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Introduction

• The International Planning Competition (IPC) is a competition of
state-of-the-art planning systems.

• Quality of the planners is measured in terms of IPC Score.

• Evaluation metric is flawed without optimal upper bound.
• Thesis aim and motivation - Contribute to the IPC evaluation

metric by finding near-optimal solution of two domains:

- Academic Advising
- Chromatic Dice
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Academic Advising

• Academic Advising Domain

• Relevance Analysis

• Mapping to Classical Planning

• Results
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Academic Advising Domain

Semester No. Title Lecturers CP
fs 15731-01 Multimedia

Retrieval
Roger Weber 6

ss 13548-01 Foundation of
Artificial Intel-
ligence

Malte Helmert
Thomas Keller

8

fs 45400-01 Planning and
Optimization

Thomas Keller
Gabriele Röger

8

fs 45401-01 Bioinformatics
Algorithms

Volker Roth 4

ss 17165-01 Machine
Learning

Volker Roth 8

ss 10948-01 Theory of
Computer
Science

Gabriele Röger 8
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Academic Advising Domain

• The smallest instances has more than a trillion states.

• The hardest instance has around 10167 states and

• The hardest instance has around 1012 actions.

• First step toward solution - Relevance Analysis!
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Relevance Analysis

1 An instance is represented by directed acyclic graph (DAG)

Nodes −→ courses
Edges −→ connect course to its prerequisites

Brikena Çelaj (Near)-optimal policies for Probabilistic IPC 2018 domains 6 / 45



Relevance Analysis

Example: Academic Advising Instance

C03 C04 C00

C10 C12

C01 C02

C13 C11

C21

C31

C20

C32 C30

C22
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Relevance Analysis

1 An instance is represented by directed acyclic graph (DAG)

Nodes −→ courses
Edges −→ connect course to its prerequisites

2 In each iteration find the leaves of the graph
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Relevance Analysis

1 An instance is represented by directed acyclic graph (DAG)

Nodes −→ courses
Edges −→ connect course to its prerequisites

2 In each iteration find the leaves of the graph

3 Prune any leaf that it not in program required courses
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Relevance Analysis

First iteration

C03 C04 C00

C10 C12

C01 C02

C13 C11

C21

C31

C20

C32 C30

C22
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Relevance Analysis

Second iteration

C03 C04 C00 C01 C02

C13 C11

C21 C20

C30

C22
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Relevance Analysis

Third iteration

C01 C02

C13 C11

C20

C30

C22
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Relevance Analysis

C03 C04 C00

C10 C12

C01 C02

C13 C11

C21

C31

C20

C32 C30
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Relevance Analysis

• After shrinking, in average, we have half the number of courses.

• The hardest instance now has around 1046 states and 109 actions.

• Still too large to find an optimal solution!

• Next step: Mapping to Classical Planning!
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Mapping to Classical Planning

In Academic Advising domain:

• There are no dead ends.

• If horizon h is infinite, any optimal policy will try to reach a state
where the program requirement is complete.

• If concurrency σ is one, we have two outcomes for each action
(succeed or fail).
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Mapping to Classical Planning

Assumption: h =∞, σ = 1.

I A

0.2

−2 0.8
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Mapping to Classical Planning

Assumption: h =∞, σ = 1.

I A

0.2

−2 0.8

⇓

I A−10
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Mapping to Classical Planning

Academic Advising domain example

A C

D
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Mapping to Classical Planning

Academic Advising domain converted into a classical domain

I

A

C D

C ∧ D

A ∧ D A ∧ C

A ∧ C ∧ D

tak
e −

A take
−

C

take − D

take
−

D
−

given
−

A

take −
C
−
given −

A

take −
D
−
given −

C

take
−
A
−
given

−
C

take − D − given − A− and − C
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Mapping to Classical Planning

Theorem

For all Academic Advising instances, where σ = 1 and h =∞, and π, an
optimal plan for the induced Classical Planning Task, we have

V∗(s0,∞) = −cost(π)
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Mapping to Classical Planning

• In most of the instances, σ > 1!

• Question: Why it is not simple to map to Classical Planning when
σ > 1?

• Answer: We no longer have only two outcomes (succeed or fail)!

