Heuristic Planning with Single Action Goal Expansion

Remo Christen

Department of Mathematics and Computer Science University of Basel

5.7.2019

Introduction	SAGE	Results	Conclusion
•0000	00000000	000	
Classical Planning			

Introduction	SAGE	Results	Conclusion
00●00	000000000	000	000
Forward Search			

Introduction	SAGE	Results	Conclusion
000●0	000000000	000	000
Heuristics			

- Estimate the distance from a state to the goal
- Assign every state a number indicating this estimate

Introduction	SAGE	Results	Conclusion
000●0	000000000	000	000
Heuristics			

- Estimate the distance from a state to the goal
- Assign every state a number indicating this estimate

Delete Relaxation Heuristic

- ► Find plan of simplified problem → Relaxed Plan
- Simplify by removing delete effects
- Relaxed plan length is heuristic value

Introduction	SAGE	Results	Conclusion
000●0	000000000	000	000
Heuristics			

- Estimate the distance from a state to the goal
- Assign every state a number indicating this estimate

Delete Relaxation Heuristic

- ► Find plan of simplified problem → Relaxed Plan
- Simplify by removing delete effects
- Relaxed plan length is heuristic value

Pick up C pre = {clear C, ontable C, handempty} add = {holding C} del = {clear C, ontable C, handempty}

Introduction	SAGE	Results	Conclusion
000●0	000000000	000	000
Heuristics			

- Estimate the distance from a state to the goal
- Assign every state a number indicating this estimate

Delete Relaxation Heuristic

- ► Find plan of simplified problem → Relaxed Plan
- Simplify by removing delete effects
- Relaxed plan length is heuristic value

Based on **"Using Backwards Generated Goals for Heuristic Planning"** by Alcázar et al. (2010):

- Use information from relaxed plan
- Generate intermediate goals

Based on **"Using Backwards Generated Goals for Heuristic Planning"** by Alcázar et al. (2010):

- Use information from relaxed plan
- Generate intermediate goals
- Look for closest intermediate goal

Goals:

- Reduce depth of Heuristic Computation
- Reduce depth of Forward Search
- Handle difficulties close to the goal

Single Action Coal Expan	sion	
Introduction SAGE 00000 000000000	Results 000	Conclusion 000

Modify approach of Alcázar et al. by only expanding along a **single sequence of actions**:

- Introduce decision strategies about when to expand
- Limit generation of intermediate goals

		000	000
Single Action (Joal Expansion		

Modify approach of Alcázar et al. by only expanding along a single sequence of actions:

- Introduce decision strategies about when to expand
- Limit generation of intermediate goals
- Search towards latest intermediate goal

Goals:

- Improve efficiency
- Preserve advantages of goal expansion

Intro		

SAGE 00000000 Results 000

Overview

Structure of the Goal Expansion Process

- 1. State Decision
- 2. Operator Ordering
- 3. Check Operator for Legality
- 4. Expand Goal with Legal Operator

Introduction	SAGE	Results	Conclusion
00000	00●000000	000	000
Goal Expansion			

Original Goal

Introduction	SAGE	Results	Conclusion
00000	00000000	000	000
Goal Expansion			

Introduction	SAGE	Results	Conclusion
00000	00000000	000	
Goal Expansion			

$$pre = \{ clear B, holding C \}$$
 B on A
 $add = \{ C \text{ on } B, clear C, hand empty \}$ C on B
 $del = \{ clear B, holding C \}$

Introduction	SAGE	Results	Conclusion
00000	00000000	000	000
Goal Expansion			

Introduction	SAGE	Results	Conclusion
00000	00●000000	000	
Goal Expansion			

B on A $pre = \{clear B, holding C\}$ B on Aclear B $add = \{C \text{ on } B, clear C, hand empty\}$ C on Bholding C $del = \{clear B, holding C\}$

Introduction	SAGE	Results	Conclusion
00000	00●000000	000	000
Goal Expansion			

- B on A $pre = \{ clear B, holding C \}$ B on A clear B $add = \{C \text{ on } B, \text{ clear } C, \text{ hand } empty\}$ C on B **holding C** $del = \{ clear B, holding C \}$

SAGE 000000000 Results 000

Overview

Structure of the Goal Expansion Process

- 1. State Decision
- 2. Operator Ordering
- 3. Check Operator for Legality

4. Expand Goal with Legal Operator

Introduction	SAGE	Results	Conclusion
00000	00000000	000	000
State decision			

Expand the goal when ...

NewMinimum

... a state has the lowest heuristic value of all evaluated states.

Introduction	SAGE	Results	Conclusion
00000	00000000	000	000
State decision			

Expand the goal when ...

NewMinimum

... a state has the lowest heuristic value of all evaluated states.

