
(Near)-optimal policies for

Probabilistic IPC 2018 domains
Master’s Thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Artificial Intelligence

Examiner: Prof. Dr. Malte Helmert

Supervisor: Dr. Thomas Keller

Brikena Çelaj

brikena.celaj@unibas.ch

17-063-462

30.05.2020

Abstract

The International Planning Competition (IPC) is a competition of state-of-the-art

planning systems. The evaluation of these planning systems is done by measuring

them with different problems. It focuses on the challenges of AI planning by ana-

lyzing classical, probabilistic and temporal planning and by presenting new problems

for future research. Some of the probabilistic domains introduced in IPC 2018 are

Academic Advising, Chromatic Dice, Cooperative Recon, Manufacturer, Push Your

Luck, Red-finned Blue-eyes, etc.

This thesis aims to solve (near)-optimally two probabilistic IPC 2018 domains,

Academic Advising and Chromatic Dice. We use different techniques to solve these

two domains. In Academic Advising, we use a relevance analysis to remove irrelevant

actions and state variables from the planning task. We then convert the problem from

probabilistic to classical planning, which helped us solve it efficiently. In Chromatic

Dice, we implement backtracking search to solve the smaller instances optimally.

More complex instances are partitioned into several smaller planning tasks, and a

near-optimal policy is derived as a combination of the optimal solutions to the small

instances.

The motivation for finding (near)-optimal policies is related to the IPC score,

which measures the quality of the planners. By providing the optimal upper bound

of the domains, we contribute to the stabilization of the IPC score evaluation metric

for these domains.

i

Acknowledgments

Writing this thesis would not have been possible without the major support of many

remarkable people in all aspects of my life.

I would like to start by thanking Prof. Dr. Malte Helmert and Dr. Thomas Keller.

Prof. Dr. Malte Helmert, for the opportunity to write this thesis on the AI research

group, which was both productive and entertaining. Dr. Thomas Keller, for being

the most supportive and helpful supervisor. In the last years that I have known him,

he has always amazed me with his expertise and dedication during the lectures. His

enthusiasm for his research and his patience has motivated me to work with him. As

a supervisor, he has not only given me constructive feedback and crucial insights into

the thesis, but he has also taught me general knowledge related to his research and

scientific writing.

Furthermore, I want to thank my friends, Manvi Bhatia, Niluka Piyasinghe and

Augusto Blaas Corrêa for helpful discussions, suggestions and corrections throughout

all the studies. Especially, I want to thank Drilon Vukaj, for continuously supporting

me in both professional and mental aspects.

Finally, I want to thank my family for always being by my side no matter what.

To my parents Xhelal Çelaj and Dashurije Berisha, for always motivating me and

giving me the possibility to follow my dreams. To my brother Genc, for encouraging

me to be persistent all throughout my studies. Last, but not least, I want to thank

my uncle Sali Çelaj and his wonderful family for being such an inspiration and for

bringing to life my immense desire to study abroad.

ii

Contents

1 Introduction 1

2 Background 3

2.1 Classical Planning . 3

2.2 Probabilistic Planning . 6

3 Academic Advising 12

3.1 Academic Advising Domain . 12

3.2 Relevance Analysis . 15

3.3 Mapping to Classical Planning . 19

3.4 Results . 24

4 Chromatic Dice 27

4.1 Chromatic Dice Domain . 29

4.2 Chromatic Dice Structure . 33

4.2.1 Macro-step . 35

4.2.2 Micro-step . 38

4.3 Implementation strategies . 41

4.4 Results of the optimal strategy . 42

4.5 Near-optimal strategies . 43

4.6 Results of near-optimal strategy . 45

5 Conclusion and Future work 47

iii

Chapter 1

Introduction

Two parts of planning are classical planning and probabilistic planning. In the for-

mer, the actions are deterministic while in the latter the actions are stochastic and

exogenous events are considered.

The International Planning Competition (IPC) is a competition of different tracks

in several parts of planning. It focuses on the challenges of AI planning by analyzing

state-of-the-art planning systems in different problems. The IPC 2018 tracks classical,

probabilistic and temporal planning. Some probabilistic domains introduced in IPC

2018 are Academic Advising, Chromatic Dice, Cooperative Recon, Manufacturer,

Push Your Luck, Red-finned Blue-eyes, etc. In this paper, we will focus on the

probabilistic part of the competition and compute the optimal or near-optimal policies

for two domains, Academic Advising and Chromatic Dice [1].

The IPC score measures the quality of the planner systems that take place in the

IPC competition. A planner evaluation, based on the IPC score without having an

optimal upper bound, is very flawed[1]. The ranking of the planners is done based

on the planner’s performance in each instance. Each new participant can change

the ranking of the current participants. As a consequence, the winner might change.

Since optimal upper bounds are required to stabilize the evaluation metric, we need

to find these optimal state values for the initial state.

This thesis aims to find a (near)-optimal policy for two probabilistic IPC 2018

domains. In this way, we contribute to the stabilization of the IPC score evaluation

1

metric for these domains. The first part studies the Academic Advising domain. We

use a relevance analysis which has a large impact on reducing the complexity of the

problem. Here, the agent does not have to look all the available actions and state

variables of the planning task. We then present a new solution for this domain,

where we switch from probabilistic planning to deterministic planning by converting

the probabilities in expected costs. Using Fast Downward, we are able to come up

with lower bounds in cost of some instances. The second problem is the Chromatic

Dice domain where we present a (near)-optimal solution. This is done by analyzing

and representing the state space compactly. To solve the second domain optimally,

we use a Backtracking method. If we compare our implementation with the best

planners that already are there, we expect to see that the best planners are very

far from optimal. That being said, our solution may not be optimal either, but we

assume it is closer. Chapter 2 contains the background knowledge that is needed for

this thesis. Chapter 3 and Chapter 4 describe and analyse two objectives, Academic

Advising and Chromatic Dice domain, introduced in IPC 2018.

2

Chapter 2

Background

In this section, we are going to give a brief introduction to planning, where specifically

we explain two parts of planning, classical and probabilistic planning.

2.1 Classical Planning

Planning is a problem of finding a path that leads to a goal state from a given initial

state using a sequence of actions.

Definition 2.1.1. (Proposition Planning Task) A Propositional Planning Task is a

4-tuple Π = ⟨𝑉, 𝐼, 𝑂, 𝛾⟩ where:

• 𝑉 is a finite set of proposition variables,

• 𝐼 is an initial state, an assignment of all 𝑣 ∈ 𝑉 ,

• 𝑂 is a finite set of operators as defined below and

• 𝛾 is a partial variable assignment over V which is called the goal.

Instead of writing sets of partial variable assignment, we will replace it with liter-

als, i.e. we write (𝑎,¬𝑏) instead of {𝑎 −→ 𝑡𝑟𝑢𝑒, 𝑏 −→ 𝑓𝑎𝑙𝑠𝑒}.

Definition 2.1.2. (Operator) An operator O over state variables V is an object with

three properties:

3

• a precondition pre(o), a formula over V,

• an effect eff(o), a partial variable assignment over V and

• a cost cost(o) ∈ R+
0

Operators are also called actions and they are written as triples of precondition,

effect and cost ⟨pre(o), eff(o), cost(o)⟩, or in abbreviated version ⟨pre(o), eff(o)⟩ where

the cost is irrelevant.

An Operator 𝑜 is applicable in state s iff 𝑠 |= pre(o). We write 𝐴(𝑠) for the set

{𝑜 ∈ 𝑂} that is applicable.

Definition 2.1.3. (Resulting State) The resulting state 𝑠[𝑜] = 𝑠′ of applying operator

o in state s is the state 𝑠′ where for all 𝑣 ∈ 𝑉

𝑠′(𝑣) =

⎧⎪⎨⎪⎩𝑑, if 𝑣 −→ 𝑑 ∈ eff(o)

𝑠(𝑣), otherwise

A typical example of planning is the blocks world domain. This domain is about

blocks positioned on a table or on top of another block, and each block can be moved

by a robot. However, if there is a block under another, the robot cannot move it,

and only one block can fit on top of another. The goal is to put blocks in a certain

position. For example, one goal could be putting blocks A and B on the table and

block C on top of B (see Figure 2-1)[8]. An instance of a blocks world problem would

be as shown in Figure 2-1, which illustrates the initial state and the goal state of

the instance. There is a set of variables V that contains variables such as on(A,B),

on(B,C), clear(B), clear(C). The variables, e.g. on(A,B), mean that the block B is

on top of A, and the variables, e.g. clear(B), tell us there is no block on top of B.

Some operators would be, for instance, move(B, A, C) which means move block A

from block B to block C.

A Propositional Planning Task can be mapped into a Transition System.

Definition 2.1.4. (Transition System) A Transition System is a 6-tuple 𝜏 = ⟨𝑆, 𝐴,

𝑐, 𝑇 , 𝑠0, 𝑆*⟩ where

4

Figure 2-1: Blocks world problem

• 𝑆 is a finite set of states,

• 𝐴 is a finite set of labels,

• 𝑐 : 𝐴 −→ R+
0 is a cost function,

• 𝑇 ⊆ 𝑆 × 𝐴× 𝑆 is the relation of the transition,

• 𝑠0 ∈ 𝑆 is the initial state and

• 𝑆* ⊆ 𝑆 is the set of goal states.

Definition 2.1.5. (Transition System Induced by a Propositional Planning Task) The

propositional Planning Task Π = ⟨𝑉, 𝐼, 𝑂, 𝛾⟩ induces the Transition System 𝜏 (Π) =

⟨𝑆,𝐴, 𝑐, 𝑇, 𝑠0, 𝑆*⟩ where

• S is a set of all valuations of V (𝑆 = 2𝑉),

• A = O,

• c(o) = cost(o) for all operators 𝑜 ∈ 𝑂,

• 𝑇 = {⟨𝑠, 𝑜, 𝑠′⟩|𝑠 ∈ 𝑆, 𝑜 ∈ 𝐴(𝑠), 𝑠′ = 𝑠[𝑜]},

• 𝑠0 = 𝐼 and

• 𝑆* = {𝑠 ∈ 𝑆|𝛾 ⊆ 𝑆}.

A sequence of operators that forms a solution of 𝜏 (Π) is called a plan of Π.

5

2.2 Probabilistic Planning

Different decisions are made every day in our lives which we try to achieve better

performance with. Those decisions are mostly made under uncertainty.

In probabilistic planning, the agent cannot execute any plan as in classical plan-

ning because the actions are non-deterministic. As a consequence of non-determinism,

applying an action can lead to different outcomes. Therefore, it is important to find

a more general solution than a plan. In probabilistic planning, this solution is called

a policy. A policy should be able to perform cycles and to branch over the outcomes.

Definition 2.2.1. (Probabilistic Planning Task) A Probabilistic Planning Task is a

4-tuple Π = ⟨𝑉, 𝐼, 𝑂,𝐻⟩ where

• 𝑉 is a finite set of propositional variables,

• 𝐼 is an initial state,

• 𝑂 is a finite set of probabilistic operators as defined below and

• 𝐻 is the horizon.

Definition 2.2.2. (Operator) A probabilistic operator is an object with three prop-

erties:

• a precondition pre(o), a formula over V,

• a probabilistic effect eff(o) as defined below and

• a reward, where reward(o) ∈ R

Definition 2.2.3. (Probabilistic effect) A probabilistic effect is a set of tuples {⟨𝑒1,

𝑝1⟩ , ..., ⟨𝑒𝑛, 𝑝𝑛⟩} where 𝑝𝑖 ∈ (0, 1] for 1 ≤ 𝑖 ≤ 𝑛,
∑︀𝑛

𝑖=1 𝑝𝑖 and 𝑒𝑖 is a partial variable

assignment over V for 1 ≤ 𝑖 ≤ 𝑛.

Let us take an example and explain the difference between the classical and proba-

bilistic operator. While classical operator uses a deterministic effect, the probabilistic

operator uses a probabilistic effect.

6

Example 2.2.4. (Classical and Probabilistic operators) One example of an operator

is 𝑜 = ⟨⊤, {𝑎, 𝑏}, 1⟩. As a precondition we have ⊤, the cost is 1 and the effect is 𝑎, 𝑏.

However, since in Probabilistic Planning Task the effect is a distribution, it differs

from the one above. We show the differences between the effects below:

Classical Planning effect:

eff(o) = {𝑎, 𝑏}

Probabilistic Planning effect :

eff(o) = {⟨{𝑎, 𝑏}, 0, 2⟩,

⟨{¬𝑎, 𝑐,¬𝑑}, 0, 5⟩,

⟨{¬𝑏, 𝑑}, 0, 3⟩}

Probabilistic Planning problems are usually modelled as Markov Decision Pro-

cesses (MDP). In the sequential decision, first, the agent accepts the state and then it

chooses which action to perform next. Execution of action sends the agent to a new

state of the environment. As a result, the agent obtains a specific reward. The goal

is to choose actions sequentially in a way that the overall system gives us an optimal

solution by maximizing the expected reward or minimizing the expected cost. This

kind of sequential decision model is the Markov decision process model. There are

different types of MDPs, e.g. Stochastic Shortest Path (SSP), Finite-horizon MDP

(FH-MDPs) and Discounted Reward MDP (DR-MDPs). SSPs are considered as clas-

sical planning with a probabilistic transition function. FH-MDPs are acyclic MDPs

with a finite number of steps (finite horizon). DR-MDPs discount the reward over an

infinite number of steps (have an infinite horizon)[7]. We use finite-horizon MDPs to

define a theoretical overview of our problems, therefore we define the MDPs in the

FH-MDPs setting.