• Solution: Ignore that courses can be taken in parallel, and divide cost
of the plan by σ.
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Example: σ = 2

C01 C02

C11

C20

C30

C22

• Assume we always perform as many actions as concurrency,

• Assume we take the courses where all the prerequisites are already
passed.
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Example: σ = 2

C01 C02

C11

C20

C30

C22

• Assume we always perform as many actions as concurrency,

• Assume we take the courses where all the prerequisites are already
passed.
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Mapping to Classical Planning

Theorem

For all Academic Advising instances, where σ > 1 and h =∞, and π, an
optimal plan for the induced Classical Planning Task, we have

V∗(s0,∞) ≥ −cost(π)

σ
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Mapping to Classical Planning

• In practice, the horizon is finite!

• If we don’t expect to achieve the goal in time, it is better to do
nothing instead of applying an operator.

• Applying an operator incurs cost.
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Mapping to Classical Planning

• Question: Can we deal with cases where h 6=∞?

• Answer: No, but we can come up with good estimates!

• Solution: Comparison of the optimal policy with noop policy!
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Mapping to Classical Planning

Result

For all Academic Advising instances, where h 6=∞, and π, an optimal plan
for the induced Classical Planning Task, we have

V∗(s0, h) ≈ max (−cost(π)

σ
, h · penalty)
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Results

Instance Concurrency Horizon Our Results SOGBOFA PROST-DD

01 1 20 -25 -48.4 -47.13

02 2 20 -15 -63.13 -49.93

03 1 20 -20 -35.2 -37.8

04 1 20 -21.87 -79.18 -39.48

05 2 20 -26.63 -100.0 -90.12

06 1 30 -55 -82.86 -83.46

07 2 30 -40.98 -150.0 -188.96

08 2 30 -30.41 -150.0 -182.84

09 1 30 -25 -66.53 -86.33

10 2 30 -42 -150.0 -200.24

11 3 40 -34.09 -200.0

12 2 40 -36.51 -200.0 -215.2

13 2 40 -42.57 -200.0 -282.48

14 3 40 -44.24 -200.0

15 2 40 -53.09 -200.0

16 3 50 -52.79 -250.0

17 4 50 -41.8 -250.0

18 3 50 -44.74 -250.0

19 4 50 -45.59 -250.0

20 5 50 -35.35 -250.0
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Chromatic Dice

• Chromatic Dice Domain

• Implementation Strategy

• Chromatic Dice Structure

• Near-optimal Strategy

• Results
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Yahtzee

Brikena Çelaj (Near)-optimal policies for Probabilistic IPC 2018 domains 30 / 45



Chromatic Dice Domain

Chromatic Dice is similar to Yahtzee with some differences:

1 Dices are two-dimensional(values and colors).

2 There are more categories.

3 There are two different type of bonuses.
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Chromatic Dice Structure

Chromatic Dice structure looks as follow:

• The state space can be structured into rounds

• Each round consists of 3 roll operators and 1 assign operator

• Roll operators roll (a subset of) the dice

• Assign operators select an unassigned category and yield a reward

• The number of rounds is equal to the number of categories
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Chromatic Dice Architecture

C1

C6

C3oak

C2p

Bv

...
...

phase4: assign

A Macro-step

phase1: roll
phase2: re-roll
phase3: re-roll

A Micro-step
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Macro-steps

C1

C6

C3oak

C2p

Bv

A Micro-step

...

C1 x
C6

C3oak

C2p

Bv

A Micro-step

...

C1

C6 x
C3oak

C2p

Bv

A Micro-step

...

C1 x
C6 x
C3oak

C2p

Bv

A Micro-step

...

C1 x
C6

C3oak x
C2p

Bv

A Micro-step

...

C1 x
C6

C3oak

C2p

Bv x

A Micro-step

...

as
sig
n
C 1

assignC6

ass
ign

C6

assignC3oak

assign C
ss

...

...

...

• The dice remain the same while we perform Macro-steps.
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Macro-step State Space

• A naive representation considers all information of the scorecard:
Yahtzee: 237 states Chromatic Dice: 274 states

• Computation of an optimal strategy possible with much more
compact representation based on

1 which category is still available (is the category taken or not)
2 which is the bonus level of the upper and middle section.

