
NBS applied to Planning
Master Thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Artificial Intelligence

http://ai.cs.unibas.ch

Examiner: Dr. Gabriele Röger

Supervisor: Cedric Geissmann

Marvin Buff

marvin.buff@unibas.ch

2014-054-191

05/02/2019

Acknowledgments

I would like to express my thanks to Cedric Geissmann, which not only supervised me but

also provided his help in regards to Fast-Downward and writing up this thesis. I owe my

thanks to Dr. Gabriele Röger who in place of Prof. Dr. Malte Helmert allowed me to write

this thesis in their research group. And special thanks goes to Severin Wyss and Jonathan

Aellen who proofread this thesis.

Abstract

Heuristic forward search is the state-of-the-art approach to solve classical planning problems.

On the other hand, bidirectional heuristic search has a lot of potential but was never able

to deliver on those expectations in practice. Only recently the near-optimal bidirectional

search algorithm (NBS) was introduces by Chen et al. [2017] and as the name suggests,

NBS expands nearly the optimal number of states to solve any search problem. This is a

novel achievement and makes the NBS algorithm a very promising and efficient algorithm

in search. With this premise in mind, we raise the question of how applicable NBS is to

planning. In this thesis, we inquire this very question by implementing NBS in the state-

of-the-art planner Fast-Downward and analyse its performance on the benchmark of the

latest international planning competition. We additionally implement fractional meet-in-

the-middle and computeWVC [Shaham et al., 2017] to analyse NBS’ performance more

thoroughly in regards to the structure of the problem task.

The conducted experiments show that NBS can successfully be applied to planning as

it was able to consistently outperform A*. Especially good results were achieved on the

domains: blocks, driverlog, floortile-opt11-strips, get-opt14-strips, logistics00, and termes-

opt18-strips. Analysing these results, we deduce that the efficiency of forward and backward

search depends heavily upon the underlying implicit structure of the transition system which

is induced by the problem task. This suggests that bidirectional search is inherently more

suited for certain problems. Furthermore, we find that this aptitude for a certain search

direction correlates with the domain, thereby providing a powerful analytic tool to a priori

derive the effectiveness of certain search approaches.

In conclusion, even without intricate improvements the NBS algorithm is able to compete

with A*. It therefore has further potential for future research. Additionally, the underlying

transition system of a problem instance is shown to be an important factor which influences

the efficiency of certain search approaches. This knowledge could be valuable for devising

portfolio planners.

Table of Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

2 Background 3

2.1 History of Bidirectional Search . 3

2.2 Terminology and Background . 4

2.2.1 Classical Planning . 4

2.2.2 Heuristic Functions . 6

2.2.3 Search in Planning . 7

2.2.4 Bidirectional Search in Planning . 8

3 Related Work 10

3.1 Bidirectional Search . 10

3.1.1 The ”Meet in the Middle” Algorithm (MM) 10

3.1.2 Fractional Meet in the Middle (fMM) 12

3.1.3 SymBA* . 12

3.2 Sufficient Conditions for State Expansion . 13

3.2.1 Finding VC . 15

3.3 Near-Optimal Front-to-End Bidirectional Search Algorithm (NBS) 17

4 Planning with the NBS algorithm 19

4.1 Using Search in Planning . 19

4.1.1 Driverlog . 20

4.1.2 Secondary Initial States Explosion . 20

4.1.3 Using Heuristics . 22

4.2 Implementation Details . 24

4.2.1 Searching Backward . 24

5 Experiments and Evaluation 27

5.1 Environment . 27

5.2 Running NBS . 27

5.2.1 Results and Evaluation . 28

Table of Contents v

5.2.2 Summary . 34

5.3 Running fMM . 35

5.3.1 Results and Evaluation . 35

5.3.2 Analysing the Innate Structure . 43

5.3.3 Summary . 45

6 Conclusion 46

Bibliography 48

Appendix A Examples 51

A.1 From the Problem Task to VC . 51

A.2 Single Goal Experiment . 53

Appendix B Extended Results 57

B.1 Extended NBS Results . 57

B.2 Extended fMM Results . 60

B.3 Extended Case Study . 69

Declaration on Scientific Integrity 71

1
Introduction

Classical planning is about thinking before acting. The objective in this field is to con-

trive algorithms which achieve to deduce the best course of actions for a specific problem

description. One of the first devised algorithms is the famous Dijkstra algorithm [Dijkstra,

1959], which builds a decision tree with the initial state as root. The result is a construct in

which traversing the tree reflects a particular course of action. The algorithm finishes once

the optimal solution is found. But with the ever growing problem sizes and complexities,

it is not always feasible to search for the optimal solution in such an uninformed way. A

logical next step is to let the search be guided by problem specific information in order to

facilitate the progress. One of the resulting informed algorithm, which explores the solution

space guided by a heuristic function, is called A*. But even for A*, the number of combi-

natorial permutations growths exponentially with the number of possibilities. To alleviate

this problem, the fundamental idea of bidirectional search is to conduct two partial searches

instead of a single one. The first search progresses in forward direction and the second one

in backward direction, e.g. the search starts at the goal state and advances in direction of

the initial state. Thereby, both searches only have to advance until they meet each other,

reducing the effective search depth by a potential factor of 2. Thus, as the effort growths

exponentially, the complexity is reduced from 2n to a potential 2 · 2n
2 .

The concept of bidirectional search is nearly as old as search itself. But for a long time the

advances in the field were stagnant. Non-trivial difficulties in bidirectional search are to first

advance the searches towards each other in order for them to intersect and second, prove the

optimality of a found solution. And although bidirectional search shows promise in theory,

the performance in practice was not convincing for a long time. Only recently, Barker and

Korf [2015] sparked new interest by analysing the properties of a theoretical bidirectional

algorithm. Which was followed up with the practical implementation of the algorithm in

question by Holte et al. [2016]. From there, different research papers led to the definition of

must-expand pairs. These define state pairs from which either the first has to be expanded in

forward direction, or the second in backward direction. These conditions enabled Chen et al.

[2017] to devise the near-optimal bidirectional search algorithm (NBS). The authors achieved

promising results with NBS, raising the question of its usability in classical planning. In this

thesis, we want to inquire this exact question by implementing NBS in Fast-Downward and

Introduction 2

evaluating its advantages and drawbacks with thorough experiments.

To achieve these goals, we implemented three different algorithms. First, the aforemen-

tioned promising bidirectional search algorithm NBS. Second, fractional meet-in-the-middle

(fMM), a bidirectional search algorithm where both search frontiers meet at a specified point.

We use fMM to explore the effectiveness of either search direction depending on the specific

problem and determine the optimal combination of forward and backward search with the

third algorithm computeWVC, which provides us with the optimal meeting point for fMM.

By running each algorithm over the optimal benchmark set of the latest international

planning competition, we gathered the following insights. Using NBS to solve planning

problems can lead to additional complexities which are neither present in unidirectional

planning, nor in bidirectional search. Especially, the absence of a fully defined goal state

has a negative effect on the search efficiency. However, the experiments show that NBS

is a competitive alternative to A* as NBS outperforms it on many problem instances and

sometimes even over whole domains. Further, by using fMM and computeWVC, we were

able to show that the single most defining factor of the performance of NBS is the innate

structure of the problem instance, which can enable it to surpass A* or significantly impair

its performance. In conclusion, NBS is a compelling search algorithm which can successfully

and efficiently be used in planning. But its performance is heavily influenced by the specific

problem instance, which limits its usability for problems with unfavourable structure.

The thesis is structured in five parts. First, we start by introducing background infor-

mation and terminology on planning and bidirectional search. Followed up by an overview

of contemporary research in the field of bidirectional search with the goal to acquaint the

reader with the necessary concepts and preliminary knowledge. In a third step, we describe

in detail how we implemented the NBS algorithm and the theoretical background which

was considered. Afterwards, we illustrate the setup and specify all conducted experiments,

which includes a thorough evaluation and discussion. At last, we conclude the thesis by

presenting the important findings and insights gathered throughout.

2
Background

In this section, we provide a concise introduction of all necessary concepts and theories

used within this thesis. We start with an overview of past research, going over to in-depth

explanations of important findings and key aspects in the field of bidirectional search, and

finishing up with a detailed analysis of the paper by Chen et al. [2017] about the NBS

algorithm, which directly inspired this work. Thereby, we also introduce the corresponding

terminology and background to facilitate a deeper understanding. Moreover, we discuss

the relation between bidirectional search and classical planning, which will provide the

foundation upon we build our own theories and hypotheses.

2.1 History of Bidirectional Search
The history of searching had its beginning with the famous Dijkstra’s algorithm [Dijkstra,

1959]. It counts as a canonical best-first search, which uses the g-value of a search node

as a tie-breaking criterion to decide whether to expand it. Bidirectional search was later

introduced by Nicholson [1966], which adapted Dijkstra’s algorithm to conduct the search

from either direction. The biggest break through in searching was the utilization of heuristic

functions, which builds the basis of the A* algorithm [Hart et al., 1968]. The usage of heuris-

tic functions were quickly adapted to bidirectional search by Pohl [1969]. He showed that

unidirectional heuristic search (Uni-HS) seems to outperform bidirectional heuristic search

(Bi-HS) in practice. He further introduced the Bi-HS algorithm BHPA [Pohl, 1971]. How-

ever, the observed inefficiency of Bi-HS in practice lead to a stagnation in the development

of this field.

Over the years, a few explanations for the bad performance of bidirectional search arose.

Nilsson [1980] suggested that the search frontiers miss each other. But this turned out to be

wrong, instead Kwa theorized that the frontiers cross each other without terminating, as a

result he designed the BS* algorithm which focuses on clipping to prevent the frontiers from

crossing [Kwa, 1989]. BS* is an improved Bi-HS algorithm, yet it was not able to outperform

A*. An explanation for this was later provided by Kaindl and Kainz [1997], which suggested

that a lot of resources are spent proving optimality of a solution found early on.

Only a few years ago, bidirectional search received new attention. Barker and Korf anal-

Background 4

ysed the advantages between bidirectional brute force search (Bi-BS), Bi-HS and Uni-HS

[Barker and Korf, 2015]. They reached the conclusion that in most cases front-to-end Bi-HS

algorithm will be dominated by either Uni-HS or Bi-BS. But they additionally proved that

there exist some pathological cases where Bi-HS is the dominant strategy. Barker and Korf

relied on a few assumptions to make those claims. Most importantly, they defined Bi-HS as

an algorithm which would not expand nodes further than half of the optimal cost, thus meet

in the middle. This discovery inspired the development of the MM algorithm [Holte et al.,

2016] which was the first bidirectional search algorithm to satisfy the imposed constraint,

or specifically, whose search frontiers are guaranteed to meet in the middle.

We discuss contemporary research in the subsequent sections with more detail. However,

to provide a holistic overview at this point, they are mentioned here as well. First, Eckerle

et al. [2017], inspired by Dechter and Pearl [1985], defined sufficient conditions for node

expansion1 in bidirectional search. They used those conditions to derive a lower bound

on the number of necessary expansions. The described lower bound is called |VC| and is

equivalent with the number of nodes in the minimal vertex cover of the must-expand graph,

which is purposefully designed to have this property. Upon those findings Chen et al. [2017]

built the NBS algorithm which expands at most twice as many nodes, and furthermore,

they showed that no better algorithms of this class can exist. Following up, Shaham et al.

[2017] designed an algorithm, fractional MM (fMM), which only expands |VC| nodes, thus

is optimally efficient. However, the use of fMM is restricted by its optimal meeting point

p∗ which is not known a priori. Consequently, fMM is primarily of theoretical interest as

computing the fraction p∗ is equally difficult as solving the search problem itself.

2.2 Terminology and Background
To discuss bidirectional search applied to planning in depth, we present an exhaustive in-

troduction of the essential background and terminology regarding bidirectional search and

planning.

We start by defining classical planning which aims to solve planning problems presented as

planning tasks. We discuss how heuristics and search are used to solve planning problems.

And at last, we present a generic search algorithm and the conditions which have to be

fulfilled to be categorized as DXBB algorithm.

2.2.1 Classical Planning
”Planning is the reasoning side of acting. It is an abstract, explicit deliber-

ation process that chooses and organizes actions by anticipating their expected

outcomes.” [Ghallab et al., 2004]

Classical planning is about determining the course of action which leads to the best possible

outcome. The used framework consists of three different parts: the input, the algorithm, and

1 They defined conditions which are sufficient to determine whether a search node must be expanded to
prove optimality of a solution plan.

Background 5

the output. A problem instance functions as the input and is described by the corresponding

planning task. A planning algorithm solves the problem instance and computes the solution

plan as output.

We distinguish between satisficing planning, where the objective is to find any solution

at all (e.g. plan), and optimal planning, where many solutions may be easily deducible, but

we are only interested in determining the optimal solution.

Definition 1 (Planning Task)

We are using an adaptation of the finite domain SAS+ formalism introduced by Bäckström

and Nebel [1995] to describe a planning task formally. A planning task is a 4-tuple Π =

〈V,A, I,G〉, where

• V is a finite set of state variables, each v ∈ V has an associated finite domain D(v),

which specifies valid variable assignments.

• A partial state ŝ is a mapping of state variables v ∈ V to a value consistent with

their defined domain. These assignments are written as s[v] ∈ D(v). var(s) ∈ V is a

finite set which lists all variables that have an assignment in the specified partial state.

• A partial state s is called a state, if all variables v ∈ V have a valid assignment given

by s, hence var(s) = V.

• A is a finite set of actions, each a ∈ A is a triple (pre(a), eff (a), cost(a)), where

– pre(a) is a partial state defining the preconditions.

– eff (a) is a partial state defining the effects.

– cost(a) ∈ R+
0 is the associated cost.

• I is a state defining the initial state.

• G is a partial state defining the goal conditions.

A partial state ŝ1 is a subset of another partial state ŝ2 when ŝ1[v] = ŝ2[v] for all v ∈ var(ŝ1)

holds and is written as ŝ1 ⊆ ŝ2. A partial state complies with another partial state if one is

a subset of the other. Action a is applicable in state s under the condition that pre(a) ⊆ s.
Applying action a on state s is denoted by s[[a]] and modifies the state s to comply with the

partial state eff (a). In classical planning we search for a sequence of actions, which when

applied on the initial state I yield a resulting state s where G ⊆ s holds. Such a sequence

is called a plan: π = (a1, a2, . . . , an). The cost of a plan π is given by the summed cost of

all included actions: cost(π) =
∑n

i=1 cost(a
i). If no plan exists then the planning task is

unsolvable, otherwise, there are plans and thus at least one of those plans has the minimal

cost compared to the others and is called the optimal plan. A commonly used method to

determine the optimal plan from a planning task, is to first build the implicitly defined

transition system and then find the plan by heuristic search.

Definition 2 (Transition System)

A transition system induced by a planning task Π is 6-tuple T (Π) = 〈S, T, L, cost, s0, sG〉,
where

Background 6

• S is a finite set of states derived from Π, called the state space.

• T : S ×A 7→ S is a finite set of transitions induced by the actions and states in Π.

• L : T 7→ A is a label function defining from which action a transition is induced.

• cost : T 7→ R+
0 is the cost function which maps the transition to the cost of the applied

action.

• s0 = I ∈ S is the initial state.

• sG ⊆ S is a finite set of goal states where each s ∈ S which complies with G is a

element of sG.

In practice, the full transition system is not required, as only reachable states need to be

considered. The required transition system of a planning task is created by recursively

expanding states, starting with the initial state, until the goal is reached and therefore only

the required part of the system is mapped. Expanding a state s is defined as applying all

actions a ∈ α ⊆ A, where α is the set of applicable actions in s, to generate all successors,

sa = s[[a]] for all a ∈ α. We denote the expansion of one state or a set of states as sn+1 =

sn[[A]], or alternatively sn+1 = expand(sn), where sn+1 is the set of possible successor

states. To prevent cyclic expansion, states are generated with an associated g-value, which

represents the cost of the shortest plan to reach a state s, denoted by g(s). The g-value

of a state s is given by the g-value of its predecessor added to the cost of the applied

action. Note that although the g-value represents the cost of the shortest plan, it is only the

cheapest path found so far and has to be updated accordingly if a cheaper plan is found.

The real cost of reaching a state s is denoted by cost(s). Moreover, cost(sa, sb) is the cost of

reaching state sb starting from state sa. Usually, we insure that g(s) is equal to cost(s) by

prioritizing the expansion of states with lower g-value. The reasoning is that as action costs

can only be positive, it is impossible to reach a previous state with a new g-value that is

lower than before. The function controlling the order in which states are expanded is called

the priority function. Most commonly, the priority function not only considers the g-value,

but the heuristic value of the state as well.

