(Near)-optimal policies for Probabilistic IPC 2018 domains

Brikena Çelaj

Department of Mathematics and Computer Science University of Basel

June 2020

(Near)-optimal policies for Probabilistic IPC 2018 domains

Introduction

- The International Planning Competition (IPC) is a competition of state-of-the-art planning systems.
- Quality of the planners is measured in terms of IPC Score.
- Evaluation metric is flawed without optimal upper bound.
- **Thesis aim and motivation** Contribute to the IPC evaluation metric by finding near-optimal solution of two domains:
 - Academic Advising
 - Chromatic Dice

< ロ > < 同 > < 回 > < 回 > < 回 > <

Academic Advising

- Academic Advising Domain
- Relevance Analysis
- Mapping to Classical Planning
- Results

イロト イポト イヨト イヨト

Academic Advising Domain

Semester	No.	Title	Lecturers	СР
fs	15731-01	Multimedia	Roger Weber	6
		Retrieval		
SS	13548-01	Foundation of	Malte Helmert	8
		Artificial Intel-	Thomas Keller	
		ligence		
fs	45400-01	Planning and	Thomas Keller	8
		Optimization	Gabriele Röger	
fs	45401-01	Bioinformatics	Volker Roth	4
		Algorithms		
SS	17165-01	Machine	Volker Roth	8
		Learning		
SS	10948-01	Theory of	Gabriele Röger	8
		Computer		
		Science		

イロン イ理 とくほとう ほんし

Academic Advising Domain

Semester	No.	Title	Lecturers	СР		
fs	15731-01	Multimedia	Roger Weber	6		
		Retrieval				
SS	13548-01	Foundation of	Malte Helmert	8	1	
		Artificial Intel-	Thomas Keller		Г	Droroquisito
		lightee				Frerequisite
fs	45400-01	Planning and	Thomas Keller	8		Theory of Computer
		Optimization	Jabriele Roger			Science
fs	45401-01	Bioinformatics	Volker Roth	4		Foundation of Artificial
		Algorithms				Intelligence
SS	17165-01	Machine	Volker Roth	8		
		Learning				
SS	10948-01	Theory of	Gabriele Röger	8	1	
		Computer				
		Science				

イロト イヨト イヨト イヨト

Academic Advising Domain

- The smallest instances has more than a trillion states.
- The hardest instance has around 10^{167} states and
- The hardest instance has around 10^{12} actions.
- First step toward solution Relevance Analysis!

A D K A D K A D K A D K

• An instance is represented by directed acyclic graph (DAG)

- Nodes \rightarrow courses
- Edges \rightarrow connect course to its prerequisites

イロト 不得 トイヨト イヨト

Example: Academic Advising Instance

- An instance is represented by directed acyclic graph (DAG)
 - Nodes \rightarrow courses
 - Edges \rightarrow connect course to its prerequisites
- In each iteration find the leaves of the graph

< ロ > < 同 > < 回 > < 回 > < 回 > <

- $\bullet \ \mathsf{Nodes} \to \mathsf{courses}$
- $\bullet~\mbox{Edges} \rightarrow \mbox{connect}$ course to its prerequisites
- In each iteration find the leaves of the graph
- Prune any leaf that it not in program required courses

< ロ > < 同 > < 回 > < 回 > < 回 > <

First iteration

Brikena Çelaj

(Near)-optimal policies for Probabilistic IPC 2018 domains

10 / 45

Second iteration

Third iteration

<ロト <問ト < 目と < 目と

★ E ► < E ►</p>

- After shrinking, in average, we have half the number of courses.
- The hardest instance now has around 10^{46} states and 10^9 actions.
- Still too large to find an optimal solution!
- Next step: Mapping to Classical Planning!

イロト 不得下 イヨト イヨト

In Academic Advising domain:

- There are no dead ends.
- If horizon h is infinite, any optimal policy will try to reach a state where the program requirement is complete.
- If concurrency σ is one, we have two outcomes for each action (succeed or fail).

Assumption: $h = \infty$, $\sigma = 1$.

= 990

イロト 不得 トイヨト イヨト

Assumption: $h = \infty$, $\sigma = 1$.

(Near)-optimal policies for Probabilistic IPC 2018 domains

16 / 45

イロト イポト イヨト イヨト

Academic Advising domain example

Academic Advising domain converted into a classical domain

Theorem

For all Academic Advising instances, where $\sigma = 1$ and $h = \infty$, and π , an optimal plan for the induced Classical Planning Task, we have

 $V_*(s_0,\infty) = -cost(\pi)$

- In most of the instances, $\sigma > 1!$
- Question: Why it is not simple to map to Classical Planning when $\sigma > 1$?
- Answer: We no longer have only two outcomes (succeed or fail)!
- **Solution:** Ignore that courses can be taken in parallel, and divide cost of the plan by σ .