ACCURACY

... the difference of a state's heuristic value and the heuristic value of the initial state is equal to the cost of reaching the state.

00000	00000000	000	000
00000	00000000	000	
Introduction	SAGE	Results	Conclusion

Expand the goal when ...

NewMinimum

... a state has the lowest heuristic value of all evaluated states.

ACCURACY

... the difference of a state's heuristic value and the heuristic value of the initial state is equal to the cost of reaching the state.

Counter

... an operator appeared in the relaxed plan of a set percentage of previous evaluations, given that a minimum number of evaluations has been reached.

SAGE 00000●000 Results 000

Overview

Structure of the Goal Expansion Process

- 1. State Decision
- 2. Operator Ordering
- 3. Check Operator for Legality

4. Expand Goal with Legal Operator

Introduction	SAGE	Results	Conclusion
00000	0000000000	000	000
Operator Ordering			

Collect all operators from the relaxed plan that satisfy a goal proposition. Order them according to one of two criteria:

 ${
m MostSatisfied}$

or

LOWESTLAYER

Introduction	SAGE	Results	Conclusion
00000	0000000000	000	000
Operator Ordering	-		

MOSTSATISFIED

B on A	$\mathit{pre}~=\{\texttt{clear}~\texttt{B},\texttt{holding}~\texttt{C}\}$	В	on	А
clear B	$add = \{ C \text{ on } B, clear C, hand empty \}$	С	on	В
holding C	$\mathit{del}~=\{\texttt{clear}~\texttt{B},\texttt{holding}~\texttt{C}\}$			

Introduction	SAGE	Results	Conclusion
00000	0000000●00	000	000
Operator Ordering	5		

LOWESTLAYER

B on A	$pre = \{ clear B, holding C \}$	В	on	A
clear B	$\mathit{add} = \{ \texttt{C} \text{ on } \texttt{B}, \texttt{clear } \texttt{C}, \texttt{hand } \texttt{empty} \}$	С	on	В
holding C	del = {clear B, holding C}			

SAGE 0000000000 Results 000

Overview

Structure of the Goal Expansion Process

- 1. State Decision
- 2. Operator Ordering
- 3. Check Operator for Legality

4. Expand Goal with Legal Operator

Introduction	SAGE	Results	Conclusion
00000	00000000●	000	000
Legality Check			

An operator is not legal if it meets one of these three conditions:

- Deletes goal proposition
- Mutual exclusion between goal propositions
- Dominated by previous goal

Introduction	SAGE	Results	Conclusion
00000	000000000	●00	000
Results			

Coverage (Total 1827)	NewMin	Accuracy	Counter	Eager Greedy (FF)
MostSatisfied	1051	1165	727	1503
LowestLayer	1027	1184	726	1303

Introduction	SAGE	Results	Conclusion
00000	000000000	●00	000
Results			

Coverage (Total 1827)	NewMin	Accuracy	Counter	Eager Greedy (FF)
MostSatisfied	1051	1165	727	1503
LowestLayer	1027	1184	726	1505

Goal Expansions Total	NewMin	Accuracy	Counter	Eager Greedy (FF)
MostSatisfied	11699	7338	108636	0
LowestLayer	11986	6488	189694	0

Introduction	SAGE	Results	Conclusion
00000	000000000	0●0	
Results			

Forward Expansions	NewMin	Accuracy	Counter	Eager Greedy (FF)
blocks (32)	112.70	444.76	525.74	464.76
driverlog (14)	207.41	63.29	40.21	115.88
elevator-opt08-strips (19)	1379.44	2691.59	2154.87	3467.17
elevator-opt11-strips (12)	1462.71	2691.59	925.79	3516.75
gripper (17)	134.88	192.99	125.87	380.28
logistics00 (26)	153.92	34.04	25.35	42.20
miconic (130)	56.14	50.79	28.32	68.54
rovers (16)	111.78	104.46	153.03	225.05
scanalyzer-08-strips (23)	65.04	84.06	29.25	89.42
scanalyzer-opt11-strips (15)	71.71	45.73	19.00	48.49

Geometric mean of forward expansions for problems solved by all variants per domain. The operator order is ${\rm LOWESTLAYER}.$

Introduction	SAGE	Results	Conclusion
00000	00000000	000	●00

Conclusion

- Negligable difference between operator orderings
- ▶ NEWMINIMUM and ACCURACY outperform COUNTER
- Visible potential in suitable domains
- Unreachable intermediate goals pose a problem

Introduction	SAGE	Results	Conclusion
00000	00000000	000	○●○

Future Work

- Evaluate COUNTER with different settings
- What makes a domain suitable
- Find a strategy to avoid unreachable intermediate goals
- Improve implementation

Introduction	SAGE	Results	Conclusion
00000	00000000	000	00●
Questions			

