NBS applied to Planning

Marvin Buff

University of Basel

11. February, 2019

Motivation

Foundation

Classical Planning: Devise a new efficient and competitive algorithm.

nspiration

The introduction of a new and promising bidirectional search algorithm: *Near-Optimal Bidirectional Search Algorithm (NBS)*.

Realization

- Implementing NBS as planner.
- Evaluating its performance on the IPC benchmark.
- Analysing the results with fMM.

NBS	

fMM Experiment

Conclusion

Motivation

Foundation

Classical Planning: Devise a new efficient and competitive algorithm.

Inspiration

The introduction of a new and promising bidirectional search algorithm: *Near-Optimal Bidirectional Search Algorithm (NBS)*.

Realization

- Implementing NBS as planner.
- Evaluating its performance on the IPC benchmark.
- Analysing the results with fMM.

Motivation

Foundation

Classical Planning: Devise a new efficient and competitive algorithm.

Inspiration

The introduction of a new and promising bidirectional search algorithm: *Near-Optimal Bidirectional Search Algorithm (NBS)*.

Realization

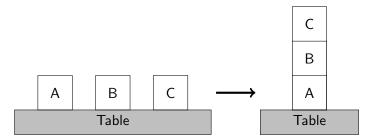
- Implementing NBS as planner.
- Evaluating its performance on the IPC benchmark.
- Analysing the results with fMM.

NBS	NBS Experiment	fMM Experiment	Conclusion
0000000000		00000000000000	00
Outline			

- The Blocks Domain
- Sufficient Conditions
- NBS in Detail
- 2 NBS Experiment
 - Running NBS
 - Results and Evaluation

3 fMM Experiment

- MM
- fMM
- Properties
- fMM Experiment
- Case Study


NBS ●0000000000	NBS Experiment	f™ Experiment 0000000000000	Conclusion
Outline			

 NBS Experiment

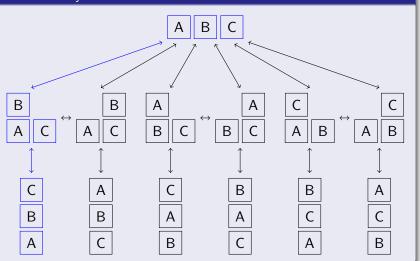
fMM Experiment

Conclusion

The Blocks Domain

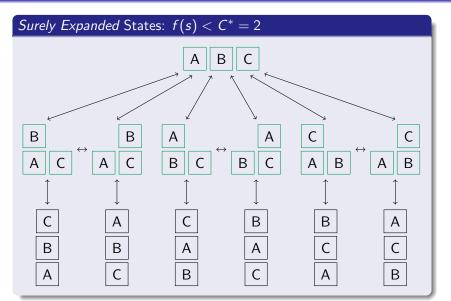
Actions

- Pick Up
- Put Down


 NBS Experiment

fMM Experiment

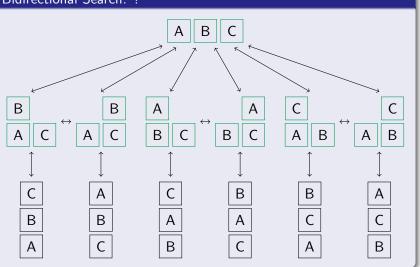
Conclusion 00


The Blocks Domain

Transition System

fMM Experiment

Conclusion 00

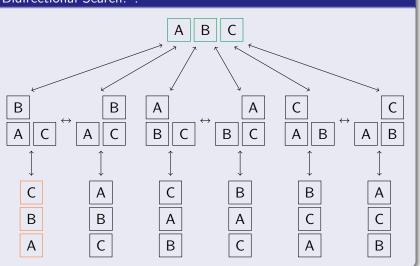

NBS Experiment

fMM Experiment

Conclusion 00

Sufficient Conditions

Bidirectional Search: ?

