
Detecting Unsolvability Based on
Parity Functions

Master’s Thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Artificial Intelligence

https://ai.dmi.unibas.ch

Examiner: Prof. Dr. Malte Helmert

Supervisor: Dr. Salomé Eriksson

Remo Christen

remo.christen@stud.unibas.ch

2015-051-469

March 13, 2021

Acknowledgments

I am grateful to Prof. Dr. Malte Helmert for the opportunity to write this thesis in the

Artificial Intelligence research group. I want to thank Dr. Salomé Eriksson for her guidance

in all stages of this thesis. Her explanations, ideas, suggestions, and continuous feedback

were invaluable and led to countless realizations and improvements.

I also want to express my gratitude towards my parents, who have always enabled and

encouraged me on my path. Last but definitely not least, I want to thank Irene for supporting

me in any way possible and giving me the strength and courage to do my best.

Abstract

Unsolvability is an important result in classical planning and has seen increased interest in

recent years. This thesis explores unsolvability detection by automatically generating parity

arguments, a well-known way of proving unsolvability. The argument requires an invariant

measure, whose parity remains constant across all reachable states, while all goal states are

of the opposite parity. We express parity arguments using potential functions in the field

F2. We develop a set of constraints that describes potential functions with the necessary

separating property, and show that the constraints can be represented efficiently for up to

two-dimensional features. Enhanced with mutex information, an algorithm is formed that

tests whether a parity function exists for a given planning task. The existence of such a

function proves the task unsolvable. To determine its practical use, we empirically evaluate

our approach on a benchmark of unsolvable problems and compare its performance to a state

of the art unsolvability planner. We lastly analyze the arguments found by our algorithm

to confirm their validity, and understand their expressive power.

Table of Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

2 Background 3

2.1 Planning . 3

2.2 Unsolvability . 6

2.3 Parity Argument for the 14-15 Puzzle . 7

2.4 F2 . 10

2.5 Potential Functions . 10

3 Unsolvability Constraints in F2 12

3.1 Separating Functions and Unsolvability . 12

3.2 Moving to F2 . 13

3.3 One-dimensional Potential Functions . 15

3.4 Two-dimensional Potential Functions . 15

3.5 Considering Mutual Exclusivity . 21

4 Algorithm 23

4.1 Constraint Construction . 23

4.1.1 Initial and Goal Row . 24

4.1.2 Operator Row . 24

4.1.3 Context Row . 25

4.2 Solving Constraints . 25

4.3 Mutex Generation . 26

5 Experimental Evaluation 27

5.1 Setup . 27

5.2 Forget-Operator Fix . 27

5.3 General Results . 28

5.4 Implementations . 32

5.4.1 Full Bitset . 32

5.4.2 Sparse Set . 32

Table of Contents v

5.4.3 Sparse Vector . 36

5.5 Sliding Tiles . 37

5.5.1 15 Puzzle . 38

5.5.2 Sparsity Scaling . 39

5.5.3 24 Puzzle . 40

5.6 Aidos . 41

6 Peg Solitaire Case Study 44

6.1 Task1 . 45

6.2 Invariant Parity Counts . 46

6.3 Other Tasks . 47

6.4 Numerical Unsolvability . 47

7 Conclusion 50

7.1 Future Work . 51

7.1.1 Gaussian Elimination Alternatives . 51

7.1.2 Relation to Dead-end Potentials . 51

7.1.3 Theoretical Considerations . 52

Bibliography 53

Declaration on Scientific Integrity 57

1
Introduction

The 15 puzzle was invented over 140 years ago and is still well-known today. In its original

form, it consisted of 15 numbered blocks that could be arranged in a 4 by 4 frame, leaving

one spot empty. The game is set up by scrambling the blocks and putting them back

into the frame randomly. The player must then rearrange the blocks into the ordered goal

configuration, as shown in Figure 1.1, by sliding blocks into the empty spot.

11 7 5

9 1 14 2

4 8 13 15

10 12 6 3

⇒ . . . ⇒

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Figure 1.1: Scrambled and traditional goal state.

Problems of this kind are the subject of study in classical planning, a branch of model-

based artificial intelligence. More generally, planning is the process of finding a course of

action which, starting in a defined world state, changes the world in such a way that a set

of predefined goals become true. In the classical setting, the world must be deterministic

and fully observable.

The 15 puzzle is an example for such a world. A world at the center of the puzzling

universe of 1880, when countless people around the globe became captivated by the puzzle’s

deceptive simplicity. The driving force for this craze was the elusive nature of its solution,

which could come naturally one round, only to seem unobtainable the next. Cash prizes have

been offered on multiple occasions for a solution to a particularly trivial-looking challenge

called the 14-15 puzzle, pictured in Figure 1.2. None of the prizes have ever been claimed,

because the challenge is indeed impossible. In fact, the puzzle is unsolvable from half of

all scrambled starting positions, as has been shown by Johnson and Story (1879) already

before the height of the craze.

Introduction 2

1 2 3 4

5 6 7 8

9 10 11 12

13 14 1514 15

⇒ . . . ⇒

1 2 3 4

5 6 7 8

9 10 11 12

13 15 1415 14

@

Figure 1.2: Initial and goal state of the unsolvable 14-15 puzzle.

This example shows us that a solution is not the only interesting outcome of planning

tasks, but that proving one to be unsolvable is also a meaningful result. Consequently,

various approaches to unsolvability have been pursued, with two examples being a special-

ized merge-and-shrink heuristic by Hoffmann et al. (2014), and using consistency checking

concepts on variable subsets by Bäckström et al. (2013).

In this thesis we explore parity arguments as an approach to unsolvability detection.

The basic idea of parity arguments is simple: assign unequal parity to starting and goal

states and show that this gap cannot be bridged by any action. This conceptually divides

a task’s state space into two parts: one containing the initial, and the other containing all

goal states. The 15 puzzle unsolvability proof by Johnson and Story (1879) is of this form

and is probably the most famous application of a parity argument. We take a closer look in

the next chapter.

Domain-independence is an essential part of automated planning, and handcrafted proofs

for single domains or even tasks are not helpful. Instead, we want to devise a strategy to

compute parity arguments for various types of problems automatically. Based on a real-

valued approach by Pommerening (2017), we aim to construct a set of constraints that

describes parity arguments. A solution to said constraints should return a so called potential

function that assigns values to states in the way of a parity argument. The existence of such

a function would prove a task unsolvable.

To achieve this, we take advantage of the simple even-odd structure of parity by working

in F2, the field with only two elements, and solving constraints using Gaussian elimination

instead of a complex LP solver.

This work contains theoretical results about the construction and feasibility of parity

constraints, as well as instructions on how to apply these results in practice. We compare

three implementations of the resulting algorithm and empirically evaluate its performance

on a diverse unsolvability benchmark. This also includes a side by side comparison with

Aidos, a state of the art unsolvability planner and winner of the Unsolvability International

Planning Competition 2016. Finally, we take a close look at a domain modelling peg solitaire,

another classic single player board game, and try to understand and explain the arguments

found by our algorithm.

2
Background

In this section we introduce the concepts that are at the core of this thesis. We define our

universe, describe the problem we attempt to solve within it, and present the tools required

to do so.

2.1 Planning
Automated planning is the discipline of finding a sequence of actions that leads from a

given initial state to a goal state. Problem instances for which such a sequence should

be found are called planning tasks. They provide a state space as well as initial and goal

states. Throughout this thesis we will use the 15 puzzle as an example task to illustrate the

presented concepts.

There are multiple ways to formally define planning tasks. In this thesis we will use

the SAS+ formalism first proposed by Bäckström and Nebel (1995). We first define the

necessary components to then formally construct a planning task.

Definition 1 (Variable). A variable V is defined over a finite domain d = dom(V) and can

be assigned a single value v ∈ d.

In upcoming definitions we will refer to some finite set of variables V. Such a set would

usually stem from the definition of a planning task.

The 15 puzzle can be modeled using 16 variables, one for every cell of the grid. We

choose the variable names as the cell’s coordinates with the origin in the top left corner.

The variables modeling the marked cells in Figure 2.1 would therefore be called, from top

to bottom: {� : V0,0,� : V3,1,� : V1,2}. All variables are defined over the same domain d

containing the numbers 1 to 15, representing the numbered tiles, as well as a symbol for the

blank cell: d = {1, 2, . . . , 15,�}.

Definition 2 (Atom). An atom A is an assignment V 7→ v where V is a variable and v a

value with v ∈ dom(V).

We will use the notation var(A) to refer to the variable, and val(A) to refer to the value

of atom A. Further, we will denote the set of all atoms in a planning task Π with A. In

Background 4

Figure 2.1: Three positions with varying numbers of adjacent cells.

some contexts, we will view variables as sets of atoms, containing an atom for every value

in dom(V).

The following are examples for atoms that exist within the 15 puzzle: {V0,0 7→ 5, V0,3 7→
11, V2,1 7→ �}.

Definition 3 (State). A state is a variable assignment of all variables V ∈ V to values v

and forms a set {V 7→ v | V ∈ V, v ∈ dom(V)}.

Partial states are variable assignments over a subset of V. We denote the set of variables

over which a partial state s is defined by vars(s) ⊆ V. We refer to the value v assigned to a

variable V in (partial) state s through s[V] = v. We say that A = {V 7→ v} holds in s. All

possible states of a planning task form its state space.

We could model the traditional solved state of the 15 puzzle by the following assignments:

{V0,0 7→ 1, V1,0 7→ 2, . . . , V3,3 7→ �}.

Definition 4 (Operator). An operator is a tuple o = 〈p, e〉 where p are the preconditions

and e the effects of o, written as pre(o) and eff (o). Both p and e are partial states over V.

Operator o is applicable in state s if the partial state p of o is consistent with s, meaning

that the variable assignments given in p also hold in s. Applying operator o in s yields a

successor state s′ of s, written as s′ = sJoK. Variables V in state s′ are assigned to eff (o)[V]

if V ∈ vars(eff (o)), and to s[V] otherwise. Operators have an associated cost, and when

not stated otherwise we assume unit cost: cost(o) = 1 for all operators o.

The only kind of operator present in the 15 puzzle is swapping the position of the blank

cell with an orthogonally adjacent tile. We thus have to define one such operator for every

combination of blank cell and adjacent tile. The number of possible swaps for corner, edge,

and center positions of the blank cell are illustrated in Figure 2.1. All operators consist of

two preconditions and two effects each. The preconditions ensure that the blank cell and

some tile are in adjacent cells. The effects assign the blank cell’s variable to the tile it is

swapped with and vice versa – the variable representing the tile’s cell is assigned to the

blank cell. A simple example of an applied operator is shown in Figure 2.2.

Definition 5 (Initial State). An initial state is a state marking the starting point of a

planning task.

States that can be reached from the initial state by applying operators are called reachable

states.

Background 5

1 2 3 4

5 6 7 8

9 10 11

13 14 15 1212

⇒

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

12

Figure 2.2: Example for applied operator.

For the 15 puzzle, any random permutation of tiles can be chosen as the initial state.

Definition 6 (Goal). A goal is a partial state describing the state or states that must be

reached from the initial state.

The traditional goal state for the 15 puzzle is shown in Figure 1.1. We will later see how

the choice of initial and goal state determines the solvability of a 15 puzzle instance.

With that we have all components needed to define a planning task.

Definition 7 (Planning Task). A SAS+ planning task is defined by the 4-tuple Π =

〈V,O, s0, s∗〉 where V is a finite set of variables, O is a finite set of operators, s0 is an

initial state and s∗ is a goal.

For most of this thesis we will focus on planning tasks in a particular form.

Definition 8 (Transition Normal Form). For a planning task Π in transition normal form

(TNF) it must hold that vars(pre(o)) = vars(eff (o)) for all operators o and that the goal is

a single, fully defined state.

For operators o in TNF we will use vars(o) = vars(pre(o)) = vars(eff (o)). SAS+ tasks

can be efficiently transformed to TNF. In short, the idea is to introduce a new value unknown

to all variables. For every fact a forget-operator is introduced that changes the fact’s variable

to unknown with 0 cost. Conceptually, we can now say that whenever a variable has no

value (or we don’t care about its value) in the original SAS+ task, it has the value unknown

in TNF. For a comprehensive account, refer to Pommerening and Helmert (2015) where

TNF is first proposed.

Interestingly, the 15 puzzle in general and our example representation in particular al-

ready meet the criteria for being in TNF, no transformation needed.

Given a planning task in whichever form, the aim is naturally to find a solution or plan

for that task. In order to understand plans we first look at a general operator sequence

π = 〈o1, . . . , on〉. Applying π to a state s is equivalent to the sequential application of

operators in π to s, so that sJπK = sJo1K . . . JonK. We call an operator sequence valid with

respect to a starting state s, if o1 is applicable in s and all oi for 2 ≤ i ≤ n are applicable

in state sJo1K . . . Joi−1K.

Background 6

Definition 9 (Plan). A plan for planning task Π is an operator sequence π such that the

state s0JπK is consistent with goal s∗, which requires π to be valid with respect to the initial

state s0.

When talking about the validity of a plan, we always refer to its validity with respect to

the initial state.

Planning tasks can be very large, often making unguided search an infeasible strategy for

finding plans. Heuristics are a way to guide the search – they are functions that estimate

the cost of an optimal plan from state s. This measure can then be used to inform the

search and guide it towards the goal. While any function that maps states to non-negative

numbers (or infinity) is a heuristic, some have properties that make them more useful.

The perfect heuristic h∗ is the function that returns the true goal distance from a given

state s, and returns infinity if the goal is not reachable from s. A heuristic h is safe if it

only assigns infinity to state s when h∗(s) =∞, goal-aware if it assigns 0 to all goal states,

consistent if h(s) ≤ cost(o) + h(s′) for all transitions s
o−→ s′, and admissible if h(s) ≤ h∗(s)

for all states s. These properties are connected in the following way: any goal-aware and

consistent heuristic is admissible, and any admissible heuristic is safe and goal-aware.

Even though optimal or sub-optimal plans are what is usually sought when considering

planning tasks, there is another informative outcome solvers may produce.

2.2 Unsolvability
Ideally a search has two possible outcomes: either a valid plan or assurance that the task

is unsolvable. Much of the research effort in automated planning has been focused on

finding plans efficiently more so than to detect unsolvability. Improvements that lead to

better performance in finding plans often do not translate to unsolvability detection. While

heuristics can make use of dead-end states, the fact remains that they are optimized to find

solutions for solvable tasks.

Despite this bias, unsolvability has seen rising interest in recent years. A major milestone

in this development is the Unsolvability International Planning Competition (Unsolvability

IPC) that was organized, for the first time, in 2016. As a counterpart to the long running

International Planning Competition (IPC), it encouraged the development of state of the

art planners focused on unsolvability. While this thesis shares the same goal as the Unsolv-

ability IPC competitors, our approach differs from many common strategies. Most notably,

our approach does not rely on a search component, but instead aims to exploit inherent

characteristics of planning tasks. Invariants are such a characteristic and are essential to

the approach of this thesis.

