Detecting Unsolvability Based on Parity Functions

Remo Christen

Department of Mathematics and Computer Science University of Basel

9. April 2021

Classical Planning – Example

1/19

Classical Planning

Planning Task in TNF

 $\Pi = \langle \mathcal{V}, \mathcal{O}, \textit{s}_{0}, \textit{s}_{*} \rangle$ where

- $\mathcal V$ is a finite set of variables
- \mathcal{O} is a finite set of operators with vars(pre) = vars(eff)
- s_0 is the initial state
- s_* is the goal state

Unsolvability

Ideal Outcomes of a Search

- Task is **solvable**, return a (optimal) plan.
- Task is provably **unsolvable**.

Our Outcomes

- Task is provably **unsolvable**.
- We don't know.

Unsolvability

Ideal Outcomes of a Search

- Task is **solvable**, return a (optimal) plan.
- Task is provably **unsolvable**.

Our Outcomes

- Task is provably **unsolvable**.
- We don't know.

Unsolvability – Example

The 14-15 puzzle

Unsolvability – Example

The 14-15 puzzle is **unsolvable**.

Unsolvability – Example

The 14-15 puzzle is unsolvable.

• How can this be proven?

Parity Argument

Parity arguments can be expressed as follows for a given task Π :

- Define parity function f with domain {0,1} (conceptually {even, odd}).
- Ensure that *f* satisfies the following conditions:
 - $f(s_0) \neq f(s_*)$
 - f(s) = f(s') for all transitions s o s'
- Existence of f proves Π unsolvable.

Parity Argument – Example

even

Parity Argument – Example

We construct parity functions as potential functions over F_2 .

- F_2 is the smallest finite field with two elements $\{0,1\}.$
- F_2 captures the **parity property** of **integer arithmetic** over...

addition, subtraction			tion	and		mul	tiplicat	ion.		
even	\pm	even	=	even		even	×	even	=	even
even	\pm	odd	=	odd		even	\times	odd	=	even
odd	\pm	odd	=	even		odd	\times	odd	=	odd

We construct parity functions as potential functions over F_2 .

- F_2 is the smallest finite field with two elements $\{0, 1\}$.
- F_2 captures the **parity property** of **integer arithmetic** over...

Introduction Background Theory Results Conclusion 000000 0● 000000 000 00

Potential Functions over F_2

Potential Functions over ${\mathbb R}$

$$arphi(s) = \sum_{f \in \mathcal{F}} w(f) \, \cdot \, [s \models f]$$
 where

- s is a state
- \mathcal{F} is a set of features (conjunctions of atoms)
- *w* is a weight function: $\mathcal{F} \mapsto \mathbb{R}$

ntroduction Background Theory Results Conclusion 000000 0● 000000 000 00

Potential Functions over F_2

Potential Functions over \mathbb{R} F₂

 $\varphi(s) = \sum_{f \in \mathcal{F}} w(f) \cdot [s \models f]$

$$arphi(s) = igoplus_{f \in \mathcal{F}} w(f) \wedge [s \models f]$$
 where

- *s* is a state
- \mathcal{F} is a set of features (conjunctions of atoms)
- *w* is a weight function: $\mathcal{F} \mapsto \mathbb{R} \ \mathcal{F} \mapsto \mathsf{F}_2$

To define a potential function, we must choose \mathcal{F} and w.

Introduction Background Theory Results Conclusion 000000 0● 000000 000 00

Potential Functions over F_2

Potential Functions over \mathbb{R} F₂

 $\varphi(s) = \sum_{f \in \mathcal{F}} w(f) \cdot [s \models f]$

$$arphi(s) = igoplus_{f \in \mathcal{F}} w(f) \wedge [s \models f]$$
 where

- *s* is a state
- \mathcal{F} is a set of features (conjunctions of atoms)
- *w* is a weight function: $\mathcal{F} \mapsto \mathbb{R} \ \mathcal{F} \mapsto \mathsf{F}_2$

To define a potential function, we must choose \mathcal{F} and w.

How can we find potential functions that encode parity arguments?

Separation Constraints

Idea

Given a feature set \mathcal{F} , construct constraints such that a satisfying weight function results in a potential function encoding a parity argument.

Separation Constraints

 $egin{aligned} &arphi(s_0)
eq arphi(s_*) \ &arphi(s) &= arphi(s') \ & ext{ for all transitions } s o s' \end{aligned}$

Problem: solving constraints in the number of transitions is generally not feasible.

Separation Constraints

Idea

Given a feature set \mathcal{F} , construct constraints such that a satisfying weight function results in a potential function encoding a parity argument.

Separation Constraints

 $egin{aligned} &arphi(s_0)
eq arphi(s_*) \ &arphi(s) &= arphi(s') \ & ext{ for all transitions } s o s' \end{aligned}$

Problem: solving constraints in the number of transitions is generally not feasible.

Can we compute parity functions efficiently?

Introduction Background Theory Results Conclusion 000000 00 0€€0000 000 00

Theoretical Result

Result to be shown

Efficient constraints exist for up to two-dimensional features.