Definition 2.2.5. (Markov Decision Process) A Markov decision Process is a tuple

𝜏 = ⟨𝑆,𝐴,𝑅, 𝑇, 𝑠0, ℎ⟩, where

• 𝑆 is a finite set of states,

• 𝐴 is a finite set of (transition) labels,

• 𝑅 : 𝐴 −→ R is the reward function,

7

• 𝑇 : 𝑆 × 𝐴× 𝑆 −→ [0, 1] is the transition function,

• 𝑠0 ∈ 𝑆 is the initial state and

• ℎ ∈ N is a finite horizon.

For all 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴(𝑠), it is required that
∑︀

𝑠′∈𝑆 𝑇 (𝑠, 𝑎, 𝑠′) = 1.

Definition 2.2.6. (Applicable actions) The set of applicable actions, written as 𝐴(𝑠),

is a set of labels for which
∑︀

𝑠′∈𝑆 𝑇 (𝑠, 𝑎, 𝑠′) ̸= 0.

In a system there are a finite number of states that are denoted by 𝑆 and the

current state of the agent is denoted by 𝑠 ∈ 𝑆. Let 𝐴 =
⋃︀
𝑠∈𝑆 𝐴(𝑠) be the set of all

actions and 𝐴(𝑠) be a set of actions that can be taken in state 𝑠. From the state 𝑠,

the agent can choose action 𝑎 ∈ 𝐴(𝑠). If we make this choice, as a result, the agent

will receive a reward 𝑅(𝑠, 𝑎), and the next state will be 𝑠′ which will be sampled

according to a transition function. The transition function, in this case, is 𝑇 (𝑠, 𝑎, 𝑠′).

Example 2.2.7. Figure 1 shows an example of MDP. Actions are represented with

circles, and states with rectangles. Each action has a reward denoted in the incoming

edge. There are one or more outgoing edges for each action, which are connected to

the outcomes and have probabilities that correspond to each of them. The MDP of

this example is 𝑀 = ⟨𝑆,𝐴, 𝑇,𝑅, 𝑠0, ℎ⟩, where

• 𝑆 = {𝑠0, 𝑠1, 𝑠2} is a set of states,

• 𝐴 = {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5} is a set of actions,

• 𝑠0 is the initial state,

• ℎ = 2 and

• transition and reward function are given as bellow

- 𝑇 (𝑠0, 𝑎1, 𝑠1) = 1
2

𝑅(𝑎1) = 2

- 𝑇 (𝑠0, 𝑎1, 𝑠2) = 1
2

8

- 𝑇 (𝑠0, 𝑎2, 𝑠2) = 1 𝑅(𝑎2) = 0.5

- 𝑇 (𝑠2, 𝑎3, 𝑠1) = 2
3

𝑅(𝑎3) = 1

- 𝑇 (𝑠2, 𝑎3, 𝑠0) = 1
3

- 𝑇 (𝑠2, 𝑎4, 𝑠1) = 1 𝑅(𝑎4) = 1

- 𝑇 (𝑠1, 𝑎5, 𝑠0) = 1 𝑅(𝑎5) = 0.5

𝑠0

𝑎1 𝑎2
ℎ = 2

𝑠1 𝑠2

𝑎5 𝑎3 𝑎4
ℎ = 1

𝑠0 𝑠1
ℎ = 0

+2

1/2

+0.5

1

+0.5

1

2/3

1/2

+1

1/3

+1

1

Figure 2-2: An MDP example

Let us now describe how we can map a Probabilistic Planning Task into an MDP.

Definition 2.2.8. (MDP induced by a Probabilistic Planning Task) The Probabilistic

Planning Task Π = ⟨𝑉 , 𝐼, 𝑂, 𝐻⟩ induces the MDP defined as 𝜏 (Π) = ⟨𝑆, 𝐴, 𝑅, 𝑇 ,

𝑠0, ℎ⟩, where

• 𝑆 = 2𝑉 ,

• A = O,

• 𝑅(𝑜) = 𝑟𝑒𝑤𝑎𝑟𝑑(𝑜) for all 𝑜 ∈ 𝑂,

• 𝑇 (𝑠, 𝑜, 𝑠′) = 𝑃 , where 𝑃 =
∏︀𝑛

𝑖=1 𝑝𝑖 for all ⟨𝑒, 𝑝𝑖⟩ ∈ eff(o) with 𝑠[𝑒] = 𝑠′,

• 𝑠0 = 𝐼 and

• ℎ = 𝐻

9

A policy for an MDP is defined as below:

Definition 2.2.9. Let 𝜏 = ⟨𝑆, 𝐴, 𝑅, 𝑇 , 𝑠0, ℎ⟩ be an MDP. A policy for 𝜏 is a

mapping 𝜋 : 𝑆 × {1, 2, ..., ℎ} −→ 𝐴(𝑠) ∪ {⊥}

In the following definitions, we explain what a value function and Bellman opti-

mality equation are.

Definition 2.2.10. (MDP Value function) Let 𝜏 = ⟨𝑆,𝐴,𝑅, 𝑇, 𝑠0, ℎ⟩ be an MDP.

The state-value 𝑉𝜋(𝑠, 𝑑) of a state 𝑠 ∈ 𝑆 with d steps to go is given as

𝑉𝜋(𝑠, 𝑑) :=

⎧⎪⎨⎪⎩0, if 𝑑 = 0

𝑄𝜋(𝑠, 𝑑, 𝜋(𝑠)), otherwise

where 𝑄𝜋(𝑠, 𝑑, 𝑎) is the action value and is given as

𝑄𝜋(𝑠, 𝑑, 𝑎) := 𝑅(𝑠, 𝑎) +
∑︁
𝑠′∈𝑆

[𝑇 (𝑠, 𝑎, 𝑠′) · 𝑉𝜋(𝑠′, 𝑑− 1)]

Definition 2.2.11. (MDP Bellman Optimality equation) Let 𝜏 be an MDP. The

Bellman optimality equation for a state 𝑠 ∈ 𝑆 with d steps to go is defined as

𝑉*(𝑠, 𝑑) :=

⎧⎪⎨⎪⎩0, if 𝑑 = 0

max𝑎∈𝐴(𝑠)𝑄*(𝑠, 𝑑, 𝑎), otherwise

where 𝑄*(𝑠, 𝑑, 𝑎) is defined as

𝑄*(𝑠, 𝑑, 𝑎) := 𝑅(𝑠, 𝑎) +
∑︁
𝑠′∈𝑆

[𝑇 (𝑠, 𝑎, 𝑠′) · 𝑉*(𝑠′, 𝑑− 1)]

Let 𝜋* be a policy that is greedy w.r.t. 𝑄*,

i.e. 𝜋*(𝑠, 𝑑) = 𝑚𝑎𝑥𝑎∈𝐴𝑄*(𝑠, 𝑑, 𝑎)

The policy 𝜋* is optimal if 𝜋*(𝑠, 𝑑) ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴(𝑠)𝑄*(𝑠, 𝑑, 𝑎) for all states where

𝑠 ∈ 𝑆, 𝑑 ∈ {1, 2, ..., ℎ} and the expected reward is 𝑉*(𝑠, 𝑑).

10

A policy 𝜋 is optimal if for all policies 𝜋′, the reward of 𝜋 is the largest. The

optimal policy is described by a Bellman optimality equation. The expected reward

of the policy is described by state-value of the policy.

11

Chapter 3

Academic Advising

Academic Advising is a domain where a student during the studies chooses which

courses to take to graduate from their program as fast as possible.

3.1 Academic Advising Domain

Definition 3.1.1. An Academic Advising instance is a 9-tuple 𝐴 = ⟨𝐶, 𝐶*, 𝑃 , 𝑐𝑜𝑠𝑡,

𝑐𝑜𝑠𝑡+, ℎ, 𝜎, 𝑝𝑒𝑛𝑎𝑙𝑡𝑦, P⟩, where

• 𝐶 is a set of courses,

• 𝐶* ⊆ 𝐶 is the set of program requirement courses,

• 𝑃 : 𝐶 −→ 2𝐶 is the course prerequisites function,

• 𝑐𝑜𝑠𝑡 ∈ N0 is the cost for taking a course for the first time,

• 𝑐𝑜𝑠𝑡+ ∈ N0 is the cost for taking a course except for the first time,

• ℎ ∈ N is the horizon,

• 𝜎 ∈ N is concurrency, the number of courses per semester,

• 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 ∈ N is the program incomplete penalty and

• P : 𝐶 −→ [0, 1] is the prior probability.

12

Each instance of the domain has a specific number of courses 𝐶, where some of

them are considered program requirement courses 𝐶*. To graduate from the program,

the student has to complete all the required courses. Taking and retaking a course

have a cost which is specified in the domain. Prior probabilities of passing a course are

increased by passing the prerequisites of the course. Based on a given concurrency,

multiple courses can be taken per semester. We add a penalty each time we choose

an action while the program is not completed.

In the initial state, none of the courses are passed or taken. To pass a course, we

have to take one of the applicable operators that the state has, including the 𝑛𝑜𝑜𝑝

operator. We describe a state of probabilistic planning task over three variables:

𝑝𝑎𝑠𝑠𝑒𝑑𝑐, which denotes if the course c is passed or not; 𝑡𝑎𝑘𝑒𝑛𝑐, which denotes if the

course c has already been taken before or not yet; complete, which is assigned as true

only if the program is completed (all required courses are passed).

Let 𝜓 ⊆ 𝐶. Then we define:

(3.1)𝑃 (𝜓) =
⋃︁
𝑐∈𝜓

𝑃 (𝑐)

𝑃 (𝜓) represents the union of the preconditions of a set of courses 𝜓,

(3.2)𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑐,𝐶𝑃 = P+ [(1− P(𝑐)) · |𝐶𝑃 |
1 + |𝑃 (𝑐)|

]

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑐,𝐶𝑃 is the probability of passing a course c, given that the prerequisite

courses 𝐶𝑃 ⊆ 𝑃 (𝑐) are passed,

(3.3)𝑃𝑟𝑜𝑏𝜓,𝜓′,𝐶𝑃 =
∏︁
𝑐∈𝜓

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑐,𝐶𝑃 ·
∏︁
𝑐∈𝜓′

(1− 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑐,𝐶𝑃)

𝑃𝑟𝑜𝑏𝜓,𝜓′,𝐶𝑃 is the probability that for a set of courses 𝜓 ∪ 𝜓′, the courses in 𝜓 are

passed and the courses in 𝜓 are failed if the courses 𝐶𝑃 ⊆ 𝑃 (𝜓 ∪ 𝜓′) have already

been passed.
(3.4)𝜓 = 𝜓0 ∪ 𝜓1

We denote the union of 𝜓0 and 𝜓1 with 𝜓.

An Academic Advising instance 𝐴 = ⟨𝐶,𝐶*, 𝑃, 𝑐𝑜𝑠𝑡, 𝑐𝑜𝑠𝑡+, ℎ, 𝜎, 𝑝𝑒𝑛𝑎𝑙𝑡𝑦,P⟩ in-

duces a Probabilistic Planning Task Π = ⟨𝑉 , 𝐼, 𝑂, 𝐻⟩, where

13

• 𝑉 = {𝑝𝑎𝑠𝑠𝑒𝑑𝑐|𝑐 ∈ 𝐶} ∪ {𝑡𝑎𝑘𝑒𝑛𝑐|𝑐 ∈ 𝐶} ∪ {𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒}

• 𝐼 = {¬𝑝𝑎𝑠𝑠𝑒𝑑𝑐|𝑐 ∈ 𝐶} ∪ {¬𝑡𝑎𝑘𝑒𝑛𝑐|𝑐 ∈ 𝐶} ∪ {¬𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒}

• 𝐻 = ℎ

• 𝑂 =
⋃︀

𝜓0,𝜓1∈2𝐶 ,𝜓0∩𝜓1=∅,1≤|𝜓|≤𝜎
𝑂𝜓 ∪ {𝑛𝑜𝑜𝑝, 𝑛𝑜𝑜𝑝+} where

𝑂𝜓0,𝜓1 = {𝑜𝜓0,𝜓1,𝐶𝑃 |𝐶𝑃 ⊆ 𝑃 (𝜓)} ∪ {𝑜𝜓0,𝜓1,𝐶𝑃 |𝐶𝑃 ⊆ 𝑃 (𝜓)}

We give below the precondition, effect and the reward for each of the operators. We

divide the operators into four types: 𝑜𝜓,𝐶𝑃 , 𝑜𝜓,𝐶𝑃 , 𝑛𝑜𝑜𝑝 and 𝑛𝑜𝑜𝑝+. The hat is used

when we reach a goal, while the operators without the hat are applicable to other

states.