Generally, an invariant can be described as a property over all states of a planning task

for which it holds that, if it is true in state s, it is also true in state s′ = sJoK for all operators

o applicable in s. This means that once an invariant is achieved, its truth is preserved across

all transitions. In the context of unsolvability, we are primarily interested in properties of

the initial state. For this reason we will work with a more specific notion of invariants in

this thesis.

Background 7

Definition 10 (Strong s0-Invariants). A strong s0-invariant is a formula Is, defined over all

states of a planning task Π, whose truth value remains constant under operator application.

This means that Is(s) = Is(s
′) for all transitions s

o−→ s′. Additionally, Is holds true in the

initial state.

We say that Is is closed under operator application. We call this first definition strong

because it strictly separates the state space into two parts: one where Is holds and one

where it does not. While this kind of invariant is desirable for its expressiveness, it is not

always possible to make such strong statements. With the next invariant definition we

enable ourselves to make weaker, but still very helpful assertions.

Definition 11 (Weak s0-Invariants). A weak s0-invariant is a formula Iw, defined over all

states of a planning task Π, whose truth, but not falsity, remains constant under operator

application. This means that, if Iw(s) holds, Iw(s) = Iw(s′) for all transitions s
o−→ s′.

Additionally, Iw holds true in the initial state.

As opposed to the previous definition, the state space is no longer strictly divided. It is

now possible for a transition to lead from a state s where Iw(s) does not hold to one where

it does hold. It is important to note that, technically, the truth value of Iw is still constant

for all reachable states, because truth is preserved and Iw is guaranteed to be true. We can

say that Iw is closed under operator application within the reachable state space. We may

at times refer to so-invariants without specifying the strong or weak variant. In those cases,

the statement applies to both variants.

A simple but powerful type of invariant are mutual exclusion (mutex) constraints. They

make statements about sets of atoms that can never hold simultaneously. As with invariants,

we define mutexes according to the scope needed for this thesis. In particular we limit

ourselves to sets of two atoms.

Definition 12 (Mutex). A mutex is a weak s0-invariant of the form ¬(a0 ∧ a1) where a0

and a1 are atoms.

Mutexes are a well-known and studied type of invariant. We will consider them in more

detail when discussing how we generate mutexes in Section 4.3.

For the 15 puzzle the following formula is a mutex: ¬ ({V0,0 7→ 1} ∧ {V0,1 7→ 1}). The

formula states that cell (0, 0) and cell (0, 1) can never simultaneously contain tile 1. It is

easy to see that this situation cannot occur if we start in a valid state and only perform

legal moves.

Invariants have been tied to unsolvability by, for example, Eriksson et al. (2017) who

defined inductive sets, a generalized notion of invariants, to construct certificates for unsolv-

ability. Another example by Lipovetzky et al. (2016) puts forward an algorithm to compute

traps, formulas defining inductive sets, and use them to generate invariants and dead-ends.

2.3 Parity Argument for the 14-15 Puzzle
As we have seen in the introduction, parity arguments are a way to prove unsolvability. Let

us briefly recap the general structure, applied to a planning task Π. We must show the

Background 8

following two conditions for a given numerical function f defined over all states:

• The parity of f(s0) is not equal to f(s∗).

• For every transition s
o−→ s′ it holds that the parity of f(s) is equal to the parity of

f(s′).

Unsolvability of Π is proven by the existence of a function f satisfying the conditions above.

Let us now consider an example for such a function for the 14-15 puzzle.

Johnson and Story (1879) first presented a parity argument that shows the unsolvability

of the 14-15 puzzle. A simpler and more modern version of the proof was published by

Archer (1999). In the following we will outline Archer’s proof in less formal terms.

In order to discuss the unsolvability result for the 14-15 puzzle, we must first introduce

some terminology. We refer to the 16 positions on the grid as cells. The cells are occupied

by one movable tile each. We will treat the blank cell as a blank tile here. While we

already presented a way to define the state of the 15 puzzle in Section 2.1, we introduce

an alternative definition here to get a convenient representation for the proof. In order to

keep the two representations separate, we will call the one used in the context of this proof

placement instead of state.

To define a placement we first determine a total ordering over all cells. This ordering is

shown in Figure 2.3. A placement is then defined as the sequence of tiles (numbered and

Figure 2.3: Total ordering that defines placements.

blank) according to their position on the path given by the cell ordering. We would write

the initial placement of the 14-15 puzzle as:

Pinit = [1, 2, 3, 4, 8, 7, 6, 5, 9, 10, 11, 12, �, 15, 14, 13].

There are spaces at the row changes for clarity.

We further form classes of placements called configurations. Placements that can be

reached from each other by moving the blank tile along the ordering path belong to the

same configuration. Thus every configuration contains 16 placements, one for every position

of the blank tile. We would write the configuration of the initial placement as follows:

Cinit = [1, 2, 3, 4, 8, 7, 6, 5, 9, 10, 11, 12, 15, 14, 13].

Configurations have a parity which is determined by the number of misordered tiles. Let

posi of a tile be its position in configuration Ci. In our example we could say posinit(8) = 5.

Background 9

For a given initial configuration C0, a pair of numbered tiles x and y are misordered in

configuration Cn if:

pos0(x) < pos0(y) ∧ posn(x) > posn(y).

Applied to our example we can say that Cinit is even with 0 misorderings and that the

configuration of the 14-15 puzzle’s goal state is odd with 1 misordering.

Lastly, we characterize the effect of moving the blank tile on the puzzle’s configuration

by permutations. By definition, configurations do not change when moving the blank tile

along the ordering path. Given this, there remain 9 possible moves, and their inverses, by

which the blank tile can affect the puzzle’s configuration. They are shown in Figure 2.4.

Figure 2.4: All moves that affect the puzzle’s configuration.

In order to characterize these moves, we need a notion of parity for permutations. A

permutation is even when it changes the number of misorderings by an even number. Two

examples of this are illustrated in Figure 2.5.

Figure 2.5: Two moves, each affecting an even number of orderings.

Taking a closer look, we can understand that the 9 moves that affect the puzzle’s con-

figuration all induce even permutations. Even permutations always preserve the parity of a

configuration they are applied to. Archer (1999) further shows that all placements belonging

to configurations of equal parity can reach each other.

Thus we have our desired result: because the initial and goal placement of the 14-15

puzzle belong to configurations of different parity, there is no sequence of moves that connects

the two. The number of misordered tiles in a placement’s corresponding configuration

describes a function f with the properties described at the start of this section. In the

following we introduce F2, a useful mathematical concept for representing parity arguments.

Background 10

+ 0 1

0 0 1

1 1 0

– 0 1

0 0 1

1 1 0

× 0 1

0 0 0

1 0 1

÷ 0 1

0 – 0

1 – 1

Table 2.1: Arithmetic operations in F2. Division is to be read row ÷ column.

2.4 F2

Fields are a fundamental mathematical construct and are used in many areas of mathemat-

ics and computer science. A field is a set over which the four basic operations addition,

multiplication, subtraction and division (except by 0) are defined.

Common infinite fields are, for example, the real numbers R, or the complex numbers

C. F2 is the smallest finite field.

Definition 13 (Field F2). The field F2 is the finite field with two elements. We call these

elements 0 and 1. In F2, addition and subtraction are equivalent to a logical XOR operation,

multiplication is equivalent to a logical AND operation, and division is the identity function.

Table 2.1 illustrates the possible operations. As can be seen in the table, the additive

and multiplicative identities are 0 and 1 respectively.

We have now seen parity arguments and the field F2, which seems well suited for ex-

pressing such arguments. The next section will combine these concepts to form the central

tool for our approach.

2.5 Potential Functions
In order to understand potential functions, we must first define features.

Definition 14 (Feature). A feature f of planning task Π is a conjunction of atoms. The

number of atoms is the size or dimension of the feature. A feature f is true in a state s

(written s |= f) if all its atoms hold in s.

For convenience, we will write vars(f) to refer to the set of variables mentioned in the

atoms of f .

Potential functions were first proposed by Pommerening et al. (2015) as a family of

heuristic functions. The idea of potential functions is to assign a potential (numerical value)

to features. The result of the potential function is a linear combination of its features,

weighted by their respective potentials. Usually potential functions are defined over the real

numbers.

Definition 15 (Potential Function). A potential function ϕ over planning task Π and

features F is a linear combination of weighted features. The weights are determined by

a weight function w : F 7→ R. The potential value of state s according to the potential

function ϕ for weight function w is:

ϕ(s) =
∑
f∈F

w(f) [s |= f].

A potential function’s dimension is equal to the size of its largest feature.

Background 11

Potential functions are a very general approach, and not all functions are useful. Con-

straints can be formulated to restrict the possible functions to ones with desirable properties.

When using potential functions as heuristics, it is for example interesting to be able to limit

the space of functions to ones that guarantee admissibility. Pommerening et al. (2015) found

that efficient algorithms exist to discover goal-aware and consistent, and thereby admissible,

potential heuristics of degree 1. The same result for functions of degree 2 was described by

Pommerening et al. (2017), who further provide upper bounds on the number of required

constraints and their size. For potential functions of degree ≥ 3 they state that no tractable

algorithms exist.

With constraints in place to ensure sensible heuristics, an optimization function has to be

chosen. The resulting optimization problem can be solved using linear programming which

returns a potential heuristic. The choice of optimization function has a significant impact

on the final heuristic. Pommerening et al. (2015) maximize the heuristic value of the initial

state in their introductory implementation of potential heuristics. In further research, Seipp

et al. (2015) evaluate various alternative optimization functions.

Besides heuristics, potential functions can also be adapted to unsolvability detection,

where again, constraints have to be found to guarantee useful functions. A second important

aspect is the choice of feature set. The simplest option is to use single atoms as features,

resulting in potential functions of degree 1. Allowing features of size 2 expands the feature

set and with it increases the expressive power of the resulting potential function. The trade

off lies in the more complex constraints needed to ensure beneficial properties, and larger

optimization problems.

As for our case, we want to encode parity arguments that can prove unsolvability. To

do that, we need two elements to capture the conceptual even- and oddness of parity.

We therefore restrict potential functions to F2, which provides the elements we need and

simultaneously simplifies theoretical and practical aspects of our approach.

Definition 16 (Potential Function in F2). A potential function ϕ in F2 is a potential

function with a weight function w : F 7→ F2 and a resulting potential function:

ϕ(s) =
⊕
f∈F

w(f) ∧ [s |= f].

Armed with all the necessary tools, concepts and definitions, we can now turn our focus

to the theoretical aspects of this work.

3
Unsolvability Constraints in F2

This chapter discusses the theoretical results of this thesis. The aim is to provide a set of

constraints that describes potential functions in F2 which encode parity arguments. The

existence of such a potential function for a planning task should prove the task to be un-

solvable. We first introduce the concept of separating functions and their connections to

unsolvability. We then show how separating functions can be represented by potential func-

tions in F2. Lastly we provide practical constraints for up to two-dimensional features and

how to represent them efficiently.

3.1 Separating Functions and Unsolvability
In this section we will introduce the concept of separating functions as a way to prove

unsolvability.

The following proofs are based on Pommerening (2017). Statements are presented for

planning tasks in TNF but can be extended to general SAS+ tasks using the polynomial

transformation by Pommerening and Helmert (2015).

Proposition 1. A TNF planning task Π is unsolvable if there exists an s0-invariant I that

does not hold in the goal state.

Proof. Invariant I holds in all states reachable from the initial state. Because I does not

hold in the goal, it is not reachable and Π is therefore unsolvable.

We can define such invariants using potential functions. The idea is to make the function

separate the initial and goal state by making a transition between the two impossible. Such

functions are called separating functions and are usually defined as a potential function ϕ

over R with the following properties:

ϕ(s0) > ϕ(s∗)

ϕ(s) ≤ ϕ(s′) for all transitions s
o−→ s′.

The property ϕ(s) ≥ c is now a weak s0-invariant proving unsolvability for any constant c

with ϕ(s0) ≥ c > ϕ(s∗). This argument can also be stated in terms of monotonically falling,

instead of rising, potential values.

Unsolvability Constraints in F2 13

Separating functions of this kind have been described by Pommerening (2017) in the

context of dead-end and, in extension, unsolvability detection. We will refer to this kind of

potential function as monotonic or numerical separating functions.

For our purposes, a slightly different notion of separating functions is appropriate. We

adapt our definition by generalizing the first condition to an inequality, and specializing the

second condition by demanding potential values to be constant, as opposed to monotonically

changing.

Definition 17 (Separating Function). A potential function ϕ over a TNF planning task

Π with initial state s0 and goal state s∗ is called a separating function if it satisfies the

following constraints:

ϕ(s0) 6= ϕ(s∗)

0 = ϕ(s)− ϕ(s′) for all transitions s
o−→ s′.

In ambiguous contexts we may refer to our definition of separating functions as parity

functions. We can now tie this notion of separating functions to unsolvability.

Proposition 2. A TNF planning task Π is unsolvable if there exists a separating function

ϕ over Π.

Proof. A separating function cannot exist for a solvable task. Assuming such a function

existed, any valid plan for the task would either contain a transition between states of

unequal potential, or initial and goal state would have equal potential. Either statement

would contradict one of the necessary conditions for a separating function to exist. Therefore

separating functions can only exist for unsolvable tasks.

3.2 Moving to F2

While we could describe separating functions over any field, our specific application allows

us to restrict ourselves to the smallest field F2. Due to the binary nature of parity, it is

sufficient for the separating function to distinguish two values. We can achieve this in a

mathematically sound way by operating on the field F2. The function value of a potential

function is the linear combination of features and weights. Features are not affected by

our choice of working within F2, as they are solely determined by the dimensionality of the

features. Weights on the other hand are now also restricted to the values of 0 or 1. The

linear combination finally also uses the addition and multiplication operations defined by

F2 which become logical XOR and logical AND respectively.

With our scope set, we first translate the conditions for separating functions from the

terms used in the definition, to a representation in F2:

ϕ(s0) = ϕ(s∗)⊕ 1

0 = ϕ(s)⊕ ϕ(s′) for all transitions s
o−→ s′.

Unsolvability Constraints in F2 14

This is valid because a = b⊕ 1 is equivalent to a 6= b for a, b ∈ {0, 1}, and because addition

and subtraction can both be seen as an XOR operation.

In a next step we plug the definition of potential functions in F2 into the conditions

above to get the full constraints:⊕
f∈F

w(f) ∧ [s0 |= f] =
⊕
f∈F

w(f) ∧ [s∗ |= f]⊕ 1 (1)

0 =
⊕
f∈F

w(f) ∧ [s |= f]⊕
⊕
f∈F

w(f) ∧ [s′ |= f] for all transitions s
o−→ s′. (2)

Constraint 1 only depends on initial and goal state, and can therefore be expressed efficiently

as a single constraint for any set of features. The same cannot be said about Constraint 2,

as it implies a constraint for every state transition, which is not feasible in general. Starting

with general transformation of the constraint, we will subsequently show how a compact

representation is still possible for one- and two-dimensional feature sets.