2.2.2 Heuristic Functions
In planning heuristic functions (simply referenced as heuristics) are used to guide the ex-

ploration of the transition system. Heuristics are functions

h : S 7→ N0 ∪ {∞},

which map each state s ∈ S to a non-negative number or infinity. The mapped value, called

h-value, represents the estimated goal distance, or infinity if the goal is not reachable from the

given state. The perfect heuristic h∗ maps each state to its minimal goal distance. Informed

algorithms utilize heuristics to guide them. For instance, by prioritizing the expansion of

states with low f -value, which is the sum of the h-value added to the g-value. There are a

few important properties for heuristics. A heuristic h is

Background 7

• safe if h(s) =∞ for states s from which the goal is unreachable,

• goal-aware if h(s) = 0 | ∀s ∈ G,

• admissible if h(s) ≤ h∗(s) | ∀s ∈ S,

• and consistent if h(sn) ≤ cost(sn, sn+1) + h(sn+1).

2.2.3 Search in Planning
Search can be used as a tool to solve optimal planning problems. The intuition behind

search is to find the shortest path from the initial state to any goal state, by interpreting

the transition system as graph where the nodes represent states and the edges transitions

weighted by the corresponding cost. Based on this fundamental idea there exist different

implementations which can be classified by four criteria:

• Search Direction: Progression, Regression, or Bidirectional.

• Search Space Representation: Explicit-states or Symbolic.

• Search Algorithm: Uninformed Search, Local Heuristic Search, Systematic Heuristic

Search.

• Search Control: Heuristic Search, Pruning.

For example, the NBS algorithm is a bidirectional heuristic search algorithm with an explicit-

state representation and no pruning method. Later on, we go into more detail and discuss

the implication of this classification in more depth, but first the necessary terminology must

be defined. The presented notation in the following paragraph is inspired by the notation

of Eckerle et al. [2017] as we use it to explain the topics they covered in their work.

To discuss bidirectional search, the introduced notations must be refined to incorporate the

backward component. In general, we distinguish forward direction from backward direction

by a capital
”
F“, or respectively by a

”
B“ as index. For simplicity, omitting the index

implicitly refers to the forward direction. If both directions are meant simultaneously, we

denote it with a
”
D“ as index. By this notion, expanding a state sn+1 in backward direction

means to create the predecessors sn and is denoted by sn = expandB(sn+1). A backward

expanded state sB has an associated gB-value and hB-value, where hB is a heuristic which

estimates the distance to the initial state. Depending on the heuristics, problem instances

can be determined to belong to the set of instances IAD or ICON . Derived from Dechter and

Pearl [1985] we denote IAD to refer to the set of solvable problem instances with bi-admissible

heuristics (meaning forward as well as backward heuristic are admissible). Similarly, ICON

is the set of solvable problem instance with bi-consistent heuristics. It should be noted that

the heuristics used for the different directions might not be the same.

At last, we introduce paths to simplify the theories presented in the next chapter. A

forward path U = (u1, . . . , un) is a sequence of states where each consecutive state pair

denotes that there exists an action a so that ui+1 = ui[[a]]. In the same manner, V =

(v1, . . . , vn) is a backward path so that vi = vi+1[[a]]. The reversion of a path U is indicated

Background 8

as U−1 and changes the path from forward to backward direction, or vice versa. Moreover,

the number of states in path U is denoted as |U | and the summed cost of all implied actions

as cost(U). A path U is optimal, if there exists no path with lower cost from U1 to U|U |. The

cost of the optimal path between two states is denoted by its distance d(U1, U|U |). Hence,

C∗ = d(s0, sG) where s0 and sG are defined by the induced transition system T (Π). Using

bidirectional search, we pursue to find a path pair (U,V), which consists of a forward path

U and a backward path V , where U1 = s1, V1 = sG, and U|U | = V|V |. The solution path of

such a path pair can be written as UV −1. Finally, to be able to use paths intuitively, we

define that a path inherits all state specific properties of the tailing state. E.g. the g-value

of a path U is defined by the g-value of U|U |.

2.2.4 Bidirectional Search in Planning
With the notation for bidirectional search introduced, we can start to describe bidirectional

search in detail. In practice, search algorithms can be used in different ways for planning.

But for this thesis, we limit the scope to only include DXBB search algorithm.

Definition 3 (DXBB algorithm)

Following the definition by Eckerle et al. [2017], we define the class of deterministic, expansion-

based, black box (DXBB) algorithm. They are deterministic as the search behaviour is re-

producible. Expansion-based, insofar as their general structure revolves around expanding

states. And, they only have a black box view regarding the functions StoppingCondition,

Choose, and Solution.

Algorithm 1 DXBB algorithm in planning

Input: Planning task Π and heuristic h
Output: A least-cost path from s0 to sG

1: OpenF = s0
2: OpenB = sG
3: ClosedF = {}
4: ClosedB = {}
5: while StoppingCondition not fulfilled do
6: Dir, State = Choose(OpenF , OpenB , h) . Dir can assume F or B.
7: Add State to ClosedDir

8: Successors = expandDir(State)
9: Add Successors to OpenDir

10: end while
11: return Solution

In Algorithm 1, we present how a generic DXBB algorithm can be applied in planning. All

possible algorithms which are classified as DXBB can only differ in the implementation of

the StoppingCondition, Solution, and Choose function. To understand the impact

those functions possess, we discuss in detail how the depicted algorithm operates.

The input is a problem instance and a forward and backward heuristic. Over the course

of the algorithm, four lists are maintained. For each direction an open and a closed list are

created. The open lists include states which are not yet expanded, but were generated by

expanding other states, or in the beginning, the initial and goal state. States are moved

Background 9

from the open to the closed list when they are expanded, which can be seen in line 6 and 7 of

the algorithm. The core part of the algorithm is the while loop enveloping line 5 to 8, which

successively expands states until the stopping condition is met. The important functions in

the algorithm are the following. First, the StoppingCondition tries to determine whether

a solution can be found, or if the found solution is optimal. Second, the Choose function

controls the exploration of the state space by selecting which state is expanded in which

direction. Hence, a Choose function which would always prioritize forward expanding

would result in an unidirectional search. Usually, the Choose function determines the next

state with the help of some priority functions. We will discuss different priority functions

and the algorithms they are used in later on. Last, the Solution function extracts the

correct solution plan from the expanded states unless the problem couldn’t be solved, in

which case unsolvable is returned.

3
Related Work

In this section, we discuss contemporary research in the field of bidirectional search, with

a focus on findings and novel theories preceding the NBS algorithm. First, we give short

descriptions for three relevant algorithms: MM, fMM, and SymBA*. Second, we discuss

key bidirectional search insights from the last few years. Finally, we introduce the NBS

algorithm. The topics covered in this section are presented especially thorough as they are

essential for the discussion in Chapter 4 and 5.

3.1 Bidirectional Search
Bidirectional search algorithms can be divided into two classes depending on the type

of heuristics used: front-to-front or front-to-end heuristics. Front-to-front heuristics are

unique to bidirectional search as they estimate the distance between the search frontiers. A

few examples for bidirectional search algorithm using front-to-front heuristics are BHFFA2

[De Champeaux, 1983], SFBDS [Felner et al., 2010], and BIDA* [Manzini, 1995]. Contrary

to those, the more common front-to-end heuristics2 are used by MM [Holte et al., 2016],

BHPA [Pohl, 1971], BS* [Kwa, 1989], and most importantly NBS [Chen et al., 2017]. We

limit the discussion in this section to the most recent front-to-end search algorithms, as NBS

classifies as one and as they are the most influential.

3.1.1 The ”Meet in the Middle” Algorithm (MM)
Barker and Korf [2015] analysed the node expansion of unidirectional heuristic search (Uni-

HS), bidirectional heuristic search (Bi-HS) and bidirectional brute force search (Bi-BS). To

limit the scope of the analysis they made the assumption that bidirectional search never

expands states whose g-value exceeds half C∗. Such an algorithm did not exist at that

time, thus Holte et al. [2016] were inspired to design an algorithm which complies to this

constraint, hence it inherits the defined properties.

2 The usually used heuristics are categorized as front-to-end heuristics as they estimate the distance from
a state to the end. However, in bidirectional search there are additional options.

Related Work 11

The MM-algorithm The MM-algorithm only expands nodes that have a g-value smaller

than half C∗. This is achieved by a Choose function which selects the next state to expand

in either direction with the following priority functions:

prF (u) = max(gF (u) + hF (u), 2 · gF (u)),

prB(v) = max(gB(v) + hB(u), 2 · gB(v)),

where u is a forward expanded state and v a backward expanded state. The state with the

lowest value from either priority function is expanded each iteration. This lowest value is

denoted by C. The first condition of the priority function prioritizes the expansion of states

which are most promising. The second condition enforces that no state is expanded whose

g-value exceeds half C∗, this is achieved by doubling the g-value. An image illustrating the

resulting search space is shown in Figure 3.1. Equally important as the priority functions is

the StoppingCondition:

U ≤ max(C, fminF , fminB , gminF + gminB),

where U is the cost of the cheapest solution found so far, fminF is the minimal f -value

which is present in the forward open list, similarly fminB is the minimal f -value in the

backward open list, and gminF as well as gminB are the lowest g-values in the open list in

the respective direction. Each of the parameter on the right hand side of the equation are a

lower bound on the cost of any solution that could be found if the search proceeds. Thus, if

U is smaller than or equal to the right hand side, the search stops as no better solution can

be found any more, e.g. the optimal solution is found, hence U = C∗.3

Dijkstra

MM MM

s0 sG

C∗
2

C∗
2

C∗

Figure 3.1: High-level illustration of the search space explored by
Dijkstra or MM algorithm. [Sturtevant and Felner, 2018]

Improved Version of MM The MMε-algorithm introduced by Sharon et al. [2016] is a

direct follow up to the MM algorithm [Holte et al., 2016], with a slight alteration of the

priority functions. Instead of choosing the next node which has to be expanded solely on

their f -value and g-value, they add the minimal action cost ε to the g-value. Thereby taking

into consideration that a node with only expensive outgoing actions can be expanded after

other nodes with higher g-value but cheaper outgoing actions.

3 They also introduced MM0, which is the brute-force version of MM. Both algorithm work exactly the same,
however, the heuristic used with MM0 always return 0.

Related Work 12

Sharon et al. further made a proof sketch of MMε’s correctness and showed the performance

of MMε compared to MM and A*. Although there are conditions when MMε expands more nodes

than MM, in praxis they did not occur. MMε outperformed MM up to a factor of 4. Compared

with those algorithms, A* expands significantly more nodes, depending on how accurate the

heuristic is.

3.1.2 Fractional Meet in the Middle (fMM)
Inspired from the MM-algorithm, Shaham et al. [2017] formalized a generalized version where

the meeting point of forward and backward search is determined by the argument p. More

precisely, in MM the two searches meet at the cost of 0.5 · C∗, whereas in fMM the forward

search is expanded until the cost reaches p ·C∗, and the backward search until (1− p) ·C∗.
This difference is reflected in the modified priority functions for fMM:

prF (u) = max(gF (u) + hF (u), gF (u)/p),

prB(u) = max(gB(u) + hB(u), gB(u)/(1− p)),

where u is a forward expanded state and v a backward expanded state. It is evident that

fMM with p = 0.5 is equivalent to MM. Shaham et al. further deduced that fMM is not just

a generalization of MM but also of A* and reverse A*, depending on the input argument p

of fMM. However, only when considering the expansion previous to the last layer. fMM is

especially interesting, because there is a fraction p∗ for a which fMM is optimally efficient,

meaning it exclusively expands the minimal number of states necessary. Although this would

be a very competitive algorithm, p∗ is only computable a posteriori and is different for each

problem instance. It can be determined by solving the following formula: p∗ = i/C∗, where

i can be computed from the minimal vertex cover. However, C∗ is only known after the

problem is already solved. Thus, fMM can only be used as an analysis tool. Furthermore,

p∗ can give valuable insight on why a specific search direction is more efficient. Shaham

et al. [2017] showed that there are domains where p∗ is close to 0, close to 1, or somewhere

around the middle. With this calculation, one can explain why A*, reverse A*, or MM is

more efficient than the other ones on the respective domains.

For our work, fMM is especially interesting as it gives us an estimation on how bidirectional

search is expected to perform on a problem instance. Therefore, we can differentiate whether

the reason for the performance of NBS on a specific instance is caused by the instance itself

or the algorithm.

3.1.3 SymBA*
A last algorithm we want to discuss is the symbolic uniform-cost bidirectional heuristic

search algorihm SymBA* introduced by Torralba et al. [2016]. This planning algorithm

won the optimal-track award of the International Planning Competition 2014 [Vallati et al.,

2015]. Thereby showing that at least symbolic bidirectional search has potential in planning.

SymBA* is an intricate planning algorithm combining bidirectional search with abstraction

heuristic, perimeter abstractions, and symbolic search. It starts with a uniform-cost bidi-

rectional symbolic search, and expands states until computing the next iteration is deemed

Related Work 13

infeasible. To make the search feasible again, a new bidirectional search is started in the

abstract space around the current search frontiers. This improves the heuristic estimate

and thus makes the primary search feasible again. The symbolic search is then continued

with the guidance of the computed heuristic. This procedure is repeated until the search

terminates. The idea behind the algorithm is that heuristic only sometimes improve bidirec-

tional search, therefore, it only computes a heuristic estimate, when the search is infeasible

otherwise.

3.2 Sufficient Conditions for State Expansion
An important question when analysing algorithms is whether there exists an improved ver-

sion, given the same constraints. For A* this question was answered by Dechter and Pearl

[1985]. They proved that there cannot exist an algorithm which outperforms A*, given

problems of the ICON domain. They reasoned that A* expands all states with fF < C∗,

and that at least all of of those states have to be expanded by every optimal unidirectional

algorithm, hence A* is optimally efficient.

The states with fF < C∗ are determined by the sufficient conditions for state expansion.

However, for bidirectional search, such conditions cannot exist, as every state can either be

expanded in forward or backward direction. To get a similar notion of sufficient conditions,

Eckerle et al. [2017] coined the new term must-expand pair.

Definition 4 (Must-Expand Pair)

A state pair (u, v) is a must-expand pair under the following conditions:

(1) fF (u) < C∗,

(2) fB(v) < C∗,

(3) cost(u) + cost(v) < C∗.

Provided that U is a forward path from s0 to u and V is a backward path from sG to v, all

solution paths including them can be written as UTV −1, where Z is a forward path from

u to v. Eckerle et al. [2017] proved that every DXBB-algorithm must expand at least one

state of every must-expand pair to ensure that no superior solution may exist. We refer to

a must-expand pair with at least one expanded state, as being expanded. E.g. pair (u, v) is

expanded if state u or state v is expanded.

The three conditions for must-expand pairs characterize a lower bound on all possible solu-

tion paths of the form UZV −1. Formula (1) and (2) from Definition 4 are complementary

conditions for either forward or backward unidirectional search. E.g. a solution plan includ-

ing state u cannot be shorter than the f -value of u. Formula (3) corresponds to the case

were V is complementary to U , thus no other states have to be expanded. In this case the

solution cost cannot be smaller than the sum of the cost of both paths individually. From

those three conditions we define a lower bound on C∗, lb, by the following formulas:

Related Work 14

lb(u, v) = max{fF (u), fB(v), gF (u) + gB(v)}

lb(u, v) ≤ C∗

Using this lower bound we can conclude that every DXBB algorithm must expand all must-

expand pairs (u, v), where lb(u, v) < C∗. It must not expand any pair with lb(u, v) > C∗.

And lastly, we cannot make any assumption on pairs where lb(u, v) = C∗. In theory, a

DXBB algorithm may expand a significant number of such pairs, which are not necessary

to prove the optimality of a found solution. But these expansions may be required to find a

solution in the first place. As we cannot make any assumptions about those state and given

that in search the number of those states are negligible [Chen et al., 2017], we do not include

them when discussing performance in this section. However, we will assess the impact of

these pairs in the practical experiments concerning bidirectional search in planning. By the

definition of must-expand pairs the question is raised on how to choose which state of each

pair should be expanded in order to be optimal. To answer this question, Chen et al. [2017]

introduced the must-expand graph.

A

B

C

D

E

F

1

1

2 2

1

1

g f left right f g

20

62

21

22

22

33

2 0

2 1

2 2

2 2

6 5

3 3

AF FB

BF EB

CF DB

DF CB

EF BB

FF AB

Figure 3.2: (Left) A simple problem instance. The initial state is
A and the goal is to reach state F . There are two possible solution
paths with one optimum. (Right) Depicted is the GMX of the problem
instance. The left partition of the graph includes all nodes expanded
in forward direction with their corresponding g- and f -value. Com-
plementary are the backward expanded nodes on the right partition.

Definition 5 (Must-Expand Graph GMX)

The must-expand graph GMX of a problem instance illustrates how the must-expand pairs

are entangled with each other. GMX is a undirected, unweighted bipartite graph defined as

follows: for each state in u ∈ G, where G is the associated state space of the problem

instance, there exists a vertex in each partition of the graph, uF for the left partition and

uB otherwise. Two vertices uF , vB ∈ GMX derived from state u and v, are connected by an

edge iff the state pair (u, v) is a must-expand pair, in particular lb(u, v) < C∗ holds.