• 𝑜𝜓0,𝜓1,𝐶𝑃

pre(𝑜𝜓0,𝜓1,𝐶𝑃) =
⋀︁
𝑐∈𝜓

¬𝑝𝑎𝑠𝑠𝑒𝑑𝑐 ∧
⋀︁
𝑐∈𝜓0

¬𝑡𝑎𝑘𝑒𝑛𝑐 ∧
⋀︁
𝑐∈𝜓1

𝑡𝑎𝑘𝑒𝑛𝑐∧

⋀︁
𝑐∈𝐶𝑃

𝑝𝑎𝑠𝑠𝑒𝑑𝑐 ∧
⋀︁

𝑐∈𝑃 (𝜓)∖𝐶𝑃

¬𝑝𝑎𝑠𝑠𝑒𝑑𝑐 ∧ ∃𝑐∈𝐶*,𝑐 ̸∈𝜓¬𝑝𝑎𝑠𝑠𝑒𝑑𝑐,

eff(𝑜𝜓0,𝜓1,𝐶𝑃) =
⋃︁
𝜓′∈2𝜓

⟨ ⋃︁
𝑐∈𝜓′

{𝑝𝑎𝑠𝑠𝑒𝑑𝑐} ∪
⋃︁
𝑐∈𝜓

{𝑡𝑎𝑘𝑒𝑛𝑐}, 𝑃 𝑟𝑜𝑏𝜓′,𝜓∖𝜓′,𝐶𝑃

⟩
,

reward(𝑜𝜓0,𝜓1,𝐶𝑃) = −|𝜓0|·𝑐𝑜𝑠𝑡− |𝜓1|·𝑐𝑜𝑠𝑡+ − 𝑝𝑒𝑛𝑎𝑙𝑡𝑦

• 𝑜𝜓0,𝜓1,𝐶𝑃

pre(𝑜𝜓0,𝜓1,𝐶𝑃) =
⋀︁
𝑐∈𝜓

¬𝑝𝑎𝑠𝑠𝑒𝑑𝑐 ∧
⋀︁
𝑐∈𝜓

¬𝑡𝑎𝑘𝑒𝑛𝑐 ∧
⋀︁
𝑐∈𝐶𝑃

𝑝𝑎𝑠𝑠𝑒𝑑𝑐∧

∀𝑐 ̸∈𝜓∈𝐶*𝑝𝑎𝑠𝑠𝑒𝑑𝑐,

eff(𝑜𝜓0,𝜓1,𝐶𝑃) =
⋃︁
𝜓′∈2𝜓

⟨ ⋃︁
(𝑐∈𝜓′

{𝑝𝑎𝑠𝑠𝑒𝑑𝑐} ∪
⋃︁
𝑐∈𝜓

{𝑡𝑎𝑘𝑒𝑛𝑐} ∪ {𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒}, 𝑃 𝑟𝑜𝑏𝜓′,𝜓∖𝜓′,𝐶𝑃

⟩
,

reward(𝑜𝜓0,𝜓1,𝐶𝑃) = −|𝜓0|·𝑐𝑜𝑠𝑡− |𝜓1|·𝑐𝑜𝑠𝑡+ − 𝑝𝑒𝑛𝑎𝑙𝑡𝑦

14

• 𝑛𝑜𝑜𝑝

pre(noop) = ¬𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒,

eff(noop) = ⟨∅, 1⟩,

reward(noop) = −𝑝𝑒𝑛𝑎𝑙𝑡𝑦

• 𝑛𝑜𝑜𝑝+

pre(𝑛𝑜𝑜𝑝+) = 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒,

eff(𝑛𝑜𝑜𝑝+) = ⟨∅, 1⟩,

reward(𝑛𝑜𝑜𝑝+) = 0

3.2 Relevance Analysis

An Academic Advising problem is hard. As shown in the 4𝑡ℎ column of Table 3.1,

the number of variables in the smallest instance is 31. This means that this instance

has more than a trillion states due to the exponential relationship. So far, no solver

can solve such a huge state space. Therefore, the first step on finding the optimal

solution is simplifying the problem.

Let us take the first instance of Academic Advising 2018 domain as an example.

There are 15 courses in total, where five of them are in program requirement, 𝐶* =

{𝐶0001, 𝐶0002, 𝐶0202, 𝐶0101, 𝐶0300}. The domain can be interpreted in a graph

in the following way: With double circles, we represent the courses that have to be

taken to complete the degree, while with single circles we represent the other ones.

The arrows that connect a course with another tell us which course is a prerequisite

of which one. For example, the course C0001 and C0002 have no prerequisites, the

course C0202 has as a prerequisite the course C0002 and so on. Figure 3-1 shows the

relationship between all the courses of this instance within a graph.

15

𝐶0003 𝐶0004 𝐶0000

𝐶0100 𝐶0102

𝑐0001 𝐶0002

𝐶0103 𝐶0101

𝐶0201

𝐶0301

𝐶0200

𝐶0302 𝐶0300

𝐶0202

Figure 3-1: The graph of the first instance and the pruned version of it colored in
grey.

A Directed Acyclic Graph (DAG) is a graph that consists of vertices and edges.

Each directed edge points from one vertex to another. The path formed by these

edges has no cycles. As an observation, we can state that all Academic Advising

instances of 2014 and 2018 are represented by a DAG.

Definition 3.2.1. Let the program requirement DAG of A be the graph 𝐷 = ⟨𝑉,𝐸⟩,

where 𝑉 = 𝐶; and where for all 𝑐1, 𝑐2 ∈ 𝐶, ⟨𝑐1, 𝑐2⟩ ∈ 𝐸 iff 𝑐2 ∈ 𝑃 (𝑐1).

From the above example, we can observe that passing or failing some of the courses

like 𝐶0000, 𝐶0102, etc., affect anything. This is a very important observation and

we can conclude that all leaf nodes that represent the non-mandatory courses can

be pruned because we do not take them into consideration even under the optimal

policy.

Definition 3.2.2. Let A be an Academic Advising instance with a set of courses C

and let D be the program requirement DAG of A. We call a course 𝑐 ∈ 𝐶 relevant for

A iff there is a path ⟨𝑐1, ...𝑐𝑛⟩ in D such that 𝑐1 = 𝑐 and 𝑐𝑛 ∈ 𝐶*

Our pruning algorithm prune nodes by looking at the leaves. In every iteration we

prune a leaf that is not in program requirements until there are no more such leaves.

16

Algorithm 1: The pruning algorithm
function Prune(G)

𝐺 = ⟨𝑉,𝐸⟩

vertices := G.getVertices()

queue := ∅

foreach v ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 where 𝑣.𝑖𝑠𝐿𝑒𝑎𝑓() and not 𝑣.𝑖𝑠𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑() do
queue.insert(v)

end

while queue ̸= ∅ do
E’ = {(v,u) | 𝑣 ∈ 𝑉 }

E ←− 𝐸 ∖ 𝐸 ′

V ←− 𝑉 ∖ {𝑢}

foreach (v,u) ∈ 𝐸 ′ do

if v.isLeaf() and not v.isRequired() then
queue.insert(v)

end

end

end

return graph

After we prune the graph, we end up with a simplified graph which contains only

relevant courses. We show the result in Figure 3-1 colored in grey.

Theorem 1. Let 𝐴 = ⟨𝐶,𝐶*, 𝑃, 𝑐𝑜𝑠𝑡, 𝑐𝑜𝑠𝑡+, ℎ, 𝜎, 𝑝𝑒𝑛𝑎𝑙𝑡𝑦,P⟩ be an Academic Advising

instance, 𝜏 = ⟨𝑆,𝐴,𝑅, 𝑇, 𝑠0, 𝐻⟩ be the MDP induced by A, 𝐴′ = ⟨𝐶 ′, 𝐶*, 𝑃 ′, 𝑐𝑜𝑠𝑡,

𝑐𝑜𝑠𝑡+, ℎ, 𝜎, 𝑝𝑒𝑛𝑎𝑙𝑡𝑦, P⟩ an Academic Advising instance where 𝐶 ′ ⊆ 𝐶 is the set

of relevant courses for A and 𝑃 ′ : 𝐶 ′ −→ 2𝐶
′ where 𝑃 ′(𝑐) = 𝑃 (𝑐) ∀𝑐 ∈ 𝐶 ′ and 𝜏 ′

=

⟨𝑆 ′, 𝐴′, 𝑅′, 𝑇 ′, 𝑠′0, 𝐻
′⟩ the MDP induced by 𝐴′. Then

𝑉*(𝑠0, 𝐻) = 𝑉*(𝑠
′
0, 𝐻

′)

Proof. For every policy in the original task, 𝜋 for 𝜏 , there is a policy in pruned task,

17

𝜋′ for 𝜏 ′, that is at least as good as 𝜋.

𝑉 𝜋′
(𝑠′0, 𝐻

′) ≤ 𝑉 𝜋(𝑠0, 𝐻)

We know that if 𝜋(𝑠) = 𝑜{𝑐1,𝑐2},𝐶𝑃 ⇒ 𝜋′(𝑠) = 𝑜{𝑐1,𝑐2}∩𝐶′,𝐶𝑃 . If {𝑐1, 𝑐2} ∩ 𝐶 ′ = ∅ then

we need to apply 𝑛𝑜𝑜𝑝 or 𝑛𝑜𝑜𝑝+ (depending on which one is applicable in that state).

From this, we derive that 𝜋′(𝑠) = 𝑛𝑜𝑜𝑝 if 𝜋(𝑠) = 𝑎 and 𝑎 ̸∈ 𝐴′. Since the cost of 𝑛𝑜𝑜𝑝

is always less than taking a course, the above in-equation holds.

Assume that there is an optimal policy 𝜋* in 𝜏 , then there is also an optimal policy

𝜋′* in 𝜏 . This holds because throwing any operator change none of the probabilities

of achieving a state in the future.

We provide a table where we see the difference between the two instances, A and

𝐴′ (Table 3.1).

Table 3.1: Comparison of instance A and instance 𝐴′ in IPC 2018 domain.

Instance |C| |𝐶 ′| |V| |𝑉 ′| Reduction of |V| in %
01 15 6 31 13 55, 06%
02 15 10 31 21 32, 26%
03 24 5 49 11 77, 55%
04 27 6 55 13 76, 36%
05 25 14 51 29 43, 14%
06 30 17 61 35 42, 62%
07 40 25 81 51 37, 04%
08 31 17 63 35 44, 44%
09 44 20 89 41 53, 93%
10 62 29 125 59 52, 80%
11 58 26 117 53 54, 70%
12 64 29 129 59 54, 26%
13 59 33 119 67 43, 70%
14 93 43 187 87 53, 48%
15 116 46 233 93 60, 09%
16 96 49 193 99 48, 70%
17 150 67 301 135 55, 15%
18 233 85 467 171 63, 38%
19 217 83 435 167 61, 61%
20 278 76 557 153 72, 53%

18

The IPC 2014 introduced the Academic Advising domain as well. Table 3.2 shows

the result of the relevance analysis in its instances. The average shrinking of IPC

2014 domain is 24.3%. Compared to Academic Advising domain of IPC 2014, our

relevance analysis is around double times more efficient in the Academic Advising

domain of IPC 2018.

Table 3.2: Comparison of instance B and instance 𝐵′ in IPC 2014 domain.

Instance |C| |𝐶 ′| |V| |𝑉 ′| Reduction of |V| in %
01 10 5 21 11 47, 62%
02 10 10 21 21 0, 00%
03 15 5 31 11 64, 52%
04 15 14 31 29 6, 45%
05 20 17 41 35 14, 63%
06 20 14 41 29 29, 27%
07 25 17 51 35 31, 37%
08 25 20 51 41 19, 61%
09 30 24 61 49 19, 67%
10 30 27 61 55 9, 84%

3.3 Mapping to Classical Planning

After pruning, if we use blind search, we could solve some of the 20 instances, but not

all of them. This is because the state space is still large. Therefore, we present a new

solution to our problem, which is mapping from Probabilistic Planning to Classical

Planning Task.

We start this part by assuming that the horizon is an arbitrarily large number or

infinite and there is no concurrency (𝜎 = 1). To map the Probabilistic Planning Task

to Classical Planning Task, there are three points that we have to consider:

1. We can see that all the rewards are non-positive, so instead of talking about

non-positive rewards, we can talk about (non-negative) costs.

(3.5)𝑐𝑜𝑠𝑡(𝑜) = 𝑟𝑒𝑤𝑎𝑟𝑑(𝑜) · (−1)

2. All the operators have a negative reward, except 𝑛𝑜𝑜𝑝+. If we can never apply

𝑛𝑜𝑜𝑝+, the expected reward would be −∞ if 𝐻 = ∞. The only way to get a

19

finite reward is to reach a state where 𝑛𝑜𝑜𝑝+ is applicable. Since the 𝑛𝑜𝑜𝑝+

operator is applicable only on the last course where we finish the program, it

always makes sense to try to finish the program. Once we reach that point, we

are sure that our policy is better. Therefore, an optimal policy aims to reach a

state 𝑠 where 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 ∈ 𝑆.