We first syntactically simplify Condition 2:

0 =
⊕
f∈F

w(f) ∧ [s |= f]⊕
⊕
f∈F

w(f) ∧ [s′ |= f] for all transitions s
o−→ s′

=
⊕
f∈F

w(f) ∧ [s |= f]⊕ w(f) ∧ [s′ |= f] for all transitions s
o−→ s′

=
⊕
f∈F

w(f) ∧ ([s |= f]⊕ [s′ |= f]) for all transitions s
o−→ s′. (3)

So far we have summed over all features in F . We can now restrict that set without changing

the sum. Specifically we can ignore all features that do not contain any variables mentioned

in operator o. Formally, we can define this set as:

Fō = {f | f ∈ F ∧ @V ∈ vars(f) : V ∈ vars(o)}.

Operator o only affects variables mentioned in its effects and it can therefore never change

the evaluation of features in Fō over any transition s
o−→ s′. More formally we can say that

[s |= f] iff [s′ |= f] for all features in Fō. Applying this observation to Equation 3, we can see

that the right-hand conjunct equates to 0 for all features in Fō because XOR is self-inverse:

1 ⊕ 1 = 0 and 0 ⊕ 0 = 0. Consequently, the conjunction evaluates to 0, which is XOR’s

identity element and therefore has no impact on the final result. We have hereby shown that

all features in Fō can be ignored, and only the complementary set of features with respect

to F have to be considered. We can formally define this set as follows:

Fo = F \ Fō = {f | f ∈ F ∧ ∃V ∈ vars(f) : V ∈ vars(o)}.

With this knowledge we can further simplify Equation 3 by only summing over features in

Fo:

0 =
⊕
f∈Fo

w(f) ∧ ([s |= f]⊕ [s′ |= f]) for all transitions s
o−→ s′. (4)

For the general case of any-dimensional features, no more simplifications can be made. In

further discussions we at times use ∆o(f) to refer to the right-hand conjunct. We will now

turn our focus to one- and two-dimensional potential functions specifically, and show how

Constraint 2 can be efficiently expressed for such functions.

Unsolvability Constraints in F2 15

3.3 One-dimensional Potential Functions
One-dimensional potential functions are restricted to features of size one. Throughout this

section, the base set of features F refers to the set of one-dimensional features. We can

observe that, for this set of features, Equation 4 no longer requires full states s and s′.

Instead, their references can be replaced by the partial states pre(o) and eff (o) respectively.

This is possible because the variables in vars(f) for all f ∈ Fo are contained in vars(o),

which means, since we are only considering TNF, that all v ∈ vars(o) occur in both pre(o)

and eff (o). Operator o therefore fully describes the value of features Fo in all states s and

s′ for which a transition s
o−→ s′ exists. We can write Equation 4 as:

0 =
⊕
f∈Fo

w(f) ∧ ([pre(o) |= f]⊕ [eff (o) |= f]) for all operators o ∈ O. (5)

Thus we have a compact representation for both Conditions 1 and 2. These equations form a

sufficient condition for the existence of a one-dimensional separating function. Let us gather

the relevant equations and cast a theorem based on our findings.⊕
f∈F

w(f) ∧ [s0 |= f] =
⊕
f∈F

w(f) ∧ [s∗ |= f]⊕ 1 (1)

0 =
⊕
f∈Fo

w(f) ∧ ([pre(o) |= f]⊕ [eff (o) |= f]) for all operators o ∈ O (5)

Theorem 1. Given TNF planning task Π and feature set F = A, the potential function⊕
f∈F w(f) ∧ [s |= f] is a separating function for all weight functions w : F 7→ F2 that

satisfy Equation 1 and 5.

3.4 Two-dimensional Potential Functions
For two-dimensional potential functions we will only consider two-dimensional features. In

order to still be able to represent separating functions that contain both one- and two-

dimensional features, we explicitly allow features with two identical atoms. These features

behave the same way as their one-dimensional counterparts and seamlessly integrate into

our following discussion. On the other hand, we explicitly exclude features that include two

atoms containing the same variable but different values. Such features cannot hold in any

state and we can therefore disregard them. Throughout this section, the base set of features

F refers to the set of two-dimensional features, minus the aforementioned exceptions.

The approach for the set of two-dimensional features is less straightforward than the

one-dimensional case. It is now no longer true that all variables in Fo are mentioned in

vars(o). Instead, this is only true for a subset of Fo. According to this observation we

divide F into two subsets, context-independent and context-dependent features, and treat

them separately:

Fo = F ind
o ∪ Fctx

o .

First we deal with the context-independent features which we define as follows:

F ind
o = {f | f ∈ F ∧ ∀V ∈ vars(f) : V ∈ vars(o)}.

Unsolvability Constraints in F2 16

Features with two identical atoms must be in F ind
o , because, as per definition of Fo, the

variable of at least one atom must be mentioned in o and therefore, with two identical

atoms, both must be mentioned. This means that one-dimensional features are handled

within F ind
o , through their two-dimensional representation.

The evaluation of the features in F ind
o for states s and s′ of transition s

o−→ s′ is fully

determined by operator o through pre(o) and eff (o). Analogously to the one-dimensional

case, we can apply Equation 5 to F ind
o and get a constraint over all context-independent

features:

Cind
o =

⊕
f∈Find

o

w(f) ∧ ([pre(o) |= f]⊕ [eff (o) |= f]).

We can make this constraint more explicit by considering the possible results of the right-

hand conjunct, namely ∆o(f) = [pre(o) |= f]⊕ [eff (o) |= f]. Whenever ∆o(f) is 0, we know

that the feature f does not need to be considered, because ∆o(f) makes the conjunction 0

and therefore has no impact on the value of Cind
o . In the following we will strip down the

definition of Cind
o to only include significant features.

To aid this discussion we divide the atoms Ao =
⋃

V ∈vars(o) V into two sets:

flipso = pre(o) 4 eff (o)2

staticso = Ao \ flipso.

In words, flipso captures all atoms that are either consumed or produced by o, and staticso

captures all atoms in o that do not change. For a transition s
o−→ s′, an atom a is produced

if [s 6|= a] and [s′ |= a], and conversely consumed if [s |= a] and [s′ 6|= a].

We are looking at two-dimensional features of the form f = a∧a′ in F ind
o . By definition,

both atoms in f are in Ao and consequently in either flipso or staticso. This allows us to

divide F ind
o into three subsets:

1. Both atoms are in staticso.

2. Both atoms are in flipso.

3. One atom is in flipso, one atom is in staticso.

We will analyze the three groups by constructing the truth tables over atoms a and a′.

Atoms in staticso are either 0 or 1 and retain that value for pre(o) and eff (o). Atoms

in flipso are either produced (prod), meaning that they are 0 in pre(o) and 1 in eff (o),

or consumed (cons), 1 in pre(o) and 0 in eff (o). The result of this analysis is shown in

Table 3.1.

The first group yields the most straightforward result. All combinations result in 0 and

we can therefore ignore this subset of features.

While the second group contains irrelevant features as well, namely features with one

produced and one consumed atom, it also contains two relevant combinations. Features

2 The symbol 4 refers to the symmetric set difference: X 4 Y = (X ∪ Y) \ (X ∩ Y).

Unsolvability Constraints in F2 17

f = a ∧ a′ [pre(o) |= a ∧ pre(o) |= a′]

⊕ [eff (o) |= a ∧ eff (o) |= a′]

static static

0 0 [0 ∧ 0]⊕ [0 ∧ 0] = 0

1 1 [1 ∧ 1]⊕ [1 ∧ 1] = 0

0 1 [0 ∧ 1]⊕ [0 ∧ 1] = 0

1 0 [1 ∧ 0]⊕ [1 ∧ 0] = 0

flip flip

prod prod [0 ∧ 0]⊕ [1 ∧ 1] = 1

cons cons [1 ∧ 1]⊕ [0 ∧ 0] = 1

prod cons [0 ∧ 1]⊕ [1 ∧ 0] = 0

cons prod [1 ∧ 0]⊕ [0 ∧ 1] = 0

static flip

0 prod [0 ∧ 0]⊕ [0 ∧ 1] = 0

0 cons [0 ∧ 1]⊕ [0 ∧ 0] = 0

1 prod [1 ∧ 0]⊕ [1 ∧ 1] = 1

1 cons [1 ∧ 1]⊕ [1 ∧ 0] = 1

Table 3.1: Truth table for ∆o of features f ∈ F ind
o .

where either both atoms are produced or both consumed return a ∆o(f) of 1. We honor

this fact by defining constraints over these features with:

F ind
o,prod = {f | f ∈ F ind

o ∧ ∀a ∈ f : a ∈ prod(o)}

Cind
o,prod =

⊕
f∈Find

o,prod

w(f) (6)

and

F ind
o,cons = {f | f ∈ F ind

o ∧ ∀a ∈ f : a ∈ cons(o)}

Cind
o,cons =

⊕
f∈Find

o,cons

w(f). (7)

We can observe a similar division in the third group where features are not relevant when

the atom in staticso is 0 and become relevant when it is 1. Again, we cast this knowledge

into a constraint for the relevant features:

F ind
o,mix = {f | f ∈ F ind

o ∧

∃ a ∈ f : a ∈ staticso ∧ [pre(o) |= a] ∧

∃ a′ ∈ f : a′ ∈ flipso}

= {f | f ∈ F ind
o ∧

∃ a ∈ f : a ∈ {pre(o) ∩ eff (o)} ∧

∃ a′ ∈ f : a′ ∈ flipso}

Cind
o,mix =

⊕
f∈Find

o,mix

w(f). (8)

Unsolvability Constraints in F2 18

Finally, we combine these constraints and create a new definition for Cind
o that only contains

all relevant features:

Cind
o = Cind

o,prod ⊕ Cind
o,cons ⊕ Cind

o,mix . (9)

Next, we expand on the more complex, context-dependent features which are made up

of the following set:

Fctx
o = {f | f ∈ F ∧ ∃Vo ∈ vars(f) : Vo ∈ vars(o) ∧ ∃Vō ∈ vars(f) : Vō /∈ vars(o)}.

Unlike the context-independent features, f ∈ Fctx
o is not determined by o and instead

depends on the states s and s′. With the goal to eliminate this state-dependence, let us

consider a feature f ∈ Fctx
o with f = a ∧ ā, where var(a) ∈ vars(o) and var(ā) /∈ vars(o).

We can understand that f can be described in terms of operator o by considering the truth

value of ā in state s. Either we have [s 6|= ā] from which [s 6|= f] and [s′ 6|= f] immediately

follow, or we have [s |= ā] (and therefore [s′ |= ā]) in which case only o is needed to

determine whether f holds in s and/or s′. Simply put, given the truth value of ā, the value

of feature f is determined by o. Conceptually, the situation is similar to the third group of

context-independent features, with the difference that here we do not know the value of ā.

The important thing to realize is that we do not have to care whether ā holds in s and

s′ or not if we know that either case contributes the same to the final potential value.

Because we know what features the value of ā impacts, we can also make sure that, across

all affected features, there is no difference between the two possible truth values of ā. With

this guarantee, the potential value then becomes independent from s and s′. In the following

paragraph we show how this result can be expressed through constraints.

Taking a closer look at Fctx
o , we find that a case distinction similar to F ind

o is possible.

Features f = a ∧ ā of Fctx
o can be assigned to one of two subsets:

1. Atom a is in staticso.

2. Atom a is in flipso.

The features of the first group are irrelevant for the same reason that the subset of F ind
o

with both atoms in staticso is irrelevant. The entry for features with both atoms in staticso

in Table 3.1 shows that ∆o(f) is always 0 if o changes neither of the atom’s values.

The second group requires more special treatment. Here we cannot make any statements

on the value of ∆o(f) because it depends on ā. Instead, we will ensure that the features in

this group contribute the same to the potential value, irrespective of ā.

Let us consider the variables V̄ = V \ vars(o). The assignments of these variables are the

possible atoms ā. We introduce the following constraint for every V ∈ V̄:

Cctx
o,V =

⊕
f=a∧ ā
a∈flipso

w(f) for all atoms ā ∈ V. (10)

Unsolvability Constraints in F2 19

This constraint states that, for a variable V , the sum of the weights of the features formed

by combining an assignment of V with all atoms in flipso, is equal for all assignments in V .

In order to later construct the final constraint, we sum up all the constraints from above:

Cctx
o =

⊕
V ∈V̄

Cctx
o,V . (11)

With this result we cover all features within the second group which correspond to the

following set:

Fctx
o,flips = {f | f ∈ Fctx

o ∧ ∃ a ∈ f : a ∈ flipso}.

We have hereby handled all features in Fctx
o and can compile the final constraint. By

combining Equations 9 and 11 we get the following end result:

0 = Cind
o ⊕ Cctx

o for all operators o ∈ O. (12)

This constraint serves as a compact representation of Condition 2 for the two-dimensional

case. We can summarize our findings in the following theorem, after collecting the necessary

equations.⊕
f∈F

w(f) ∧ [s0 |= f] =
⊕
f∈F

w(f) ∧ [s∗ |= f]⊕ 1 (1)

Cind
o = Cind

o,prod ⊕ Cind
o,cons ⊕ Cind

o,mix (9)

=
⊕

f∈Find
o,prod

w(f)⊕
⊕

f∈Find
o,cons

w(f)⊕
⊕

f∈Find
o,mix

w(f) (using 6, 7, 8)

Cctx
o =

⊕
V ∈V̄

Cctx
o,V (11)

=
⊕
V ∈V̄

⊕
f=a∧ ā
a∈flipso

w(f) for all atoms ā ∈ V (using 10)

0 = Cind
o ⊕ Cctx

o for all operators o ∈ O (12)

Theorem 2. Given TNF planning task Π and feature set F = {a∧a′ | a, a′ ∈ A∧(var(a) 6=
var(a′) ∨ val(a) = val(a′))}, the potential function

⊕
f∈F w(f) ∧ [s |= f] is a separating

function for all weight functions w : F 7→ F2 that satisfy Equation 1 and 12.

Proof. Let ψ(F) =
⊕

f∈F w(f) ∧∆o(f) be a function for the difference in potential value

across transition s
o−→ s′ for set of features F .

Cctx
o,V combines the features in

{f | f ∈ Fctx
o ∧ ∃ a ∈ f : a ∈ V ∧ ∃ a ∈ f : a ∈ flipso}

for a variable V . This variable holds exactly one value in state s and therefore ∆o(f) is only

1 for a single feature in the above set in s. Because the weights of these features are bound

to be equal, considering Cctx
o,V is equivalent to considering them all:

Cctx
o,V = ψ({f | f ∈ Fctx

o ∧ ∃ a ∈ f : a ∈ V ∧ ∃ a ∈ f : a ∈ flipso}).

Unsolvability Constraints in F2 20

By summing over all variables in V̄, as in Cctx
o , the covered features extend to:

Cctx
o = ψ({f | f ∈ Fctx

o ∧ ∃ a ∈ f : a ∈ flipso}).

For features f in Fctx
o without an atom in flipso it holds that ∆o(f) = 0. They can thus be

added without affecting the outcome:

= ψ({f | f ∈ Fctx
o }).