By this definition, expanding the states included in a vertex cover of GMX is identical to

expanding all must-expand pairs. Thus, the minimal number of necessary state expansions

corresponds to the size of the minimal vertex cover of GMX . We refer to the minimal vertex

Related Work 15

cover of GMX by VC and the size of it by |VC|. By using |VC| as the minimal number of

necessary expansions, Shaham et al. [2017] were able to prove that the fMM-algorithm did

expand exactly |VC| states, provided the optimal meeting point p∗. Important to note is

that p∗ is not known in advance, therefore, fMM(p∗) is not classified as a DXBB-algorithm.

In conclusion, we defined an alternative way to describe the minimal number of state

expansions in bidirectional search. By illustrating the search as a bipartite graph, we can

deduce that finding the minimal vertex cover of said graph is identical with finding the

optimal states to expand for all must-expand pairs. For our work, this is especially important

as it directly inspired the design of the NBS algorithm.

3.2.1 Finding VC
In the last section we defined the bound |VC| and showed that it can be derived by finding the

minimal vertex cover of GMX . But even though the minimal vertex cover of a bipartite graph

can be computed by a polynomial algorithm with the complexity of O(E
√
V) [Hopcroft and

Karp, 1973]4, GMX itself may grow exponentially with the input size, as every new node may

be connected to every already existing node. Therefore, finding |VC| using GMX might not

be feasible. For this reason, Shaham et al. [2017] designed an improved algorithm, which

only uses the significant information from GMX without explicitly creating it, see Algorithm

2. The fundamental idea is to abstract GMX by combining nodes with equal g-value, thus

creating the abstract Graph Ĝ, and subsequently determining the weighted vertex cover

(WVC) by brute force searching over the whole solution space. Using brute force gives the

impression that the algorithm cannot be efficient and is rather uninformed, but given a

number of constraints on the solution space, the search itself is of linear complexity. At last,

Shaham et al. showed that |WVC| of Ĝ is identical with |VC| of GMX .

Algorithm computeWVC does compute |VC| efficiently, and it also provides us with i,

which was introduced in Section 3.1.2, and is essential for computing p∗. To understand

the significance of this algorithm and the meaning of i, we first have to establish Ĝ and by

extend GF (i). The following definitions are derived from Shaham et al. [2017].

Definition 6 (G-Value Group Sets)

Abstracting from GMX , we define the sets GF (i) and GB(j) where GF (i) is the set of all

states s ∈ GMX with gF (s) = i. Likewise, GB(j) includes all states with gB(s) = j.

Given that all states in GF (i) are derived from GMX we can deduce a number of properties.

First, all s ∈ GF (i) have fF < C∗, vice versa for states in GB(j). This follows directly from

how GMX is derived, see Definition 5. As a result, a state-pair (u, v) where u ∈ GF (i) and

v ∈ GB(j) is a must-expand pair iff i+ j < C∗ holds. As all states in GF (i) have the same

i, we can infer that if there exists a pair (u, v) that is a must-expand pair, then all possible

pairs created from the same g-value group sets are must-expand pairs as well. Such group

pairs are called must-expand group pairs (abbreviated by MEGP). N(GF (i)) denotes the

number of states combined within GF (i). Using the definition of MEGP, we can define Ĝ.

4 The complexity of O(E
√
V) is derived from the bipartite graph, where E is the number of edges and V

the number of vertices.

Related Work 16

Algorithm 2 Calculate WVC [Shaham et al., 2017]

1: procedure CalculateWVC(Ĝ,C∗)
2: Run A* and find all N(GF (i)) and N(GB(j))
3: i = 0
4: j = dual(i)
5: WV C =

∑
y<j N(GBy)

6: minWV C = WV C
7: while i < C∗ do
8: WV C = WV C +N(GF (i))−N(GB(j))
9: i+ +, j + +

10: if WV C < minWV C then
11: minWV C = WV C
12: end if
13: end while
14: return (minWV C)
15: end procedure

Definition 7 (Must-expand Groups Graph Ĝ)

Ĝ is an abstraction of GMX , where the different nodes of GMX are grouped by their g-value.

Ĝ is a bipartite graph defined as follows: Ĝ = ((VF , VB), E), where

• VF are the vertices of one partition of Ĝ. Each node vF ∈ VF has a corresponding

non empty GF (i) set, where i defines the associated g-value and the associated weight

w ∈ R+
0 is given by N(GF (i)). Consequently, this g-value defines which states are

congregated into a specific node and the weight indicates how many states exist with

this particular g-value.

• VB are the vertices of the other Ĝ-partition. They are abstracted in the same fashion

as VF with the difference that for VF only forward expanded states are considered and

for VB only the backward expanded ones.

• E are the edges connecting the partitions. There exists an edge e(vF , vB) where vF ∈
VF and vB ∈ VB iff the corresponding GF (i) and GB(j) are MEPG.

To use Ĝ as a substitute for GMX , Shaham et al. [2017] proofed that instead of computing

the minimal vertex cover (VC) of GMX , it is equivalent to use the abstraction Ĝ and find the

minimal weighted vertex cover (WVC). It is important to note that WVC can be computed

more efficiently than VC, as there is no need to compute the must-expand graph GMX .

Definition 8 (Lowest Upper Bound i)

Let i be such that gF is the minimal value, given gF (i) ∈ WV C. Then all gF (i) with i < i

are elements of WVC as well. Analogously, let j be such that gB is the minimal value, given

gB(j) ∈ WV C. Furthermore, j = dual(i), where dual returns the minimal j value given

input i, where i+ j ≥ C∗ holds.

Those two bounds, i and j, enable us to find WVC efficiently. For each i value, there exists

exactly one j value. Furthermore, i is lower bound by 0 and upper bound by C∗. Therefore,

to find i, we can iterate from 0 to C∗ and compare each resulting WVC candidate.

Related Work 17

The algorithm computeWVC, shown in Algorithm 2, combines the theory presented in this

section to compute WVC and i. To give an overview and more insight, we shortly explain

the algorithm. At the start, A* is run in forward and backward direction, thereby computing

C∗ and the must-expand pair groups which build Ĝ. Then, the algorithm iterates over all

possible values for i and computes the size of the corresponding weighted vertex cover for

each. At the end, the vertex cover with the minimal weight is returned. A step-by-step

example of the algorithm and the associated theory is shown in Appendix A.1. With this,

we introduced all the necessary theory to fully understand the following section in which we

present the NBS algorithm.

3.3 Near-Optimal Front-to-End Bidirectional Search Algorithm (NBS)
In this section, we want to thoroughly introduce the algorithm which this thesis is focused

on. NBS is a front-to-end bidirectional search algorithm introduced by Chen et al. [2017].

They designed the algorithm as a follow up to the previous paper of Eckerle et al. [2017],

which established the necessary theory. The following paragraph recapitulates the previously

introduced theoretical insights by highlighting their relation with the NBS algorithm.

Background Chen et al. use the notation of ”surely expanded” (s.e.) which describes a

state in unidirectional heuristic search whose f -value is smaller than the optimal solutions

cost, thus, it needs to be expanded in order to find the optimal solution [Dechter and Pearl,

1985]. In combination with the sufficient conditions for node expansions given by Eckerle

et al. [2017], they define must-expand pairs as a two-tuple, where either the first must be

expanded in forward direction, or the second in backward direction. By expanding all must-

expand pairs it can be shown that a given solution is optimal. The Must-Expand Graph GMX

is designed to depict the relationship of must-expand pairs. GMX is a bipartite graph, with

forward expanded nodes on the left side and backward expanded nodes on the right side.

Those nodes are joined by an edge iff they are must-expand pairs. They further prove that

the minimal vertex cover of GMX is equivalent to the minimal number of nodes that have to

be expanded by an admissible algorithm to be optimal, thus establishing the lower bound

|VC|. As computing GMX with the corresponding minimal vertex cover is more expensive

than solving the problem itself, they adapted a known minimal vertex cover algorithm

[Papadimitriou and Steiglitz, 1982] which approximates the optimal minimal vertex cover.

Resulting in the formulation of the Near-Optimal Bidirectional Heuristic Search algorithm

NBS.

The Algorithm In this paragraph we want to provide more technical insight in how the

NBS algorithm functions. However, we will not provide any proof or formal description of its

properties as they are already concisely and wholesomely written down in the paper by Chen

et al. [2017]. Moreover, the main influences for this algorithm are described in the previous

paragraph. Namely that the sufficient conditions for state expansions can be represented as

a minimum vertex cover of the Must-Expand Graph GMX . The bounded sub-optimality of

the NBS algorithm is a direct consequence of the algorithm used to find the minimum vertex

Related Work 18

cover. The approximation computes a cover by choosing edges randomly and including both

adjacent vertices. This is repeated until all edges have at least one adjacent vertex which is

included. Hence, at worst two times |VC| states will be expanded.

To discuss the algorithm in more depth we present high-level pseudocode in Algorithm

3. First, the open lists are initialized with the initial and goal state respectively. In the

while-loop two states u (forward expanded) and v (backward expanded) are chosen, where

lb(u, v) = max{fF (u), fB(v), cost(u)+cost(v)} is minimal. As a reminder, lb(u, v) is a lower

bound on the solution path cost UZV −1, where U is a forward path from s0 to u, V a

backward path from sG to v, and Z is a forward path from U|U | to V|V |. The states with

lowest lb-value express the minimal solution cost that can be found. In line 5 the algorithm

tests whether a previously found solution has a smaller cost than the new lowest lb-value.

If this is the case, then there exists no improved solution and consequently the previously

found solution must be optimal. If it is not the case, both states are expanded, which is in

accordance to the greedy approximation algorithm by Papadimitriou and Steiglitz [1982].

This loop is repeated until either a solution is proven to be optimal, or the problem is shown

to be unsolvable.

Algorithm 3 NBS [Sturtevant and Felner, 2018]

1: Put s0 in OpenF and sG in OpenB
2: while OpenF and OpenB are not empty do
3: Among u ∈ OpenF and v ∈ OpenB
4: Select the pair (u, v) with lowest lb(u, v)
5: if lb(u, v) ≥ cost(U) then
6: return U
7: end if
8: Expand both u and v
9: if new path from s0 to sG is found then

10: Update U if new path is better than previous
11: end if
12: end while

We summarize that, NBS exhibits three important properties. (1) As an admissible algo-

rithm, it is guaranteed to find the optimal solution or to show that no solution exists. (2)

It does not expand more states than twice the sufficient number. (3) There cannot exist a

DXBB-algorithm which has a better worst-case performance. Those properties define NBS

as a powerful search algorithm with promising application.

4
Planning with the NBS algorithm

The goal of this thesis is to inquire the applicability of the NBS algorithm in planning.

To that end, we implemented three different algorithms into the state-of-the-art planner

Fast-Downward: NBS, fMM, and computeWVC. In this section, we provide insight into

the practical implementation of the aforementioned algorithm and hypothesize about the

expected outcome.

4.1 Using Search in Planning
In Chapter 3 we introduced different bidirectional search algorithms. But for them to be

applicable in planning, they have to be slightly adjusted. In this section, we list the necessary

alterations in order for search to be applied in planning.

Reversing the State Space As defined in Chapter 2, a planning state space is a 6-tuple

T (Π) = 〈S, T, L, c, s0, sG〉, which is induced by the planning task Π. Whereas forward search

operates on the directly induced planning state space, backward search requires a reversed

state space.

Definition 9 (Reversed Planning State Space)

A reversed state space resulting from reversing the induced planning state space T (Π) is

defined as 6-tuple T ′(Π) = 〈S, T ′, L′, c′, s′0, s′G〉, where

• T ′ : S × A 7→ S is a finite set of reversed transitions, for all t′ ∈ T ′ there exists a

transition t ∈ T , which has the opposite effect.

• L′ : T ′ 7→ A is a label function defining from which action the reversed transition is

induced.

• c′ : T ′ 7→ R+
0 is the cost function.

• s′0 = sG is the finite set of initial states.

• s′G = s0 is the goal state.

Planning with the NBS algorithm 20

The reversed transition system enables the backward search to traverse the state space in

backward direction. But in contrast to the forward search, there may not be a single initial

state. Which raises the question whether the theoretical bounds of NBS and fMM still hold

in planning. To solve this problem, we introduce the primary initial state, which is contrived

to create the set s′0 when expanded. Hence, we call the set of initial goals in the backward

search s′0 as the secondary initial states. Given such a primary initial state, it is evident

that a problem with multiple initial states can be reduced to a problem with one additional

state, that functions as an artificial initial state. Before we discuss the problems going along

with secondary initial states, we present the driverlog domain.

4.1.1 Driverlog
To give insight into theoretical properties of bidirectional search in planning, we introduce

the driverlog domain, which serves as an example throughout this chapter. The driverlog

domain is a part of the official benchmark for the international planning competition (IPC).

It is a standard planning domain and includes drivers, trucks, packages, locations, paths,

and streets. The streets and paths connect different locations. Streets can only be used by

trucks and paths only by foot. A common problem in the driverlog domain has a solution

where at least one driver has to find his way to the closest truck, board the truck, load the

package, and then deliver the package at the right location. To accomplish the successful

delivery, the following actions are available:

• Load-truck loads the package into the truck if both share the same location.

• Unload-truck unloads the package transported by the truck, at the truck’s current

location.

• Board-truck puts the driver behind the steering wheel given both are at the same

location.

• Disembark-truck removes the driver from the truck and sets its location to the one of

the truck.

• Drive moves the truck and its current driver between locations connected by a street.

• Walk lets a driver walk between locations connected by a path, unless he is currently

driving a truck.

This example serves as a simple illustration on how a standard planning domain is struc-

tured. In the following explanations, we will use it as a foundation to give a more detailed

description and analysis of the encountered phenomenon.

4.1.2 Secondary Initial States Explosion
A planning task defines variable assignments as goal conditions. Those conditions define

which states are valid goal states. However, most often, they do not define a single state

but a set of states. All the states in the set share the property that they fulfil the goal

Planning with the NBS algorithm 21

conditions while differing in the variables which are undefined by the goal conditions. Each

valid assignment combination of the undefined variables is a possible goal state. Hence, in

backward search they are included in the set of secondary initial states. As all possible

combinations have to be included, it is evident that the number of secondary initial states

grows exponentially depending on the number and domain size of the undefined variables in

the goal conditions. For example, if the goal conditions only dictate that the package must

be delivered to a certain location, then it is unknown where the truck is located. Likewise,

the position of the driver is unknown as well. Consequently, the secondary initial states

include all states where the package is at the defined position and the truck and driver

assume any valid position.

The number of secondary initial states is critical for the performance of bidirectional search

and can be compared to a high branching factor. As expected, a high number of secondary

initial states can reduce the performance of the backward search significantly. And similarly

to a high branching factor in forward search, the problem is alleviated by using heuristics to

select promising states. Furthermore, the number of secondary initial states is bounded by

the number of undefined variables in the goal conditions. In the experiments, Chapter 5, we

present which domains and problems display a high number of secondary initial states and

how it affects the NBS algorithm. For the moment, it suffices to say, that in practice various

cases occur and heuristics partially enable search to overcome the problems. However, as

we show in the following worst-best case analysis, in theory no detailed assumption can be

made regarding the impact of many secondary initial states.

p1
p2

A B C

p2 at A

p2 at B

p2 at C

p1 at A p1 at B p1 at C

Figure 4.1: The walker problem with its corresponding state space.

Consider a planning problem of the introduced driverlog domain. The specific problem

includes two drivers and three locations. Driver d1 and d2 are initially at location A. The

goal is for driver d1 to reach location C, which is connected to A by B. Whereas the position

of driver d2 is irrelevant. The described problem and the corresponding state space is shown

in Figure 4.1 and can be interpreted as driver d1 walking to his truck. As can be seen in

the Figure, the problem has three possible goal states. Those states are equivalent with

the secondary initial states of the backward search. In Figure 4.2 the exploration of the

search space is depicted with different search directions and heuristics. (1) Forward search

Planning with the NBS algorithm 22

with a pattern database heuristic5 (PDB) of size 1. (2) Bidirectional search with the same

heuristic. (3) Bidirectional search with a PDB heuristic of size 2, which corresponds to

the perfect heuristic in this instance, as there are only two variables present in total. The

three depictions illustrate how different heuristic can influence the impact of the number

of secondary initial states, by shaping the exploration of the search space. In the second

example, the bidirectional search starts a backward search originating from each secondary

initial state, these searches can be viewed as independent, at least in this example, as

they run parallel to each other without intersecting. Showing that in a worst case, the

secondary initial states may make the backward search more expensive for each additional

state. Depending on the structure of the transition system, this effect might be amplified

or weakened. In the worst case, a parallel chain of actions may open up a new part of

the state space, which might appear to be more promising than the real solution. On the

other hand, it might also be possible, that all secondary initial states directly lead back to a

common state. For instance, in the previously introduced transportation example, the trucks

might be positioned anywhere, however, as the package is at a specific place, the truck must

always drive there first. Therefore, the solution path of all inferior secondary states lead

through previously expanded states. The third example illustrates how a stronger heuristic

can alleviate the problem successfully as it enables the algorithm to recognize suboptimal

states. Showing that the accuracy of the applied heuristic is critical.

gF = 0
hF = 2
fF = 2

g = 1
h = 1
f = 2

gB = 0
hB = 2
fB = 2

gB = 2
hB = 0
fF = 2

gB = 1
hB = 1
fB = 2

gB = 0
hB = 2
fB = 2

gF = 0
hF = 2
fF = 2

g = 1
h = 1
f = 2

gB = 0
hB = 2
fB = 2

gB = 2
hB = 0
fF = 2

gB = 1
hB = 1
fB = 2

gB = 0
hB = 2
fB = 2

gB = 2
hB = 0
fB = 2

gB = 1
hB = 1
fB = 2

gB = 0
hB = 2
fB = 2

gF = 0
hF = 2
fF = 2

g = 1
h = 1
f = 2

gB = 0
hB = 2
fB = 2

gB = 0
hB = 3
fB = 3

gB = 0
hB = 4
fB = 4

Figure 4.2: The search space of the walker problem for (1) forward
search, (2) bidirectional search with PDB size 1, and (3) bidirectional
search with PDB size 2. The color of the arrow denotes whether the
indicated state is expanded in forward (blue) or backward (green)
direction.