3. In the third part, we have to map probabilistic operators, which have proba-

bilistic effects, into classical ones.

If passing a course is an action that optimal policy wants to do, then we apply

the specific operator until we achieve the desired effect. Consequently, we can

calculate how often we have to take a course in expectation to pass it. We can

combine the operators of the task into a single operator by adapting the cost

accordingly. The cost of an operator 𝑜 would be the cost of taking the course

for the first time and 1
𝑃𝑟𝑜𝑏𝑐,𝐶𝑃

− 1 multiplied by the cost of retaking the same

course.

Let 𝑠, 𝑎 be such that
∑︀

𝑠′ 𝑇 (𝑠, 𝑎, 𝑠
′
) = 1. The mapping can happen only when 𝜎 = 1

because only in this case we have the property 𝑇 (𝑠, 𝑎, 𝑠
′
) = 1−𝑇 (𝑠, 𝑎, 𝑠) for all 𝑠′ ̸= 𝑠.

Given an Academic Advising instance A, we create a Classical Planning Task as

follows:

• 𝑜{𝑐},𝐶𝑃 for all 𝑐 ∈ 𝐶 maps into

⟨¬𝑝𝑎𝑠𝑠𝑒𝑑𝑐 ∧ ∃𝑐′∈𝐶*,𝑐′ ̸=𝑐¬𝑝𝑎𝑠𝑠𝑒𝑑𝑐′ , {𝑝𝑎𝑠𝑠𝑒𝑑𝑐}, 𝑐𝑜𝑠𝑡(𝑜) + (
1

𝑃𝑟𝑜𝑏𝑐,𝐶𝑃
− 1) · 𝑐𝑜𝑠𝑡+(𝑜)⟩

To better understand how this transformation occurs, let us take a simple example.

Let A, C and D be courses, where D is the required course. The edges, same as above,

tell us about the prerequisites for each course. This is illustrated in Figure 3-2.

20

𝐴 𝐶

𝐷

Figure 3-2: Academic Advising domain in probabilistic version

When this problem is converted to a classical domain, the graph is changed by

adding new nodes and new edges, as is shown in Figure 3-3.

𝐼

𝐴 𝐶 𝐷

𝐶 ∧𝐷
𝐴 ∧𝐷

𝐴 ∧ 𝐶

𝐴 ∧ 𝐶 ∧𝐷

𝑡𝑎
𝑘𝑒
−
𝐴

𝑡𝑎
𝑘
𝑒−

𝐶

𝑡𝑎𝑘𝑒−
𝐷

𝑡𝑎
𝑘
𝑒−

𝐷
−
𝑔
𝑖𝑣
𝑒𝑛
−
𝐴

𝑡𝑎𝑘𝑒−
𝐶
−
𝑔𝑖𝑣𝑒𝑛−

𝐴

𝑡𝑎𝑘𝑒−
𝐷
−
𝑔𝑖𝑣𝑒𝑛

−
𝐶

𝑡𝑎
𝑘
𝑒−

𝐴
−
𝑔
𝑖𝑣
𝑒𝑛
−
𝐶

𝑡𝑎𝑘𝑒−𝐷 − 𝑔𝑖𝑣𝑒𝑛− 𝐴− 𝑎𝑛𝑑− 𝐶

Figure 3-3: Academic Advising domain converted into a classical domain

Based on the above three points and on the subsequent discussion, we can state

the following theorem:

Theorem 2. For all Academic Advising instances A, where 𝜎 = 1 and ℎ = ∞, and

𝜋, an optimal plan for the induced classical Planning Task 𝜏 , we have

𝑉*(𝑠0, 𝐻) = −𝑐𝑜𝑠𝑡(𝜋)

21

For instances where these two constraints are fulfilled, the reward of these in-

stances corresponds to the true expected reward. There are instances where the

concurrency can be larger than one. For the cases where 𝜎 > 1, we can no longer

compile them into Classical Planning. However, we can still use it to compute the

upper bound reward.

Theorem 3. For all Academic Advising instances A, where 𝜎 > 1 and ℎ = ∞, and

𝜋, an optimal plan for the induced Classical Planning Task 𝜏 , we have

𝑉*(𝑠0, 𝐻) ≥ −𝑐𝑜𝑠𝑡(𝜋)

𝜎

Proof. (Proof sketch) Let us assume that we always perform as many actions as the

concurrency and we take the courses where all the prerequisites are already passed. If

for one course per semester we get a reward of 𝑥, then with two courses per semester,

we expect a reward of 𝑥
2
. This is an optimistic assumption because it assumes that

we can perfectly distribute the course load into each semester (which is not always

the case). On the other side, since we apply operators in parallel, there could be a

case where we have to take a course and its prerequisites at the same time. Hence,

the result can only be larger than the true reward, and therefore, we consider it as

an admissible heuristic for the initial state.

If ℎ ̸=∞, things get harder and we no more have an admissible heuristic.

Theorem 4. Given that the condition ℎ =∞ does not hold, our result is not optimal.

Proof. (Proof by counterexample) Let 𝐴 = ⟨𝐶,𝐶*, 𝑃, 𝑐𝑜𝑠𝑡, 𝑐𝑜𝑠𝑡+, ℎ, 𝜎, 𝑝𝑒𝑛𝑎𝑙𝑡𝑦,P⟩ be

an Academic Advising instance, where

• 𝐶 = {𝐴,𝐵} ∧ 𝐶* = {𝐵},

• 𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡+ = 1,

• 𝑃 (𝐴) = {} ∧ 𝑃 (𝐵) = {𝐴}

• ℎ = 3 ∧ 𝜎 = 1,

• 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = −5,

• P(𝐴) = 0, 2 ∧ P(𝐵) = 0, 8

The horizon in this example is small, which means that the given constraint is

violated. The graph for this instance is depicted below.

22

𝐴

𝐵

Figure 3-4: Academic Advising instance

Let us assume that the optimal path initially takes course A, but is unlucky in its

first attempt and does not pass (ℎ = 2). In the second attempt, it passed it (ℎ = 1)

and then; it takes and passes the course B(ℎ = 0). In this scenario, we reach the goal

at the last step. However, it does not make sense to try to reach the goal if we reach

it at the last step because we can never apply 𝑛𝑜𝑜𝑝+, and we can never benefit from

this action. Thus, reaching the goal instead of just applying 𝑛𝑜𝑜𝑝 operator will cost

us more, which is not what we want and it is not the optimal solution.

The reason we could ignore the horizon at the beginning is that it is irrelevant

during the mapping process. We can consider it by just comparing the expected

reward to the 𝑛𝑜𝑜𝑝 policy. Between our results and 𝑛𝑜𝑜𝑝, we choose as our optimal

policy the better one.

Let us take an example. Assume we have 10 courses to complete the program.

We pass each of them with a probability of 1, and it costs us 1. The number of

courses that we can take per semester is 1, the penalty is 5, and the reward is −6. To

calculate the reward of 𝑛𝑜𝑜𝑝 policy, we multiply the penalty with the horizon. Our

total reward would be -50, instead of -60 as the 𝑛𝑜𝑜𝑝 policy would give us because

we benefit from the fact that we have completed the program. Taking 𝑛𝑜𝑜𝑝 would

only make sense if we never finish the program and in this case, taking a new course

would give us additional cost, which is worse than just playing 𝑛𝑜𝑜𝑝 (the case where

ℎ = 13 in the Table 3.3). We present the results for both policies on the table below:

23

Table 3.3: Comparison of 1-deterministic course and noop policy

Horizon noop 1-deterministic course

10 -60 -50

11 -60 -55

12 -60 -60

13 -60 -65

3.4 Results

Considering our problem as deterministic makes it much simpler than solving it as a

probabilistic problem. To solve a classical domain, we used Fast Downward planner[4].

To do so, we generated Planning Domain Definition Language (PDDL) files and

searched using A* algorithm and landmark cut heuristic (LM-cut)[2] [5].

For cases where 𝜎 = 1 and ℎ =∞, the result gives us the true expected rewards.

For cases where 𝜎 > 1 and ℎ =∞, the result gives us an admissible heuristic for the

initial state. If ℎ ̸=∞, we no longer have an admissible heuristic, but we assume that

the result we get is a near-optimal solution. Here, simulating the execution would be

a good solution. In Table 3.4 are shown the results for 20 instances.

Table 3.5 compares our results with other results of the planners who took part

in IPC 2018.

24

Table 3.4: The results of the instances

Instance Reward Concurrency Horizon
01 25 1 20
02 15 2 20
03 20 1 20
04 21.87 1 20
05 26.63 2 20
06 55 1 30
07 40.98 2 30
08 30.41 2 30
09 25 1 30
10 42 2 30
11 34.09 3 40
12 36.51 2 40
13 42.57 2 40
14 44.24 3 40
15 53.09 2 40
16 52.79 3 50
17 41.8 4 50
18 44.74 3 50
19 45.59 4 50
20 35.35 5 50

25

Table 3.5: Comparison of our results with other planners

In
st

an
ce

A
2C

P
la

n
C

on
fo

rm
an

t-
SO

G
B

O
FA

-
B

C
on

fo
rm

an
t-

SO
G

B
O

FA
-

F

Im
it

at
io

n
N

et
P

ro
st

20
11

P
ro

st
20

14
P

ro
st

-
D

D
-1

P
ro

st
-

D
D

-2
R

an
do

m
B

an
di

t
O

ur
re

-
su

lt
s

01
-6

4.
0

-4
8.

46
-4

8.
4

-1
00

.0
-5

3.
66

-4
6.

86
-4

7.
13

-4
6.

33
-8

2.
4

-2
5

02
-7

6.
53

-6
8.

4
-6

3.
13

-1
00

.0
-5

7.
33

-5
6.

73
-4

9.
93

-4
3.

66
-1

00
.0

-1
5

03
-1

00
.0

-3
5.

06
-3

5.
2

-1
00

.0
-4

6.
13

-4
5.

6
-3

7.
8

-3
5.

2
-1

00
.0

-2
0

04
-7

2.
72

-7
8.

92
-7

9.
18

-1
00

.0
-6

9.
01

-7
1.

56
-3

9.
48

-4
3.

02
-7

6.
46

-2
1.

87
05

-1
33

.4
5

-1
00

.0
-1

00
.0

-1
00

.0
-1

00
.0

-1
02

.3
-9

0.
12

-9
9.

6
-1

00
.0

-2
6.

63
06

-1
50

.0
-1

02
.2

-8
2.

86
-1

50
.0

-1
36

.8
-1

34
.2

-8
3.

46
-8

4.
33

-1
50

.0
-5

5
07

-1
98

.8
9

-1
50

.0
-1

50
.0

-1
50

.0
-1

50
.0

-1
57

.6
8

-1
88

.9
6

-1
90

.1
7

-1
50

.0
-4

0.
98

08
-2

29
.4

5
-1

50
.0

-1
50

.0
-1

50
.0

-1
50

.0
-1

64
.5

6
-1

82
.8

4
-1

79
.6

5
-1

50
.0

-3
0.

41
09

-1
50

.0
-9

7.
93

-6
6.

53
-1

50
.0

-1
45

.2
-1

48
.2

6
-8

6.
33

-7
7.

0
-1

50
.0

-2
5

10
-2

00
.2

-1
50

.0
-1

50
.0

-1
50

.0
-2

00
.3

7
-1

50
.0

-2
00

.2
4

-1
99

.7
-4

2
11

-3
50

.4
5

-2
00

.0
-2

00
.0

-2
00

.0
-2

00
.0

-3
4.

09
12

-2
04

.9
4

-2
00

.0
-2

00
.0

-2
00

.0
-2

00
.0

-2
04

.0
9

-2
15

.2
-2

13
.3

8
-3

6.
51

13
-2

30
.0

4
-2

00
.0

-2
00

.0
-2

00
.0

-2
00

.0
-2

07
.1

7
-2

82
.4

8
-2

81
.4

1
-4

2.
57

14
-4

91
.2

6
-2

00
.0

-2
00

.0
-2

00
.0

-4
4.

24
15

-2
40

.4
6

-2
00

.0
-2

00
.0

-2
00

.0
-2

00
.0

-5
3.

09
16

-4
67

.9
3

-2
50

.0
-2

50
.0

-5
2.

79
17

-2
50

.0
-2

50
.0

-4
1.

8
18

-2
50

.0
-2

50
.0

-4
4.

74
19

-2
50

.0
-2

50
.0

-4
5.

59
20

-2
50

.0
-2

50
.0

-3
5.

35

26

Chapter 4

Chromatic Dice

Yahtzee is a game where five dice are rolled with the opportunity to choose some

dice and re-roll them up to two times. The displayed values could fit into a set of

categories. The planner has to choose a category from this set for the given values

of the dice. Each category has a corresponding reward. In the end, the gathered

reward determines the planner’s performance for the chosen category. Additionally,

it determines if the planner will receive a bonus for its performance[9].