In order to construct Cind
o we start with Cind

o,prod and Cind
o,cons :

Cind
o,prod ⊕ Cind

o,cons = ψ({f | f ∈ F ind
o ∧

(∀a ∈ f : a ∈ prod(o) ∨

∀a ∈ f : a ∈ cons(o))}).

This can be generalized by including features with one produced and one consumed atom,

because their ∆o(f) is 0:

= ψ({f | f ∈ F ind
o ∧ ∀a ∈ f : a ∈ flipso}).

Cind
o,mix looks as follows:

Cind
o,mix = ψ({f | f ∈ F ind

o ∧

∃ a ∈ f : a ∈ staticso ∧ [pre(o) |= a] ∧

∃ a′ ∈ f : a′ ∈ flipso}).

For features in the above set where a does not hold in pre(o), ∆o(f) is 0 and they can be

included safely:

= ψ({f | f ∈ F ind
o ∧

∃ a ∈ f : a ∈ staticso ∧

∃ a′ ∈ f : a′ ∈ flipso}).

For all features f in F ind
o where both atoms are in staticso it is true that ∆o(f) is 0.

Consequently, they can be added to the other context-independent constraints to cover all

features in F ind
o :

Cind
o = Cind

o,prod ⊕ Cind
o,cons ⊕ Cind

o,mix

= ψ({f | f ∈ F ind
o }).

Finally, we combine the results:

0 = Cctx
o ⊕ Cind

o

= ψ({f | f ∈ F ind
o })⊕ ψ({f | f ∈ Fctx

o })

= ψ({f | f ∈ Fo})

=
⊕
f∈Fo

w(f) ∧∆o(f).

Unsolvability Constraints in F2 21

3.5 Considering Mutual Exclusivity
While Theorem 2 correctly defines a separating function over operators O, there is still

potential for improvement. As has been the theme of much of the discussion, we can

once again identify features that do not have to be considered. Specifically we look at

the constraints Cctx
o,V where V is a variable not in vars(o). According to Equation 10, we

demand Cctx
o,V to be equal for all atoms in V . The main observation in this section is that

this step can be skipped for atoms amutex
o that are mutually exclusive with pre(o) or eff (o).

Doing this has no effect on the potential value of any reachable state s, because there

is no transition s
o−→ s′ where [s |= amutex

o] or [s′ |= amutex
o] holds. This means that any

feature including amutex
o remains false across all reachable transitions over o. Consequently,

it does not matter whether the contribution of features including atoms amutex
o is equal to

the contribution of assignments of V that are possible.

In order to incorporate this knowledge into the constraints, we must first adjust our

definition of separating functions. So far, we required the equality constraint to apply to all

transitions of a planning task. Seeing that the statements about mutexes can only be made

for reachable states, we must restrict separating functions to the same domain. At the core

of the separating functions we now have a weak s0-invariant, when before it was strong.

It is important to note that we are not concerned with how the mutex information is

obtained for now – this will be treated in Section 4.3. Instead, we simply assume that valid

mutex pairs according to our Definition 12 are provided.

Proposition 3. A TNF planning task Π is unsolvable if there exists a separating function

ϕ over the reachable transitions of Π.

Proof. Assuming the proposition is false, a separating function ϕ over reachable transitions

and a valid plan π for task Π must coexist. The existence of ϕ guarantees different potential

values for the initial and goal state. As π connects the initial and goal state, it has to bridge

this difference along its path. Because valid plans can only exist over reachable transitions,

a change of potential value along π directly contradicts the existence of ϕ.

A proof for a stronger version of the above statement was shown for Proposition 2. With

the prerequisites in place, we can now remove the components of Cctx
o,V that consider atoms in

amutex
o and are still guaranteed that a resulting weight function proves unsolvability. More

formally, we change Equation 10, which is defined over variables V ∈ V \ vars(o), to the

following:

Cctx
o,V =

⊕
f=a∧ ā
a∈flipso

w(f) for all atoms ā ∈ {V \ amutex
o }. (13)

Proposition 4. Given a set of mutexes M , operator o and variable V , any atom amutex
o

for which there exists a mutex m = ¬(amutex
o ∧ a) with m ∈ M,a ∈ pre(o) ∪ eff (o) can be

excluded from Cctx
o,V without affecting Theorem 2 over reachable transitions.

Proof. Cctx
o,V must be equal for all possible assignments of V in order to provide a consistent

contribution to the potential value. Leaving the atoms amutex
o , which are impossible to hold

Unsolvability Constraints in F2 22

in any reachable transition, out of the equation still yields this consistent contribution across

all reachable transitions.

We can finalize our theoretical findings in a modified version of Theorem 2. For reference

we restate the relevant equations here:⊕
f∈F

w(f) ∧ [s0 |= f] =
⊕
f∈F

w(f) ∧ [s∗ |= f]⊕ 1 (1)

Cind
o = Cind

o,prod ⊕ Cind
o,cons ⊕ Cind

o,mix (9)

=
⊕

f∈Find
o,prod

w(f)⊕
⊕

f∈Find
o,cons

w(f)⊕
⊕

f∈Find
o,mix

w(f) (using 6, 7, 8)

Cctx
o =

⊕
V ∈V̄

Cctx
o,V (11)

=
⊕
V ∈V̄

⊕
f=a∧ ā
a∈flipso

w(f) for all atoms ā ∈ {V \ amutex
o }

(using 13)

0 = Cind
o ⊕ Cctx

o for all operators o ∈ O. (12)

Theorem 3. Given TNF planning task Π and feature set F = {a∧a′ | a, a′ ∈ A∧(var(a) 6=
var(a′) ∨ val(a) = val(a′))}, the potential function

⊕
f∈F w(f) ∧ [s |= f] is a separating

function over the reachable transitions of Π for all weight functions w : F 7→ F2 that satisfy

Equation 1 and 12 enhanced with Equation 13.

4
Algorithm

As a basis for the implementation and evaluation discussion, we first describe how the

presented concepts can be applied as an algorithm to detect unsolvability. The procedure

consists of two main steps: constructing constraints and checking if they are satisfiable.

4.1 Constraint Construction
We represent the constraints as a matrix. As we are working in F2, all entries are binary.

There is a row for every constraint, a column for every constraint variable, and an additional

result column. A constraint variable exists for every one- and two-dimensional feature as

well as for every context variable.

In a constraint row, the constraint variables that are relevant to that constraint are set

to 1, and all others to 0. Which constraint variables are relevant for which constraint is the

result of the theoretical discussion and thus explained in detail in Chapter 3. Nevertheless,

we briefly consider the practical implications of the result here. We consider the simple 2×2

instance of the sliding tiles puzzle shown in Figure 4.1, so as to illustrate these implications

firsthand. We represent this task by the encoding given in Figure 4.2. Instead of listing

2 1

3

2 1
⇒ . . . ⇒

1 2

3

1 2

Figure 4.1: Simple, unsolvable sliding tile task.

var1 var2

var3 var4

0→

2→ 2

1→ 1

3→ 3
Variables Values

Figure 4.2: Example encoding for task in Figure 4.1.

Algorithm 24

all 122 rows that the algorithm generates for our example task, we will exemplify the three

types of constraint rows: initial and goal row, operator rows, and context rows.

4.1.1 Initial and Goal Row
Initial and goal constraints induce one constraint row each. They set those constraint

variables whose associated feature holds in the respective state. Additionally, the result

column of the two rows must not be equal. For example, let the initial state’s potential

value be 0, and the goal state’s 1. In the following we examine the goal condition of our

example task given as a bit vector. The features are firstly ordered with ascending variables

and secondly with ascending values.

One-dimensional features︷ ︸︸ ︷
0 1 0 0︸ ︷︷ ︸

var1

0 0 1 0︸ ︷︷ ︸
var2

0 0 0 1︸ ︷︷ ︸
var3

1 0 0 0︸ ︷︷ ︸
var4

Two-dimensional features︷ ︸︸ ︷
. . . 1 . . . 1 . . . 1︸︷︷︸

e.g. feature {var1 7→1,var4 7→0}

. . . 1 . . . 1 . . . 1 . . .

Context
variables︷ ︸︸ ︷
0 . . . 0

Result︷︸︸︷
1

There is exactly one active fact per variable, because the task is in TNF and the goal must

describe a complete state. The six active two-dimensional features are the six combinations

of two active one-dimensional features, namely 6 =
(

4
2

)
. Context variables are only relevant

for operator and context constraints and are therefore 0 here. Lastly the result column is 1,

because we chose the result of the initial state to be 0.

Throughout this thesis we form initial and goal constraint rows as described, including

implementation and subsequent evaluation. A more general approach would be to combine

the rows into one by taking the bitwise XOR of the two rows. This would avoid having to

arbitrarily assign 0 and 1 to initial and goal state, and would instead capture both possible

assignments. We ran experiments with a combined initial and goal constraint row and could

not find any differences besides minor variation in runtime.

4.1.2 Operator Row
Operator constraints have a larger impact on the constraint matrix, as their number scales

with the size of the task. The relevance of the constraint variables referring to features is

determined by whether the feature is contained in the context-independent constraint Cind
o

of operator o. Similarly, constraint variables referring to context variables are set if the

context-dependent constraint Cctx
o,V exists for operator o and variable V . We consider the

operator o that moves tile 3 from the bottom left to the bottom right position, formally

o = 〈{var3 7→ 3, var4 7→ 0}, {var3 7→ 0, var4 7→ 3}〉, as an example.

One-dimensional features︷ ︸︸ ︷
0 0 0 0︸ ︷︷ ︸

var1

0 0 0 0︸ ︷︷ ︸
var2

1 0 0 1︸ ︷︷ ︸
var3

1 0 0 1︸ ︷︷ ︸
var4

Two-dimensional features︷ ︸︸ ︷
. 1︸︷︷︸
{var3 7→0,var4 7→3}

. 1︸︷︷︸
{var3 7→3,var4 7→0}

.

Context
variables︷ ︸︸ ︷

. . . 1︸︷︷︸
Cctx

o,var1

1︸︷︷︸
Cctx

o,var2

. . .

Result︷︸︸︷
0

The operator does not affect variables var1 and var2 – their constraint variables are thus

not relevant. Variables var3 and var4 contain two facts each that are mentioned in o – their

constraint variables are set to 1. The pair of two-dimensional features shown are the only

ones that appear in Cind
o and consequently the only non-zero entries within two-dimensional

Algorithm 25

features. The context variables look similar: two constraint variables are set for Cctx
o,var1

and

Cctx
o,var2

, because var1 and var2 are not in vars(o). These two context variables being set

induces context rows that we cover in the following section. This operator row models the

change in potential value across transitions using o. We want to ensure that this change is

0 and make the result column 0 accordingly.

4.1.3 Context Row
We just saw that context rows are induced by a context variable Cctx

o,V being set in an

operator row. For every such case, |dom(V)| context rows are constructed. We consider the

row induced by Cctx
o,var1

for {var1 7→ 1}.

One-dimensional features︷ ︸︸ ︷
0 . . . 0

Two-dimensional features︷ ︸︸ ︷
. . . 1︸︷︷︸

{var1 7→1,var3 7→0}

. 1︸︷︷︸
{var1 7→1,var3 7→3}

. 1︸︷︷︸
{var1 7→1,var4 7→0}

. 1︸︷︷︸
{var1 7→1,var4 7→3}

.

Context
variables︷ ︸︸ ︷
. . . 1︸︷︷︸

Cctx
o,var1

. . .

Result︷︸︸︷
0

One-dimensional features are not relevant for the context row. Two-dimensional features are

set for every combination of {var1 7→ 1} and one-dimensional feature active in the operator

row for o. The context variable that spawned this row is the single active context entry.

The result column must be 0 as we are encoding Equation 13, where Cctx
o,V is equal to a sum

of two-dimensional features. In F2, the equality A = B can be expressed as A ⊕ B = 0,

which is what we are doing for this constraint.

The total size of the generated matrix for our example task is 122 rows by 161 columns.

This is given the fact that we must only create constraint variables for those context variables

Cctx
o,V where V /∈ vars(o). Looking at the presented example constraint rows, which are

representative for this task, we can see that the matrix is rather sparse. This observation

will be of interest in Chapter 5.

Having constructed the constraint matrix, the next step is to check if it is satisfiable.

4.2 Solving Constraints
The constraints matrix we have constructed describes an augmented matrix, that is, a

matrix representation of a system of linear equations. Our aim now is to determine whether

a solution exists for this system. If a solution does exist, we know that there exists a

weight function w such that a potential function based on w describes a separating function,

meaning that the task is unsolvable. Conversely, if no solution exists, no such weight function

w exists and the task may or may not be solvable.

Gaussian elimination is a reliable algorithm to solve such systems and conveniently takes

their augmented matrix as input. To keep our explanation simple, we assume a system with

an equal number of variables and rows. In short, the procedure first brings the matrix into

upper triangular form, where all entries below the diagonal are 0, and then into row echelon

form, where all diagonal entries are 1. This is achieved using elementary row operations

such as swapping rows, subtracting multiples of one row from another, and multiplying a

Algorithm 26

row with a constant. Here, a simple example with rational numbers:
2 0 1 1

4 2 7 3

0 2 4 0

 = . . . =

2 0 1 1

0 2 4 0

0 0 1 1

 = . . . =

1 0 1

2
1
2

0 1 2 0

0 0 1 1

If Gaussian elimination finishes and there is a row where all variables are zero and the

result non-zero, the system is inconsistent and no solution exists. Otherwise we can apply

back substitution to get a solution.

There are two aspects of the algorithm we can simplify for our purposes. As we are

working in F2, it is easy to see that, for us, upper triangular and row echelon form are

equivalent. Furthermore, we are not interested in finding a solution for the system, but

merely in whether a solution exists or not. We can therefore terminate after seeing if the

system is consistent and skip the back substitution step.

4.3 Mutex Generation
Blum and Furst (1995) first exploited mutex constraints in the context of planning. Ever

since, mutexes have been studied in connection with various aspects of planning such as

planning as SAT (Chen et al., 2007), regression planning (Alcázar et al., 2013) and even

potential heuristics (Fǐser et al., 2020).

With regards to mutex generation, a fundamental contribution has been made by Bonet

and Geffner (2001). Their method is in turn based on the hm heuristic proposed by Haslum

and Geffner (2000). Due to a good trade-off between computational intensity and informa-

tion content, the most common choice for m is 2. This makes h2 the most frequently used

method for generating mutexes. Other methods of invariant generation have been proposed,

for example by Gerevini and Schubert (1998), and Rintanen (2000). For this thesis, we will

utilize h2 for its simplicity and efficiency.

5
Experimental Evaluation

In order to determine the practical use of the presented theory and resulting algorithm, we

conducted a series of empirical experiments. First we briefly present the experimental setup,

and then elaborate on optimizations, implementations, and results.