Example: $\sigma = 2$

- Assume we always perform as many actions as concurrency,
- Assume we take the courses where all the prerequisites are already passed.

Example: $\sigma = 2$

- Assume we always perform as many actions as concurrency,
- Assume we take the courses where all the prerequisites are already passed.

Example: $\sigma = 2$

- Assume we always perform as many actions as concurrency,
- Assume we take the courses where all the prerequisites are already passed.

Theorem

For all Academic Advising instances, where $\sigma > 1$ and $h = \infty$, and π , an optimal plan for the induced Classical Planning Task, we have

$$V_*(s_0,\infty) \geq -rac{cost(\pi)}{\sigma}$$

A B b A B b

- In practice, the horizon is finite!
- If we don't expect to achieve the goal in time, it is better to do nothing instead of applying an operator.
- Applying an operator incurs cost.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- **Question:** Can we deal with cases where $h \neq \infty$?
- Answer: No, but we can come up with good estimates!
- Solution: Comparison of the optimal policy with noop policy!

イロト 不得 トイヨト イヨト 二日

Result

For all Academic Advising instances, where $h \neq \infty$, and π , an optimal plan for the induced Classical Planning Task, we have

$$V_*(s_0, h) \approx \max\left(-\frac{cost(\pi)}{\sigma}, h \cdot penalty\right)$$

Results

Instance	Concurrency	Horizon	Our Results	SOGBOFA	PROST-DD
01	1	20	-25	-48.4	-47.13
02	2	20	-15	-63.13	-49.93
03	1	20	-20	-35.2	-37.8
04	1	20	-21.87	-79.18	-39.48
05	2	20	-26.63	-100.0	-90.12
06	1	30	-55	-82.86	-83.46
07	2	30	-40.98	-150.0	-188.96
08	2	30	-30.41	-150.0	-182.84
09	1	30	-25	-66.53	-86.33
10	2	30	-42	-150.0	-200.24
11	3	40	-34.09	-200.0	
12	2	40	-36.51	-200.0	-215.2
13	2	40	-42.57	-200.0	-282.48
14	3	40	-44.24	-200.0	
15	2	40	-53.09	-200.0	
16	3	50	-52.79	-250.0	
17	4	50	-41.8	-250.0	
18	3	50	-44.74	-250.0	
19	4	50	-45.59	-250.0	
20	5	50	-35.35	-250.0	

Brikena Çelaj

(Near)-optimal policies for Probabilistic IPC 2018 domains

Chromatic Dice

- Chromatic Dice Domain
- Implementation Strategy
- Chromatic Dice Structure
- Near-optimal Strategy
- Results

< □ > < /□ >

Yahtzee

(Near)-optimal policies for Probabilistic IPC 2018 domains

Chromatic Dice Domain

Chromatic Dice is similar to Yahtzee with some differences:

- Dices are two-dimensional(values and colors).
- 2 There are more categories.
- There are two different type of bonuses.

< □ > < /□ >

A B + A B +

Chromatic Dice Structure

Chromatic Dice structure looks as follow:

- The state space can be structured into rounds
- Each round consists of 3 roll operators and 1 assign operator
- Roll operators roll (a subset of) the dice
- Assign operators select an unassigned category and yield a reward
- The number of rounds is equal to the number of categories

Chromatic Dice Architecture

A Macro-step

(日)

Macro-steps

• The dice remain the same while we perform Macro-steps.

< □ > < □ > < □ > < □ > < □ > < □ >

Macro-step State Space

• A naive representation considers all information of the scorecard: **Yahtzee:** 2³⁷ states **Chromatic Dice:** 2⁷⁴ states

 Computation of an optimal strategy possible with much more compact representation based on

• which category is still available (is the category taken or not) Which is the bonus level of the upper and middle section.

Yahtzee: 2¹⁹ states Chromatic Dice: 2²⁹ states

ヘロト 不得 トイヨト イヨト

Micro-steps

• The categories and level of the bonuses remain the same while we perform Micro-steps.

Brikena Çelaj

(Near)-optimal policies for Probabilistic IPC 2018 domains

36 / 45

- 4 回 ト 4 ヨ ト 4 ヨ ト

Micro-steps

We can reduce the problem by:

• Shrinking the Micro-step state space.