Chromatic Dice is an MDP variant of Yahtzee. However, here we use two-dimensional

dice represented by values and colors. The values range from 1 to 6, and there are 5

different colors. The values and the colors of the dice are independent of each other,

i.e. all combinations of values and colors are possible. Yahtzee is considered a special

case of Chromatic Dice with a single colored dice. They are also different in the

bonuses and the set of categories as described below. Depending on the instance, the

number of categories varies.

The categories of the Chromatic Dice are divided into four sections. In each descrip-

tion of these categories below, we provide the abbreviations used to denote them.

The Upper value Section:

• Ones(𝐶1) scores one point for each of the dice that shows a value of one,

• Twos(𝐶2), Threes(𝐶3), Fours(𝐶4), Fives(𝐶5) and Sixes(𝐶6) are accord-

ingly.

27

The middle color section:

• Reds(𝐶𝑟) scores the total value of dice that have red color,

• Greens(𝐶𝑔), Blues(𝐶𝑏), Yellows(𝐶𝑦) and Purples(𝐶𝑝) are accordingly.

The Lower value Section:

• Two pairs(𝐶2𝑝) scores the total value shown on all dice if there exist two set

of different pairs, zero otherwise. Two dice are paired when they have the same

value,

• Three of a kind(𝐶3𝑜𝑎𝑘) scores the total value shown on all dice if three of

them have the same value, zero otherwise,

• Four of a kind(𝐶4𝑜𝑎𝑘) scores the total value shown on all dice if four of them

have the same value, zero otherwise,

• Full house(𝐶𝑓ℎ) scores 25 points if three dice share the same value and the

other two share same value,

• Small straight(𝐶𝑠𝑠) scores 30 points if four dice have consecutive values,

• Large straight(𝐶𝑙𝑠) scores 40 points if five dice have consecutive values,

• Chance(𝐶𝑐) scores the total value of all dice with no restriction and

• Five of a kind(𝐶5𝑜𝑎𝑘) scores 50 points if all dice show the same value.

The Lower color Section:

• Three of a color(𝐶3𝑜𝑎𝑐) scores the total value shown on all dice if three of the

dice have the same color, zero otherwise,

• Four of a color(𝐶4𝑜𝑎𝑐) scores the total value shown on all dice if four of the

dice have the same color, zero otherwise,

• Color full house(𝐶𝑐𝑓ℎ) scores 20 points if three of the dice show one color and

the other two show one color,

28

• Flush(𝐶𝑓) scores the total value shown on all dice if all dice show the same

color,

• Rainbow(𝐶𝑟𝑏) scores 35 points if all the dice have different colors.

Besides these rules, there are bonus points that are awarded in certain circumstances.

In Yahtzee, the bonus is based on the points we gather in the upper section, specifi-

cally, if we over than 63 points. One way to get this number is if, for each category in

the upper section, at least three dice show the correct value. For instance, in category

𝐶1, after the dice are rolled, we have at least three of them showing the value of one.

The same is true for other categories (𝐶2, 𝐶3, 𝐶4, 𝐶5 and 𝐶6).

In Chromatic Dice domain, the bonuses are described differently. It provides two

bonuses: one for the upper value section and the other for the middle color section.

For both bonuses we have 6 different levels ℒ = {𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5, 𝑙6}, depending on

what is scored in each round of the upper and middle categories. Each level has a

probabilistic component; so there is a stochastic chance that we receive the bonus.

Initially, we are on the fourth level for both bonuses. We remain at the same level if,

for each of the upper and middle section categories, we score with three dice showing

the correct values. If less than three dice show the correct value, the bonus level

is decreased, and if more than three dice show the correct value, the bonus level is

increased. In the end, based on the level we are on, we get the bonus with a specific

probability.

4.1 Chromatic Dice Domain

Let 𝒞 = {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6, 𝐶𝑟, 𝐶𝑏, 𝐶𝑔, 𝐶𝑦, 𝐶𝑝, 𝐶4𝑜𝑎𝑘, 𝐶3𝑜𝑎𝑘, 𝐶5𝑜𝑎𝑘, 𝐶𝑐, 𝐶𝑠𝑠,

𝐶𝑙𝑠, 𝐶2𝑝, 𝐶𝑓ℎ, 𝐶3𝑜𝑎𝑐, 𝐶4𝑜𝑎𝑐, 𝐶𝑓 , 𝐶𝑐𝑓ℎ, 𝐶𝑟𝑏} be the set of all possible categories, 𝑙𝑖 ∈ 𝐿

be a specific level, 𝒱 = {1, 2, 3, 4, 5, 6}, ℛ = {𝑔𝑟𝑒𝑒𝑛, 𝑟𝑒𝑑, 𝑏𝑙𝑢𝑒, 𝑦𝑒𝑙𝑙𝑜𝑤, 𝑝𝑢𝑟𝑝𝑙𝑒} and

𝒟 = {𝑑1, 𝑑2, ..., 𝑑𝑘}.

Definition 4.1.1. A Chromatic Dice instance is a 9-tuple 𝑊 = ⟨𝐶, 𝑃𝑣, 𝑃𝑐, 𝐵𝑣, 𝐵𝑐,

𝑃𝐵𝑣 , 𝑃𝐵𝑐⟩, where

29

• 𝐶 ⊆ 𝒞 is a set of Categories,

• 𝑃𝑣 is a probability distribution over 𝒱 s.t. 𝑃𝑣(𝑣) > 0, ∀𝑣 ∈ 𝒱 ,

• 𝑃𝑐 is a probability distribution over ℛ,

• 𝐵𝑣 : ℒ −→ N0 is the value bonus,

• 𝐵𝑐 : ℒ −→ N0 is the color bonus,

• 𝑃𝐵𝑣 : 𝑙𝑖 −→ [0, 1] is the probability of winning the value bonus for level 𝑙𝑖 ∈

{𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5, 𝑙6} and

• 𝑃𝐵𝑐 : 𝑙𝑖 −→ [0, 1], where 𝑙𝑖 ∈ {𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5, 𝑙6}, is the probability of winning color

bonus.

Let ℛ𝑤 be the set of all colors of the instance, ℛ𝑤 = {𝑐 ∈ ℛ|𝑃𝑐(𝑐) > 0}.

A Chromatic Dice instance 𝑊 = ⟨𝐶,𝑃𝑣, 𝑃𝑐, 𝐵𝑣, 𝐵𝑐, 𝑃𝐵𝑣 , 𝑃𝐵𝑐⟩ induces a Probabilis-

tic Planning Task Π = ⟨𝑉, 𝐼, 𝑂,𝐻⟩, where

• V = {𝑡𝑎𝑘𝑒𝑛𝑐|𝑐 ∈ 𝐶} ∪
⋃︀

𝑛∈{1,2,3,4}
{𝑝ℎ𝑎𝑠𝑒𝑛} ∪

⋃︀
𝑣𝑖∈𝒱

⋃︀
𝑐𝑗∈ℛ𝑤

⋃︀
𝑑𝑘∈𝒟

{𝑑𝑘_𝑖𝑠_𝑣𝑖_𝑐𝑗} ∪

{𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑣𝑎𝑙𝑢𝑒_𝑏𝑜𝑛𝑢𝑠} ∪ {𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑐𝑜𝑙𝑜𝑟_𝑏𝑜𝑛𝑢𝑠}

• I = {¬𝑡𝑎𝑘𝑒𝑛𝑐|𝑐 ∈ 𝐶} ∪ {𝑝ℎ𝑎𝑠𝑒1}
⋃︀

𝑛∈{2,3,4}
{¬𝑝ℎ𝑎𝑠𝑒𝑛} ∪{¬𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑐𝑜𝑙𝑜𝑟_𝑏𝑜𝑛𝑢𝑠,

¬𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑣𝑎𝑙𝑢𝑒_𝑏𝑜𝑛𝑢𝑠}
⋃︀
𝑣𝑖∈𝒱

⋃︀
𝑐𝑗∈ℛ𝑤

⋃︀
𝑑𝑘∈𝒟

{¬𝑑𝑘_𝑖𝑠_𝑣𝑖_𝑐𝑗}

• H = 4 · |𝐶|+2

• O = {𝑟𝑜𝑙𝑙1} ∪ {𝑟𝑜𝑙𝑙𝑛𝒟 ′|𝑛 ∈ {2, 3},𝒟 ′ ∈ 2𝒟} ∪ {𝑎𝑠𝑠𝑖𝑔𝑛𝑐{𝑑1_𝑖𝑠_𝑣𝑖_𝑐𝑗 ,...,𝑑5_𝑖𝑠_𝑣𝑖_𝑐𝑗}
|∀𝑐 ∈ 𝐶, 𝑣𝑖 ∈ 𝒱 and 𝑐𝑗 ∈ ℛ𝑤} ∪ {𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑏𝑜𝑛𝑢𝑠𝑘|𝑘 ∈ {0, 1, 2, 3}}

We have divided the operators into three main types: roll, assign and receive_bonus.

The 𝑟𝑜𝑙𝑙 operators are applicable only on roll phases where the dice are rolled(denoted

below as 𝑝ℎ𝑎𝑠𝑒1, 𝑝ℎ𝑎𝑠𝑒2 and 𝑝ℎ𝑎𝑠𝑒3). The reward in each of the 𝑟𝑜𝑙𝑙 operators is 0.

The 𝑎𝑠𝑠𝑖𝑔𝑛 operators are applicable for the assigning phase of the domain where

a category is assigned(denoted as 𝑝ℎ𝑎𝑠𝑒4). The reward of the 𝑎𝑠𝑠𝑖𝑔𝑛 operator is

30

equal to the score that is received when the shown dice is assigned into a category.

After each three roll operators, an assign operator is always applied as long as there

is an open category. If all categories are taken, then the 𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑏𝑜𝑛𝑢𝑠 operator

is applied. By applying this operator, depending on the bonus levels we are on, it

is decided if we receive the bonus or not. The reward of this operator could be 0

(𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑏𝑜𝑛𝑢𝑠0), the score of the value bonus (𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑏𝑜𝑛𝑢𝑠1), the score of the

color bonus (𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑏𝑜𝑛𝑢𝑠2) or the score of both bonuses (𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑏𝑜𝑛𝑢𝑠3). Each

round of the domain consists of three 𝑟𝑜𝑙𝑙 operators and an 𝑎𝑠𝑠𝑖𝑔𝑛 operator except

for the last round which contains the 𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑏𝑜𝑛𝑢𝑠 operator as well. Initially, we

start the round by applying the 𝑟𝑜𝑙𝑙1 operator.

Below, we give the precondition, the effect and the reward for each of the operators.

• 𝑟𝑜𝑙𝑙1:

pre(𝑟𝑜𝑙𝑙1) = 𝑝ℎ𝑎𝑠𝑒1

eff(𝑟𝑜𝑙𝑙1) =
⋃︁

⟨𝑣1,..,𝑣5⟩∈𝒱 5

⋃︁
⟨𝑐1,...𝑐5⟩∈ℛ5

𝑤

⟨ ⋃︁
𝑘∈{1,...,5}

{︁
𝑑𝑘_𝑖𝑠_𝑣𝑖_𝑐𝑗

}︁
∪ {¬𝑝ℎ𝑎𝑠𝑒1∪

𝑝ℎ𝑎𝑠𝑒2},
𝑘∏︁
𝑖=1

𝑃𝑣(𝑣𝑖) ·
𝑘∏︁
𝑖=1

𝑃𝑐(𝑐𝑖)
⟩

reward(𝑟𝑜𝑙𝑙1𝒟5
) = 0

• 𝑟𝑜𝑙𝑙𝑛𝒟 ′ for 𝑛 ∈ {2, 3} and 𝒟 ′ ⊆ 2𝒟 :

pre(𝑟𝑜𝑙𝑙𝑛𝒟 ′) = 𝑝ℎ𝑎𝑠𝑒𝑛

eff(𝑟𝑜𝑙𝑙𝑛𝒟 ′) =
⋃︁

⟨𝑣1,..,𝑣|𝒟′|⟩∈𝒱 |𝒟′|

⋃︁
⟨𝑐1,...𝑐|𝒟′|⟩∈ℛ

|𝒟′|
𝑤

⟨ ⋃︁
𝑘∈{1,...,|𝒟 |}

{︁
𝑑𝑘_𝑖𝑠_𝑣𝑖_𝑐𝑗

}︁
∪ {¬𝑝ℎ𝑎𝑠𝑒𝑛

∪ 𝑝ℎ𝑎𝑠𝑒𝑛+1},
𝑘∏︁
𝑖=1

𝑃𝑣(𝑣𝑖) ·
𝑘∏︁
𝑖=1

𝑃𝑐(𝑐𝑖)
⟩

reward(𝑟𝑜𝑙𝑙𝑛𝒟 ′) = 0

31

• 𝑎𝑠𝑠𝑖𝑔𝑛𝑐{𝑑1_𝑖𝑠_𝑣𝑖_𝑐𝑗 ,...,𝑑5_𝑖𝑠_𝑣𝑖_𝑐𝑗}∀𝑣𝑖 ∈ 𝒱 ∧ 𝑐𝑗 ∈ ℛ𝑤:

pre(𝑎𝑠𝑠𝑖𝑔𝑛𝑐{𝑑1_𝑖𝑠_𝑣𝑖_𝑐𝑗 ,...,𝑑5_𝑖𝑠_𝑣𝑖_𝑐𝑗}) = 𝑝ℎ𝑎𝑠𝑒4 ∧ ¬𝑡𝑎𝑘𝑒𝑛𝑐 ∧
⋀︁

⟨𝑣1,..,𝑣𝑘⟩∈𝒱 𝑘⋀︁
⟨𝑐1,...𝑐𝑘⟩∈ℛ𝑘

𝑤

⋀︁
𝑖∈{1,...,5}

{𝑑𝑖_𝑖𝑠_𝑣𝑖_𝑐𝑖}

eff(𝑎𝑠𝑠𝑖𝑔𝑛𝑐{𝑑1_𝑖𝑠_𝑣𝑖_𝑐𝑗 ,...,𝑑5_𝑖𝑠_𝑣𝑖_𝑐𝑗}) = 𝑡𝑎𝑘𝑒𝑛𝑐 ∪ ¬𝑝ℎ𝑎𝑠𝑒4 ∪ 𝑝ℎ𝑎𝑠𝑒1∪

⟨𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑣𝑎𝑙𝑢𝑒_𝑏𝑜𝑛𝑢𝑠, 𝑃𝐵𝑣(𝑙)⟩ ∪ ⟨𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑐𝑜𝑙𝑜𝑟_𝑏𝑜𝑛𝑢𝑠, 𝑃𝐵𝑐(𝑙)⟩

reward(𝑎𝑠𝑠𝑖𝑔𝑛𝑐{𝑑1_𝑖𝑠_𝑣𝑖_𝑐𝑗 ,...,𝑑5_𝑖𝑠_𝑣𝑖_𝑐𝑗}) = 𝑠𝑐𝑜𝑟𝑒𝑐{𝑑1_𝑖𝑠_𝑣𝑖_𝑐𝑗 ,...,𝑑5_𝑖𝑠_𝑣𝑖_𝑐𝑗}

The score function calculates the score for a category c when dice 𝑑1_𝑖𝑠_𝑣𝑖_𝑐𝑗,

..., 𝑑5_𝑖𝑠_𝑣𝑖_𝑐𝑗 are rolled. The way this calculation is carried out for each

category is given (informally) in the Chromatic Dice description at the beginning

of the chapter. For example:

For 𝑐 = 𝐶1:

𝑠𝑐𝑜𝑟𝑒𝐶1

{𝑑1_𝑖𝑠_𝑣𝑖_𝑐𝑗 ,...,𝑑5_𝑖𝑠_𝑣𝑖_𝑐𝑗} =
∑︁

⟨𝑐1,...𝑐𝑘⟩∈ℛ𝑘
𝑤∧𝑘∈{1,...,5}

[𝑑𝑘_𝑖𝑠_1_𝑐𝑗] · 1

• 𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑏𝑜𝑛𝑢𝑠0:

pre(𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑏𝑜𝑛𝑢𝑠0) = {𝑡𝑎𝑘𝑒𝑛𝑐|𝑐 ∈ 𝐶}

reward(𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑏𝑜𝑛𝑢𝑠0) = 0

• 𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑏𝑜𝑛𝑢𝑠1:

pre(𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑏𝑜𝑛𝑢𝑠1) = {𝑡𝑎𝑘𝑒𝑛𝑐|𝑐 ∈ 𝐶} ∪ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑣𝑎𝑙𝑢𝑒_𝑏𝑜𝑛𝑢𝑠

reward(𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑏𝑜𝑛𝑢𝑠1) = 𝐵𝑣

32

• 𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑏𝑜𝑛𝑢𝑠2:

pre(𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑏𝑜𝑛𝑢𝑠2) = {𝑡𝑎𝑘𝑒𝑛𝑐|𝑐 ∈ 𝐶} ∪ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑐𝑜𝑙𝑜𝑟_𝑏𝑜𝑛𝑢𝑠

reward(𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑏𝑜𝑛𝑢𝑠2) = 𝐵𝑐

• 𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑏𝑜𝑛𝑢𝑠3:

pre(𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑏𝑜𝑛𝑢𝑠3) = {𝑡𝑎𝑘𝑒𝑛𝑐|𝑐 ∈ 𝐶} ∪ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑣𝑎𝑙𝑢𝑒_𝑏𝑜𝑛𝑢𝑠∪

𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑐𝑜𝑙𝑜𝑟_𝑏𝑜𝑛𝑢𝑠

reward(𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑏𝑜𝑛𝑢𝑠3) = 𝐵𝑣 +𝐵𝑐

Throughout this chapter, we will explain the complexity of the Chromatic Dice

domain while comparing it with the Yahtzee domain [3]. In this paper, the author has

described a graph-theoretic and combinatoric technique which are used to compute

an optimal strategy for Yahtzee. In the subsequent section, we will look into the

Chromatic dice structure compared to Yahtzee.

4.2 Chromatic Dice Structure

Illustrated in Figure 4-1 is the general architecture of the Chromatic Dice domain.

It mainly consists of multiple rounds limited by a horizon. Each round contains two

parts: a Micro-step and a Macro-step. A Micro-step consists of three roll phases

(denoted as 𝑝ℎ𝑎𝑠𝑒1, 𝑝ℎ𝑎𝑠𝑒2 and 𝑝ℎ𝑎𝑠𝑒3) where the dice are rolled and re-rolled. A

Macro-step consists of an assign phase (denoted as 𝑝ℎ𝑎𝑠𝑒4), where based on the

values of the dice, a category is assigned. The Macro-step is always performed after

the completion of the Micro-step. The table in the corner maintains the information

of the categories assigned in previous rounds and the information on bonuses.

A state consists of all information of levels of both bonuses and the assigned

categories as depicted in the table of Figure 4-1, and all information of the dice. As

long as we perform Micro-steps, the categories and the levels of the bonuses do not

33

change, and as long as we perform Macro-steps, the dice do not change.

𝐶1

𝐶6

𝐶3𝑜𝑎𝑘

𝐶2𝑝

𝐵𝑣
...

...

𝑝ℎ𝑎𝑠𝑒4: assign

A Macro-step

𝑝ℎ𝑎𝑠𝑒1: roll
𝑝ℎ𝑎𝑠𝑒2: re-roll
𝑝ℎ𝑎𝑠𝑒3: re-roll

Micro-steps

Figure 4-1: Chromatic Dice architecture

Figure 4-2 and Figure 4-3 show the relationship between the Micro-steps and the

Macro-steps. Figure 4-2 represents combinations and connections between the states

during the Micro-step process. The application of the 𝑟𝑜𝑙𝑙 operator (roll or re-roll)

is denoted by an edge. The probability of reaching the state from the initial state

by applying the 𝑟𝑜𝑙𝑙1 operator is denoted with 𝑝 equal to 1

(𝑛+𝑘−1
𝑘)

, where 𝑛 is the

number of combinations of the dice (𝑣𝑎𝑙𝑢𝑒𝑠 · 𝑐𝑜𝑙𝑜𝑟𝑠) and 𝑘 is the number of dice. By

applying the 𝑟𝑜𝑙𝑙 operators, we change the dice, but the assigned categories and levels

of bonuses remain unaffected.

Figure 4-3 represents the Macro-steps and the connections between them. The

whole Micro-step shown in Figure 4-2 is denoted by a rectangle node in Figure 4-

3, which for simplicity, contains only the last rolled results. The application of the

𝑎𝑠𝑠𝑖𝑔𝑛 operator is denoted by an edge. By applying the 𝑎𝑠𝑠𝑖𝑔𝑛 operator, the rolled

dice always remains the same, while the assigned category and the levels of the bonuses

change. The result of a Micro-step is an input for a Macro-step and vice versa.

In the following sub-sections, we explain the Macro-step and Micro-step in more

detail. In the Macro-step sub-section, first, we described the naive state space repre-

sentation and how we can represent the states more compactly. We can simplify the

state space by looking into the Macro-step and Micro-step separately. By using the

compact representation, we reduce the total number of Macro-steps. Afterwards, we

34

𝐶1

𝐶6

𝐶3𝑜𝑎𝑘

𝐶2𝑝

𝐵𝑣

...
...

A Macro-step

I

...

...

𝑟𝑜𝑙𝑙1

𝑟𝑜𝑙𝑙2{𝑑1}

𝑟𝑜𝑙𝑙2{𝑑2}

𝑟𝑜𝑙𝑙3{𝑑1}

p

p

p

𝑟𝑜𝑙𝑙
2
{}

1
𝑛

1
𝑛

1
𝑛

1
𝑛

1
𝑛

𝑟𝑜𝑙𝑙
3 {}

1
𝑛

1
𝑛

1
𝑛

...

...

...

Micro-steps

Figure 4-2: Micro-step

describe the Macro-step structure and how they are interconnected. In the Micro-

step sub-section, we first describe, in details, the Micro-step structure. Then, we

explain briefly how we decrease the branching factor by shrinking the edges within a

Micro-step instead of just using the naive strategy. By shrinking the edges, we shrink

the applicable operators which help us to improve the performance of the optimal

solution.

4.2.1 Macro-step

In a very naive implementation, we could represent states by considering all informa-

tion depicted in the scorecard. In a below table we compare the number of possibilities

to fill out the scorecard in Chromatic Dice and Yahtzee (in reference to the James

Glenn paper[3]). There are seven possibilities for each of the upper section cate-

gories: the category is empty, or it contains a result that corresponds to zero, one,

two, three, four or five dice of the right value. In the lower section, there are 28

possibilities for three of a kind, four of a kind and chance that include: zero, unused

or a number of points between 5 to 30; and there are three possibilities for each of

35

𝐶1

𝐶6

𝐶3𝑜𝑎𝑘

𝐶2𝑝

𝐵𝑣

Micro-steps

...

𝐶1 x
𝐶6

𝐶3𝑜𝑎𝑘

𝐶2𝑝

𝐵𝑣

Micro-steps

...

𝐶1

𝐶6 x
𝐶3𝑜𝑎𝑘

𝐶2𝑝

𝐵𝑣

Micro-steps

...

𝐶1

𝐶6

𝐶3𝑜𝑎𝑘

𝐶2𝑝 x
𝐵𝑣

Micro-steps

...

𝐶1 x
𝐶6 x
𝐶3𝑜𝑎𝑘

𝐶2𝑝

𝐵𝑣

Micro-steps

...

𝐶1 x
𝐶6

𝐶3𝑜𝑎𝑘 x
𝐶2𝑝

𝐵𝑣

Micro-steps

...

𝐶1 x
𝐶6

𝐶3𝑜𝑎𝑘

𝐶2𝑝

𝐵𝑣

Micro-steps

...

𝑎𝑠
𝑠𝑖
𝑔𝑛
𝐶1

𝑎𝑠𝑠𝑖𝑔𝑛𝐶6

𝑎𝑠𝑠𝑖𝑔𝑛 𝐶
2𝑝

𝑎𝑠
𝑠𝑖𝑔
𝑛
𝐶6

𝑎𝑠𝑠𝑖𝑔𝑛𝐶3𝑜𝑎𝑘

𝑎𝑠𝑠𝑖𝑔𝑛 𝐶
𝑠𝑠

...

...

...

...

Figure 4-3: Macro-steps

the other categories that include: zero, unused or the constant score of the category.

In total, there are 76 · 283 · 34 = 209, 193, 098, 688 different possibilities to fill out the

scorecard. This is enormous and expensive in memory and time. Chromatic Dice

has an even more complex and larger state space than Yahtzee. It has even more

possibilities because of the increased number of categories (taking into consideration

instances where 𝐶 = 𝒞). In Yahtzee, there are approximately 1011Macro-steps, while

in Chromatic Dice there are approximately 1022 (100 billion times larger than the

number of Macro-steps in Yahtzee). In Table 4.1 we represent the differences.

However, we can have a smaller state space and still act optimally because some

information is irrelevant for the computation of an optimal policy. The best compact

way of representing the states is to keep track of which category has already been

taken on previous rounds. This is important because Chromatic Dice depends on the

history of the previous rounds.

The game aims to increase the total number of scored points by choosing the most

suitable category in each round. Because of that, what would also affect the result of

the game are the bonus points. For that reason, the optimal strategy is also sensitive

36

Table 4.1: Comparison of all possibilities between Yahtzee and Chromatic Dice

Section Categories Possibilities
of Yahtzee

Possibilities of
Chromatic Dice

Upper value
section

𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6 76 76

Upper color
section

𝐶𝑟, 𝐶𝑏, 𝐶𝑔, 𝐶𝑦, 𝐶𝑝 - 75

Lower value
section

𝐶3𝑜𝑎𝑘, 𝐶4𝑜𝑎𝑘, 𝐶𝑐, 𝐶2𝑝
1 283 284

𝐶5𝑜𝑎𝑘, 𝐶𝑠𝑠, 𝐶𝑙𝑠, 𝐶𝑓ℎ 34 34

Lower color
section

𝐶3𝑜𝑎𝑐, 𝐶4𝑜𝑎𝑐, 𝐶𝑓 - 283

𝐶𝑓𝑐ℎ, 𝐶𝑟𝑏 - 32

Total ≈ 1011 ≈ 1022

to the bonus levels of values and colors.