4.1.3 Using Heuristics
The last missing components for bidirectional search are heuristics. In this case, a front-to-

end forward and backward heuristic. As the search is conducted in both directions simulta-

5 Pattern Database Heuristics [Edelkamp, 2001] estimate the goal distance by solving an abstracted prob-
lem, which is a partial depiction of the original problem limited on the variables defined in the pattern.
The size of the PDB determines how accurate and thus complicated the abstract depiction is. A PDB
where the pattern include all variables solves the full problem to get an heuristic estimate, hence is
equivalent with h∗

Planning with the NBS algorithm 23

neously, there are some constraints on which heuristics are usable. Defined in the paper by

Chen et al. [2017], the NBS algorithm expands at most twice the number of must-expand

pairs. But only if the applied heuristics are admissible and consistent. Furthermore, we

limit the scope of this thesis to always use the same forward as backward heuristics. In

practice, it is possible that one heuristic is either more favourable, or only available for a

certain direction. It is worth mentioning, that the heuristic quality of the same heuristic

can differ between the directions, which has a direct influence on the performance of the

corresponding search. Given the mentioned constraints and the choice to run the algorithm

in Fast-Downward, we choose to apply the following heuristics.

• Blind heuristic (h1) gives a estimate solely based on whether the state is a goal state

or not. Using blind heuristic is equal to an uninformed brute force search and is used

primarily to give a baseline to compare against.

• Max heuristic (hmax) [Bonet and Geffner, 2001] abstracts the problem by removing

delete effects from all occurring actions, thereby creating the delete relaxation of the

problem. Solving the delete relaxation of the problem returns an admissible heuristic.

The max heuristic is not the most informative heuristic, but it is efficiently computable.

• Critical path heuristic (hm) [Haslum and Geffner, 2000] is a generalization of hmax.

In particular, hm with m = 1 is equivalent with hmax. Both heuristic estimate the

heuristic value with the precision depending on the factor m. hm=2 considers more

information, which makes hm=2 a stronger heuristic but also more expensive to com-

pute. We use hm with m = 2, as it improves the estimate regarding hmax, but is still

computable in a timely manner.

• Landmark-Cut heuristic (hlmcut) [Helmert and Domshlak, 2009] is an inconsistent but

very strong heuristic. To get a contrast to the other heuristics, we want to test the

performance of NBS with a sophisticated and strong heuristic even tough we lose the

bound on the number of guaranteed expansions.

• Heuristics not included in this list are either inadmissible, inconsistent, not imple-

mented in Fast-Downward, not compatible with our implementation, or inferior to the

chosen heuristics.

Outside of the field of planning, bidirectional search is well-researched with various reasoning

justifying its performance. Most recently, Barker and Korf [2015] deduced that bidirectional

heuristic search is never the optimal option to solve a given problem. Either unidirectional

heuristic search, or bidirectional brute force search outperforms bidirectional heuristic search

in all but a few special cases. Barker and Korf categorized problems on the distribution

of states in the state space. For instance, a problem where more than half the states

have a g-value higher than half the optimal cost, is very suited for unidirectional heuristic

search. However, it is important to note that those characteristics only apply to the MM-

algorithm. To derive similar properties, we run the experiment with various algorithms.

Only considering the heuristics, we expect that bidirectional search has a clear advantage

Planning with the NBS algorithm 24

if the available heuristic is weak. On the other hand, we expect A* to be more efficient if

paired with a strong heuristic.

With this we conclude the theoretical discussion of bidirectional search in planning and

continue with the practical approach we have taken, the problems that occurred, and the

resulting properties.

4.2 Implementation Details
The preceding sections discuss the theoretical details of implementing bidirectional search

in planning. In this section, we explain how the NBS, fMM, and computeWVC algorithms

are implemented in or using Fast-Downward. The focus thereby lies on describing imple-

mentation details and clarifying ambiguities to enable reconstruction.

We implemented both the NBS algorithm and fMM into the state-of-the-art planner Fast-

Downward introduced by Helmert [2006]. The planner is open-sourced, written in C++, and

provides a framework for researcher to implement their algorithms or heuristics as plug-ins.

The planning algorithm we implemented is composed of a monitor class, which controls a

search with their respective search task for each direction. The conversion from forward to

backward direction is encapsulated in our implementation of the BackwardTask, which

is used by NBS as well as fMM. For the computeWVC-algorithm, we created a python

script which starts by running two instances of Fast-Downward to gather the size of all

must-expand group pairs, and then processes the gained information to compute the desired

solution.

4.2.1 Searching Backward
Preceding this section, we defined that bidirectional search traverses the state space. How-

ever, in practice it is rarely feasible to build the entire state space. Leading to a practical

implementation of search as written in Section 2.2.4. Commonly, the search successively

explores the state space guided by heuristics. Which means that the full state space is never

created, and as a result it is not possible to invert it as described in Section 4.1. In practice,

we invert the planning task and search in backward direction in the same fashion as forward.

A planning task is a 4-tuple Π = 〈V,A, I,G〉 consisting of state variables, actions, initial

state, and goal conditions. For an algorithm like A*, this information is sufficient to create

the initial state and expand the search space in the direction of the goal. However, in the

case of bidirectional search, an additional backward search has to be conducted originating

from the goal. Our approach to solving this problem, is to derive the backward task from

the original task, thereby changing the backward search to a simple forward search on a

reshaped task. We will now define how this conversion works.

Reverse Actions To create the backward task, all the available actions have to be re-

versed. The reversed action a′ to s1 = s0[[a]] is constructed such that s0 = s1[[a′]]. To ensure

this behaviour, we consider following cases. We differentiate between variables appearing

either in the (1) precondition, (2) effect, (3) or both.

Planning with the NBS algorithm 25

• (1) Variables mentioned in only the precondition have the same value in state s0 and

s1. Therefore, it suffices to keep them as preconditions.

• (2) Variables which are not mentioned in the preconditions but in the effect are prob-

lematic to handle, as the assignment of those variables are unknown for the predecessor

state s0. Therefore, we must construct an action for every possible variable assignment

as effect, all having the original variable assignment as precondition.

• (3) Variables which appear in the precondition and effect can simply be reversed by

switching the assignments.

Primary Initial State By reversing all actions, the backward algorithm is enabled to

successfully traverse the problem backwards. But, it is not yet known from where to start

and where to end. For that we have to define the initial state and goal conditions. Defining

the backward goal conditions is simple, as it is equivalent with the forward initial state. But

defining the backward initial state is more complex, as the explicit goal state is not known a

priori. We implement this by adding the primary initial state and the corresponding actions

to expand the secondary initial states.

Action Explosion When a forward action is reversed, it can occur that the number of

generated backward actions increases exponentially. In the case of an action which has

multiple effects without counterparts in the precondition, it is necessary to compute all

combinations of variable assignments. The number of reversed actions generated from for-

ward action a amounts to the product of the domain sizes of the variables only present in

eff (a). For instance, consider the previous example, but supplemented with an additional

action drive-depot and location depot. The described action moves a specified truck from any

position to the depot. Reversing the drive-depot action requires to create a backward action

for each possible prior location. Creating the backward task may result in an exponential

growth of actions. However, as we show in our experiments, they rarely exceed twice the

number of forward actions and are often equivalent.

Illegal States We discussed how the reversing of actions and the use of goal conditions to

derive the secondary initial states can increase the total amount of actions in the backward

task. So far we did not analyse whether the thereby generated states will be reachable or

legal. In this paragraph, we investigate the nature of the generated states.

We differentiate between three different kinds of states. First, legal states have valid

combinations of variable assignments and are included in the forward search state space.

Second, unreachable states do not violate any logical constraints on the task, however, are

unreachable by the forward search. For instance, the previous example could include two

disjoint streets groups. On each group, one truck is available. It would be impossible for

one truck to switch groups, as they are not connected, yet, it would be legal for a truck

to be located in any city, even though the particular city is not reachable from the initial

state. Third, every task has a number of mutually exclusive variable assignments (mutexes).

Planning with the NBS algorithm 26

Although, we use the provided ones from Fast-Downward as constraints, the given list is

not exhaustive, thus, it can occur that states are created which violate implicit mutexes.

In our implementation of bidirectional search, we mostly neglect illegal or unreachable

states, albeit that they have an impact on performance. The dilemma stems from the

individuality of the problem for each domain. Every domain displays a different behaviour

regarding illegal states. As a consequence, it is difficult to devise a general solution. One

approach we take is to not create actions which violate a known mutex in their effect. This

already reduces the problem significantly. Another option, would be to close generated

states, if they violate any mutex. However, in practice it was apparent that this procedure

does not pay off as it increases the runtime significantly without equal compensation6. A

different approach would be to preprocess the problem more thoroughly to either capture

all mutexes, or only create reverse actions for the cases that actually occur in forward

direction. This could be tried by generating the search space of the relaxed search, or using

the transition normal form (TNF) of the problem task to remove all ambiguity. A SAS+

task is in TNF if

• all actions list the same variables in the precondition and effect (∀a ∈ A, vars(pre(a)) =

vars(eff (a))), and

• the goal conditions defines a single state (vars(G) = V).

As mentioned, those are concepts to solve the problem of illegal states, however, they were

not implemented. We limit ourselves to evaluate bidirectional search in planning without

applying exhaustive optimization options.

In conclusion, we discussed how the NBS algorithm introduced in Chapter 3 can be ap-

plied to planning. We identified that the main problematic results from an ambiguity in the

planning task, which can lead to numerous secondary initial states. The additional effort

resulting from those states is inherent to bidirectional search with explicit-state represen-

tation. While a symbolic state representation would not have to deal with this particular

problem, it would have its own drawbacks. For instance, expanding a symbolic state is much

more expensive than an expanding an explicit state.

In the next section, we present the conducted experiments which are designed to evaluate

the claims proposed in this section. First, in order to test the performance of NBS we

compare how efficient it solves problems compared with A*. Second, we investigate whether

there are any measurable causal relations between the performance of NBS and the innate

structure of the problem, which we assess with the help of fMM and computeWVC.

6 Only in the depot domain states were closed by this method, but searching for them, takes up to a third
of the whole run time in every domain.

5
Experiments and Evaluation

This chapter includes the setup, the execution, and the evaluation of the conducted exper-

iments. The overarching goal of the experiments is to inquire the applicability of bidirec-

tional search with explicit-state representation in planning. To achieve this, we first run our

implementation of NBS over a set of problems and monitor the difference in performance

depending on the problem instance and applied heuristic. Secondly, we run fMM and com-

puteWVC over the same set of problems in order to find relations between the performance

of NBS, the performance of fMM with different input argument, and p∗.

5.1 Environment
Before we discuss the two individual experiments, we specify the environment and setup

which is shared by both. We use the state-of-the-art planning system Fast-Downward

[Helmert, 2006] to run our implementation of NBS and fMM and combine them with various

heuristics. To enable experiments with a reasonable scope, we utilize the scientific comput-

ing core facility at the University of Basel (sciCore7), which consists of a cluster of Intel

Xeon E5-2660 processors running CentOS 6.5 at 2.2 GHz. The custom benchmark we use is

a modified version of the most recent international planning competition (IPC) benchmark,

which filters out all domains which are either designed for satisfying planning, including

axioms, or using conditional operators.

5.2 Running NBS

In the first experiment, we run the NBS algorithm on our custom benchmark with various

heuristics. Each run has a time limit of 30 minutes and a memory limit of 3.5 GB. For every

problem in the benchmark, we run a total of 8 combinations of algorithms and heuristic.

A* and NBS paired with either the blind, max, critical path, or landmark-cut heuristic.

Allowing us to not only measure the performance of NBS, but also giving a comparison to

A*, an unidirectional forward search. We focus on the following aspects during the ensuing

7 http://scicore.unibas.ch

Experiments and Evaluation 28

experiment.

• Measuring the number of additional actions in the backward task relative to its original

number and evaluating the difference it makes in practice.

• Analysing the number of secondary initial states and its impact on the performance

of NBS.

• Evaluating the performance of NBS and A* in regards to the applied heuristic.

• Determining whether the bounded number of expansions guaranteed by NBS is a good

measure for the overall performance of NBS, or if a non-negligible portion of the ex-

pansions are persisting in the last search layer.

5.2.1 Results and Evaluation
The condensed results of the first experiment are shown in Table 5.1. It lists all the included

domains and displays three different values for each applied heuristics. First, the number of

problems which were solved by running A*, limited by the constraints listed in Section 5.1.

Second, the number of solved problems by NBS. And third, the number of problems where

NBS expanded less states than A*. More detailed and extended results can be found in the

Appendix B.1.

The most important aspect visible in Table 5.1 is that there are many problem instances

for which NBS expands less states than A* and some instances have only been solved by

the NBS algorithm. This shows that NBS is not only applicable to planning, but is able

to compete in practice with a well performing algorithm like A*. However, NBS does not

consistently outperform A* or vice versa. There are different factors which influence the

performance of either algorithm. In the following paragraphs we exemplify how the NBS

algorithm performs in detail. We will conclude the NBS experiment by establishing how

frequent and thus significant the described factors are.

Performance of NBS Before going into the result, we reiterate the advantages of bidi-

rectional search in comparison with unidirectional search. The fundamental idea is that the

search space grows exponentially with the search depth, thus bidirectional search should

reduce the growth significantly as each conducted search only reaches half as deep. Leaving

heuristics aside for the moment, it is evident from the results depicted in Table 5.1 that

bidirectional search is indeed advantegous in certain cases. NBS achieves to solve more

problem instances compared to A* in 9 domains and an equal number of problem instances

in an additional 5 domains. The consequently arising question of these findings is: why

does the NBS algorithm not strictly outperform A*? We argue that an important factor

for the performance of either algorithm is structure of the induced state space. It defines

the branching factor in forward and backward direction, dictating whether one algorithm is

fundamentally more efficient than the other. Thereby included are the number of secondary

initial states which are defined by the specific problem instance.

Experiments and Evaluation 29

Domain Solved A* (#) Solved NBS (#) NBS < A* (#)

h1 hmax hm hlmcut h1 hmax hm hlmcut h1 hmax hm hlmcut

blocks 18 21 10 28 27 27 13 31 18 21 5 15

depot 4 6 2 7 3 2 1 2 0 1 0 0

driverlog 7 9 2 14 10 10 3 12 6 8 0 1

elevators-opt08-strips 14 19 0 22 12 13 0 11 8 5 0 0

elevators-opt11-strips 12 16 0 18 10 11 0 8 7 5 0 0

floortile-opt11-strips 2 6 0 7 10 12 0 10 2 6 0 5

ged-opt14-strips 15 15 5 15 19 20 5 19 10 10 0 10

gripper 8 8 3 7 7 7 3 7 7 6 1 4

hiking-opt14-strips 11 12 2 9 10 10 1 6 3 0 0 0

logistics00 10 12 6 20 13 13 6 20 10 8 0 0

miconic 55 55 30 141 50 50 26 53 31 21 0 0

nomystery-opt11-strips 8 9 6 14 10 10 5 14 8 4 0 0

openstacks-opt08-strips 22 22 5 21 12 11 3 8 0 4 2 3

openstacks-strips 7 7 5 7 5 5 0 5 0 5 0 0

pegsol-08-strips 27 28 9 28 28 28 8 28 20 14 0 10

pegsol-opt11-strips 17 18 1 18 18 18 1 18 14 11 0 9

psr-small 49 49 40 49 42 42 29 40 0 11 10 7

rovers 6 6 4 8 4 5 4 4 0 0 0 0

satellite 6 6 3 7 4 4 2 4 2 1 0 0

scanalyzer-08-strips 12 9 3 16 12 9 3 11 12 6 0 3

scanalyzer-opt11-strips 9 6 1 12 9 6 1 8 9 5 0 3

storage 14 15 7 15 5 5 2 4 0 0 0 0

termes-opt18-strips 10 10 0 6 13 13 0 8 10 10 0 6

tpp 6 6 5 7 4 4 4 4 0 0 0 0

transport-opt08-strips 11 11 6 11 11 11 5 11 5 0 0 0

transport-opt11-strips 6 6 1 6 6 7 0 6 5 0 0 0

transport-opt14-strips 7 7 1 6 6 6 0 5 5 1 0 0

trucks-strips 6 10 2 10 4 6 2 6 0 0 0 0

zenotravel 8 8 5 13 8 8 4 9 7 2 0 0

Table 5.1: A concise overview of all NBS runs on the custom bench-
mark. Focusing on the number of solved problems per domain for
each algorithm and the comparison between the number of expan-
sions by NBS and A*.