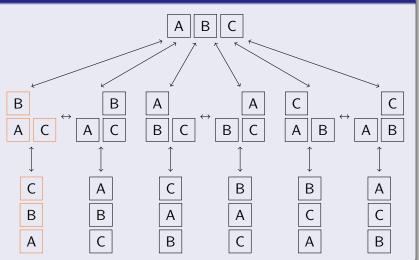

NBS Experiment

fMM Experiment

Conclusion 00

Sufficient Conditions

Bidirectional Search: ?


NBS Experiment

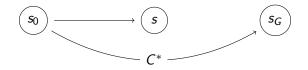
fMM Experiment

Conclusion 00

Sufficient Conditions

Bidirectional Search: ?

NBS Experiment


fMM Experiment

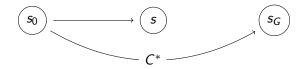
Conclusion 00

Sufficient Conditions

Unidirectional Search: Sufficient Condition

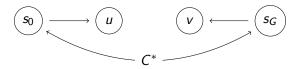
$$g(s) + h(s) < C^*$$

NBS Experiment

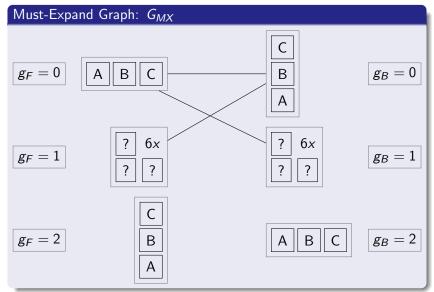

fMM Experiment

Conclusion

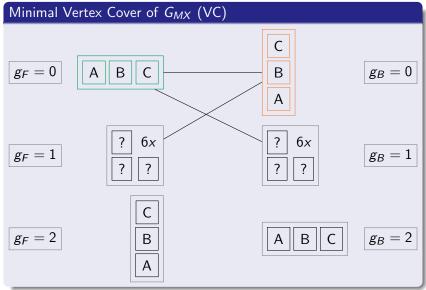
Sufficient Conditions


Unidirectional Search: Sufficient Condition

$$g(s) + h(s) < C^*$$

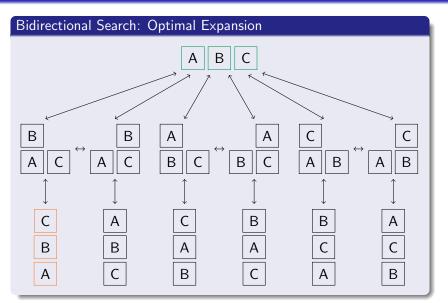

Bidirectional Search: Must-Expand Pairs

 $max\{f_F(u),f_B(v),g(u)+g(v)\} < C^*$


NBS	
00000000000	

fMM Experiment

NBS	
000000000000000000000000000000000000000	


fMM Experiment

 NBS Experiment

fMM Experiment

Conclusion 00

Algorithm 1 NBS

- 1: Put s_0 in $Open_F$ and s_G in $Open_B$
- 2: while $Open_F$ and $Open_B$ are not empty do
- 3: Among $u \in Open_F$ and $v \in Open_B$
- 4: Select the pair (u, v) with lowest lb(u, v)
- 5: **if** $lb(u, v) \ge cost(U)$ **then**
- 6: **return** *U*
- 7: Expand both u and v
- 8: **if** new path from s_0 to s_G is found **then**
- 9: Update U if new path is better than previous

Key Properties

- Admissible DXBB Algorithm
- Optimal Worst-Case
- Near-Optimal General Case

Key Difference to Search

Backward search is not a mirrored forward search.

- Actions are not trivially reversible.
- There are Secondary Initial States.

Key Properties

- Admissible DXBB Algorithm
- Optimal Worst-Case
- Near-Optimal General Case

Key Difference to Search

Backward search is not a mirrored forward search.

- Actions are not trivially reversible.
- There are Secondary Initial States.

NBS Experiment

fMM Experiment

Conclusion

NBS Experiment

Goal

Evaluate performance of NBS compared to A^* .

arameters

- Latest IPC Benchmark
- Implementation in Fast Downward
- Time limit: 30 minutes. Memory Limit: 3.5 GB.
- Heuristics
 - Blind Heuristic
 - Max Heuristic
 - Critical Path Heuristic (m = 2)
 - Landmark-Cut Heuristic

Goal

Evaluate performance of NBS compared to A^* .