So, the optimal strategy depends on two key information of the states: 1) which

category is still available (is the category taken or not) and 2) which is the bonus level

of the upper and middle section. There are 2|𝐶| possibilities for the former and 36 for

latter. In total, we have 2|𝐶| ·36 Macro-steps, which are represented as boxes in Figure

4-3. For harder instances of Chromatic Dice, where 𝐶 = 𝒞 , we have 224 · 36 ≈ 229

of these boxes. In Yahtzee, there are 13 categories and 64 possibilities for the upper

bonus. Hence, there are 219 Macro-steps. Hence, we can see that Chromatic Dice is

1 thousand times larger. This strategy is adopted for the implementation described

in section 4.3

A Macro-step is a process where we map each possible combination of dice faces

(the Micro-step results) to an open category. The decision of assigning into a specific

category comes as a result of the total score. In each round, we choose the category

that maximizes the total score of the domain. For a Macro-step, it does not matter

how we get the input. An optimal strategy for the Macro-step can be found separately

from the Micro-step. We can compute the perfect assignment without having to think

about the dice rolling.

In Figure 4-4 is illustrated the last Macro-step of the Chromatic Dice domain,

1The category 𝐶2𝑝 belongs only to the Chromatic Dice domain.

37

𝐶1

𝐶2 x
𝐶6 x
𝐶𝑓ℎ x
𝐵𝑣

Micro-steps

...

𝐶1 x
𝐶2

𝐶6 x
𝐶𝑓ℎ x
𝐵𝑣

Micro-steps

...

𝐶1 x
𝐶2 x
𝐶6

𝐶𝑓ℎ x
𝐵𝑣

Micro-steps

...

𝐶1 x
𝐶2 x
𝐶6 x
𝐶𝑓ℎ
𝐵𝑣

Micro-steps

...

𝐶1 x
𝐶2 x
𝐶6 x
𝐶𝑓ℎ x
𝐵𝑣

End state

𝑎𝑠𝑠𝑖𝑔𝑛𝐶
1

𝑎𝑠𝑠𝑖𝑔𝑛𝐶1

𝑎𝑠𝑠𝑖𝑔𝑛𝐶1

𝑎𝑠𝑠𝑖𝑔𝑛𝐶2

𝑎𝑠𝑠𝑖𝑔𝑛𝐶2

𝑎𝑠𝑠𝑖𝑔𝑛𝐶2

𝑎𝑠𝑠𝑖𝑔𝑛
𝐶6

𝑎𝑠𝑠𝑖𝑔𝑛
𝐶6

𝑎𝑠𝑠𝑖𝑔𝑛
𝐶6

𝑎𝑠𝑠
𝑖𝑔𝑛

𝐶𝑓ℎ

𝑎𝑠𝑠
𝑖𝑔𝑛

𝐶𝑓ℎ

𝑎𝑠𝑠
𝑖𝑔𝑛
𝐶𝑓ℎ

...

...

...

Figure 4-4: A fragment of a single Macro-step.

where we are left with only one open category. For simplicity, we will consider only a

fragment of it. By applying an 𝑎𝑠𝑠𝑖𝑔𝑛 operator, a specific category is taken, and the

bonus level is updated for the next round.

4.2.2 Micro-step

Micro-step is the process where we take the steps inside one of the boxes of Figure

4-3. An input of a Micro-step is a Macro-step result.

Shrinking the Micro-step State Space Naively, the total number of states in a

single Micro-step is 𝑛𝑘, where 𝑛 is the number of combinations of the dice(𝑣𝑎𝑙𝑢𝑒𝑠 ·

𝑐𝑜𝑙𝑜𝑟𝑠) and 𝑘 is the number of dice. For Yahtzee(n=6) there are 65 = 7776 states.

In a Chromatic Dice instance, where |ℛ|= 5, there are 𝑛 = 30 combinations of dice,

and there are 305 = 24300000 states.

However, it does not matter how the dice values are distributed among the dice

within a roll. As long as the shown values of rolls are the same, although, in a different

order, we consider those rolls equivalent. Due to this property, the number of states

38

that we need to distinguish is lower than in the naive state representation as described

and given in the next paragraphs.

The Micro-step is divided into two parts: The first part represents the outcome

after each roll and the second part represents the choice of the agent for which dice

to keep. Rolling and re-rolling the dice happens three times in a single round (first

part) while the process of choosing which dice to keep happens twice in a single round

(second part). After every roll there are
(︀
𝑛+𝑘−1

𝑘

)︀
possible outcomes, out of which an

agent has
∑︀5

𝑘=0

(︀
𝑛+𝑘−1

𝑘

)︀
possibilities for which dice to keep; where 𝑛 is the number of

combinations of the dice (𝑣𝑎𝑙𝑢𝑒𝑠 · 𝑐𝑜𝑙𝑜𝑟𝑠), and 𝑘 is the number of dice.

Since we have instances of different complexity, 𝑛 varies between 6 and 30. For

instances where |ℛ|= 1 (n=6), the total number of the states within a Micro-step is

equivalent to Yahtzee. In Yahtzee, there are
(︀
10
5

)︀
= 252 possible outcomes when rolling

5 dice with 6 sides, and there are
∑︀5

𝑘=0

(︀
𝑛+𝑘−1

𝑘

)︀
= 462 choices of which dice to keep.

In total, there are 1 + 3 · 252 + 2 · 462 = 1681 states (including the initial state). For

complex instances of Chromatic Dice, where|ℛ|= 5 (n=30), we have
(︀
34
5

)︀
= 278256

possible outcomes when rolling 5 dice with 30 sides and
∑︀5

𝑘=0

(︀
𝑛+𝑘−1

𝑘

)︀
= 324632 ways

of choosing which dice to keep. Therefore, there are 1+3·278256+2·324532 = 1484033

states in total for each Micro-step.

Shrinking the Micro-step edges Edges have a key role in finding the opti-

mal path due to the impact on the expected values of the state. In the second

part of the Micro-step, each state has at most than 25 = 32 edges (5 dices with

two possible decisions; keep or re-roll). However, many states have a lower num-

ber of edges. Let us explain this with a concrete example. Let us have a result

(4, 𝑟𝑒𝑑)(4, 𝑟𝑒𝑑)(4, 𝑟𝑒𝑑)(5, 𝑏𝑙𝑢𝑒)(5, 𝑏𝑙𝑢𝑒) on the first roll. The decision on how many

dice to keep and how many dice to re-roll is divided into two groups, the group of

(4, 𝑟𝑒𝑑) and (5, 𝑏𝑙𝑢𝑒). Three choices can be made on (5, 𝑏𝑙𝑢𝑒) (keep none, keep one

dice or keep both). Similarly, for (4, 𝑟𝑒𝑑), we have four different choices. In this

case, we have 12 different possibilities of edges. The first table shows the occurrences

and outcomes for all patterns, while Table 4.2 shows the number of occurrences and

39

the number of different choices of which dice to keep for all patterns. So, the total

number of edges in the first process is
∑︀6

𝑖=0𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑖 ·𝐾𝑒𝑒𝑝𝑖 for both two steps.

The same calculation is done for the second part based on the Table 4.3 values, and

we have the same results.

Table 4.2: Number of occurrences and possibilities of choosing which dice to keep,
with respect to dice faces 𝑛, and 𝑘 number of dice.

Pattern Occurrences Keeps
1 abcde

(︀
𝑛
𝑘

)︀
32

2 aabcd
(︀
𝑛
1

)︀(︀
𝑛−1
3

)︀
24

3 aabbc
(︀
𝑛
2

)︀(︀
𝑛−2
1

)︀
18

4 aaabc
(︀
𝑛
1

)︀(︀
𝑛−1
2

)︀
16

5 aaabb
(︀
𝑛
1

)︀(︀
𝑛−1
1

)︀
12

6 aaaab
(︀
𝑛
1

)︀(︀
𝑛−1
1

)︀
10

7 aaaaa
(︀
𝑛
1

)︀
6

Table 4.3: Number of occurrences and outcomes while re-rolling the dice, with respect
to dice faces 𝑛, and 𝑘 number of dice.

Dice kept Occurrences Keeps
0

(︀
𝑛+𝑘−6

0

)︀ (︀
𝑛+𝑘−1

5

)︀
1

(︀
𝑛+𝑘−5

1

)︀ (︀
𝑛+𝑘−2

4

)︀
2

(︀
𝑛+𝑘−4

2

)︀ (︀
𝑛+𝑘−3

3

)︀
3

(︀
𝑛+𝑘−3

3

)︀ (︀
𝑛+𝑘−4

2

)︀
4

(︀
𝑛+𝑘−2

4

)︀ (︀
𝑛+𝑘−5

1

)︀
5

(︀
𝑛+𝑘−1

5

)︀ (︀
𝑛+𝑘−6

0

)︀

The number of combinations (𝑛) of the first five instances of Chromatic Dice

is equivalent to Yahtzee. Therefore, Yahtzee is included in the table (for 𝑛 = 6).

For these cases, we have the same results as in the tables given by James Glenn in

his paper[3]. Let us compare Yahtzee and the hardest instance of Chromatic Dice

(𝑛 = 30), so we can see the difference between them in the number of edges. In

Yahtzee, for the first part (which contains re-roll actions), referring to the formula,

40

∑︀6
𝑖=0𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑖 ·𝐾𝑒𝑒𝑝𝑖, we have 4368 edges. For the second part (dice kept after

roll or re-roll), we have 4368 edges. While in other Chromatic Dice instances (where

n=30), we have 7624512 for the first part and 7624512 for the second. The edges of

the first and the second part are the same because edges in are a mirror of the edges

out.

For each entry state of the Micro-step, we have
(︀
𝑛+𝑘−1

𝑘

)︀
edges, and on each state

of the last phase of a round, we have at most edges as the number of categories. In

Yahtzee, there are 252 edges for the entry state and 13 edges for each category in the

assign phase, so there are at most 252+4·4368+13·252 = 21000 edges. In total, there

are 219 Micro-steps, so we have around 11 billion edges. On the other hand, in the

hardest Chromatic Dice instance, there are 278256 entry edges and 24 edges for each

category in the assign phase, so for a single Micro-step, we have 37454448 edges. In

total, for 229 Micro-steps, we have around 200 trillion edges. Compared to the naive

representation of the states, the compact version has a smaller number of edges, even

though the number is still large and finding an optimal solution is challenging.

4.3 Implementation strategies

In this master thesis, the implementation of the Chromatic Dice is done using two

approaches. First, we implement the Chromatic Dice optimal solution. After that,

we implement the heuristic method to find the near-optimal solution. We do this

because the state space of the domain is enormous and for most instances, finding an

optimal solution is inconceivable. Hence, we need a near-optimal solution to compute

it with a computer.

To derive an optimal policy for this domain, we use the backtracking method

by starting from the last round and calculating backwards the expected values for

all states. We choose this method so we can find an optimal solution of two parts

(Micro-step and Macro-step) independent of each other.

41

Backtracking method We start at the point where all categories are taken. We

consider all level combinations of both bonuses and add the rewards of the bonuses

to each of the corresponding states. Then we go back for one step and calculate the

Macro-step of the round, where we consider all possibilities with one free category.

We calculate the expected value by maximizing the score over the free categories

plus the expected value of the next state (in this case, the corresponding rewards of

bonuses). The optimal solution of a Macro-step can be found in isolation from the

Micro-step. The next step is the last re-roll in the Micro-step. Here, the optimal

solution of the Micro-step can also be found in isolation from Macro-step because we

already have the results of the Macro-step. Therefore, the expected value of ending

up with the specific roll is given by the weighted average of the expectation of the

states that we could be in. In the same way, we go backward to the initial state.

4.4 Results of the optimal strategy

Using the optimal strategy, we could solve instances that had a low number of colors

or a low number of free categories, which make the instances less complex. Therefore,

finding an optimal solution was possible within a reasonable time. Below is the table

with the optimal results.

Table 4.4: Optimal solutions

Instances |Macro-steps| Expected Score
01 26 · 36 = 2304 72.51
02 210 · 36 = 36864 160.03
03 211 · 36 = 73728 216.88
04 214 · 36 = 589824 279.42
05 28 · 36 = 9216 154.40
08 29 · 36 = 18432 147.17
11 210 · 36 = 36864 155.48

42

4.5 Near-optimal strategies

Since the optimal solution has a large number of states, finding an optimal solution is

possible only in the instances where the number of free categories is small. Therefore,

for other harder instances, we came up with a near-optimal solution. We introduce a

heuristic strategy which follows the optimal solution strategy.

In this strategy, we divide the categories into any number of disjoint groups. In

this way, we consider an instance as 𝑛 independent sub-instances, and we execute

them separately. Here, we also have disjoint actions of the MDP in a way that all the

actions responsible for the reward are only relevant to one of the sub-instances.