Secondary Initial States The number of secondary initial states is one of the main

parameters to estimate the performance of NBS. For example, we analyse the depot domain

solved using blind heuristic. In the first problem, there are more secondary initial states

than expansions by A*. By the design of NBS, it is assured that both search direction always

expand the same number of states, with a maximal deviation of ±1. Thus, if NBS expands

more than twice the number of states than A*, it is probable that the NBS algorithm only

makes progress with the forward search but unnecessarily expands the same number of states

in backward direction. Contrariwise, the problems in the elevator domain have thousands of

secondary initial states, still NBS outperforms A*, because the amount of secondary initial

states is not significant compared to the number of expansions. Both examples are shown

in Table 5.2.

Experiments and Evaluation 30

Problem Ex.: A* (#) Ex.: NBS (#) Secondary Initial States (#)

depot:p01 400 807 9216

elevators:p01 158′861 94′702 8820

Table 5.2: The table includes a small sample of the experiment data.
Two specified problems and the number of expansions by A* and
NBS using blind heuristic and additionally the number of secondary
initial states are illustrated.

A second factor alleviating the problem of too many secondary initial states is the use

of heuristics. The additional information enables the algorithm to discard secondary initial

states, given that they are distinguishable from the desired states. This is similar to the

known problem of an high branching factor. In particular, NBS expands state pairs where

the lb-value is smaller than C∗, therefore, the applied heuristic must increase the lower

bound estimate high enough to be make previous must-expand pairs distinguishable from

real ones. By the same token, using the information added from the heuristics decreases the

number of must-expand state pairs. As discussed in Section 4.2.1, in theory we cannot claim

any certain magnitude of improvement when using heuristics, but in practice, the effect is

clearly visible. Going back to the example of the depot problem instance. Using hmax

instead of h1 reduces the number of expansion by NBS significantly. As a result, A* does

not expand half as many states as NBS any more, which shows that the backward search

contributes to finding the solution.8 This effect can be seen in Table 5.3.

Problem Ex.: A* (#) Ex.: NBS (#) Secondary Initial States (#)

h1 hmax h1 hmax

depot:p01 400 140 807 222 9216

depot:p02 15′463 3781 24′087 2065 147′456

Table 5.3: A small sample of the experiment data. Two examplary
problems of the depot domain solved by A* and NBS using h1 and
hmax.

Using Heuristics The effect of heuristics on the search behaviour varies drastically be-

tween different problems and heuristic accuracies. A key attribute of NBS is that it expands

all must-expand pairs. Heuristics complement NBS by reducing the number of must-expand

pairs. This is achieved by raising the lower bound estimate of certain states, thus making it

possible to discern must-expand states with more accuracy. Therefore, to prove optimality,

less states must be expanded. In practice, the use of heuristics reduces the number of ex-

panded states as expected. But interestingly enough, it influences A* rarely different than

8 The assumption that backward search influences the search when NBS expands less than two times the
expansions as A* is justified by the reasoning that a single search of the NBS algorithm has a suboptimal
tie-breaking compared to A*. Because given same f -value, A* knows it should expand states with the
highest g-value, whereas in NBS it is unclear as the search aims for the goal but needs to meet the frontiers.

Experiments and Evaluation 31

NBS. Showing that heuristics behave similarly in both searches and therefore that heuris-

tics are not an important factor to define the general performance of bidirectional search.

Which does not imply that heuristics have no influence on bidirectional search, only that

they improve the search regardless of the algorithm, hence heuristic and algorithms can be

analysed independently. This claim is supported by the data we gathered in the experiment,

to exemplify this, we present the first 9 problems of the blocks domain in Table 5.4. The

heuristic improves the search significantly, but there is no evident pattern in regards to the

used algorithm. The occurring influence is caused by the difference of the two underlying

transition systems, therefore their innate structure and not the applied algorithm.

Blocks Expansions (#)

Algo h1 hmax hm hlmcut

p4-0
A* 85 21 8 7

NBS 19 10 10 9

p4-1
A* 58 21 12 12

NBS 22 13 13 13

p4-2
A* 52 15 7 8

NBS 19 10 8 7

p5-0
A* 467 147 32 21

NBS 43 35 24 21

p5-1
A* 490 126 14 19

NBS 43 31 18 25

p5-2
A* 744 293 52 43

NBS 65 55 56 54

p6-0
A* 1794 263 24 17

NBS 55 41 22 16

p6-1
A* 3976 757 41 12

NBS 53 36 20 16

p6-2
A* 6526 2554 410 269

NBS 235 243 224 212

Table 5.4: We present the number of expansions by NBS and A* with
the indicated heuristics for the first 9 problems of the blocks domain.

Non-Essential Complexity A factor which has to be considered are complications due

to how the NBS algorithm is implemented in practice. The occurrence of illegal states is

discussed in Section 4.2.1. In accordance to the definition of Brooks [1987], we categorize

the presence of illegal states as non-essential complexity. By that we emphasize that they

exist in practice, but theoretically are not essential to the problem. To make an example,

Experiments and Evaluation 32

we reintroduce the driverlog domain on which we illustrate this phenomenon on two actions.

To drive a truck, a driver must first board a truck and afterwards he must disembark from

it. In the problem file, those two actions are defined as follows. In order to board the

truck, both entities have to be at the same location, and the truck must not be driven by

another driver. Resulting in the driver being located within the truck, and the truck being

marked as driven. Meanwhile, embarking from the truck, only checks whether the driver is

located within the truck, and consequently sets his location to the same as the truck and

the truck is marked as without driver. Hidden in this formulation, is that the truck does not

have to be driven in order to embark from it. In forward search, this case is not reachable,

hence it is not covered in the definition. However, when creating the backward actions, it

is of vital importance to know that. It is evident that to provide the optimal conditions for

bidirectional search, it is not sufficient to use the problem descriptions provided in the IPC

benchmark as-is.

There are is one major factor, mitigating the impact of the non-essential complexity.

Illegal states are always dead ends. For instance, in the previous example, if we apply the

disembark action backwards without setting the truck as driven, the enter action is never

applicable. What this means is that we cannot return to legal states from illegal ones.

Because if we have a reversed action leading from an illegal state to a legal one, that would

mean that the corresponding forward action is applicable in the legal state. Hence, the

assumed illegal state is in fact legal, which contradicts the assumption. Given that from an

illegal state we cannot reach any legal state, we can infer that safe heuristics will always

recognize illegal states as dead ends. Thus, they have a minimal impact when they are

generated, but they themself will never be expanded.

Presuming that illegal states are not the most impactful factor regarding the performance

of NBS, we did not implement any sophisticated improvements, except of the aforementioned

discarding of states which violate mutexes. This presumption is justified by the number

of reverse actions that are created, which are shown in Table 5.5. In only two domains

they reach over twice the original number. For most domains they stay constant for every

problems. A correlation between additional actions and performance is also not apparent.

Regardless, possible ways to reduce the number of illegal states include deriving a more

thorough set of mutexes, creating the backward task manually, or using transition normal

form to remove the ambiguity of actions.

Bounded Worst Case Having discussed multiple components influencing the perfor-

mance of NBS in planning, the questions arises whether the bounded number of expansions

is still valid and informative. To reiterate, the claim is that the NBS expands at most 2 · |VC|
in the f -layers preceding the last layer, which is an interesting bound because the expansions

in the last layer are negligible in search [Chen et al., 2017]. Unlike in search, in planning

the backward search is in practice not a mirrored search but a different one. This means

that the bound is still valid, but is more loosely related to the number of expansions done

by an exclusive forward search. Which raises the question whether the number of expan-

sions in the last layer are still negligible. As can be seen in Table 5.6, in our experiments,

Experiments and Evaluation 33

Domain min. avg. max. N

blocks 1.0 1.0 1.0 31

depot 1.0 1.0 1.0 2

driverlog 1.0 1.0 1.0 12

elevators-opt08-strips 1.0 1.0 1.0 11

elevators-opt11-strips 1.0 1.0 1.0 8

floortile-opt11-strips 1.0 1.0 1.0 10

ged-opt14-strips 1.0 1.0 1.0 19

gripper 1.0 1.0 1.0 7

hiking-opt14-strips 1.0 1.0 1.0 6

logistics00 1.0 1.0 1.0 20

miconic 1.0 1.1 1.5 53

nomystery-opt11-strips 1.0 1.0 1.0 14

openstacks-opt08-strips 1.0 1.0 1.0 8

openstacks-strips 1.8 1.8 1.8 5

pegsol-08-strips 1.0 1.0 1.0 28

pegsol-opt11-strips 1.0 1.0 1.0 18

psr-small 1.9 2.3 2.7 40

rovers 1.3 1.4 1.4 4

satellite 1.1 1.2 1.2 4

scanalyzer-08-strips 1.1 1.4 1.5 11

scanalyzer-opt11-strips 1.1 1.4 1.5 8

storage 1.9 2.2 2.5 4

termes-opt18-strips 1.0 1.0 1.0 8

tpp 1.0 1.0 1.0 4

transport-opt08-strips 1.0 1.0 1.0 11

transport-opt11-strips 1.0 1.0 1.0 6

transport-opt14-strips 1.0 1.0 1.0 5

trucks-strips 1.0 1.0 1.0 6

zenotravel 1.0 1.0 1.0 9

Table 5.5: The number of actions existing in the backward task rel-
ative to the number of pre-existing actions in the forward task. We
list the minimal, average, and maximal number of actions for each
domain in the benchmark and additionaly we note the sample size as
N, which are the problems solved by both A* and NBS.

the number of expansions in the last layer sometimes overshadowed the previous ones by

multiple magnitudes. And although this phenomenon was rare, it nullifies the usefulness of

the bounded worst case as it does not always hold.

Experiments and Evaluation 34

Domain min. avg. max. N

blocks 0.6 0.9 1.0 27

depot 1.0 1.0 1.0 2

driverlog 0.2 0.9 1.0 10

elevators-opt08-strips 0.8 1.0 1.0 13

elevators-opt11-strips 0.9 1.0 1.0 11

floortile-opt11-strips 1.0 1.0 1.0 12

ged-opt14-strips 0.0 0.9 1.0 20

gripper 1.0 1.0 1.0 7

hiking-opt14-strips 0.7 1.0 1.0 10

logistics00 1.0 1.0 1.0 13

miconic 0.2 0.9 1.0 50

nomystery-opt11-strips 0.9 1.0 1.0 10

openstacks-opt08-strips 0.0 0.3 0.6 11

openstacks-strips 1.0 1.0 1.0 5

pegsol-08-strips 0.0 0.8 1.0 28

pegsol-opt11-strips 0.4 0.9 1.0 18

psr-small 0.4 1.0 1.0 42

rovers 0.5 0.7 1.0 5

satellite 1.0 1.0 1.0 4

scanalyzer-08-strips 1.0 1.0 1.0 9

scanalyzer-opt11-strips 1.0 1.0 1.0 6

storage 0.1 0.2 0.4 5

termes-opt18-strips 1.0 1.0 1.0 13

tpp 0.6 0.7 0.9 4

transport-opt08-strips 0.6 0.9 1.0 11

transport-opt11-strips 1.0 1.0 1.0 7

transport-opt14-strips 1.0 1.0 1.0 6

trucks-strips 1.0 1.0 1.0 6

zenotravel 0.4 0.8 1.0 8

Table 5.6: The table presents the relative number of expansions in
the layers preceding the last one compared to the expansions in the
last layer. A zero would imply that all expansions were within the
last layer, whereas a one would signify that the number of expansions
in the last layer were insignificant. The showed number were created
by running NBS with hmax.

5.2.2 Summary
The greatest advantage of bidirectional search is its potential reduction of expansions by

conducting two searches. Given the results of the experiments, it is evident that bidirectional

search can be very performant. But there are a few downsides to using it in planning, which

Experiments and Evaluation 35

have to be taken into account. The most influential parameter is the number of secondary

initial states. A problem which was expected and is inherently connected to the explicit-

state space representation. The benefit of it is a reduced complexity of how to expand states.

Hence, it is an act of balancing the benefits and drawbacks. Another smaller negative factor

is the non-essential complexity, which is added by how the problems are defined and the

algorithm is implemented. In conclusion, the performance of NBS depends on various factors

of which the innate structure of the problem instance itself has by far the biggest influence.

With this we mean to inquire the aptitude of problem tasks regarding the search direction.

To that end, we first investigate whether p∗ is a reliable measurement for the structure of

the transition system and second, we determine whether there is a causality between certain

p∗ values and the performance of NBS.

5.3 Running fMM

The objective of this experiment is to inquire the innate structure of the search space in

planning tasks, which in turn allows to choose a preferred search direction. We use the fMM

algorithm with different inputs to get an impression on how the number of expanded states

depends on where the two searches meet. Furthermore, we use the computeWVC algorithm

to get the exact value of p∗ for each problem. We then investigate how these different

parameters are connected. Taking these parts together, we give a convincing argument on

how to explain the performance of NBS.

The second experiments were run on the same benchmark as the first one. On each

problem we run 12 algorithms combined with the h1, hmax, hm, or hlmcut heuristic. The

computeWVC algorithm and eleven instances of fMM with the input parameter p evenly

distributed from 0 to 1. Each fMM run has the same time and memory constraints as NBS

before, namely a run time limit of 30 minutes and a memory limit of 3.5 GB. Allowing for a

comparison between experiments. The computeWVC has the same constraints, with the

exception that the conducted A* and reverse A* searches within each have a time limit of

thirty minutes. Although we run the different algorithms with multiple heuristics, we mostly

focus on the results from hmax, as it provides the biggest sample size of solved problems

and therefore is the most reliable source of information. We especially omit the results from

using hm heuristic, as the number of solved problems does not provide sufficient data to

enable a meaningful analysis.

5.3.1 Results and Evaluation
The results of this experiment are presented throughout this section in various snippets as

there is not enough space for the full volume. But to give an impression, we first list the

computed p∗ values for each domain, which results in a concise and informative overview,

shown in Table 5.7. Second, we present the different fMM runs in domain specific graphs

which summarize all different runs of the specific domain. Due to their number, more domain

specific fMM graphs using the hmax heuristic can be found in the Appendix B.2.

Before going into detail, we want to present an overview over the most important findings

Experiments and Evaluation 36

we obtained in these second experiments. First, our hypothesis that the innate structure

of a problem instance determines the efficiency of different search directions was validated.

Thereby, explaining the performance of NBS on different problems. Second, the distribution

of p∗ correlates within each domain, suggesting a direct causality. Provided this correlation,

it is possible to compute p∗ for a simple problem and infer the applicability of NBS, A*, and

reverse A* for the whole domain from it. Finally, we were able to confirm the assumptions

discussed in the previous experiments.

Innate Structure In the discussion about the NBS experiments9, we hypothesized that

the most influential factor for the performance of NBS is the innate structure of the problem.

Which would mean that the problem instance defines which search direction will be most

efficiently. To make a point in favour of our hypothesis we present an in depth example of

the logistics00 domain. Keep in mind, that although we only present instances of this single

domain, they are chosen to exemplify the general mechanism. The same aspects are evident

in other domains as well, as can be verified with the Figure B.2 in the the Appendix.

We start our explanation by introducing the logistics00 domain, a standard planning

domain where packages must be distributed to their defined destination. The available

transportation options include travelling by truck or plane. Each problem consists of a

description of where the trucks, planes, and packages are located initially. Furthermore, it

defines how the location are connected with each other and where the packages must be

delivered to. In Table 5.8 we list six problem instances of the logistics00 domain with four

corresponding values. First, the number of expansions by A* using hmax used to solve the

problem. Second, the same number but for the NBS algorithm. Third, the determined p∗ for

the particular instance. And at last, the meeting point of the two searches conducted with

the NBS algorithm. The number representing the meeting point denotes at which percentile

the frontiers met regarding their g-value.