5.1 Setup
We implemented our algorithm in the Fast Downward1 planning system by Helmert (2006).

To enable SAS+ to TNF task transformation, we included additional code by Florian Pom-

merening. The core functionality of Fast Downward and therefore our implementation

is written in C++. To construct and run experiments we used Downward Lab by Seipp

et al. (2017). Calculations were performed on Intel Xeon E5-2660 CPUs clocked at 2.2 GHz,

provided by sciCORE2 scientific computing center at University of Basel. Unless stated

otherwise, resource limits were constant across all experiment runs with a time limit of 30

minutes and a memory limit of 3.5 GiB.

We tested our approach on a benchmark of unsolvable planning tasks by Eriksson (2019)

containing 19 suitable domains with a total of 684 problems. We exclude the diagnosis

domain because it contains conditional effects which our algorithm does not support.

In the following we will discuss how we implemented our algorithm, as presented in Chap-

ter 4. We introduce the iterations we went through and quantify the performance differences.

Additionally, we mention smaller scale optimizations that could affect performance.

5.2 Forget-Operator Fix
While testing an early version of our implementation on the sliding tile domain, we encoun-

tered an issue introduced by the transformation from SAS+ to TNF task. When running

the algorithm on an unsolvable instance, where the goal is a complete state but defined

implicitly, the task transformation added unnecessary forget-operators.

1 http://fast-downward.org
2 https://scicore.unibas.ch

http://fast-downward.org
https://scicore.unibas.ch

Experimental Evaluation 28

The constraints induced by these operators caused the constraint matrix to be unsat-

isfiable, even though the algorithm could successfully label an equivalent, explicit task as

unsolvable.

We circumvent this issue through an additional check during the construction of operator

constraints. We do not add a constraint for any forget-operator oforget = 〈{V 7→ v}, {V 7→
unknown}〉 that satisfies the following conditions:

1. {V 7→ unknown} is a goal fact.

2. {V 7→ v} is mutex with at least one goal fact.

3. For every operator o with {V 7→ unknown} ∈ pre(o):

{V 7→ v} is mutex with at least one other fact in pre(o).

An operator oforget , satisfying the three conditions above, cannot be part of a valid plan.

Let us understand this by assuming that such a plan π containing oforget exists. We can

always rearrange the operator sequence of π so that oforget only appears in front of operators

o with {V 7→ unknown} ∈ pre(o) and/or as the last operator of the sequence. This is the

case because V has a non-unknown value in the initial state and can retain that value until

unknown is required explicitly.

We first consider the case of oforget appearing in front of operator o. Forgetting the value

of V directly before applying o implies that, in the non-TNF version of the task, V would

still hold that value when applying o, just that we do not care about it in the TNF version.

The contradiction arises with condition 3, which states that a state where V 7→ v holds, and

o is applicable, is not reachable. Thus the sequence of these two operators cannot be part

of a valid plan.

An identical argument can be made for the case of oforget appearing as the last operator.

According to condition 2, no state where V 7→ v and all goal conditions of the non-TNF task

hold is reachable. Because all possible plans containing oforget can be shown to be invalid,

we can safely skip oforget in the constraint construction step.

5.3 General Results
We now have all the prerequisites to implement a first version of our algorithm. Before

we talk about the practical considerations of implementing our algorithm, we analyze the

general results, using our initial implementation as the base line. Details about, and im-

provements upon this first implementation follow in Section 5.4.

Table 5.1 shows the results of this first implementation. The results suggest that parity

arguments are only effective on a small number of domains. As expected, our algorithm per-

forms well on the sliding-tiles domain, where all instances are successfully proven unsolvable

via parity.

The second domain that shows success is the pegsol domain, where all tasks terminated.

Our algorithm proves unsolvability for 22 out of 24 problems, and fails to do so for the

remaining 2. It must be said that, during closer inspection of this domain, we realized that

Experimental Evaluation 29

Proven
by Parity

Proven
by h2

Not
Proven

Out of
Time

Out of
Memory

Critical
Error

3unsat (30) – – 25 – 5 –
bag-barman (20) – – – 8 12 –
bag-gripper (25) – – – 14 2 9
bag-transport (29) – 15 1 3 10 –
bottleneck (25) – 10 4 – 11 –
cave-diving (25) – 1 8 3 13 –
chessboard-pebbling (23) – – 7 – 16 –
document-transfer (20) – 2 2 5 11 –
mystery (9) – 9 – – – –
over-nomystery (24) – 2 7 – 15 –
over-rovers (20) – 3 5 – 12 –
over-tpp (30) – 1 13 – 16 –
pegsol (24) 22 – 2 – – –
pegsol-row5 (15) 1 2 5 – 7 –
sliding-tiles (20) 20 – – – – –
tetris (20) – – – 5 15 –
unsat-nomystery (150) – 32 93 – 25 –
unsat-rovers (150) – 62 8 – 80 –
unsat-tpp (25) – 1 – – 24 –

Sum (684) 43 140 180 38 274 9

Table 5.1: Outcomes of initial implementation we call full bitset.

our benchmark contains duplicate tasks. There are 12 unique instances with a duplicate

each. As should be the case, our algorithm produces identical results for the duplicate pairs.

Peg solitaire, the board game modeled by the pegsol domain, is a well-studied puzzle. The

(un)solvability of its various configurations and board shapes has been described alongside

many more of its properties. We present some of these approaches as well as a detailed

analysis of our own results for this domain in Chapter 6.

The pegsol-row5 domain offers some short-lived hope with its single successful task.

Unfortunately this result cannot be attributed to our algorithm and is instead a product

of the translator part of Fast Downward. While translating the original task, written in

the Planning Domain Definition Language (PDDL) by Fox and Long (2003), into Fast

Downward’s internal representation, it is detected that the task’s delete-relaxation, and

therefore the task itself, is unsolvable. Knowing that, the translator replaces the actual task

with a trivial, unsolvable dummy task which our algorithm then proves to be unsolvable.

There is another interesting observation involving the domains pegsol-row5 and the

chessboard-pebbling. Both are well-known for the fact that their unsolvability can be proven

using monotonic separating functions. Berlekamp et al. (2004) present such functions un-

der the name pagoda functions, and use them to show that any finitely sized pegsol-row5

problem is unsolvable. They call the problem “The Solitaire Army”; it is also known as

“Conway’s Soldiers” after co-author John H. Conway. We will explore pagoda functions in

more detail in Section 6.4. For the chessboard-pebbling problem, such a proof is shown,

for example, by Chung et al. (1995). Despite the success of numerical separating functions,

our algorithm is unable to show unsolvability for these domains. We interpret this as a

symptom of the loss of generality incurred by our approach. This is supported by the fact

that the unsolvability planner Aidos (and one of its components), which employs numerical

separating functions, detects unsolvability for all tasks of these domains. We discuss the

Experimental Evaluation 30

results of this comparison in Section 5.6.

We use mutexes generated by h2 to relax constraints and have a better chance of finding

parity functions. Even though these mutexes should only serve as a tool, they are capable

of proving tasks to be unsolvable by themselves, by finding a mutex pair of which both

atoms are contained in the goal. These cases are reflected in the “Proven by h2” column

of Table 5.1. In our initial analysis we falsely classified many of these cases as successes of

our algorithm. We did not check if any of the found mutexes are contained in the goal and

instead ran the entire procedure. For those tasks where the program terminated, it found a

parity argument. It consisted of a single relevant, usually two-dimensional feature containing

two goal atoms that h2 found to be mutex. This is interesting because our algorithm does

not treat the mutexes that already prove unsolvability themselves differently, but instead

arrives at the same result guided by them and all other mutexes. Let us briefly examine a

practical example.

Bottleneck is a domain where this case arises, that is easy to understand and visualize. A

task consists of a series of connected locations and a set of persons. Every location is either

active or not. Persons are in a location and can move to any connected, active location,

deactivating it in the process. We consider the task pictured in Figure 5.1. We use green for

active locations, red for inactive locations, and yellow for undetermined locations. After a

1 2 3 4 5

0

0

1

1

2

2

3

3

4

4

⇒ . . . ⇒

1 2 3 4 5

0 1 2 3 4

Figure 5.1: Initial and goal state of example instance.

series of moves from the task’s initial state, we could for example arrive in the state shown

in Figure 5.2.

We use the notation per(5) 7→ loc(0, 4) to refer to the fact that person number 5 is in

cell (0, 4), as is the case in the initial state. The only relevant feature for the separating

function found by our algorithm is now f = (per(2) 7→ loc(4, 1) ∧ per(3) 7→ loc(4, 2)). We

can see that f must hold in the goal and, after some trial-and-error, that there is indeed

no state reachable from the initial state for which f holds. Finding this parity function is

of course not necessary for an implementation. Feature f is also found to be mutex by h2,

and the program can terminate after mutex generation when checking if the goal contains

any of them.

Our algorithm performs exceptionally badly on the domains bag-barman, bag-gripper,

Experimental Evaluation 31

1 2

3 4

5

0

0

1

1

2

2

3

3

4

4

Figure 5.2: State after some moves from initial state (Figure 5.1).

Number of Operators

3unsat 189
bag-barman 12 822
bag-gripper 187 239
bag-transport 3 388
bottleneck 602
cave-diving 2 249
chessboard-pebbling 579
document-transfer 3 991
mystery 2 918
over-nomystery 5 336
over-rovers 2 867
over-tpp 3 465
pegsol 76
pegsol-row5 441
sliding-tiles 278
tetris 8 146
unsat-nomystery 1 781
unsat-rovers 2 385
unsat-tpp 15 110

Table 5.2: Geometric mean over number of operators per domain. Excluded are
bag-gripper tasks with critical error, and first task of pegsol-row5 with zero operators. The
four largest results are in bold.

tetris, and unsat-tpp, where it does not terminate for any task. The single exception is

one task of unsat-tpp where h2 proves unsolvability. A possible explanation for this is the

number of operators these tasks contain. Table 5.2 shows an overview for the number of

operators in all domains. As indicated in bold, the four domains in question do indeed have

significantly more operators than the other domains. The bag-gripper domain is the worst

offender by an order of magnitude. The actual gap would presumably be even larger, because

9 of the biggest instances cause an error in the translator and we could not determine how

many operators they contain. The fault in the translator may in fact also stem from the

unusually high number of operators.

This concludes our implementation-independent analysis and we will now discuss the

issues we faced and solutions we found while putting the algorithm into practice.

Experimental Evaluation 32

5.4 Implementations
The results presented in the previous section were produced by our first implementation. In

this section we will discuss the important decisions we made during programming, how they

affected performance, and what adjustments to those choices led to improvements. There

are three implementations we analyze and compare.

5.4.1 Full Bitset
A crucial choice we have to make when implementing our approach, is what data type to

use to store the constraint matrix. This is of importance because it is the largest object in

our program with the biggest potential for memory usage, as well as the object operated

on by Gaussian elimination, the most time consuming part of our algorithm. This choice

therefore has implications for both limiting resources.

To store the collection of rows, we use a simple std::vector. Offering constant time

element access and a way to reorder elements, it serves our purpose well. A container to

store the rows themselves must fulfill more strict requirements. It namely needs to store a

series of bits efficiently, allow quick access of a single bit, and offer a quick way to perform

bitwise XOR over two rows. A std::vector<bool> for example satisfies the first two

requirements but fails to provide efficient bitwise operations. With std::bitset, the

standard library contains an alternative that would fit our three conditions, were it not

for one caveat: its size has to be known at compile time. We can neither know the exact

number of constraint variables nor define a sensible upper bound. The Boost library3 defines

boost::dynamic_bitset which has the same properties as std::bitset but its size is

specified at runtime. An implementation of dynamic_bitset based on the Boost library

exists within Fast Downward. We extend it with some functionality and use it to store the

constraint rows.

As can be seen from the results on Table 5.1, the biggest problem with this implemen-

tation is its memory inefficiency, with “Out of Memory” being the most observed outcome.

This is due to the size of the constraint matrix. Let us consider the largest problem of the

bottleneck domain for which this implementation terminates. Its constraint matrix has a

size of 176 460 × 96 492 which equates to a minimal size in memory of 2.0 GiB. The next

larger bottleneck instance induces a matrix of size 265 676 × 102 626 with a minimal size

in memory of 3.2 GiB. Together with other parts of the program, some overhead within

dynamic_bitset, and an increase in memory usage during constraint construction, the

program exceeds our memory limit of 3.5 GiB.

This example shows that storing the full constraints is not feasible for large tasks. In

the following section we discuss our attempt to remedy this.

5.4.2 Sparse Set
One way to make matrices more memory-efficient is by only storing non-zero entries and their

location, instead of all entries. In our case, we of course only have to store locations, because

3 https://www.boost.org

https://www.boost.org

Experimental Evaluation 33

all non-zero entries are 1. A location requires more memory than our 1 bit entries, which

means that every non-zero entry introduces overhead. This way of representing matrices is

therefore only beneficial for sufficiently sparse matrices. In other words, the memory saved

by not storing zero entries must outweigh the added overhead for the remaining entries. As

we briefly mentioned in Chapter 4, the constraint matrices we construct are quite sparse.

Let us consider the same simple sliding tiles task from said chapter (see Figure 4.1). The

total number of entries in the constraint matrix for that task is 122× 161 = 19 642 of which

693 are non-zero entries. This results in a sparsity of 1− (693/19 642) ≈ 96.5 %.

While we know that our matrices start out sparse, Gaussian elimination gives no guar-

antee that they remain sparse. Indeed, as shown in Figure 5.3 for our simple sliding tiles

instance, we can observe a significant increase in the number of non-zero values during the

execution of Gaussian elimination. Despite this potential problem, we implemented our

0 20 40 60 80

600

693

800

981

+41.6 %

Gaussian Elimination step

N
u

m
b

er
o
f

n
o
n

-z
er

o
el

em
en

ts

Figure 5.3: Number of non-zero entries in constraint matrix across Gaussian elimination
execution for sliding tiles task (Figure 4.1).

algorithm using a sparse matrix representation to see how it behaves in practice.

A minor optimization we make is to dynamically choose the minimal fixed width integer

type to store the indexes of non-zero entries. So instead of always using a 32 bit long int,

we choose the smallest possible unsigned int with the length options being 8 bit, 16 bit,

32 bit and 64 bit. This is determined by the number of columns in the constraint matrix,

which is known before construction begins.

With a sparse representation, we can no longer take advantage of efficient, bitwise

XOR operations during Gaussian elimination. To achieve the same result we instead use

std::set_symmetric_difference, which requires its input to be ordered and leads

us to choosing a std::vector of std::set as the container. It allows us to directly

construct the rows to be ordered and offers efficient lookup. Table 5.3 shows the results for

the revised implementation.

The number of proven instances does not change. This is expected because the algorithm

is identical and only the internal representation of the constraint matrix has changed.

We changed the representation with the aim to reduce memory usage, which we seem to

have achieved, as the number of “Out of Memory” results is much lower compared to the

full bitset implementation. Let us take a closer look and compare the peak memory usage

of the two implementations. The results are shown in Figure 5.4.