This idea is similar to the cost partitioning in classical planning, where it has been

shown that it is possible to sum up the estimates of heuristics admissibly under some

constraints [6]. Similar result can be obtained for probabilistic planning.

Definition 4.5.1. (Reward partitioning) Let Π be a Probabilistic Planning Task with

operators O.

A reward partitioning for Π is a tuple ⟨𝑟𝑒𝑤𝑎𝑟𝑑1, ..., 𝑟𝑒𝑤𝑎𝑟𝑑𝑛⟩ where

• 𝑟𝑒𝑤𝑎𝑟𝑑𝑖 : 𝑂 −→ R+
0 for 1 ≤ 𝑖 ≤ 𝑛 and

•
∑︀𝑛

𝑖=1 𝑟𝑒𝑤𝑎𝑟𝑑𝑖(𝑜) ≥ 𝑟𝑒𝑤𝑎𝑟𝑑(𝑜) for all 𝑜 ∈ 𝑂

The reward partitioning induces a tuple ⟨Π1, ...,Π𝑛⟩ of probabilistic planning tasks,

where each Π𝑖 is identical to Π except that the reward of each operator 𝑜 is 𝑟𝑒𝑤𝑎𝑟𝑑𝑖(𝑜).

Theorem 5. Let Π be a probabilistic planning task, ⟨𝑟𝑒𝑤𝑎𝑟𝑑1, ..., 𝑟𝑒𝑤𝑎𝑟𝑑𝑛⟩ be a re-

ward partitioning and ⟨Π1, ...,Π𝑛⟩ be a tuple of induced tasks.

Then the sum of the solution rewards of the induced tasks is an admissible expected

reward, i.e.,
∑︀𝑛

𝑖=1 𝑉
𝜋*
𝑖

Π𝑖
≥ 𝑉 *

Π

Proof. Since in the FH-settings we do not have cycles, in equation system we can

replace every 𝑉 *(𝑠) of states 𝑠 ̸= 𝑠0 with rewards. Consequently, 𝑉 *(𝑠0) depends

only on the weighted rewards.

43

Let 𝑂 = {𝑜1, ..., 𝑜𝑚}. Then

𝑛∑︁
𝑖=1

𝑉
𝜋*
𝑖

Π𝑖
(𝑠0) ≥

𝑛∑︁
𝑖=1

𝑉 *
Π𝑖

(𝑠0)

=
𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝜔𝑗 · 𝑟𝑒𝑤𝑎𝑟𝑑𝑖(𝑜𝑗)

=
𝑚∑︁
𝑗=1

𝜔𝑗

𝑛∑︁
𝑖=1

𝑟𝑒𝑤𝑎𝑟𝑑𝑖(𝑜𝑗)

≥
𝑚∑︁
𝑗=1

𝜔𝑗 · 𝑟𝑒𝑤𝑎𝑟𝑑(𝑜𝑗)

= 𝑉 *
Π(𝑠0)

The Definition 4.5.1 holds for all FH-planning tasks. In our strategy, we propose

to use the zero-one reward partitioning. We partition the categories among the sub-

instances in such a way that each category yield the reward in only one of the sub-

instances, while in all others the reward is 0.

Although we divide the open categories mutual exclusively into sub-instances,

the horizon is still the same as in the original instance, and the size of the MDP

also remains the same. Hence, the admissible computation is almost as hard as the

optimal solution since the resulting of the sub-instances are still too large and hard

to compute. Therefore, we compute a near-optimal policy which does not guarantee

the upper bound solution, but we assume that it is a near-optimal strategy. This

strategy shrinks the horizon as much as possible by throwing out all the categories

that do not yield the reward. In this case, we have smaller sub-instances, and the

computation is possible. Executing the resulting policy would give us a lower bound

on the rewards.

44

4.6 Results of near-optimal strategy

All instances that we could not solve optimally are solved near-optimally using the

heuristic strategy. We divided the instances into 2 or 3 sub-instances depending on

their complexity; one sub-instance that contains all lower section categories, and one

or two sub-instances that contain the upper and middle section categories. Table 4.5

shows the results.

Table 4.5: Heuristic results

Instances |Sub-instances| Expected Score
06 3 389 .95
07 3 496.29
09 3 395.49
10 3 489 .76
12 3 480.70
13 3 225.70
14 3 297.05
15 3 500.50
16 2 406.43
17 2 409.32
18 2 381.33
19 2 401.63
20 2 430.44

Table 4.6 compares our results with other results of the planners who took part

in IPC 2018.

45

Table 4.6: Comparison of our results with other planners

In
st

an
ce

A
2C

P
la

n
C

on
fo

rm
an

t-
SO

G
B

O
FA

-
B

C
on

fo
rm

an
t-

SO
G

B
O

FA
-

F

Im
it

at
io

n
N

et
P

ro
st

20
11

P
ro

st
20

14
P

ro
st

-
D

D
-1

P
ro

st
-

D
D

-2
R

an
do

m
B

an
di

t
O

ur
re

-
su

lt
s

01
18

.0
5

48
.8

9
47

.0
4

26
.0

4
47

.9
1

40
.2

1
37

.8
7

37
.3

1
50

.8
72

.5
1

02
39

.6
8

18
2.

17
18

0.
4

50
.4

4
74

.0
5

83
.5

1
71

.6
9

77
.2

9
11

0.
16

16
0.

03
03

43
.2

14
2.

21
13

8.
73

61
.4

9
15

1.
41

13
5.

48
10

8.
61

10
7.

27
17

3.
0

21
6.

88
04

55
.4

4
24

7.
52

24
3.

41
65

.6
5

14
8.

77
15

7.
12

11
9.

45
12

3.
48

21
6.

17
27

9.
42

05
49

.0
3

11
8.

31
11

4.
35

87
.2

11
8.

24
10

4.
61

10
8.

0
10

7.
19

11
9.

68
15

4.
40

06
83

.0
4

32
5.

84
31

6.
08

11
9.

19
20

5.
56

20
1.

93
15

0.
47

16
4.

71
28

9.
05

38
9.

95
07

11
4.

8
40

2.
53

40
2.

77
18

5.
6

26
4.

88
28

6.
71

20
3.

36
20

9.
24

37
7.

92
49

6.
29

08
37

.3
9

12
0.

29
10

9.
19

81
.7

1
12

4.
0

84
.5

5
94

.5
3

93
.0

8
12

1.
35

14
7.

17
09

67
.4

4
31

3.
79

31
1.

31
11

9.
35

19
8.

28
19

6.
28

14
4.

49
14

7.
57

30
2.

56
39

5.
49

10
85

.0
5

37
0.

13
37

0.
19

15
6.

64
25

8.
31

26
8.

89
19

3.
27

18
0.

51
36

5.
93

48
9.

76
11

36
.0

10
8.

43
10

5.
39

74
.5

9
12

7.
61

74
.7

7
86

.9
3

81
.8

5
11

1.
88

15
5.

48
12

75
.4

8
35

5.
01

34
8.

89
24

1.
91

24
8.

15
16

2.
13

17
6.

13
35

2.
84

48
0.

70
13

33
.7

9
11

5.
63

11
3.

07
67

.1
6

11
4.

56
72

.2
5

86
.2

82
.8

11
3.

84
22

5.
70

14
41

.8
7

20
4.

92
19

4.
55

86
.2

1
13

6.
97

90
.9

1
74

.6
3

81
.8

9
16

1.
45

29
7.

05
15

73
.4

1
40

2.
25

39
4.

88
24

2.
25

25
8.

99
15

9.
48

16
5.

15
33

5.
13

50
0.

50
16

16
2.

36
44

1.
05

43
6.

64
30

5.
99

27
7.

73
22

7.
68

24
0.

96
36

9.
96

40
6.

43
17

19
6.

8
41

4.
27

41
2.

69
37

5.
43

26
6.

48
23

6.
28

23
4.

41
40

3.
08

40
9.

32
18

14
0.

51
45

0.
97

44
6.

12
16

7.
39

25
8.

03
26

7.
15

21
1.

73
21

3.
53

34
5.

79
38

1.
33

19
16

4.
4

42
3.

39
42

6.
31

25
6.

87
25

9.
44

20
5.

24
21

3.
24

34
5.

77
40

1.
63

20
18

4.
07

45
2.

44
45

1.
01

25
9.

47
26

5.
64

20
8.

96
20

6.
96

34
5.

81
43

0.
44

46

Chapter 5

Conclusion and Future work

In this thesis, we introduced a (near)-optimal solution for two probabilistic planning

domains, Academic Advising and Chromatic Dice. Both of them are introduced in

IPC 2018. To solve them we implemented a domain-independent solver for both

domains.

In the Academic Advising domain, the first step to finding an optimal solution

is simplifying the problem by removing irrelevant actions and state variables from

the planning task. We used relevance analysis to preserve only relevant information.

However, it is prohibitively expensive to compute an optimal solution using any search

algorithm by only using this analysis. Therefore, we presented a new solution to

our problem, which is mapping the probabilistic domain into a classical domain and

getting the optimal expected values. However, this transition is possible only when

the constraints 𝜎 = 1 and ℎ = ∞ are satisfied. Using this approach, for 𝜎 > 1 and

ℎ =∞, we lead to an admissible heuristic. When ℎ ̸=∞ we assume that our results

are near-optimal.

In the Chromatic Dice domain, we presented and implemented an optimal strategy.

However, not all instances are solvable using this strategy because they have large

and complex state space. Therefore, we presented a heuristic strategy to compute

the harder instances efficiently. We presented the idea of dividing the instances into

sub-instances using zero-one reward partitioning and summing them admissibly. Due

to the horizon, this approach is almost as hard as the optimal strategy because the

47

size of the MDP is the same in both approaches. Hence, we divide the instances into

sub-instances where we shrink the horizon as much as possible and compute them

efficiently. To use this heuristic strategy, we have to give up the admissibility.

In both domains, we described the methods of near-optimal solutions, but they

do not give us any admissibility guarantees. For future work, we plan to simulate

these policies and discern the lower bounds for both domains.

48

Bibliography

[1] Florian Geißer, David Speck, and Thomas Keller. An Analysis of the Probabilistic
Track of the IPC 2018. In ICAPS-2019 Workshop on the International Planning
Competition (WIPC 2019), pages 27–35, 2019.

[2] Malik Ghallab, Craig Knoblock, David Wilkins, Anthony Barrett, Dave Chris-
tianson, Marc Friedman, Chung Kwok, Keith Golden, Scott Penberthy, David
Smith, Ying Sun, and Daniel Weld. PDDL - The Planning Domain Definition
Language. Technical Report 1165, Yale Center for Computational Vision and
Control, Computer Science Department, 1998.

[3] James Glenn. An Optimal Strategy for Yahtzee. Technical Report 0002, Loyola
College in Maryland, Computer Science Department, 2006.

[4] Malte Helmert. The Fast Downward Planning System. Journal of Artificial In-
telligence Research, 26:191–246, 2006.

[5] Malte Helmert and Carmel Domshlak. Landmarks, Critical Paths and Abstrac-
tions: What’s the Difference Anyway? In 19th International Conference on Au-
tomated Planning and Scheduling (ICAPS 2009), pages 273–280, 2009.

[6] Michael Katz and Carmel Domshlak. Optimal Additive Composition of
Abstraction-based Admissible Heuristics. In 18th International Conference on
Automated Planning and Scheduling (ICAPS 2008), pages 174–181, 2008.

[7] Thomas Keller. Anytime Optimal MDP Planning with Trial-based Heuristic Tree
Search. PhD Dissertation, Albert-Ludwigs-Universität Freiburg, Germany, 2015.

[8] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. 3rd
edition, 2009.

[9] Tom Verhoeff. How to Maximize Your Score in Solitaire Yahtzee. 1999.

Declaration on Scientific Integrity

(including a Declaration on Plagiarism and Fraud)

Master’s Thesis

Title of Thesis

(Near)-optimal policies for Probabilistic IPC 2018 domains

Author: Brikena Çelaj

Matriculation No.: 17-063-462

I hereby declare that this submission is my own work and that I have fully

acknowledged the assistance received in completing this work and that it contains

no material that has not been formally acknowledged. I have mentioned all source

materials used and have cited these in accordance with recognised scientific rules.

Basel, May 30, 2020

Signature

Erklärung zur wissenschaftlichen Redlichkeit

(beinhaltet Erklärung zu Plagiat und Betrug)

Masterarbeit

Titel der Arbeit

(Near)-optimal policies for Probabilistic IPC 2018 domains

Autor: Brikena Çelaj

Matrikelnummer: 17-063-462

Hiermit erkläre ich, dass mir bei der Abfassung dieser Arbeit nur die darin

angegebene Hilfe zuteil wurde und dass ich sie nur mit den in der Arbeit

angegebenen Hilfsmitteln verfasst habe. Ich habe sämtliche verwendeten Quellen

erwähnt und gemäss anerkannten wissenschaftlichen Regeln zitiert.

Basel, Mai 30, 2020

Unterschrift