Approach

- Construct constraints for all **operators** instead of transitions.
- Difference in parity must be **independent** of *s* and *s'*.

Let Δ_t be $\varphi(s) \oplus \varphi(s')$ across transition $t = s \xrightarrow{o} s'$.

One-dimensional Features

- Only the atoms/features **mentioned** in operator *o* are **affected** by *o*.
- Δ_t is fully determined by *o* for all transitions $t = s \xrightarrow{o} s'$ (in TNF).

One-dimensional Features

- Only the atoms/features **mentioned** in operator *o* are **affected** by *o*.
- Δ_t is fully determined by *o* for all transitions $t = s \xrightarrow{o} s'$ (in TNF).

ntroduction Background **Theory** Results Conclusion ⊃000000 00 **000000** 000 00

Two-dimensional Features (I)

Given...

- atoms a and \bar{a} ,
- variables V = var(a) and $\overline{V} = var(\overline{a})$,
- feature $f = a \wedge \bar{a}$,
- and operator o,

there are two relevant cases:

- 1. $V, \bar{V} \in vars(o)$
 - \longrightarrow same as one-dimensional features
- 2. $V \in vars(o), \bar{V} \notin vars(o)$
 - more complex, see next slide

e.g.
$$f = V_{0,0} \mapsto 3 \land V_{1,0} \mapsto \Box$$

e.g.
$$f = V_{0,0} \mapsto 3 \land V_{0,1} \mapsto 1$$

Introduction Background **Theory** Results Conclusion 000000 00 **000000** 000 00

Two-dimensional Features (II)

$$\begin{array}{l} \text{Reminder:} \ f = a \wedge \bar{a}, \\ V = var(a) \in vars(o), \\ \bar{V} = var(\bar{a}) \notin vars(o). \end{array}$$

Operator *o* cannot determine Δ_t across $t = s \xrightarrow{o} s'$ because $[s \models \overline{a}]$ is unknown:

•
$$[s \models \bar{a}] \Rightarrow \Delta_t$$
 determined by a

• $[s \not\models \bar{a}] \Rightarrow [s \not\models f] \text{ and } [s' \not\models f]$

e.g.
$$f = V_{0,0} \mapsto 3 \land V_{0,1} \mapsto 1$$

e.g. $f = V_{0,0} \mapsto 3 \land V_{0,1} \mapsto 2$

Solution

Ensure that both cases lead to the same contribution to Δ_t .

Introduction Background **Theory** Results Conclusion 000000 00 **000000** 000 00

Two-dimensional Features (III)

For every variable $V \notin vars(o)$:

 $a \in$

$$C = \bigoplus_{\substack{f = a \land ar{a}, \\ produced(o) \cup consumed(o)}} w(f) ext{ for all atoms } ar{a} \in V$$

$$\underbrace{ \begin{array}{c} V_{0,1} \mapsto 1 \land V_{0,0} \mapsto 3 \oplus \\ V_{0,1} \mapsto 1 \land V_{0,0} \mapsto \Box \oplus \\ V_{0,1} \mapsto 1 \land V_{1,0} \mapsto 3 \oplus \\ V_{0,1} \mapsto 1 \land V_{1,0} \mapsto \Box \end{array} }_{V_{0,1} \mapsto 1 \land V_{1,0} \mapsto \Box } = \underbrace{ \begin{array}{c} V_{0,1} \mapsto 2 \land \dots \\ \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto 3 \land \dots \\ \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto 3 \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ } \\ = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \land \dots \\ } \\ = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \mapsto \square \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \mapsto \square \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \mapsto \square \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \mapsto \square \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \mapsto \square \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \Box \mapsto \square \\ \end{array} = \underbrace{ \begin{array}{c} V_{0,1} \mapsto \square \\ \end{array} = \underbrace{ \begin{array}{c} V_{0} \mapsto \square \\ \end{array} = \underbrace{ \begin{array}{c} V_{0} \mapsto \square \\ } \end{array} = \underbrace{ \begin{array}{c} V_{0} \mapsto \square \\ \end{array} = \underbrace{ \begin{array}{c} V_{0} \mapsto \square$$

Introduction Background **Theory** Results Conclusior 000000 00 **000000** 000 00

Two-dimensional Features (III)

For every variable $V \notin vars(o)$:

$$C = igoplus_{f = a \land ar{a},} w(f) ext{ for all atoms } ar{a} \in V$$
 $_{f = a \land ar{a},} produced(o) \cup consumed(o)$

$$\begin{array}{c}1 \\ 1 \\ 2 \\ 3 \\ 0 \\ 0 \end{array} \xrightarrow{o} \qquad \begin{array}{c}1 \\ 2 \\ 3 \end{array}$$

Mutex Optimization

a ∈

Skip atoms that are h^2 -mutex with pre(o) or eff(o).