Logistics00 Ex.: A* (#) Ex.: NBS (#) p∗ Meeting Point

problem 4-0 4885 4355 0.60 0.60

problem 4-1 4185 4223 0.63 0.58

problem 5-0 74′693 43′409 0.59 0.56

problem 5-1 6198 5387 0.65 0.59

problem 6-0 202′229 87′839 0.60 0.60

problem 6-1 3605 3951 0.64 0.57

Table 5.8: A small sample of experiment data, including the first
six problems of the logistics00 domain with the respective number of
expansion by NBS and A* when solved with hmax. Additionally, p∗

and as comparison the actual meeting point by NBS is shown as well.
The number of secondary initial states is 8 for all displayed instances.

The presented data shows that there is a correlation between p∗ and the meeting point.

9 Can be found in Subsection 5.2.2.

Experiments and Evaluation 37

Domain min. avg. max. st.dev. N

blocks 0.00 0.32 0.50 0.19 17

depot 0.53 0.77 1.00 0.23 2

driverlog 0.47 0.64 1.00 0.19 5

elevators-opt08-strips 1.00 1.00 1.00 0.00 1

floortile-opt11-strips 0.00 0.18 0.29 0.13 3

ged-opt14-strips 0.50 0.72 1.00 0.23 13

gripper 0.41 0.45 0.49 0.03 6

hiking-opt14-strips 1.00 1.00 1.00 0.00 6

logistics00 0.54 0.69 1.00 0.16 10

miconic 0.00 0.80 1.00 0.30 40

nomystery-opt11-strips 0.60 0.93 1.00 0.15 6

openstacks-opt08-strips 1.00 1.00 1.00 0.00 5

openstacks-strips 0.35 0.36 0.39 0.02 5

pegsol-08-strips 0.50 0.86 1.00 0.23 7

pegsol-opt11-strips 0.67 0.67 0.67 0.00 1

psr-small 0.43 0.87 1.00 0.19 41

rovers 1.00 1.00 1.00 0.00 4

satellite 0.69 0.86 1.00 0.14 4

scanalyzer-08-strips 0.45 0.74 1.00 0.26 6

scanalyzer-opt11-strips 0.45 0.64 1.00 0.26 3

storage 1.00 1.00 1.00 0.00 5

termes-opt18-strips 0.47 0.47 0.47 0.00 1

tpp 1.00 1.00 1.00 0.00 4

transport-opt08-strips 1.00 1.00 1.00 0.00 6

transport-opt11-strips 1.00 1.00 1.00 0.00 1

transport-opt14-strips 1.00 1.00 1.00 0.00 1

trucks-strips 1.00 1.00 1.00 0.00 2

zenotravel 0.00 0.77 1.00 0.37 6

Table 5.7: The minimum, average, maximum, standard deviation,
and sample size of p∗ for each domain in the benchmark. The last
column lists the sample size, e.g. the number of problems where
the computeWVC algorithm using hmax successfully computed p∗

whithin the time and memory constraints. Omitted in the list are
domains with a sample size of zero.

This makes intuitively sense, because p∗ is influenced by how efficient the forward and

backward searches are to enable fMM to be optimal when meeting at this point. Meanwhile,

in NBS the searches are not manually guided to meet at a certain depth, but are given the

same amount of expansions per search, hence it is logical that the search frontiers meet at

a similar position as p∗ suggests. In a reverse conclusion, we can surmise that p∗ provides

a rough estimation on where the search frontiers will meet in the NBS algorithm. Studying

Experiments and Evaluation 38

the number of expansion presented in Table 5.8, we infer that there appears to be no visible

correlation between the performance of A* and NBS in regards to p∗. To gain deeper insight

into the structure of the problem instances, we show the different number of expansion by

fMM with varying input p for the same problem instances in Figure 5.1. Analysing the first

two graphs for instance 4-0 and 4-1, it is evident that although p∗ is nearly equivalent, the

behaviour around the optimum is different. For instance, the number of expansions does

nearly reach 5000 in problem instance 4-0 with p close to 1. Whereas in instance 4-1, the

number of expansions is barely higher than 4000. This difference is clearly reflected in the

experiments with A* and NBS, where NBS performs similar in both instances but A* is

significantly less performant in instance 4-0.

Before drawing a conclusion, we discuss how the used algorithms are related to each other.

fMM with p = 1 is a generalized version of A*. However, as fMM is a bidirectional algorithm,

it cannot use the same tie-breaking rule as A*. In unidirectional search, it is obvious that

when choosing states to expand it is favourable to prefer states with the same f -value but

higher g-value, as they must be closer to a goal state. However, in bidirectional search, the

objective is not to reach the goal, but for the frontiers to intersect, therefore there is no

intuitively superior tie-breaking rule. As a result, A* expands only few more states than

|VC| when p∗ = 1. Whereas, fMM may expand arbitrarily many states in the last layer.

Because of this, we always present the number of expansion preceding the last layer, when

showing the fMM algorithms.

With the information from the previous paragraph in mind, we deduce that the per-

formance of different algorithms can be predicted and explained by the underlying innate

structure of the problem instance. The innate structure in turn can be inferred from the

number of expansions by fMM. Furthermore, the smoothness of the presented graphs, enables

the use of p∗ as a general measurement of the performance of fMM with different input. In

conclusion, p∗ gives a meaningful estimate of the performance of fMM, thus contains infor-

mation regarding the innate structure of a problem instance, and therefore can be used to

determine which search algorithm should be applied.

Similarities In the previous paragraph, we showed that the suitability regarding search

directions is determined by the innate structure a problem instance exhibits. And although

this is an interesting property, it cannot be used a priori, thus it is primarily usable as

an analysis tool. But interestingly enough, our experiments show that instances of the

same domain share similar structures. As can be seen in Table 5.7, each domain has at

least some bias for one search direction. Unfortunately for bidirectional search, the bias

most often favours unidirectional forward search. Which is an effect we attribute to the

number of secondary initial states. Generating those more meticulously could leverage

backward search and with it bidirectional efficiency. But even without such improvements,

domains like block, gripper, and so forth are already suited for bidirectional search and some

domains like floortile-opt11-strips show a clear aptitude for backward search. A few different

examples for the structure of the search space are shown in Figure 5.2 and moreover, we

discuss the reasoning behind similar structures in the next Section 5.3.2. Most importantly,

having a bias based on the domain is a very interesting property. As it enables us to gather

Experiments and Evaluation 39

Figure 5.1: The number of expanded states preceding the final f-
layer by fMM using hmax with equidistant distributed p values on the
problems 4-0, 4-1, 5-0, 5-1, 6-0, and 6-1. The color denotes from
which search each state is expanded. Orange for backward and blue
for forward direction.

information on how to solve a problem instance, based on other instances of the same

domain. Therefore, information about an expensive problem can be inferred from simpler

problem instances, which could be used as an a-priori tool to decide upon the algorithmic

approach.

Revisit NBS Experiment In the previous experiments about NBS we provided various

hypothesis to explain the behaviourism and results of NBS. (1) First, we argued that a high

number of secondary initial states impairs bidirectional search to the point where only the

forward search portion achieves significant progress. Unless, there is a heuristic which is able

to discern the promising states. (2) Second, we claimed that the number of secondary initial

states is the main parameter influencing the search. Thus, problems with many secondary

Experiments and Evaluation 40

(1) (2)

(3) (4)

Figure 5.2: The number of expanded states before the last layer by
the fMM algorithm using hmax with different input p. The illustrated
domains are (1) blocks, (2) driverlog, (3) floortile, and (4) gripper.

initial states have a p∗ shifted closer to 1. (3) Third, heuristics improve the search efficiency,

regardless of its direction. Therefore, heuristics should not favour a specific algorithm.

• (1) To show that heuristics are able to discern many secondary initial states and

therefore alleviate the problem with it, we presented the first two problem instances of

the depot domain in Figure 5.3. As is clearly evident, the hmax heuristic improves the

backward search very significantly, far below the number of secondary initial states

present in the problem instance.

• (2) Considering the previous example, we showed that the heuristic may alleviate

the problem of secondary initial states significantly. Hence, the number of secondary

initial states is a influencing factor, but the underlying innate structure of a problem

instance seems to be the most defining factor.

• (3) We claimed that it is possible to analyse the performance of NBS and A* inde-

pendent of the applied heuristic. Although we were not able to proof our claim, the

gathered data supports it. Furthermore, we can reason about the influence they exert.

Heuristics have different effects on different problems and even the backward search

and the forward search of a problem instance are not identical. Therefore, heuristics

have different behaviour and accuracy between problems and search directions. This

Experiments and Evaluation 41

reinforces the previous point about hmax improving the backward search more than

the forward search. As the backward search contains more states, it is logical that

heuristics might be able to discern more states and therefore improve the searches

unevenly. But although this difference persists, the experiment data suggests that

in most cases, the effect evens itself out when observed over the whole problem. A

representative example is shown in Figure 5.4. It shows that the general bias of the

problem instances is indifferent to the change in heuristics.

Figure 5.3: The number of expanded states before the last layer by
the fMM algorithm with different input p. (Left) fMM using the blind
heuristic. (Right) fMM using the hmax heuristic.

Experiments and Evaluation 42

(1) (2)

(3)

Figure 5.4: The number of expansions by fMM over the whole gripper
domain. Each line connects the same problem instance with various
p parameter. The fMM algorithm uses a different heuristic in each
graph: (1) h1, (2) hmax, (3) hlmcut.

Experiments and Evaluation 43

5.3.2 Analysing the Innate Structure
In Section 5.3.1, we discuss how the performance of NBS is defined by the underlying struc-

ture of the induced transition system. Based on the data we gathered in the experiments,

we remark a correlation between the bias expressed by a problem task regarding the search

direction and the domain it belongs to. However, we do not go into much detail in respect

to an intuitive explanation to justify our findings. In this section, we want to add to that

discussion and thereby provide a reasoning why problems of the same domain express a sim-

ilar bias. To that end, we introduce the blocks domain and analyse its various behaviourism

in a case study.

In the blocks domain the objective is to arrange a number of blocks to match a given

configuration. Each problem in the domain defines a number of available blocks and the

initial configuration as well as the goal configuration of those blocks. Every block is marked

alphabetically and is put on the ground or stacked on top of another specified block. A

block with no other blocks on top of it is denoted as clear. Finally, we have a gripper which

can grab a clear block and put it either on another clear block or on the ground.

Case Study Presented in Figure 5.5 to 5.7 are problem instances of the blocks domain10.

For each instance, we illustrate the initial configuration as well as the goal configuration.

Additionally, on the right side is the corresponding fMM graph shown. Note that there is an

apparent correlation between the initial state structure and the efficiency of the backward

search. If the blocks are stacked as a single column, then a backward search would be

very expensive. On the other hand, if all blocks are placed directly on the table, then the

backward search is nearly optimal. We expect that the same relation holds true for the

forward search and the goal configuration. However, in practice the goal is always the same,

namely to stack the blocks with some order, which explains why the blocks domain is very

suited for bidirectional or backward search.

The explanation for the relation between efficiency of a particular search and the specific

initial and goal state can be found in the transition system. Consider the problem instance

4-0. In the initial state, we could move each of the blocks on top of another one, resulting in a

total of 3·4 possible options, whereas in instance 4-1, we can only put the uppermost block on

the table. In other words, the branching factor is higher when the blocks have to be stacked.

This relates directly to the Figures in 5.5 to B.30 where stacked initial configurations are

unsuited for backward search, unstacked configurations are suited for bidirectional search,

and a combination of the two shows mixed results.

In conclusion, on basis of experiments, we hypothesize that the similar innate structure

which defines the efficiency of the search directions is justified by the similarity of how the

problems are created. Provided with this information, we could determine the most efficient

search algorithm from our collection for any problem of the blocks domain based solely on

its description.

10 Additional Figures can be found in Appendix B.3.

Experiments and Evaluation 44

Table Table

A B C D A

B

C

D

Figure 5.5: The problem 4-0 of the blocks domain. On the left is the
initial and goal configuration depicted, whereas on the right is the
fMM graph of the problem instance solved with h1.

Table Table

D

A

C

B

B

A

C

D

Figure 5.6: The problem 4-1 of the blocks domain. On the left is the
initial and goal configuration depicted, whereas on the right is the
fMM graph of the problem instance solved with h1.

Table Table

A B

C

D D

C

B

A

Figure 5.7: The problem 4-2 of the blocks domain. On the left is the
initial and goal configuration depicted, whereas on the right is the
fMM graph of the problem instance solved with h1.

Experiments and Evaluation 45

5.3.3 Summary
In conclusion of the second experiments, we run the algorithms fMM and computeWVC in

order to determine practical attributes of NBS and the problem instances. We found that

the implicit state space defined by a problem instance is the most defining aspect when

looking at the efficiency of different search directions. We further observed that different

problems of the same domain share the same structure to a certain extend, hence, display

the same bias for or against a particular search approach. Finally, we provide an overview

of which domains display a certain bias in Table 5.9.

Domain h1 hmax hlmcut

p∗ NBS p∗ NBS p∗ NBS

blocks 0.37 18 0.32 21 0.42 15

depot 1.00 0 0.77 1 1.00 0

driverlog 0.65 6 0.64 8 0.75 1

elevators-opt08-strips 0.86 8 1.00 5 - 0

elevators-opt11-strips - 7 - 5 - 0

floortile-opt11-strips - 2 0.18 6 0.00 5

ged-opt14-strips 0.90 10 0.72 10 0.72 10

gripper 0.45 7 0.45 6 0.68 4

hiking-opt14-strips 1.00 3 1.00 0 1.00 0

logistics00 0.59 10 0.69 8 1.00 0

miconic 0.68 31 0.80 21 0.89 0

nomystery-opt11-strips 0.67 8 0.93 4 1.00 0

openstacks-opt08-strips 1.00 0 1.00 4 1.00 3

openstacks-strips 0.00 0 0.36 5 1.00 0

pegsol-08-strips 0.69 20 0.86 14 0.93 10

pegsol-opt11-strips 0.67 14 0.67 11 0.67 9

psr-small 1.00 0 0.87 11 0.89 7

rovers 1.00 0 1.00 0 1.00 0

satellite 0.90 2 0.86 1 1.00 0

scanalyzer-08-strips 0.47 12 0.74 6 0.57 3

scanalyzer-opt11-strips 0.46 9 0.64 5 0.50 3

storage 1.00 0 1.00 0 1.00 0

termes-opt18-strips 0.46 10 0.47 10 0.47 6

tpp 0.00 0 1.00 0 1.00 0

transport-opt08-strips 0.99 5 1.00 0 1.00 0

transport-opt11-strips 0.94 5 1.00 0 - 0

transport-opt14-strips 0.83 5 1.00 1 1.00 0

trucks-strips 1.00 0 1.00 0 1.00 0

zenotravel 0.83 7 0.77 2 0.86 0

Table 5.9: The table presents an overview over all domains regarding
their aptitude towards bidirectional search. For each heuristic, we
list the average p∗ and the number of problems where NBS expanded
less states than A*. The second number has to be interpreted with
care, as it is an absolute number and not relative to the total number
of solved problems.

6
Conclusion

In this thesis we investigated the practicality of using bidirectional search with explicit-

state space representation, specifically NBS algorithm, to solve planning problems. The

work is inspired by the recent introduction of a promising bidirectional search algorithm

by Chen et al. [2017]. Apart from implementing the NBS algorithm in the state-of-the-art

planner Fast-Downward, we run experiments with the fMM algorithm [Holte et al., 2016]

to evaluate the displayed performance of NBS. With the experiments, we were able to find

three important properties.

1. Our implementation of NBS was able to successfully outperform A* on some problem

instances.

2. Whether A* or NBS is more efficient depends mainly on the implicit structure of the

search space defined by the problem instance.

3. The predisposition towards certain search approaches is shared by problems of the

same domain.

Smaller findings include that heuristic functions are not significantly different for unidirec-

tional search and bidirectional search, that the worst case bound of NBS is invalid as the

forward and backward search are not run on an identical state space, and that a sophisticated

method to derive the backward task could improve bidirectional search significantly.

Regarding the performance of NBS on the international planning competition benchmark,

we inferred a few helpful properties. First, simple domains are more intuitive to reverse

as there are less complex actions and variable combinations to consider. Second, clearly

defined goal conditions are very important to keep the number of secondary initial states

low. Third, symmetries can be very problematic if they are not distinguishable by the

heuristic. Combining these properties, we found that the underlying transition system

varies between domains and that all of those properties have an additional influence on the

resulting performance. In particular, the different NBS runs with the blocks, floortile-opt11-

strips, ged-opt14-strips, and termes-opt18-strips problem instances yielded the best results

compared to A*.

Conclusion 47

To put our work into perspective with contemporary research, we list the relevance of our

work compared to others and discuss potential future work. We achieved to use bidirec-

tional search successfully for planning. Aside from SymBA*, which takes a fundamentally

different approach, this is a novelty and shows that the promise linked to the initial idea of

bidirectional search is valid. With a refined algorithm such as NBS, we can outperform A*

on certain problems. Together with the uniformity of predisposition within a domain, we

built the foundation of using NBS in combination with computeWVC in portfolio planners.

