418	99	98	80	381	384	352

Hard-to-ground domains using BFS and GBFS with goal-count

- J and $J^{<}$have coverage similar to Fast Downward
- Y and $F R^{S J,<}$ are faster than Fast Downward in almost all instances
- Fast Downward memory and time consumption is dominated by the translator

What about other lifted planners?

- L-RPG: Lifted planner using a lifted version of FF (Ridder 2013)

What about other lifted planners?

- L-RPG: Lifted planner using a lifted version of FF (Ridder 2013)

		GBFS		
	\# of Inst.	$F R^{S J,<}$	Y	L-RPG
GED	312	$\mathbf{3 1 2}$	$\mathbf{3 1 2}$	113
Org.Synt.	56	47	$\mathbf{5 0}$	14
Pipes. Tank.	50	$\mathbf{2 2}$	$\mathbf{2 2}$	10
Total	418	381	$\mathbf{3 8 4}$	137

Conclusion \& Future Work

Conclusion:

- New successor generator methods using lifted representations
- Lifted successor generation is tractable in several domains
- Well-suited for domains where grounding is a bottleneck
- Good performance in the hard-to-ground domains tested

Conclusion \& Future Work

Conclusion:

- New successor generator methods using lifted representations
- Lifted successor generation is tractable in several domains
- Well-suited for domains where grounding is a bottleneck
- Good performance in the hard-to-ground domains tested

Future Work:

- Lifted heuristics
- Partially-grounded actions to eliminate acyclicity
- Other database techniques