A brief disclaimer before we begin the analysis: the numbers for all comparison plots

Experimental Evaluation 34

Proven
by Parity

Proven
by h2

Not
Proven

Out of
Time

Out of
Memory

Critical
Error

3unsat (30) – – 12 (−13) 17 1 –
bag-barman (20) – – – 16 4 –
bag-gripper (25) – – – 14 2 9
bag-transport (29) – 15 1 6 7 –
bottleneck (25) – 10 – (−4) 15 – –
cave-diving (25) – 1 8 14 2 –
chessboard-pebbling (23) – – 6 (−1) 8 9 –
document-transfer (20) – 2 2 16 – –
mystery (9) – 9 – – – –
over-nomystery (24) – 2 1 (−6) 18 3 –
over-rovers (20) – 3 4 (−1) 13 – –
over-tpp (30) – 1 6 (−7) 14 9 –
pegsol (24) 22 – 2 – – –
pegsol-row5 (15) 1 2 4 (−1) 8 – –
sliding-tiles (20) 20 – – – – –
tetris (20) – – – 20 – –
unsat-nomystery (150) – 32 71 (−22) 47 – –
unsat-rovers (150) – 62 6 (−2) 82 – –
unsat-tpp (25) – 1 – 19 5 –

Sum (684) 43 140 123 (−57) 327 (+289) 42 (−232) 9

Table 5.3: Outcomes of sparse set. Numbers in parentheses show difference to full bitset
(Table 5.1).

104 105 106 107
104

105

106

107

fa
il

ed

failed

65

32

351

Full Bitset (lower for 66 tasks)

S
p

ar
se

S
et

(l
ow

er
fo

r
1
77

ta
sk

s)

Peak Memory (in KiB)

3unsat cave-diving over-rovers tetris

bag-barman chessboard-pebbling over-tpp unsat-nomystery

bag-gripper document-transfer pegsol unsat-rovers

bag-transport mystery pegsol-row5 unsat-tpp

bottleneck over-nomystery sliding-tiles

Figure 5.4: Peak memory comparison between full bitset and sparse set. Failed instances
are excluded from “lower for”.

were generated by versions of the respective implementations that do not check for h2

mutexes in the goal. Results for tasks where this is possible would be the same for all

implementations. Instead we run the complete algorithm on all tasks in order to see the

Experimental Evaluation 35

differences in performance more clearly.

There is a clear trend towards lower memory usage for the sparse set representation,

especially with larger tasks. Despite this, there are still a considerable number of cases that

confirm our earlier suspicions, where the sparsity is seemingly not high enough and the full

bitset performs better. Another drawback of this second implementation stems from our

choice of using std::set as the row container. While not required by the C++ standard,

std::set is usually implemented as a self-balancing binary search tree. We use libstdc++

which indeed implements std::set as a red-black tree, where nodes need to store two

pointers to their children on top of their key/data. This overhead can be significant in our

case, considering that we store many small keys.

While we successfully tackled the symptom of high memory usage for the most part,

we did not improve upon the first implementation. The program now terminates for 57

fewer tasks in total and instead exceeds the 30-minute time limit more often. We vi-

sualize the difference in total computation time in Figure 5.5. Except for a handful of

10−3 10−2 10−1 100 101 102 103 104
10−3

10−2

10−1

100

101

102

103

104

fa
il

ed

failed

65

32

351

Full Bitset

S
p

ar
se

S
et

Total Time (in s)

3unsat cave-diving over-rovers tetris

bag-barman chessboard-pebbling over-tpp unsat-nomystery

bag-gripper document-transfer pegsol unsat-rovers

bag-transport mystery pegsol-row5 unsat-tpp

bottleneck over-nomystery sliding-tiles

Figure 5.5: Total time comparison between full bitset and sparse set.

outliers, the full bitset version is consistently faster. Two factors that could possible lead

to this behavior are less efficient XOR operations and cache-unfriendliness. While both

std::symmetric_set_difference and bitwise XOR on dynamic_bitset have lin-

ear time complexity in the number of elements in the two sets, dynamic_bitset should

have an advantage in practice as it can process 32 bit long chunks, instead of comparing sin-

gle bits. The second potential issue is that std::set is not stored contiguously in memory,

as opposed to dynamic_bitset which is a vector at its core. This can lead to significantly

more cache misses during Gaussian elimination.

Experimental Evaluation 36

Proven
by Parity

Proven
by h2

Not
Proven

Out of
Time

Out of
Memory

Critical
Error

3unsat (30) – – 25 (+13) 5 – –
bag-barman (20) – – – 20 – –
bag-gripper (25) – – – 16 – 9
bag-transport (29) – 15 2 (+1) (+1) 5 7 –
bottleneck (25) – 10 4 (+4) 11 – –
cave-diving (25) – 1 10 (+2) (+2) 14 – –
chessboard-pebbling (23) – – 9 (+2) (+3) 13 1 –
document-transfer (20) – 2 2 16 – –
mystery (9) – 9 – – – –
over-nomystery (24) – 2 9 (+2) (+8) 13 – –
over-rovers (20) – 3 8 (+3) (+4) 9 – –
over-tpp (30) – 1 13 (+7) 16 – –
pegsol (24) 22 – 2 – – –
pegsol-row5 (15) 1 2 6 (+1) (+2) 6 – –
sliding-tiles (20) 20 – – – – –
tetris (20) – – – 20 – –
unsat-nomystery (150) – 32 101 (+8) (+30) 17 – –
unsat-rovers (150) – 62 40 (+32) (+34) 48 – –
unsat-tpp (25) – 1 – 24 – –

Sum (684) 43 140 231 (+51) (+108) 253 (+215) (−74) 8 (−266) (−34) 9

Table 5.4: Outcomes of sparse vector. Numbers in parentheses show difference to full
bitset (Table 5.1) on the left, and difference to sparse set (Table 5.3) on the right.

Sparse representation is a promising approach, yet it fails to outperform the full bitset.

In a third iteration we try to remedy issues with sparse representation in order to surpass

both previous approaches.

5.4.3 Sparse Vector
In the previous section we saw multiple issues that could be explained by our choice to store

rows as std::set. For this third and last iteration we hope to improve the sparse approach

by replacing std::set with std::vector. Our reasoning for choosing std::set ini-

tially was the fact that it is ordered, and offers lookup with time complexity O(log n) for a

set of length n. It turns out that we can achieve the same properties using std::vector

with little effort, by simply sorting all rows after construction. This is only necessary once,

because std::symmetric_set_difference preserves order and is the only function

modifying rows after initial construction. The fact that the rows are sorted, further allows

us to use std::binary_search to achieve equally efficient lookups to std::set.

A conceivably critical advantage of std::vector over std::set is it being contigu-

ous in memory, which should make it more cache-friendly. Table 5.4 shows how well the

theoretical advantages hold up in practice. To which the answer is: rather well. While

there is still no change with regards to proven unsolvability, this time we did improve the

implementation, which now terminates for more instances than both our previous attempts.

We again will look at measures of peak memory and time across all tasks. We compare

against the stronger previous implementation for both categories. Let us first look at memory

usage compared to the sparse set approach, shown in Figure 5.6. The vector version strongly

dominates the set version, and the effect becomes more pronounced with larger instances.

We assume that this is caused by the lack of overhead induced by std::vector as opposed

to std::set.

Experimental Evaluation 37

104 105 106 107
104

105

106

107

fa
il

ed

failed

127

289

Sparse Set

S
p

ar
se

V
ec

to
r

Peak Memory (in KiB)

3unsat cave-diving over-rovers tetris

bag-barman chessboard-pebbling over-tpp unsat-nomystery

bag-gripper document-transfer pegsol unsat-rovers

bag-transport mystery pegsol-row5 unsat-tpp

bottleneck over-nomystery sliding-tiles

Figure 5.6: Peak memory comparison between sparse set and sparse vector.

Let us also consider computation time again, where the sparse set approach struggled

the most. To better judge the time performance of sparse vector, we compare it against

the fast bitset instead of the slow sparse set. See the resulting plot in Figure 5.7. Perhaps

surprisingly, the vector implementation can match the full bitset very closely. It seems that

bitset has the edge for smaller tasks, but larger tasks are spread more evenly or slightly

fall into the favor of the sparse approach. We think that the better memory locality, and

resulting cache-friendliness of std::vector could be an important contributing factor for

the improved performance over std::set.

5.5 Sliding Tiles
Variations on the 15 puzzle have been our primary examples throughout this thesis. We have

used them in theoretical discussion as well as for practical consideration. The instances in

the sliding-tiles domain are comprised of ten 3× 3 and ten 3× 4 sized problems, which both

the full bitset and sparse vector implementations can prove very quickly. We present a brief

comparison in Table 5.5 under “sliding-tiles”. To better gauge the potential of our approach

for proving unsolvability in the sliding-tiles domain, we test our algorithm’s performance on

larger tasks. We will henceforth not consider the sparse set implementation anymore, as it

performs significantly worse than its competitors.

Experimental Evaluation 38

10−3 10−2 10−1 100 101 102 103 104
10−3

10−2

10−1

100

101

102

103

104

fa
il

ed

failed

94

289

Full Bitset (lower for 152 tasks)

S
p

ar
se

V
ec

to
r

(l
ow

er
fo

r
14

7
ta

sk
s)

Total Time (in s)

3unsat cave-diving over-rovers tetris

bag-barman chessboard-pebbling over-tpp unsat-nomystery

bag-gripper document-transfer pegsol unsat-rovers

bag-transport mystery pegsol-row5 unsat-tpp

bottleneck over-nomystery sliding-tiles

Figure 5.7: Total time comparison between full bitset and sparse vector. Failed instances
are excluded from “lower for”.

Total Time (in s) Peak Memory (in KiB)

sliding-tiles
(geometric)

Full Bitset 1.0 105 019
Sparse Set 18.0 96 195
Sparse Vector 2.5 59 931

15 Puzzles
(arithmetic)

Full Bitset 181.3 1 388 748
Sparse Vector 159.9 91 798

24 Puzzles
(arithmetic)

Sparse Vector 7 354.9 637 952

Table 5.5: Time and memory comparison across sliding-tiles tasks of increasing size. In
parentheses the averaging method, either geometric or arithmetic mean.

5.5.1 15 Puzzle
We first consider tasks with a 4×4 board, whose size corresponds to the classic 15 puzzle. We

test on 100 randomly generated problems, posed by Korf (1985). The problems are solvable,

have varying initial states but share the same goal state. The goal state has the blank in

the top left corner and tiles in ascending order, row-wise from top to bottom. To make the

tasks unsolvable, we switched the positions of tile 1 and 2 in the goal so that the top row

reads 〈�, 2, 1, 3〉, instead of 〈�, 1, 2, 3〉. This change should not affect the randomness of the

instances. The results are shown in the “15 Puzzles” row in Table 5.5.

Note that we use arithmetic mean to sum up the numbers, instead of geometric as we

used previously. We do this because all tasks are the same size here and, per algorithm,

values are very similar. The memory usage of full bitset is in fact constant, because the

Experimental Evaluation 39

dimensions of the constraint matrices are the same for all tasks.

Interestingly, sparse vector solves these larger problems faster than full bitset. A likely

explanation for this is that sparse vector only operates on non-zero entries, while full bitset

operates on full rows. Let us investigate how the sparsity of constraint matrices scales with

larger sliding-tiles instances.

5.5.2 Sparsity Scaling
For this discussion, we can disregard the initial and goal constraint rows, because their

impact is dominated by operator constraints. Although their length changes with task size,

their number (2) remains constant, as opposed to operator constraints, which become both

longer and more numerous with bigger boards. It is further sufficient to examine the case of

a single operator row and the context rows it induces, because all operators in sliding-tiles

share the same properties, such as the number of preconditions and effects, and behave

identically with respect to sparsity. This means that the change in sparsity observed in an

operator constraint row and the context rows it induces, can be generalized to describe the

task as a whole.

Let us first look at how the number of constraint variables can be determined for a

sliding-tile task Π = 〈V,O, s0, s∗〉 with domain d = dom(V) for all V ∈ V:

• Number of one-dimensional features: |V| · |d|

• Number of two-dimensional features:
(|V|

2

)
· |d|2 = |V|2−|V|

2 · |d|2

• Number of context constraint variables: |O| · (|V| − 2)

When expanding Π, while preserving its underlying idea, the smallest possible step we can

take is to add a single cell containing a tile. This gives us the expanded task Π′ with

V ′ = V ∪Vnew and d′ = d∪vnew. Both adding a value to d, and adding a variable to V cause

a polynomial, non-linear increase in the number of two-dimensional features. Similarly,

the number of operators grows linearly with respect to |V| and through being multiplied

by (|V| − 2), makes the increase in the number of context constraint variables non-linearly

polynomial in |V|. Therefore we can conclude that the total number of constraint variables

grows polynomially, and faster than linear, in the size of Π.

The second component we must understand is the number of non-zero entries. To that

end, we first examine the number of non-zero constraint variable values in an operator row

for operator o:

• Number of set one-dimensional constraint variables: 4

There are 4 atoms in pre(o) 4 eff (o).

• Number of set two-dimensional constraint variables: 2

There is 1 pair of atoms being simultaneously produced, and 1 pair being simultane-

ously consumed.

• Number of set context constraint variables: |V| − 2

There are 2 variables in vars(o).

Experimental Evaluation 40

Sparsity (in %)

2× 2 96.47
3× 3 99.88
4× 4 99.95

Table 5.6: Sparsity in sliding-tiles problems of increasing size.

We now know that, for operator rows, the number of non-zero entries grows linearly in the

size of Π. The only missing piece is whether the same is true for all context rows induced

by o. As with operator rows, it is sufficient to consider a single context row, because they

all behave identically when considering the number of non-zero entries they contain. We

examine a context row for Atom A in V /∈ vars(o) with V ∈ V:

• Number of set one-dimensional constraint variables: 0

These are not relevant for context variables.

• Number of set two-dimensional constraint variables: 4

There are 4 atoms in pre(o) 4 eff (o), each paired with A.

• Number of set context constraint variables: 1

The context variable for o and V .

Seeing that context rows contain a constant number of non-zero entries in the size of Π, we

have considered all components necessary to understand how sparsity behaves.

Proposition 5. Let the size of sliding-tiles planning task Π with domain d = dom(V) for

all V ∈ V be the number of its atoms |A|. The sparsity of the constraint matrix M induced

by Π increases monotonically with the size of Π.

Proof. Increasing the number of atoms |A| must increase either |V|, |d|, or both. The

total number of constraint variables in M grows polynomially, and faster than linear, with

increasing |V| or |d|. Meanwhile, the number of non-zero entries in M grows only linearly

with respect to |V| and |d|. Therefore, the sparsity of M given by 1 − #non-zero entries
#constraint variables

increases monotonically with the size of Π.

After establishing the theory, we now look at a sequence of sparsity values over increasing

sliding-tiles tasks. Specifically, we consider the progression of square boards from 2 × 2 to

4×4, and measure the sparsity of the resulting constraint matrix before Gaussian elimination.

The numbers are listed in Table 5.6. To put this sparsity discussion into perspective, it

is important to realize that these results only hold for the initially constructed constraint

matrix, and that standard Gaussian elimination can make the matrix significantly less sparse

during computation. We have previously touched on this in Section 5.4.2, and specifically

Figure 5.3.