The displayed efficiency of NBS further promotes the research of how to apply bidirectional

search in planning. Especially interesting are the question of how to eliminate the encoun-

tered non-essential complexity and how to reduce the number of secondary initial states. For

instance, the secondary initial states are constructed by going over all permutations of vari-

able assignment combinations, which creates symmetries. Hence, contemporary research of

how to handle symmetries might provide methods to reduce the number of secondary initial

states effectively. Future work might include more experiments comparing NBS algorithm

to different algorithm like SymBA* and reverse A* with the use of different heuristics.

In conclusion, NBS is a bidirectional search algorithm which can be used to efficiently

solve planning problems. Its performance depends on factors like the innate structure of the

problem instance or how efficiently the backward search is designed. Especially the number

of secondary initial states is a limiting factor. However, this can potentially be significantly

improved in future work. Furthermore, the innate structure of a problem instance can be

anticipated by analysing other problems of the same domain by using computeWVC. This

could be a powerful tool for a portfolio planner.

Bibliography

Bäckström, C. and Nebel, B. (1995). Complexity results for sas+ planning. Computational

Intelligence, 11(4):625–655.

Barker, J. K. and Korf, R. E. (2015). Limitations of front-to-end bidirectional heuristic

search. In Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI

2015), pages 1086–1092. AAAI Press.

Bonet, B. and Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence,

129(1-2):5–33.

Brooks, Jr., F. P. (1987). No silver bullet essence and accidents of software engineering.

Computer, 20(4):10–19.

Bylander, T. (1994). The computational complexity of propositional strips planning. Arti-

ficial Intelligence, 69(1-2):165–204.

Chen, J., Holte, R. C., Zilles, S., and Sturtevant, N. (2017). Front-to-end bidirectional

heuristic search with near-optimal node expansions. In Proceedings of the 26th Inter-

national Joint Conference on Artificial Intelligence (IJCAI 2017), pages 489–495. AAAI

Press.

De Champeaux, D. (1983). Bidirectional heuristic search again. Journal of the ACM

(JACM), 30(1):22–32.

Dechter, R. and Pearl, J. (1985). Generalized best-first search strategies and the optimality

of A*. Journal of the ACM (JACM), 32(3):505–536.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische

Mathematik, 1(1):269–271.

Eckerle, J., Chen, J., Zilles, S., and Holte, R. C. (2017). Sufficient conditions for node expan-

sion in bidirectional heuristic search. In Proceedings of the Twenty-Seventh International

Conference on Automated Planning and Scheduling (ICAPS 2017), pages 79–87. AAAI

Press.

Edelkamp, S. (2001). Planning with pattern databases. In Pre-proceedings of the Sixth

European Conference on Planning (ECP 2001), pages 13–24.

Edelkamp, S. and Schrödl, S. (2011). Heuristic Search: Theory and Applicaitons. Elsevier.

Bibliography 49

Felner, A., Moldenhauer, C., Sturtevant, N., and Schaeffer, J. (2010). Single-frontier bidi-

rectional search. In Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI

2010), pages 59–64. AAAI Press.

Ghallab, M., Nau, N., and Traverso, P. (2004). Automated Planning: Theory & Practice.

Elsevier.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the heuristic determi-

nation of minimum cost paths. IEEE transactions on Systems Science and Cybernetics,

4(2):100–107.

Haslum, P. and Geffner, H. (2000). Admissible heuristics for optimal planning. In Pro-

ceedings of the Fifth International Conference on Artificial Intelligence Planning Systems

(AIPS 2000), pages 140–149. AAAI Press.

Helmert, M. (2006). The fast downward planning system. Journal of Artificial Intelligence

Research (JAIR), 26:191–246.

Helmert, M. (2010). Landmark heuristics for the pancake problem. In Third Annual Sym-

posium on Combinatorial Search (SoCS 2016), pages 109–110.

Helmert, M. and Domshlak, C. (2009). Landmarks, critical paths and abstractions: what’s

the difference anyway? In Proceedings of the Nine-Teenth International Conference on

Automated Planning and Scheduling (ICAPS 2009), pages 162–169. AAAI Press.

Holte, R. C., Felner, A., Sharon, G., and Sturtevant, N. (2016). Bidirectional search that

is guaranteed to meet in the middle. In Proceedings of the 30th AAAI Conference on

Artificial Intelligence (AAAI 2016), pages 3411–3417. AAAI Press.

Hopcroft, J. E. and Karp, R. M. (1973). An n5/2 algorithm for maximum matchings in

bipartite graphs. SIAM Journal on computing, 2(4):225–231.

Kaindl, H. and Kainz, G. (1997). Bidirectional heuristic search reconsidered. Journal of

Artificial Intelligence Research (JAIR), 7:283–317.

Korf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible tree search.

Artificial intelligence, 27(1):97–109.

Kwa, J. B. H. (1989). BS*: An admissible bidirectional staged heuristic search algorithm.

Artificial Intelligence, 38(1):95–109.

Manzini, G. (1995). BIDA*: an improved perimeter search algorithm. Artificial Intelligence,

75(2):347–360.

Nicholson, T. A. J. (1966). Finding the shortest route between two points in a network. The

Computer Journal, 9(3):275–280.

Nilsson, N. J. (1980). Principles of artificial intelligence. Springer.

Papadimitriou, C. H. and Steiglitz, K. (1982). Combinatorial optimization: algorithms and

complexity. Courier Corporation.

Bibliography 50

Pohl, I. (1969). Bi-directional and Heuristic Search in Path Problems. PhD thesis, Stanford

University.

Pohl, I. (1971). Bi-directional search. Machine Intelligence, 6:127–149.

Seipp, J., Pommerening, F., Sievers, S., and Helmert, M. (2017). Downward Lab. https:

//doi.org/10.5281/zenodo.790461.

Shaham, E., Felner, A., Chen, J., and Sturtevant, N. (2017). The minimal set of states that

must be expanded in a front-to-end bidirectional search. In Proceedings of the Tenth In-

ternational Symposium on Combinatorial Search (SoCS 2017), pages 82–90. AAAI Press.

Shaham, E., Felner, A., Sturtevant, N., and Rosenschein, J. S. (2018). Minimizing node ex-

pansions in bidirectional search with consistent heuristics. In Proceedings of the Eleventh

International Symposium on Combinatorial Search (SoCS 2018), pages 81–89. AAAI

Press.

Sharon, G., Holte, R. C., Felner, A., and Sturtevant, N. (2016). An improved priority

function for bidirectional heuristic search. In Ninth Annual Symposium on Combinatorial

Search (SoCS 2016), pages 139–140. AAAI Press.

Sturtevant, N. (2012). Benchmarks for grid-based pathfinding. Transactions on Computa-

tional Intelligence and AI in Games, 4(2):144–148.

Sturtevant, N. and Felner, A. (2018). A brief history and recent achievements in bidirectional

search. In Proceedings of the 32th AAAI Conference on Artificial Intelligence (AAAI

2018), pages 8000–8006. AAAI Press.

Torralba, A., López, C. L., and Borrajo, D. (2016). Abstraction heuristics for symbolic

bidirectional search. In Proceedings of the Twenty-Fifth International Joint Conference

on Artificial Intelligence (IJCAI 2016), pages 3272–3278. AAAI Press.

Vallati, M., Chrpa, L., Grześ, M., McCluskey, T. L., Roberts, M., Sanner, S., et al.

(2015). The 2014 international planning competition: Progress and trends. Ai Maga-

zine, 36(3):90–98.

https://doi.org/10.5281/zenodo.790461
https://doi.org/10.5281/zenodo.790461

A
Examples

A.1 From the Problem Task to VC
This section should provide a supplement to the theory discussed in Section 3.2.1. We

present a simple planning problem and show over multiple steps how to derive the lower-

bound |VC| and the perfect fraction p∗. The steps go along with adequate explanations and

special focus on how the GMX - and Ĝ-graph look in practice.

A

B

C

D

E

F

1

1

2 2

1

1

Figure A.1: Simple path-finding problem example.

Path-finding problem The problem shown in Figure A.1 depicts a simple path-finding

problem, where cities are connected by routes. It starts in city A and aims to reach city F.

It is a optimization problem, as the objective is to find the optimal path, e.g. the path with

minimal cost. For this example we use the artificial heuristic shown in the following table.

A B C D E F

hF 2 4 1 0 0 0

hB 0 1 0 0 1 2

Must-Expand Graph GMX To derive the corresponding must-expand graph, a bipartite

graph is created with all possible states on either side. On the left side, are forward expanded

states, analogously, backward expanded states are on the right side. Two opposite states

Examples 52

u and v are joined by an edge iff lb(u, v) ≤ C∗ holds11. The resulting GMX , with g- and

f -value for all states, is shown in Figure A.2. Important to mention is that even though all

states are visualized in the shown GMX representation, only states which have at least one

connection are actually included in GMX .

g f left right f g

20

62

21

22

22

33

2 0

2 1

2 2

2 2

6 5

3 3

AF FB

BF EB

CF DB

DF CB

EF BB

FF AB

Figure A.2: The corresponding GMX .

Ĝ

gF -groups gB-groups

{A}

{C}

{D,E}

{}

{F}

{E}

{C,D}

{}

0 0

1 1

2 2

3 3

Figure A.3: The corresponding Ĝ.

The Abstract Graph Ĝ The abstraction resulting from grouping the states included

in GMX with equal g-value, can be created by using GMX explicitly as basis or implicitly

from the number of states with the same g-value encountered when running A* in either

direction. The abstraction of the must-expand graph shown in Figure A.2 is presented in

Figure A.3. A notable property of Ĝ is that all states included in the groups have an f -value

smaller than C∗ and all edges join two groups with summed g-value smaller than C∗. Thus,

all states belonging to the same group can be combined to build must-expand pairs with

each state of the other group. Moreover, Shaham et al. [2017] proved that if one state of

specific g-value is included in VC, then all other states with equal g-value and expansion

direction must be elements of VC as well. Hence, the minimal weighted vertex cover of Ĝ

is equivalent with the minimal vertex cover of GMX .

VC and p* In a last step, interesting properties like |VC|, p∗, and i can be computed

from Ĝ. Given the constraints discussed in Section 3.2.1, we can deduce that only a number

of possible weighted vertex cover exist, which is equal to C∗ + 1. E.g. in the presented

example C∗ is 3, therefore the loop variable i ∈ {0, 1, 2, 3}. As a reminder, the weighted

vertex cover with i = 2 defines that all included gF -groups have a gf -value smaller than 2

and all included gB-groups have a gB value smaller than j, which is 1.

Concluding, the minimal weighted vertex cover for the presented problem are created

with i ∈ {1, 2} and j ∈ {2, 1}. The corresponding p∗ ∈ { 13 ,
2
3} and VC = 3. Inserting

this knowledge into the initial problem, we can say that to prove the optimality of a found

solution with cost = 3, we have to expand at least state A, F, and C or E. Given those states,

it is clear that no solution can be found with a cost less than 3, therefore, the found solution

is optimal. Furthermore, for bidirectional search p∗ is of high importance, as depending on

p∗ different search tactics are more favourable.

11 lb(u, v) = max{fF (u), fB(v), gF (u) + gB(v)}

Examples 53

A.2 Single Goal Experiment
One of the main influential factors regarding the performance of the NBS algorithm is the

number of secondary initial states. We discussed in Section 4.1.2 how they occur and what

impact they potentially have. To test those theories, we devised an additional experiment

which we omitted from Chapter 4. The experiment is identical to the initial NBS experiment

in Section 5.2 with the exception that we modify the custom benchmark. We alter a number

of problem instances by narrowing the goal conditions to include only a single state. The

plan is to measure the potential improvement of reducing the complexity stemming form the

secondary initial states. In this section, we want to discuss the results of this experiment

and comment on why it is not included in the main part of the thesis.

Case Study: Driverlog To explain the results of the single goal experiments, we make an

in depth example of the first instance in the driverlog domain12. The first instance includes

six objects: two drivers d1 and d2, two trucks t1 and t2, and two packages p1 and p2. All

the objects can be moved between the locations l1, l2, and l3. The drivers are additionally

able to move to the paths p1-2 and p2-3. The locations and paths are connected as depicted

in Figure A.4. The initial location of the objects is shown by the boxes beside the location.

Whereas a dashed box indicates that the goal conditions. In this first instance, the optimal

path is to walk driver d1 from l3 to l1 using the available paths. There he enters truck t1

and drives it to l2 where he disembarks again. These seven actions conclude the optimal

solution.

l1

l2

l3

p1-2 p2-3

t1,2
p1,2

p1,2
d1

d2

t1
d1

Figure A.4: The figure depicts the first instance of the driverlog do-
main. Locations are marked as circle, streets as unbroken lines, and
paths as dotted lines. The initial and goal configuration is indicated
by the labels in the boxes.

There are 84 states which satisfy the goal conditions. All of these state have a defined

position for the driver d1, truck t1, and both packages. The only objects omitted are the

second driver and second truck. To get an understanding from where those 84 states origin,

we have to consider how Fast-Downward represents the problem internally. In this instance,

Fast-Downward additionally stores a boolean variable for each truck, which defines whether

the truck is being driven at the moment. As a result, we have 4 undefined variables:

• t2-at : The position of the second truck. The domain of the variable includes the three

possible locations.

12 A introduction of the driverlog domain can be found in Section 4.1.1.

Examples 54

• d2-at : The position of the second driver. The driver can either be driving one of the

trucks, stand at one of the locations, or be walking on a path. Resulting in a domain

size of 7.

• t1-empty : This boolean variable denotes whether t1 is currently being driven.

• t2-empty : The corresponding boolean variable for truck t2.

The number of possible combinatorial permutations with these four variables is 84. From

those states, only 21 are legal states. The other 63 states are illegal. The mutexes derived by

Fast-Downward allow us to detect 12 of those states, which results in 51 illegal states which

are not discarded. However, as we discussed in Paragraph 4.2.1, illegal states are always

dead ends. And in fact, the hmax heuristic recognizes all of them as dead ends. In the end,

only the 21 legal goal states are being expanded and considered by our implementation of

the NBS algorithm, but still the algorithm computes the heuristic value of all non-discarded

illegal states.

To summarize, we discussed how many essential secondary initial states there are in the

first instance of the driverlog domain and where they come from. In the next paragraph,

we present the results of the single goal experiments and explain what effects occur when

the secondary initial states are reduced to a single state.

Results and Evaluation As expected, the reduced number of secondary initial states im-

proves the bidirectional search significantly. In Table A.1 and A.2 we list detailed number

for the first six instances of the driverlog domain. Table A.1 lists the number of expansions

using a single secondary initial state and Table A.2 shows the result from the NBS exper-

iment. One unexpected result is the apparent difference in expansions by A*. Intuitively,

A* should not be affected by a change in goal states. One explanation to the contrary is

that the computed heuristic changes when the goal is more constricted. For instance, if it

is given that at the end all trucks must be empty, than entering one may be regarded as an

unfavourable action, which would result in a wider exploration of the state space. On the

contrary, knowing that the second truck does not move from its initial position, enables the

search to only focus on moving the first truck. While this experiment proves that reducing

the number of secondary initial states affects the search mostly positively, we cannot argue

about the magnitude as there are various unmeasurable factors at play at once. For those

reasons, we omitted this experiment from the main part of the thesis.

Examples 55

Driverlog Ex.: A* Ex.: NBS MP p∗ SIS C∗

problem 01 1 7

h1 177 91 ˜0.43 0.57

hmax 11 28 ˜0.71 1.00

hlmcut 8 13 ˜0.86 1.00

problem 02 1 19

h1 68’751 10’305 ˜0.47 ˜0.47

hmax 54’281 10’307 ˜0.47 ˜0.47

hlmcut 8026 7685 ˜0.47 0.00

problem 03 1 12

h1 15’090 1287 0.50 ˜0.58

hmax 2461 1347 ˜0.58 ˜0.58

hlmcut 24 179 ˜0.67 1.00

problem 04 1 16

h1 1’137’000 25’957 0.50 0.50

hmax 393’674 25’957 0.50 0.50

hlmcut 1726 1437 ˜0.38 0.00

problem 05 1 18

h1 5’505’872 101’805 0.50 0.50

hmax 1’707’212 101’805 ˜0.56 0.50

hlmcut 329 3353 ˜0.67 1.00

problem 6 1 11

h1 887’408 7799 ˜0.45 ˜0.45

hmax 53’778 6814 ˜0.45 ˜0.45

hlmcut 96 542 ˜0.63 1.00

Table A.1: The table includes the relevant information regarding the
first six problem instances of the driverlog domain which are modified
to define a single goal state. First, the secondary initial states (SIS)
and corresponding C∗ is shown for each instance . Second, for each
applied heuristic, we list the number of expansions by A*, expansions
by NBS, the meeting point (MP) of the search frontiers of NBS, and
p∗.