IntroductionBackgroundTheoryResultsConclusion00000000000000●0000

Experimental Results

• Unsolvable benchmark with 19 domains

- 3unsat, bag-barman, bag-gripper, bag-transport, bottleneck, cave-diving, chessboard-pebbling, document-transfer, mystery, over-nomystery, over-rovers, over-tpp, pegsol, pegsol-row5, sliding-tiles, tetris, unsat-nomystery, unsat-rovers, unsat-tpp
- Unsolvability proven by parity in 2 domains
 - pegsol: 22/24 instances
 - sliding-tiles: 20/20 instances

Sliding Tiles Domain

	Size	#States	Time	Memory
sliding-tiles (20)	3 imes 3/4	$10^{5}/10^{8}$	2.5 s	59 931 KiB
15 Puzzles (100)	4 imes 4	10^{13}	2.7 min	91 798 KiB
24 Puzzles (50)	5 imes 5	10^{25}	2.0 h	637 952 KiB

Introduction Background Theory Results Conclusior 000000 00 00000 00● 00	
--	--

Aidos

	Parity Arguments	Dead-End Potentials	Aidos 1
pegsol (24)	22	4	24
sliding-tiles (20)	20		10

- pegsol
 - Cyclic mod 2 property may be essential.
- sliding-tiles
 - Mutexes seem crucial.
 - Instances of size 3×4 and larger are hard.

Introduction		Theory	Results	Conclusion
000000		000000	000	●○
Summa	ry			

- Parity arguments can prove unsolvability.
- They can be **automatically computed** as potential functions over F₂.
- Compact constraints exist for up to two-dimensional features.
- Parity arguments are useful for very few domains.
- When **suitable**, they can be **powerful**.

Questions

15 Puzzle Parity Argument

Parity argument for 15 puzzle instances:

- Define a total order over cells, ignoring blank.
- \rightarrow Define s_0 to have no misorderings.
 - There are 18 moves that affect *#misorderings*.
 - Difference in *#misorderings* is **always even**.
 - #misorderings mod 2 is a parity function for the 14-15 puzzle $(s_0 \mapsto 0, s_* \mapsto 1)$.

15 Puzzle Parity Argument

Parity argument for 15 puzzle instances:

- Define a total order over cells, ignoring blank.
- Define s₀ to have no misorderings.
- \rightarrow There are 18 moves that affect # misorderings.
 - Difference in *#misorderings* is **always even**.
 - #misorderings mod 2 is a parity function for the 14-15 puzzle $(s_0 \mapsto 0, s_* \mapsto 1)$.

15 Puzzle Parity Argument

Parity argument for 15 puzzle instances:

- Define a total order over cells, ignoring blank.
- Define s₀ to have no misorderings.
- There are 18 moves that affect *#misorderings*.
- > Difference in *#misorderings* is **always even**.
- → #misorderings mod 2 is a parity function for the 14-15 puzzle $(s_0 \mapsto 0, s_* \mapsto 1)$.

Outcomes of Best Implementation (Sparse Vector)

	By	Parity	Bv	h^2	Not	٦	Гime	Memo	ory	Error
3unsat (30)	5	_	5	_	25	(+13)	5		_	_
bag-barman (20)		_		_	_		20		_	_
bag-gripper (25)		_		_	_		16		_	9
bag-transport (29)		_		15	$2_{(+1)}$	(+1)	5		7	_
bottleneck (25)		_		10	4	(+4)	11		_	_
cave-diving (25)		_		1	$10_{(+2)}$	(+2)	14		_	_
chessboard-pebbling	(23)	_		_	9 (+2)	(+3)	13		1	_
document-transfer (2	0)	_		2	2		16		_	_
mystery (9)		-		9	_		_		_	_
over-nomystery (24)		_		2	9 (+2)	(+8)	13		_	_
over-rovers (20)		_		3	8 (+3)	(+4)	9		_	_
over-tpp (30)		-		1	13	(+7)	16		_	-
pegsol (24)		22		_	2		_		_	_
pegsol-row5 (15)		1		2	6 (+1)	(+2)	6		_	_
sliding-tiles (20)		20		_	_		-		_	_
tetris (20)		-		_	_		20		_	-
unsat-nomystery (150)		_		32	101 (+8)	(+30)	17		_	_
unsat-rovers (150)		_		62	40 (+32)	(+34)	48		—	_
unsat-tpp (25)		_		1	_		24		_	_
Sum (684)		43	1	.40	231 (+51)	(+108)	253 (+:	215) (-74)	8 (-266) (-	-34) 9

Implementation Comparison – Sparse Set

Implementation Comparison – Sparse Vector

Sliding-tiles Domain – Full Results

	Size	#States	Impl.	Total Time	Peak Memory (in KiB)
sliding-tiles (geometric)	3 imes 3/4	$10^{5}/10^{8}$	Full Sparse	1.0 s 2.5 s	105 019 59 931
15 Puzzles (arithmetic)	4 imes 4	10 ¹³	Full Sparse	3.0 min 2.7 min	1 388 748 91 798
24 Puzzles (arithmetic)	5 imes 5	10 ²⁵	Sparse	2.0 h	637 952

Pegsol Case Study