5.5.3 24 Puzzle
We have seen that our algorithm, given the right implementation, can handle 15 puzzle

problems within acceptable resource bounds. Further we explored the favorable scaling

Experimental Evaluation 41

properties of the sliding-tiles domain for sparse matrix representation. These discoveries

give us reason to wonder how we would fare on even larger boards. To test just that, we

consider the next biggest square, 4× 4, and arrive at the 24 puzzle.

This is a very significant step up in size as we go from the 15 puzzle’s 16! ≈ 2.1× 1013

states, to 25! ≈ 1.5× 1025 for the 24 puzzle. Task sizes of this magnitude make our full

bitset implementation infeasible. Our algorithm constructs a constraint matrix of size

1 017 602 × 232 286 for 24 puzzle instances, which means a theoretical minimal memory

requirement of 27.5 GiB for storing the full matrix. We therefore evaluate only the sparse

vector implementation with the same memory limit as for all previous experiments, 3.5 GiB,

and a generous time limit of 8 h.

As for the instances, we consider 50 problems posed by Korf and Felner (2002). We

made the instances unsolvable in the same way as the 15 puzzle problems, by switching two

tiles in the shared goal state. The results of the evaluation are shown in the “24 Puzzles”

row on Table 5.5.

The sparse vector implementation of our algorithm solves all 50 instances with both time

and memory to spare. The majority of times are within 10 min of the 2.0 h average runtime

with a handful of outliers that finish just over 15 min faster than average. Inconsistencies

arose with another experiment run with identical setup, where times fluctuated from 2.4 h

down to 1.5 h. At present we assume that the variation in these results stem from the

computer cluster we ran our experiments on. Memory on the other hand is stable and

consistent across runs. The fact that memory usage increased by a factor of less than 10

with respect to 15 puzzles, while the number of states increases in the order of 1014, supports

our findings of growing sparsity with growing task size.

5.6 Aidos
Now that we have an overview of the performance, strengths, and weaknesses of our approach

in practice, we will compare it to a state of the art planner built for unsolvability detection.

For this comparison we have chosen Aidos, the winner of the Unsolvability IPC 2016. Aidos,

developed by Seipp et al. (2016), is a collection of three portfolios of which we consider the

one that performed best in the competition. As in their paper we call this configuration

Aidos 1. Aidos 1 was constructed using a variety of techniques which culminate in three

main components: resource detection using A∗ search, and breadth-first search using either

dead-end pattern databases or dead-end potentials with two-dimensional features.

The last component is what makes Aidos interesting to compare our algorithm to. Dead-

end potentials encode monotonic separation functions, which are a generalization of the

separating functions our approach seeks to find, as we have seen in Section 3.1. Another

parallel we can draw to our approach is the usage of h2, which they do in a preprocessing

step, based on ideas by Alcázar and Torralba (2015). Importantly, they use the mutexes

found by h2 exclusively to simplify the tasks, and do not consider them anymore thereafter.

With these observations in mind, we tested one Aidos portfolio and a modified version

of the dead-end potential component on our benchmark set. Firstly, we ran the default

portfolio Aidos 1, as it appeared in the Unsolvability IPC 2016. Secondly, we ran the dead-

Experimental Evaluation 42

Parity
Arguments

Dead-End
Potentials

Aidos 1

3unsat (30) – – 30
bag-barman (20) – – 12
bag-gripper (25) – 15 15
bag-transport (29) – 22 23
bottleneck (25) – 25 25
cave-diving (25) – 2 8
chessboard-pebbling (23) – 23 23
document-transfer (20) – 10 13
mystery (9) – 9 9
over-nomystery (24) – 5 14
over-rovers (20) – 5 13
over-tpp (30) – 12 26
pegsol (24) 22 4 24
pegsol-row5 (15) 1 15 15
sliding-tiles (20) 20 – 10
tetris (20) – 20 20
unsat-nomystery (150) – 62 149
unsat-rovers (150) – 76 139
unsat-tpp (25) – 13 25

Sum (684) 43 318 593

Table 5.7: Number of tasks proven unsolvable by our approach, and Aidos .

end potential component, but limited it to only evaluate the initial state instead of searching,

in order to see for what tasks it can find monotonic separating functions for the initial state.

The results are summed up in Table 5.7. Unsurprisingly, Aidos 1 outperforms both our

approach and the single dead-end potential configuration swimmingly. It is noteworthy

though, that dead-end potentials, even with our additional restriction, keep up well and

can match Aidos 1 for several domains. This suggests that monotonic separating functions

are useful in various domains, especially when compared to parity functions. We previously

mentioned that the unsolvability of pegsol-row5 and chessboard-pebbling is known to be

provable using monotonic separating functions. Our experiment confirms that dead-end

potentials are capable of detecting these proofs automatically.

The two domains where our approach finds success offer the most compelling point of

comparison. The numbers for sliding-tiles confirm that our algorithm’s strength in this

domain remains significant with state of the art competition. Even beyond Aidos, the

sliding-tiles tasks in our benchmark are the same 20 instances used in the Unsolvability IPC

2016. No planner in the competition was able to show more than 10 of these tasks to be

unsolvable, with the majority of competitors showing 10 exactly4. We assume that they

correspond to the half of problems that are 3× 3 in size, whereas the bigger half is 3× 4.

The fact that dead-end potentials fail for all sliding-tiles problems warrants an explana-

tion. Because their underlying concepts are more powerful than parity, we hypothesize that

the crucial difference lies in the consideration of mutexes. This is supported by the fact that

our algorithm also fails for all sliding-tiles tasks when we do not consider h2 mutexes in the

constraint construction step.

Unlike the strong performance of Aidos 1, the pegsol results for dead-end potentials

4 Competition domains and results from https://github.com/AI-Planning/unsolve-ipc-2016

https://github.com/AI-Planning/unsolve-ipc-2016

Experimental Evaluation 43

are surprising. Even though dead-end potentials employ monotonic separating functions

and two-dimensional features, they do not successfully detect unsolvability for 18 cases

where parity arguments do. We suspect that these arguments require the cyclic modulo 2

property inherent to parity arguments, which cannot be expressed in real-valued potential

functions. In the next chapter we take an in-depth look at unsolvability proofs in the pegsol

domain.

6
Peg Solitaire Case Study

In this chapter we examine parity arguments our algorithm finds for peg solitaire problems.

We draw parallels to known results and consider the application of numerical arguments.

Peg solitaire is a single player board game that has existed for over 300 years. It consists

of a board with holes, and pegs that can occupy the holes. Generally, a problem starts out

with a number of pegs arranged on the board. The aim then is to remove pegs and be left

with the remaining pegs in a predefined end configuration. Most often, only a single peg

should remain. Pegs are removed by a jumping move, where one of two adjacent pegs leaps

over the other and lands in the neighboring, unoccupied hole. The stationary peg is then

removed. Figure 6.1 illustrates such a move. Jumping is allowed horizontally and vertically,

⇒

Figure 6.1: Peg solitaire move, red jumps over blue.

but diagonal jumps are not permitted.

We consider the most popular board variant, which has 33 holes and is called the “En-

glish” board. We draw the board as a grid where empty cells are free holes and cells

containing circles are holes occupied by a peg. Figure 6.2 shows the classic central game

where the initially free hole must be left with the last remaining peg in the end.

In the following sections, we will take a look at unsolvable peg solitaire problems posed

by the pegsol domain of our benchmark collection. In particular, we want to understand the

parity arguments generated by our algorithm and the reasons why it fails for some tasks.

While our algorithm does not normally calculate a solution to the constraint matrix, we

did so for some pegsol instances and analyze the results here. A solution for the constraint

matrix is a vector containing the weights for all features. These weights form a weight

function from which we can formulate a potential function, which in turn encodes a parity

argument for the task at hand. We will study the nature of the constructed parity arguments

by examining the solution vectors directly.

Peg Solitaire Case Study 45

⇒ . . . ⇒

Figure 6.2: Central game problem on the English board.

6.1 Task1

Let us consider the first instance of the pegsol domain and call it Task1. Its initial and

goal states are pictured in Figure 6.3. Our algorithm successfully proves this problem to be

⇒ . . . ⇒

Figure 6.3: Task1, first instance of pegsol domain.

unsolvable. The resulting solution vector reveals a first interesting point: no two-dimensional

features are used for the parity argument. Surprisingly, one-dimensional features suffice for

proving Task1 unsolvable. To understand the argument, we first visualize the solution

vector by marking the relevant board locations. There are two atoms for every location:

one for the hole being free, and one for it being occupied. We color locations where the

free-atom is set in the solution vector green, and those where the occupied-atom is set red.

The result is shown in Figure 6.4. Considering that the initial state is relatively chaotic,

Figure 6.4: Visualization of solution vector for Task1.

this level of symmetry is unexpected. In fact, by adjusting the constraints so that the

Peg Solitaire Case Study 46

arbitrarily chosen potential values for initial and goal state are 1 and 0 instead of 0 and 1,

the only occupied-atom is replaced by the free-atom in the same location, leading to perfect

symmetry along the vertical axis. The peg solitaire literature provides a clear explanation

for this curiosity.

6.2 Invariant Parity Counts
This exact argument for proving the unsolvability of peg solitaire problems has been de-

scribed by Beasley (1985), but similar approaches were known much earlier. Berlekamp

et al. (2004) present the same argument, but in different terms, and trace its origin back to

a paper by Reiss (1857). Beasley (1985) uses parity arguments to divide peg solitaire states

into 16 classes such that there is no sequence of legal moves to bring a position of one class

to a position of another. Stating that an initial and goal position are not of the same class

therefore proves unsolvability. These classes can be represented by what Beasley (1985) calls

“invariant parity counts”, of which the solution vector for Task1 is one.

An invariant parity count is a set of marked locations on the board. The locations must

be chosen so that no legal move can change the parity of the number of pegs in marked

locations for any position. There are a total of 16 sets of locations that fulfill this condition,

including the uninformative empty set. Beasley (1985) provides the following instructions

to easily construct the patterns by hand:

1. Choose any 2 × 2 square on the board and construct the 16 permutations of marked

and/or unmarked cells.

2. Extend the pattern along rows and columns according to the rules:

a) If two adjacent cells are both marked or both unmarked, their two neighbors are

unmarked.

b) Else, if one is marked and one unmarked, their two neighbors are marked.

The 15 informative counts contain 9 variations on the set in Figure 6.4, which Beasley (1985)

names “square” counts, and 6 variations on the “diagonal” counts, with an example shown

in Figure 6.5. When evaluating a state, we count the number of pegs present in the marked

Figure 6.5: Example for invariant parity count of type “diagonal”.

locations and note the number’s parity. Two states are of the same class if and only if their

parities are equal for all 16 invariant parity counts.

Peg Solitaire Case Study 47

The argument our solution vector states is that the initial and goal state of Task1 are

of different parity with respect to the invariant parity count represented by the solution.

They can therefore not be of the same class and the task is unsolvable.

6.3 Other Tasks
Our algorithm proves unsolvability for all except two pegsol instances in this way, with the

only difference being that different variations of the square counts are used. Figure 6.6 shows

the three other variations that were found. One of them is the solution for Task1 with a

Figure 6.6: Three more invariant parity counts of type “square” found by our algorithm.

flipped occupied-atom, the other is a rotated version of the solution for Task1, and the last

one is a unique square count.

As mentioned, our algorithm fails to prove unsolvability for two identical5 instances.

This is due to the fact that initial and goal state belonging to different classes is a sufficient,

but not necessary, condition for unsolvability. An example for an unsolvable task with

equal class membership is the central game from Figure 6.2, where initial and goal state

are reversed. This example shows that two states within a class cannot necessarily reach

each other using legal moves, and gives us a hint towards the necessary change to make the

statement true.

A state of class c can reach any other state in c using regular moves and reverse

moves, where a peg jumps over an empty hole that is then filled with a peg. According

to Beasley (1985), it is not possible to get more informative classifications of peg solitaire

states using only parity arguments, and one must consider that moves consume pegs in order

to gain further insights.

6.4 Numerical Unsolvability
Beasley (1985) considers consumed pegs through what he calls “resource counting”. He en-

codes the resources available on the board in a resource count which assigns a value to every

cell. The values must be chosen such that for any horizontally or vertically adjacent group

of three cells A, B and C, it must hold that A+ B ≥ C. An example from Beasley (1985)

for a resource count is shown in Figure 6.7. Empty cells have a value of 0. The constraint

5 Identical because our benchmark contains duplicate tasks in the pegsol domain.

Peg Solitaire Case Study 48

−1 −1

1 1 1

−1 1 1 1 −1

1 1 2 1 1

−1 1 1 1 −1

1 1 1

−1 −1

Figure 6.7: Example for resource count.

ensures that no move can increase the resource amount. A state is evaluated by summing

up the resource count values of all occupied holes, which allows us to formulate unsolvability

arguments by stating that a problem’s initial state contains fewer resources than its goal

state. According to Beasley (1985), this argument was first made by John H. Conway and

John M. Boardman in 1961, but no reference is given. We have previously come across Con-

way’s argument when discussing the pegsol-row5 domain in Section 5.3, and learned that

Conway and his co-authors call resource counts pagoda functions (Berlekamp et al., 2004).

Finding such functions automatically has been attempted before, for example by Kiyomi

and Matsui (2001), who formulate the problem as an integer program, which they relax and

solve to prove unsolvability for peg solitaire problems.

Of course, the above argument is familiar to us as the generalization of our parity ap-

proach, with the difference that only one-dimensional features are considered. Resource

counts (and equally pagoda functions) can thus be seen as monotonic separating functions

limited to one-dimensional features.

Interestingly, resource counts are also not sufficient to prove unsolvability for the specific

task for which our algorithm failed, which is shown in Figure 6.8.

⇒ . . . ⇒

Figure 6.8: Task which our algorithm and resource count fail to prove unsolvable.

Proposition 6. There exists no resource count R for planning task Π, pictured in Fig-

ure 6.8, such that R(s0) < R(s∗).

Proof. For adjacent values A, B and C of R we can show that B cannot be negative because

both A+B ≥ C and C+B ≥ A must hold (Beasley, 1985). This implies that only cells that

cannot be jumped over can have negative values, and that R(s∗) ≥ 0. Because the middle

Peg Solitaire Case Study 49

peg is the only peg in s∗ and is also present in s0, it holds that R(s0) = R(s∗) + R(srest),

where srest is the initial state without the middle peg. For R(s0) < R(s∗) to be true,

R(srest) must be negative, with the only possible negative components of R(srest) coming

from the leftmost pegs of the rows just below and above the middle row. Let us now consider

the values at these cells as a, with b and c as their neighbors to the right. Assigning a to

−x binds b to be ≥ x, because c cannot be negative and a+ b ≥ c must hold. Any negative

contribution by the possible pegs a is therefore compensated by pegs in b, which are both

present in s0. We have thus shown that R(srest) can never be negative and the proposition

must hold.