Examples 56

Driverlog Ex.: A* Ex.: NBS MP p∗ SIS C∗

problem 01 21 7

h1 190 375 ˜0.86 1.00

hmax 22 93 ˜0.71 1.00

hlmcut 9 19 ˜0.86 1.00

problem 02 1 19

h1 68’751 18’349 ˜0.52 ˜0.53

hmax 54’281 10’305 ˜0.47 ˜0.47

hlmcut 8103 7698 ˜0.47 0.00

problem 03 8 12

h1 16’918 2893 ˜0.67 ˜0.67

hmax 2500 2437 ˜0.58 ˜0.67

hlmcut 24 213 0.75 1.00

problem 04 1 16

h1 1’134’510 35’977 0.50 0.50

hmax 393’674 25’957 0.50 0.50

hlmcut 1744 2490 ˜0.33 0.00

problem 05 62 18

h1 5’763’654 306’497 ˜0.61 -

hmax 1’724’608 306’497 ˜0.61 -

hlmcut 731 7657 ˜0.72 1.00

problem 6 8 11

h1 840’126 25’281 ˜0.55 ˜0.55

hmax 54’454 16’915 ˜0.45 ˜0.55

hlmcut 148 919 ˜0.63 1.00

Table A.2: The table includes the relevant information regarding
the first six problem instances of the driverlog domain. First, the
secondary initial states (SIS) and corresponding C∗ is shown for each
instance . Second, for each applied heuristic, we list the number of
expansions by A*, expansions by NBS, the meeting point (MP) of the
search frontiers of NBS, and p∗.

B
Extended Results

B.1 Extended NBS Results
This section provides more detailed data on the experiments discussed in Section 5.2.

Domain Solved (#) Problems (#) Secondary Initial States (#)

A* NBS NBS < A* NBS < 2×|VC| fB > fF min. med. max.

blocks 1 1 1

h1 18 27 0 0 26

hmax 21 27 21 21 27

hm=2 10 13 0 0 13

hlmcut 28 31 15 25 30

depot 9 9 9

h1 4 3 0 3 0

hmax 6 2 1 2 0

hm=2 2 1 0 0 0

hlmcut 7 2 0 0 0

driverlog 1 21 1029

h1 7 10 0 0 1

hmax 9 10 0 0 3

hm=2 2 3 0 1 1

hlmcut 14 12 1 12 2

elevators-opt08-strips 1500 21’000 441’000

h1 14 12 0 0 0

hmax 19 13 5 11 0

hm=2 0 0 0 0 0

hlmcut 22 11 0 0 0

elevators-opt11-strips 1500 21’000 441’000

h1 12 10 7 7 0

hmax 16 11 5 10 0

hm=2 0 0 0 0 0

hlmcut 18 8 0 2 0

floortile-opt11-strips 24 48 48

h1 2 10 2 2 10

hmax 6 12 0 0 12

hm=2 0 0 0 0 0

hlmcut 7 10 0 0 10

ged-opt14-strips 4 8 10

h1 15 19 0 0 7

hmax 15 20 10 12 12

hm=2 5 5 0 0 2

hlmcut 15 19 10 12 12

Continued on next page

Extended Results 58

Domain Solved (#) Problems (#) Secondary Initial States (#)

A* NBS NBS < A* NBS < 2×|VC| fB > fF min. med. max.

gripper 2 2 2

h1 8 7 7 7 3

hmax 8 7 6 7 2

hm=2 3 3 0 0 2

hlmcut 7 7 4 7 7

hiking-opt14-strips 384 27’034 1’278’080

h1 11 10 3 10 0

hmax 12 10 0 10 0

hm=2 2 1 0 0 1

hlmcut 9 6 0 0 0

logistics00 8 8 24

h1 10 13 10 10 0

hmax 12 13 0 0 0

hm=2 6 6 0 6 0

hlmcut 20 20 0 0 0

miconic 4 768 20480

h1 55 50 31 50 0

hmax 55 50 0 0 0

hm=2 30 26 0 0 0

hlmcut 141 53 0 33 0

nomystery-opt11-strips 80 375 1224

h1 8 10 8 8 0

hmax 9 10 4 9 0

hm=2 6 5 0 5 0

hlmcut 14 14 0 0 0

openstacks-opt08-strips 5 10 15

h1 22 12 0 0 0

hmax 22 11 4 11 0

hm=2 5 3 0 0 0

hlmcut 21 8 3 8 0

openstacks-strips 5 5 5

h1 7 5 0 5 0

hmax 7 5 0 0 5

hm=2 5 0 0 0 0

hlmcut 7 5 0 5 0

pegsol-08-strips 2 2 2

h1 27 28 0 0 6

hmax 28 28 14 26 10

hm=2 9 8 0 6 2

hlmcut 28 28 10 26 8

pegsol-opt11-strips 2 2 2

h1 17 18 14 17 1

hmax 18 18 0 0 5

hm=2 1 1 0 0 0

hlmcut 18 18 0 0 2

psr-small 2 8 9640

h1 49 42 0 42 0

hmax 49 42 11 42 0

hm=2 40 29 0 0 6

hlmcut 49 40 0 0 2

rovers 16 384 20763

h1 6 4 0 4 0

hmax 6 5 0 0 0

hm=2 4 4 0 0 0

hlmcut 8 4 0 3 0

satellite 28 960 1792

h1 6 4 0 0 0

hmax 6 4 1 4 0

hm=2 3 2 0 0 0

hlmcut 7 4 0 3 0

Continued on next page

Extended Results 59

Domain Solved (#) Problems (#) Secondary Initial States (#)

A* NBS NBS < A* NBS < 2×|VC| fB > fF min. med. max.

scanalyzer-08-strips 1 1 1

h1 12 12 0 0 12

hmax 9 9 6 9 6

hm=2 3 3 0 3 0

hlmcut 16 11 0 0 11

scanalyzer-opt11-strips 1 1 1

h1 9 9 9 9 9

hmax 6 6 0 0 5

hm=2 1 1 0 0 0

hlmcut 12 8 3 6 8

storage 5 340 5156

h1 14 5 0 0 0

hmax 15 5 0 2 0

hm=2 7 2 0 0 0

hlmcut 15 4 0 1 0

termes-opt18-strips 4 9 11

h1 10 13 10 10 9

hmax 10 13 0 0 9

hm=2 0 0 0 0 0

hlmcut 6 8 0 0 7

tpp 12 432 2592

h1 6 4 0 4 0

hmax 6 4 0 4 0

hm=2 5 4 0 0 0

hlmcut 7 4 0 4 0

transport-opt08-strips 144 1024 2304

h1 11 11 5 10 0

hmax 11 11 0 0 0

hm=2 6 5 0 0 0

hlmcut 11 11 0 0 0

transport-opt11-strips 1024 2304 2704

h1 6 6 0 0 0

hmax 6 7 0 2 0

hm=2 1 0 0 0 0

hlmcut 6 6 0 0 0

transport-opt14-strips 400 2304 14’400

h1 7 6 0 0 0

hmax 7 6 1 4 0

hm=2 1 0 0 0 0

hlmcut 6 5 0 2 0

trucks-strips 18 864 1728

h1 6 4 0 4 0

hmax 10 6 0 6 0

hm=2 2 2 0 2 0

hlmcut 10 6 0 6 0

zenotravel 7 196 8575

h1 8 8 0 0 0

hmax 8 8 2 7 0

hm=2 5 4 0 3 0

hlmcut 13 9 0 6 0

Table B.1: A wholesome overview of the experiments with the NBS

algorithm. The listed attributes, from left to right, describe the fol-

lowing information. (1) The domain and the various heuristics. (2)

The number of solved problems by either A* or NBS. (3) A compar-

ison between A* and NBS. The number of problems which fulfil the

displayed condition: either where the number of expansion is smaller

for NBS, where the number of expansions in NBS prior to the last

layer is smaller than twice the number of expansion in A*, or whether

the g-value at the meeting point of forward and backward search is

greater in backward direction. (4) The number of secondary initial

states for each domain. Excluding the states which are detected as

dead ends by the hmax heuristic.

Extended Results 60

B.2 Extended fMM Results
In this section we present results regarding the experiments described in Section 5.3. The

goal is to illustrate the structure of the underlying transition system for as many domains as

possible. To that end we provide two graphs for each domain. First, an overview graph which

combines all the individual problem graphs. Second, a hand picked problem graph, which

should be representative of the whole domain. Note that the y-axis denotes the number of

expansions relative to the minimal occurrence as the absolute number varies greatly over

the different problems. However, even the relative number can be vastly different. Because

of this, we additionally provide a problem graph which represents the whole domain.

The following graphs were created by running different instances of fMM with evenly

distributed input argument p and hmax heuristic.

Figure B.1: As is evident by the graphs, the blocks domain is very
suited for bidirectional search. In a few problems, unidirectional
backward search would be favoured, but never unidirectional forward
search. On the right side, the domain-wide fMM graph is depicted.
The uppermost points denote that the specified search expands more
than 400 times more states than the optimum. As a result, the
other lines look rather flat. On the left side, we present the best-case
example which obscures the results of the other graph. It exemplifies
how much more efficient the bidirectional search can potentially be.

Extended Results 61

Figure B.2: Due to the complexity of the depot domain we were only
able to solve the first two problems. One the left graph are the total
number of expansions depicted, whereas on the right graph only the
expansions preceding the last layer are counted. As can be seen, the
structure in both graphs are very similar, meaning that the number
of expansions in the last layer is very small or at least proportional
to the rest.

Figure B.3: The driverlog domain shows mixed results, where sole
backward search is never optimal, sole forward search sometimes,
and bidirectional search most often. This can be seen in the right
graph, although the scale is distorted to include the extremes. On
the left is a typical graph of the drivelog domain. The forward search
is favoured over the backward search, but most times bidirectional
search is optimal. We reason that the backward search performs
badly because it has to consider many secondary initial states due to
symmetries.

Extended Results 62

Figure B.4: The elevator domain is not suited for backward search.
Therefore, unless the problem size is very big, bidirectional search will
not be more efficient than forward search. However, NBS achieves to
expand less states then A* for a few problems.

Figure B.5: The floortile domain exhibits the very opposite apti-
tude as the previous elevator domain. The domain clearly favours
backward search. Interestingly, similar to the elevator domain, bidi-
rectional search is more efficient than unidirectional for the biggest
problems.

Figure B.6: The get-opt domain is a special domain because the
number of expansions seem to change drastically at certain point.
Nevertheless, the domain is very suited for bidirectional search.

Extended Results 63

Figure B.7: The gripper domain is mostly symmetric and therefore
suited for bidirectional search. However, the difference between the
search directions is of a low magnitude. This is clearly visible in the
right image.

Figure B.8: The hiking domain has many domains where the search
direction only marginally influences the number of expansions, how-
ever, the overarching trend is still preferable to unidirectional forward
search.

Figure B.9: The problem of the logistics domain show a very consis-
tent fMM graph, where the backward search is worse than the forward
search, but bidirectional search is optimal. This is reflected in a p∗

value with low standard deviation over the whole domain.

Extended Results 64

Figure B.10: The miconic domain is very similar to the logistics
domain. Both have an average p∗ value around 0.75 with a relatively
low standard deviation.

Figure B.11: The nomystery domain shows a similar aptitude as
logistics and miconic, but less extreme.

Figure B.12: Because to the high number of secondary initial states is
the openstacks domain not suited to be solved with backward search.
This is very well reflected in both graphs. But once again, the right
graph is distorted by an extreme outlier.

Extended Results 65

Figure B.13: The openstacks-strips domain shows a clear preference
for bidirectional search. A noteworthy detail in this domain is that
all fMM graphs are very similar. On the right side, the five different
graphs are nearly not discernible from each other.

Figure B.14: The pegsol domain exhibits a preference for unidirec-
tional forward search.

Figure B.15: The domain wide graph of the psr domain is not very
expressive. We present two representative problem instances. Most
instances share the structure depicted in the left image. Some rare
instances are very suited for bidirectional search and have a similar
structure as shown on the right side.

Extended Results 66

Figure B.16: The rover domain is exclusively suited for forward
search.

Figure B.17: The satellite domain shows an aptitude for unidirec-
tional forward search.

Figure B.18: The scanalyzer domain is mostly suited for bidirectional
search.

Extended Results 67

Figure B.19: The storage domain has many secondary initial states,
which reduce the performance of the backward search significantly.

Figure B.20: The termes domain is very suited for bidirectional
search and is one of the domains where NBS solved more problems
than A*.

Figure B.21: The tpp domain suffers from too many secondary initial
states.

Extended Results 68

Figure B.22: The transport domain has a clear aptitude for forward
search, however, bidirectional search can be effective in rare cases.

Figure B.23: The trucks domain is similar to the transport domain.
A best case example is shown on the left side.

Figure B.24: The zenotravel has a few domains which can be effi-
ciently solved with NBS, but most often A* is more performant.

Extended Results 69

B.3 Extended Case Study
The graphs depicted in this section provide additional examples for the material discussed

in Section 5.3.2

Table Table

A

B

E

C

D C

D

B

E

A

Figure B.25: The problem 5-0 of the blocks domain. On the left is
the initial and goal configuration depicted, whereas on the right is
the fMM graph of the problem instance solved with h1.

Table Table

C D

A

B

E E

A

B

C

D

Figure B.26: The problem 5-1 of the blocks domain. On the left is
the initial and goal configuration depicted, whereas on the right is
the fMM graph of the problem instance solved with h1.

Table Table

B

A

C

E

D

A

E

B

C

D

Figure B.27: The problem 5-2 of the blocks domain. On the left is
the initial and goal configuration depicted, whereas on the right is
the fMM graph of the problem instance solved with h1.

Extended Results 70

Table Table

B

E

F

C

A

D

D

F

E

A

B

C

Figure B.28: The problem 6-0 of the blocks domain. On the left is
the initial and goal configuration depicted, whereas on the right is
the fMM graph of the problem instance solved with h1.

Table Table

B C D E F

A

D

F

E

A

B

C

Figure B.29: The problem 6-1 of the blocks domain. On the left is
the initial and goal configuration depicted, whereas on the right is
the fMM graph of the problem instance solved with h1.

Table Table

C

E

F

B

D

A

D

C

B

A

F

E

Figure B.30: The problem 6-2 of the blocks domain. On the left is
the initial and goal configuration depicted, whereas on the right is
the fMM graph of the problem instance solved with h1.

Declaration on Scientific Integrity

Erklärung zur wissenschaftlichen Redlichkeit

includes Declaration on Plagiarism and Fraud

beinhaltet Erklärung zu Plagiat und Betrug

Author — Autor

Marvin Buff

Matriculation number — Matrikelnummer

2014-054-191

Title of work — Titel der Arbeit

NBS applied to Planning

Type of work — Typ der Arbeit

Master Thesis

Declaration — Erklärung

I hereby declare that this submission is my own work and that I have fully acknowledged

the assistance received in completing this work and that it contains no material that has

not been formally acknowledged. I have mentioned all source materials used and have cited

these in accordance with recognised scientific rules.

Hiermit erkläre ich, dass mir bei der Abfassung dieser Arbeit nur die darin angegebene

Hilfe zuteil wurde und dass ich sie nur mit den in der Arbeit angegebenen Hilfsmitteln

verfasst habe. Ich habe sämtliche verwendeten Quellen erwähnt und gemäss anerkannten

wissenschaftlichen Regeln zitiert.

Basel, 05/02/2019

Signature — Unterschrift

	Acknowledgments
	Abstract
	Table of Contents
	1 Introduction
	2 Background
	2.1 History of Bidirectional Search
	2.2 Terminology and Background
	2.2.1 Classical Planning
	2.2.2 Heuristic Functions
	2.2.3 Search in Planning
	2.2.4 Bidirectional Search in Planning

	3 Related Work
	3.1 Bidirectional Search
	3.1.1 The "Meet in the Middle" Algorithm (MM)
	3.1.2 Fractional Meet in the Middle (fMM)
	3.1.3 SymBA*

	3.2 Sufficient Conditions for State Expansion
	3.2.1 Finding VC

	3.3 Near-Optimal Front-to-End Bidirectional Search Algorithm (NBS)

	4 Planning with the NBS algorithm
	4.1 Using Search in Planning
	4.1.1 Driverlog
	4.1.2 Secondary Initial States Explosion
	4.1.3 Using Heuristics

	4.2 Implementation Details
	4.2.1 Searching Backward

	5 Experiments and Evaluation
	5.1 Environment
	5.2 Running NBS
	5.2.1 Results and Evaluation
	5.2.2 Summary

	5.3 Running fMM
	5.3.1 Results and Evaluation
	5.3.2 Analysing the Innate Structure
	5.3.3 Summary

	6 Conclusion
	Bibliography
	A Examples
	A.1 From the Problem Task to VC
	A.2 Single Goal Experiment

	B Extended Results
	B.1 Extended NBS Results
	B.2 Extended fMM Results
	B.3 Extended Case Study

	Declaration on Scientific Integrity