Parameters

- Latest IPC Benchmark
- Implementation in Fast Downward
- Time limit: 30 minutes. Memory Limit: 3.5 GB.
- Heuristics
 - Blind Heuristic
 - Max Heuristic
 - Critical Path Heuristic (m = 2)
 - Landmark-Cut Heuristic

NBS	

NBS Experiment ○○●○ fMM Experiment

Results and Evaluation

NBS > A* Domain		So	lved Pr	oblem	s (#)
	Algo	h^1	h ^{max}	h ^m	h ^{lmcut}
Blocks	A*	18	21	10	28
DIOCKS	NBS	27	21 27	13	31

Similar Domains (~ 10)

- Driverlog
- Floortile-opt11-strips

• ..

NBS	

fMM Experiment

Conclusion

Results and Evaluation

$NBS > A^*$					
Domain		So	lved Pr	oblem	s (#)
	Algo	h^1	h ^{max}	h ^m	h ^{lmcut}
Blocks	A^*	18	21 27	10	28
DIOCKS	NBS	27	27	13	31

Similar Domains (~ 10)

- Driverlog
- Floortile-opt11-strips

NBS	

NBS Experiment ○○○● fMM Experiment

Conclusion

Results and Evaluation

$NBS < A^*$						
	Domain		So	lved Pr	oblem	s (#)
		Algo	h^1	h ^{max}	h ^m	h ^{lmcut}
	Storage	A^*	14	15	7	15
	Storage	NBS	5	15 5	2	4

Similar Domains (~ 20) • Depot • Elevators-opt11-strips • ..

NBS	

fMM Experiment

Conclusion

Results and Evaluation

$NBS < A^*$						
	Domain		Solved Problems (#)			
		Algo	h^1	h ^{max}	h ^m	h ^{lmcut}
	Storage	A^*	14	15 5	7	15
		NBS	5	5	2	4

Similar Domains (\sim 20)

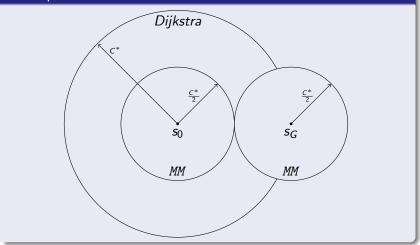
- Depot
- Elevators-opt11-strips

NBS Experiment

fMM Experiment

Conclusion 00

fMM Experiment

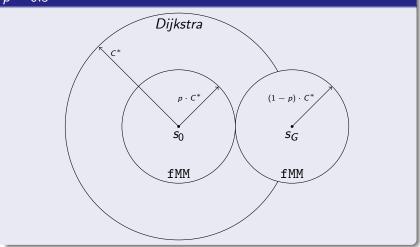

NBS	

fMM Experiment

Conclusion 00

Meet-In-The-Middle

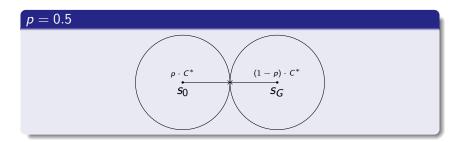
State Space


NBS Experiment

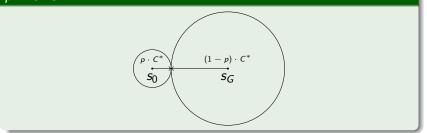
fMM Experiment

Conclusion

Fractional Meet-In-The-Middle



NBS Experiment


fMM Experiment

Conclusion 00

Fractional Meet-In-The-Middle

p = 0.25

fMM Experiment

Fractional Meet-In-The-Middle

Key Properties

- Expands |VC| states given input p^* .
- Reflects the structure of the state space.

Experiment Goal

Inquire the relation between the state space structure and the performance of NBS.

Experiment Parameters

- Same constraints as the NBS experiment.
- Equidistant *p*-value from 0 to 1 with step size 0.1.

fMM Experiment

Fractional Meet-In-The-Middle

Key Properties

- Expands |VC| states given input p^* .
- Reflects the structure of the state space.