Beasley (1985) states that resource counts would fully describe the solvability of a peg

solitaire game where fractional moves, and any number of pegs per hole are allowed. He goes

on to discuss more in-depth unsolvability detection techniques, that go beyond the scope of

this thesis.

7
Conclusion

The aim of this thesis was to explore the automatic generation of parity arguments as a way

to detect unsolvability in planning tasks. Existing techniques involving potential functions

that encode monotonic separating functions have been described by Pommerening (2017),

and applied to the unsolvability planner Aidos by Seipp et al. (2016). We limited this real-

valued approach to the field F2, which provides a natural way to express parity arguments.

We saw that parity arguments can be expressed in terms of an s0-invariant I, with the

additional condition that I does not hold in any goal state. Potential functions are capable

of combining invariant and condition into a single function, so that such a parity function’s

existence is sufficient to prove a planning task unsolvable.

To compute parity functions automatically, we constructed a set of constraints which

guarantees that any potential function satisfying them is a parity function. We showed that

these constraints can be represented efficiently for up to two-dimensional features, and how

they can be constructed in practice.

In order to test the practical use of the resulting algorithm, we implemented it on top of

the Fast Downward planning system. Working in F2 proved beneficial to this stage, where

it allowed us to replace complex LP solvers with more predictable Gaussian elimination. We

compared the performance of three implementations on a benchmark containing unsolvable

tasks from 19 domains. While we were able to improve performance with respect to resource

consumption, it did not lead to more unsolvability proofs. Our approach seems to only be

useful for a limited number of domains, with pegsol and sliding-tiles being the only two

domains where we found parity arguments. Because our algorithm performed exceptionally

well in the sliding-tiles domain, we ran experiments with bigger tasks and saw that even the

very large 24 puzzle can be proven unsolvable within reasonable resource bounds.

In the last part of the evaluation, we compared our approach to the aforementioned

unsolvability planner Aidos, as well as to the dead-end potentials component of its portfolio.

While both configurations vastly outperform our algorithm over all, parity arguments seem

very strong for sliding-tiles and are able to find unsolvability proofs in pegsol that are not

detected by dead-end potentials.

Lastly, we took a closer look at actual parity arguments our algorithm found for the pegsol

domain. We were able to show that equivalent proofs have been described in literature, and

Conclusion 51

investigated the expressive power of parity and monotonic separating functions for this

specific application.

7.1 Future Work
In this section we briefly discuss possible angles for further research in connection with the

topics discussed in this thesis.

7.1.1 Gaussian Elimination Alternatives
While Gaussian elimination is a natural choice for solving the XOR constraints posed by

our approach, it is not the only one. It has a time complexity of O(n3) for a matrix of size

n× n, which can be problematic considering how large the constraint matrices can grow.

A classic improvement upon Gaussian elimination is the result by Strassen (1968), which

introduces an algorithm for matrix multiplication that can be applied to solving systems of

linear equations, and has a time complexity of O(nlog27) ≈ O(n2.807). Bard (2007) shows

how this approach can be applied to F2.

Similarly, the Method of Four Russians for Inversion proposed by Bard (2007) describes

another alternative, based on an algorithm by Arlazarov et al. (1970). It can achieve the

same result as Gaussian elimination while reducing time complexity to O(n3/ log n).

A third option that may come to mind is SAT solvers. It is possible to convert XOR

constraints to conjunctive normal form, which allows SAT solvers to interpret the problem.

Unfortunately this approach is limited by the fact that the necessary conversion generally

increases the constraint size exponentially. Nevertheless, much research effort has been

invested into integrating XOR constraints with SAT solvers. Some examples are Warners

and van Maaren (1998), Baumgartner and Massacci (2000), and Soos et al. (2009). This is

often done in the context of cryptography where XOR constraints are common. The findings

of Soos et al. (2009) have been implemented as an extension to the MiniSat solver by Eén

and Sörensson (2004). The result is CryptoMiniSat6. It offers native support for XOR

constraints and solves them using a combination of SAT-solving concepts and Gaussian

elimination. Possible issues with this approach would be internal optimizations that can

include heuristics or even random decisions, which make results less predictable. Even more

importantly, we are unsure if such solutions offer a polynomial guarantee for solving XOR

constraints.

7.1.2 Relation to Dead-end Potentials
We have seen pegsol tasks where our algorithm was able to find parity arguments and dead-

end potentials were not successful. It would be interesting to analyze such cases in more

detail, and to determine under what circumstances they arise. Such a study could provide

valuable insights into the exact relation between parity arguments and their real-valued

counterpart.

6 https://github.com/msoos/cryptominisat

https://github.com/msoos/cryptominisat

Conclusion 52

7.1.3 Theoretical Considerations
We have shown that any solution found by our approach is a two-dimensional separating

function in F2 over all states that do not violate h2 mutexes. Given this statement, it is

natural to wonder whether the converse also holds: if such a separating function exists, our

approach can find it. While we have not discussed this, an answer would strengthen the

fundamental theory behind our approach.

A similar question arises with the observation that our approach seems to be able to find

a parity argument whenever it is given a h2 mutex that proves the goal to be unreachable,

without using this information directly. Understanding whether this is the case in general

would lead to a clearer picture of the expressive power of our approach.

Parity arguments may not yet have reached their full potential in the context of un-

solvability in planning. More general approaches are possible, for example allowing higher-

dimensional features. Such a change could remove the need to include mutexes or lead to

success in a broader range of domains.

We hope that this thesis can serve as a piece in the puzzle of unsolvability in planning,

and we are looking forward to seeing the ever-growing picture develop.

Bibliography

Alcázar, V., and Torralba, Á. A reminder about the importance of computing and exploiting

invariants in planning. In Brafman, R.; Domshlak, C.; Haslum, P.; and Zilberstein, S.,

editors, Proceedings of the Twenty-Fifth International Conference on Automated Planning

and Scheduling (ICAPS 2015), pages 2–6. AAAI Press, 2015.

Alcázar, V.; Borrajo, D.; Fernández, S.; and Fuentetaja, R. Revisiting regression in planning.

In Rossi, F., editor, Proceedings of the Twenty-Third International Joint Conference on

Artificial Intelligence (IJCAI 2013), pages 2254–2260. AAAI Press, 2013.

Archer, A. F. A modern treatment of the 15 puzzle. The American Mathematical Monthly,

106(9):793–799, 1999.

Arlazarov, V. L.; Dinitz, Y. A.; Kronrod, M. A.; and Faradzhev, I. A. On economical

construction of the transitive closure of a directed graph. Doklady Akademii Nauk SSSR,

194(3):487–488, 1970. In Russian, English Translation in Soviet Mathematics Doklady.

Bäckström, C., and Nebel, B. Complexity results for SAS+ planning. Computational Intel-

ligence, 11(4):625–655, 1995.

Bäckström, C.; Jonsson, P.; and St̊ahlberg, S. Fast detection of unsolvable planning in-

stances using local consistency. In Helmert, M., and Röger, G., editors, Proceedings of

the Sixth International Symposium on Combinatorial Search (SoCS 2013), pages 29–37.

AAAI Press, 2013.

Bard, G. V. Algorithms for Solving Linear and Polynomial Systems of Equations over Finite

Fields with Application to Cryptanalysis. PhD thesis, University of Maryland, 2007.

Baumgartner, P., and Massacci, F. The taming of the (X)OR. In Llyod, J.; Dahl, V.;

Furbach, U.; Kerber, M.; Lau, K.-K.; Palamidessi, C.; Sagiv, Y.; and Stuckey, P. J., edi-

tors, Computational Logic - CL 2000, volume 1861 of Lecture Notes in Computer Science,

pages 508–522. Springer, 2000.

Beasley, J. D. The Ins & Outs of Peg Solitaire (Recreations in Mathematics). Oxford

University Press, 1985.

Berlekamp, E. R.; Conway, J. H.; and Guy, R. K. Winning Ways for Your Mathematical

Plays, volume 4. A K Peters, 2 edition, 2004.

Blum, A. L., and Furst, M. L. Fast planning through planning graph analysis. In Mellish,

C. S., editor, Proceedings of the Fourteenth International Joint Conference on Artificial

Intelligence (IJCAI 1995), pages 1636–1642. Morgan Kaufmann Publishers Inc., 1995.

Bibliography 54

Bonet, B., and Geffner, H. Planning as heuristic search. Artificial Intelligence, 129(1–2):

5–33, 2001.

Chen, Y.; Xing, Z.; and Zhang, W. Long-distance mutual exclusion for propositional plan-

ning. In Sangal, R.; Mehta, H.; and Bagga, R. K., editors, Proceedings of the Twentieth

International Joint Conference on Artificial Intelligence (IJCAI 2007), pages 1840–1845.

Morgan Kaufmann Publishers Inc., 2007.

Chung, F.; Graham, R.; Morrison, J.; and Odlyzko, A. Pebbling a chessboard. The American

Mathematical Monthly, 102(2):113–123, 1995.

Eén, N., and Sörensson, N. An extensible SAT-solver. In Giunchiglia, E., and Tacchella,

A., editors, Proceedings of the Sixth International Conference on Theory and Applications

of Satisfiability Testing (SAT 2003), volume 2919 of Lecture Notes in Computer Science,

pages 502–518. Springer, 2004.

Eriksson, S. Unsolvable PDDL benchmarks. https://doi.org/10.5281/zenodo.3355446, 2019.

Eriksson, S.; Röger, G.; and Helmert, M. Unsolvability certificates for classical planning. In

Smith, S. F.; Barbulescu, L.; Frank, J.; and Mausam, editors, Proceedings of the Twenty-

Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017),

pages 88–97. AAAI Press, 2017.

Fǐser, D.; Horč́ık, R.; and Komenda, A. Strengthening potential heuristics with mutexes

and disambiguations. In Beck, J. C.; Buffet, O.; Hoffmann, J.; Karpas, E.; and Sohrabi,

S., editors, Proceedings of the Thirtieth International Conference on Automated Planning

and Scheduling (ICAPS 2020), pages 124–133. AAAI Press, 2020.

Fox, M., and Long, D. PDDL2.1: An extension to PDDL for expressing temporal planning

domains. Journal of Artificial Intelligence Research, 20:61–124, 2003.

Gerevini, A., and Schubert, L. Inferring state constraints for domain-independent planning.

In Mostow, J., and Rich, C., editors, Proceedings of the Fifteenth National Conference on

Artificial Intelligence (AAAi 1998), pages 905–912. AAAI Press, 1998.

Haslum, P., and Geffner, H. Admissible heuristics for optimal planning. In Chien, S. A.;

Kambhampati, S.; and Knoblock, C. A., editors, Proceedings of the Fifth International

Conference on Artificial Intelligence Planning Systems (AIPS 2000), pages 607–613.

AAAI Press, 2000.

Helmert, M. The Fast Downward planning system. Journal of Artificial Intelligence Re-

search, 26:191–246, 2006.

Hoffmann, J.; Kissmann, P.; and Torralba, Á. “Distance”? Who cares? Tailoring merge-

and-shrink heuristics to detect unsolvability. In Schaub, T.; Friedrich, G.; and O’Sullivan,

B., editors, Proceedings of the Twenty-First European Conference on Artificial Intelligence

(ECAI 2014), pages 441–446. IOS Press, 2014.

https://doi.org/10.5281/zenodo.3355446

Bibliography 55

Johnson, W. W., and Story, W. E. Notes on the 15 puzzle. American Journal of Mathe-

matics, 2(4):397–404, 1879.

Kiyomi, M., and Matsui, T. Integer programming based algorithms for peg solitaire prob-

lems. In Marsland, T., and Frank, I., editors, Computers and Games - CG 2000, volume

2063 of Lecture Notes in Computer Science, pages 229–240. Springer, 2001.

Korf, R. E. Depth-first iterative-deepening: An optimal admissible tree search. Artificial

Intelligence, 27(1):97–109, 1985.

Korf, R. E., and Felner, A. Disjoint pattern database heuristics. Artificial Intelligence, 134

(1–2):9–22, 2002.

Lipovetzky, N.; Muise, C.; and Geffner, H. Traps, invariants, and dead-ends. In Coles,

A.; Magazzeni, D.; Coles, A.; Edelkamp, S.; and Sanner, S., editors, Proceedings of the

Twenty-Sixth International Conference on Automated Planning and Scheduling (ICAPS

2016), pages 211–215. AAAI Press, 2016.

Pommerening, F. New Perspectives on Cost Partitioning for Optimal Classical Planning.

PhD thesis, University of Basel, 2017.

Pommerening, F., and Helmert, M. A normal form for classical planning tasks. In Brafman,

R.; Domshlak, C.; Haslum, P.; and Zilberstein, S., editors, Proceedings of the Twenty-Fifth

International Conference on Automated Planning and Scheduling (ICAPS 2015), pages

188–192. AAAI Press, 2015.

Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J. From non-negative to general

operator cost partitioning. In Zilberstein, S.; Bonet, B.; and Koenig, S., editors, Proceed-

ings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI 2015), pages

3335–3341. AAAI Press, 2015.

Pommerening, F.; Helmert, M.; and Bonet, B. Higher-dimensional potential heuristics for

optimal classical planning. In Zilberstein, S.; Singh, S.; and Markovitch, S., editors,

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI 2017),

pages 3636–3634. AAAI Press, 2017.

Reiss, M. Beiträge zur Theorie des Solitär-Spiels. Crelles Journal, 54:344–379, 1857.

Rintanen, J. An iterative algorithm for synthesizing invariants. In Kautz, H., and Porter,

B., editors, Proceedings of the Seventeenth National Conference on Artificial Intelligence

(AAAI 2000), pages 806–811. AAAI Press, 2000.

Seipp, J.; Pommerening, F.; and Helmert, M. New optimization functions for potential

heuristics. In Brafman, R.; Domshlak, C.; Haslum, P.; and Zilberstein, S., editors,

Proceedings of the Twenty-Fifth International Conference on Automated Planning and

Scheduling (ICAPS 2015), pages 193–201. AAAI Press, 2015.

Seipp, J.; Pommerening, F.; Sievers, S.; Wehrle, M.; Fawcett, C.; and Alkhazraji, Y. Fast

Downward Aidos. Unsolvability International Planning Competition: planner abstracts,

pages 28–38, 2016.

Bibliography 56

Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M. Downward Lab. https://doi.org/

10.5281/zenodo.790461, 2017.

Soos, M.; Nohl, K.; and Castelluccia, C. Extending SAT solvers to cryptographic problems.

In Kullmann, O., editor, Proceedings of the Twelfth International Conference on Theory

and Applications of Satisfiability Testing (SAT 2009), volume 5584 of Lecture Notes in

Computer Science, pages 244–257. Springer, 2009.

Strassen, V. Gaussion elimination is not optimal. Numerische Mathematik, 13(4):354–356,

1968.

Warners, J. P., and van Maaren, H. A two-phase algorithm for solving a class of hard

satisfiability problems. Operations Research Letters, 23(3-5):81–88, 1998.

https://doi.org/10.5281/zenodo.790461
https://doi.org/10.5281/zenodo.790461