Yahtzee: 219 states Chromatic Dice: 229 states
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Micro-steps

C1

C6

C3oak

C2p

Bv
...

...

A Macro-step

I

...

...

roll1

roll 2
{d1}

roll2{d2}

roll3{d1}

p

p

p

roll
2
{}

1
n

1
n

1
n

1
n

1
n

roll
3 {}

1
n

1
n

1
n

...

...

...

A Micro-step

• The categories and level of the bonuses remain the same while we
perform Micro-steps.
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Micro-steps

We can reduce the problem by:

• Shrinking the Micro-step state space.

=

−→ 3 × , 2×

• Shrinking the Micro-step edges.

Keep Roll Roll Roll
=

Roll Roll Keep Roll Roll Roll

−→ Roll 0, 1, 2 or 3 and 0, 1 or 2
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Micro-step State Space and Edges

• Naive representation:

Yahtzee Chromatic Dice
States 212 224

Edges 213 224

• Compact representation:

Yahtzee Chromatic Dice
States 210 218

Edges 212 223
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Backtracking Method

• Our state space is a DAG.

• Benefit of DAG: We compute the policy by using backtracking
method.

• How? - Initialize the state values on the last layer with 0 and go
backward up to the initial state by replacing all value states.
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Optimal Results

Instances Macro-
steps

Instance
edges

Optimal
Results

SOGBOFA PROST-DD

01 ≈ 211 ≈ 214 72.51 48.89 37.87

02 ≈ 215 ≈ 214 160.03 182.17 71.69

03 ≈ 216 ≈ 214 216.88 142.21 108.61

04 ≈ 219 ≈ 214 279.42 247.52 119.45

05 ≈ 213 ≈ 218 154.40 118.31 108.0

06 ≈ 221 ≈ 218 - 325.84 150.47

07 ≈ 225 ≈ 218 - 402.53 203.36

08 ≈ 214 ≈ 221 147.17 120.29 94.53

09 ≈ 222 ≈ 221 - 313.79 144.49

10 ≈ 226 ≈ 221 - 370.13 193.27

11 ≈ 215 ≈ 223 155.48 108.43 86.93

12 ≈ 227 ≈ 223 - 355.01 162.13

13 ≈ 216 ≈ 224 - 115.63 86.2

14 ≈ 221 ≈ 224 - 204.92 74.63

15 ≈ 229 ≈ 225 - 402.25 159.48

16 ≈ 229 ≈ 214 - 441.05 227.68

17 ≈ 229 ≈ 214 - 414.27 236.28

18 ≈ 229 ≈ 214 - 450.97 211.73

19 ≈ 229 ≈ 214 - 423.39 205.24

20 ≈ 229 ≈ 214 - 452.44 208.96
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Near-optimal Strategy

• We can find the optimal solution only for small instances because the
state space is large.

• For harder instances, finding an optimal solution is intractable in
practice.

• Solution: Heuristic Strategy
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Near-optimal Strategy

We generalize the idea of cost partitioning and apply it for FH-MDPs,
called reward partitioning, as follow:

• We divide an instance into any number of sub-instances.

• Each category yield the reward in only one of the sub-instances, while
in all others the reward is 0.

• The sum of solution rewards of each sub-instances is an admissible
expected reward.
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Near-optimal Strategy in Practice

• Drawback: The horizon is still the same!

• Drawback: The size of MDP is almost the same, therefore,it is hard
to compute in practice!

• Solution: Near optimal solution without the guarantee of
admissibility!

• Solution: Decrease the horizon to the number of categories that are
considered in the sub-instance
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Heuristic Results

Instances |Sub-
instances|

Our Results SOGBOFA PROST-DD

06 3 389 .95 325.84 150.47

07 3 496.29 402.53 203.36

09 3 395.49 313.79 144.49

10 3 489 .76 370.13 193.27

12 3 480.70 355.01 162.13

13 3 225.70 115.63 86.2

14 3 297.05 204.92 74.63

15 3 500.50 402.25 159.48

16 2 406.43 441.05 227.68

17 2 409.32 414.27 236.28

18 2 381.33 450.97 211.73

19 2 401.63 423.39 205.24

20 2 430.44 452.44 208.96
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Thank you!
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