Experiment Goal

Inquire the relation between the state space structure and the performance of NBS.

Experiment Parameters

- Same constraints as the NBS experiment.
- Equidistant *p*-value from 0 to 1 with step size 0.1.

fMM Experiment

Fractional Meet-In-The-Middle

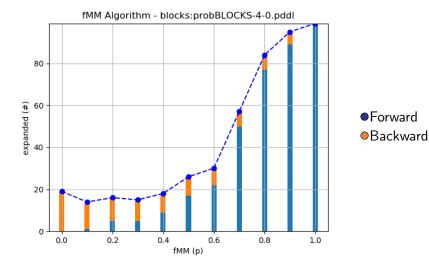
Key Properties

- Expands |VC| states given input p^* .
- Reflects the structure of the state space.

Experiment Goal

Inquire the relation between the state space structure and the performance of NBS.

Experiment Parameters

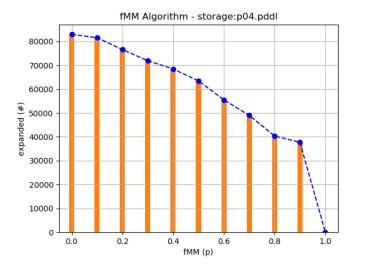

- Same constraints as the NBS experiment.
- Equidistant *p*-value from 0 to 1 with step size 0.1.

NBS Experiment

fMM Experiment

Conclusion 00

Results and Evaluation



NBS Experiment

fMM Experiment

Conclusion 00

Results and Evaluation

NBS Experiment

fMM Experiment

Conclusion 00

Results and Evaluation

Overview

- p^* is informative of the overall structure of the state space.
- The state space influences the performance of NBS.
- The structure of the state space correlates with the domain.

iow can we use that information?

Case Study: Blocks Domain

NBS Experiment

fMM Experiment

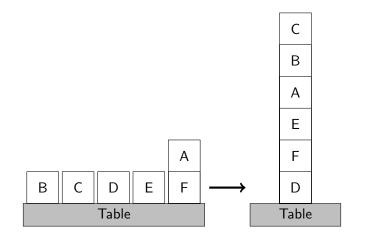
Conclusion 00

Results and Evaluation

Overview

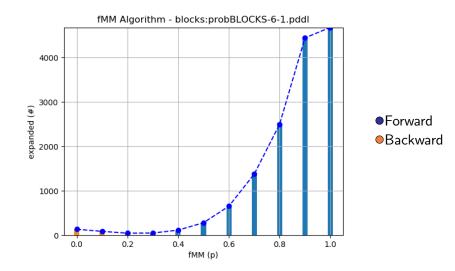
- p^* is informative of the overall structure of the state space.
- The state space influences the performance of NBS.
- The structure of the state space correlates with the domain.

How can we use that information?


Case Study: Blocks Domain

NBS Experiment

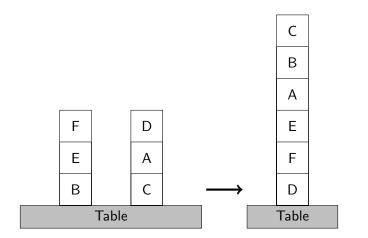
fMM Experiment


Conclusion

Case Study: Blocks Instance 6-1

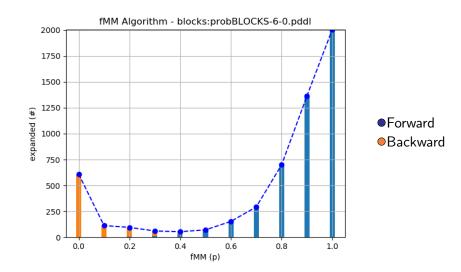
 NBS
 NBS Experiment
 fMM Experiment
 Control