• Shrinking the Micro-step edges.

 \rightarrow Roll 0, 1, 2 or 3 \blacksquare and 0, 1 or 2 \blacksquare

4 A b

A B K A B K

Micro-step State Space and Edges

• Naive representation:

	Yahtzee	Chromatic Dice
States	2 ¹²	2 ²⁴
Edges	2 ¹³	2 ²⁴

• Compact representation:

	Yahtzee	Chromatic Dice
States	2 ¹⁰	2 ¹⁸
Edges	2 ¹²	2 ²³

イロト イヨト イヨト イヨト

Backtracking Method

- Our state space is a DAG.
- Benefit of DAG: We compute the policy by using backtracking method.
- How? Initialize the state values on the last layer with 0 and go backward up to the initial state by replacing all value states.

Optimal Results

Instances	Macro-	Instance	Optimal	SOGBOFA	PROST-DD
	steps	edges	Results		
01	$\approx 2^{11}$	$\approx 2^{14}$	72.51	48.89	37.87
02	$pprox 2^{15}$	$\approx 2^{14}$	160.03	182.17	71.69
03	$\approx 2^{16}$	$\approx 2^{14}$	216.88	142.21	108.61
04	$\approx 2^{19}$	$\approx 2^{14}$	279.42	247.52	119.45
05	$\approx 2^{13}$	$\approx 2^{18}$	154.40	118.31	108.0
06	$\approx 2^{21}$	$\approx 2^{18}$	-	325.84	150.47
07	$\approx 2^{25}$	$\approx 2^{18}$	-	402.53	203.36
08	$pprox 2^{14}$	$\approx 2^{21}$	147.17	120.29	94.53
09	$\approx 2^{22}$	$\approx 2^{21}$	-	313.79	144.49
10	$\approx 2^{26}$	$\approx 2^{21}$	-	370.13	193.27
11	$\approx 2^{15}$	$\approx 2^{23}$	155.48	108.43	86.93
12	$\approx 2^{27}$	$\approx 2^{23}$	-	355.01	162.13
13	$pprox 2^{16}$	$\approx 2^{24}$	-	115.63	86.2
14	$\approx 2^{21}$	$\approx 2^{24}$	-	204.92	74.63
15	$\approx 2^{29}$	$\approx 2^{25}$	-	402.25	159.48
16	$\approx 2^{29}$	$\approx 2^{14}$	-	441.05	227.68
17	$\approx 2^{29}$	$\approx 2^{14}$	-	414.27	236.28
18	$\approx 2^{29}$	$\approx 2^{14}$	-	450.97	211.73
19	$pprox 2^{29}$	$\approx 2^{14}$	-	423.39	205.24
20	$\approx 2^{29}$	$\approx 2^{14}$	-	452.44	208.96

・ロト・日本・日本・日本・日本・今日・

Near-optimal Strategy

- We can find the optimal solution only for small instances because the state space is large.
- For harder instances, finding an optimal solution is intractable in practice.
- Solution: Heuristic Strategy

イロト イヨト イヨト ・

We generalize the idea of *cost partitioning* and apply it for FH-MDPs, called *reward partitioning*, as follow:

- We divide an instance into any number of sub-instances.
- Each category yield the reward in only one of the sub-instances, while in all others the reward is 0.
- The sum of solution rewards of each sub-instances is an *admissible* expected reward.

Near-optimal Strategy in Practice

- Drawback: The horizon is still the same!
- **Drawback**: The size of MDP is almost the same, therefore, it is hard to compute in practice!
- **Solution**: Near optimal solution without the guarantee of admissibility!
- **Solution**: Decrease the horizon to the number of categories that are considered in the sub-instance

Heuristic Results

Instances	Sub-	Our Results	SOGBOFA	PROST-DD
	instances			
06	3	389.95	325.84	150.47
07	3	496.29	402.53	203.36
09	3	395.49	313.79	144.49
10	3	489.76	370.13	193.27
12	3	480.70	355.01	162.13
13	3	225.70	115.63	86.2
14	3	297.05	204.92	74.63
15	3	500.50	402.25	159.48
16	2	406.43	441.05	227.68
17	2	409.32	414.27	236.28
18	2	381.33	450.97	211.73
19	2	401.63	423.39	205.24
20	2	430.44	452.44	208.96

= 990

イロト イヨト イヨト イヨト

Thank you!

・ロト ・四ト ・ヨト ・ヨト