 Case Study:
 Blocks Instance 6-1



NBS Experiment

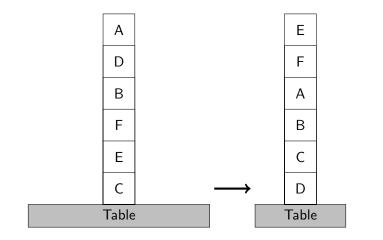
fMM Experiment


Conclusion

Case Study: Blocks Instance 6-0

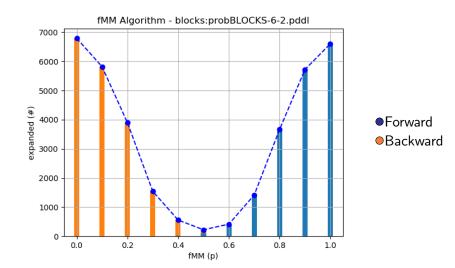
 NBS
 NBS Experiment
 fMM Experiment
 Conclusion

 Case Study: Blocks Instance 6-0



NBS Experiment

fMM Experiment


Conclusion

Case Study: Blocks Instance 6-2

 NBS
 NBS Experiment
 fMM Experiment
 Conclusion

 Case Study:
 Blocks Instance 6-2

Conclusion

Take Home Message

- Using NBS in planning can compete with A^* .
- The efficiency of NBS depends on the structure of the transition system.
- The predisposition towards certain search approaches correlates with the domain.

Conclusion

Take Home Message

- Using NBS in planning can compete with A^* .
- The efficiency of NBS depends on the structure of the transition system.
- The predisposition towards certain search approaches correlates with the domain.

Conclusion

Take Home Message

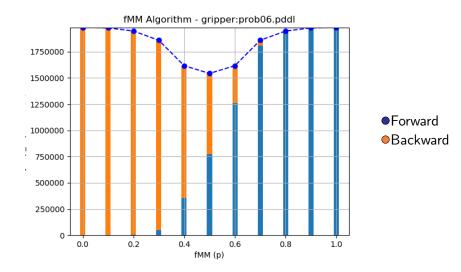
- Using NBS in planning can compete with A^* .
- The efficiency of NBS depends on the structure of the transition system.
- The predisposition towards certain search approaches correlates with the domain.

Questions?

For Further Reading I

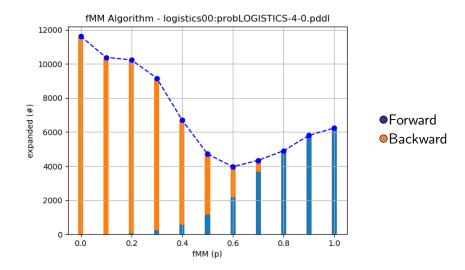
J. Chen, R. C. Holte, S. Zilles, N. Sturtevant

Front-to-end bidirectional heuristic search with near-optimal node expansions.

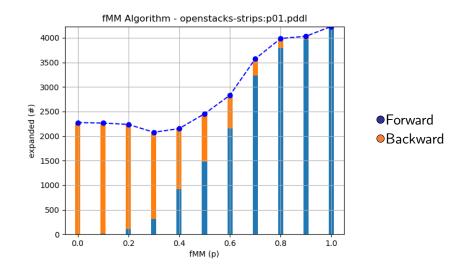

IJCAI 2017, pages: 489-495, AAAI Press.

J. Eckerle, J. Chen, R. C. Holte, S. Zilles Sufficient conditions for node expansion in bidirectional heuristic search.

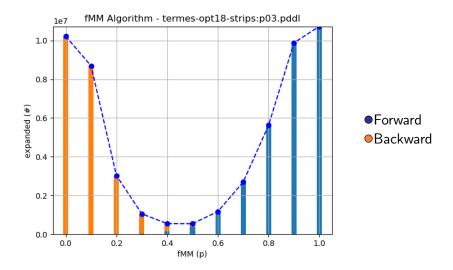
ICAPS 2017, pages: 79-87, AAAI Press.


Gripper Instance 06

Appendix ○●○○○


Logistics00 Instance 4-0

Appendix


Openstacks-Strips Instance 01

Appendix

Termes Instance 03

Appendix ○○○○●

