
Generalization of
Cycle-Covering Heuristics

Master’s Thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Artificial Intelligence

http://ai.dmi.unibas.ch

Examiner: Prof. Dr. Malte Helmert

Supervisor: Dr. Thomas Keller

Clemens Büchner

clemens.buechner@unibas.ch

2015-059-603

April 20, 2020

http://ai.dmi.unibas.ch
mailto:clemens.buechner@unibas.ch

Acknowledgments

This thesis would not have been such a personal success without the help of so many people.

I am very grateful for all the support and encouragement I received during this time.

First of all, I thank Thomas Keller for his advice and all the time he put into this. The

insights we gained during our endless discussions were invaluable for making great progress.

I owe my thanks to Florian Pommerening who has joined our meetings and inspired me

to dig deeper. His help with the code base of Fast Downward at all times is also greatly

appreciated. I thank Prof. Dr. Malte Helmert and the whole AI research group at the

University of Basel for this great opportunity and their assistance.

I am endlessly grateful for Stefanie who has participated in all my ups and downs during

this thesis and the entire degree. Thank you very much for all the support and sacrifice, the

suggestions and criticism, and last but not least the encouragement.

I also appreciate the effort invested by all my other proofreaders, discussion partners, and

most of all friends. Thank you Andrea, Augusto, Manuel, Michael, Songül, and Yanick for

your detailed feedback and corrections which have helped me improve the thesis.

Last but not least, I thank my family and friends for the mental support and all your caring.

Abstract

In this thesis, we consider cyclical dependencies between landmarks for cost-optimal plan-

ning. Landmarks denote properties that must hold at least once in all plans. However, if

the orderings between them induce cyclical dependencies, one of the landmarks in each cycle

must be achieved an additional time. We propose the generalized cycle-covering heuristic

which considers this in addition to the cost for achieving all landmarks once.

Our research is motivated by recent applications of cycle-covering in the Freecell and logis-

tics domain where it yields near-optimal results. We carry it over to domain-independent

planning using a linear programming approach. The relaxed version of a minimum hitting

set problem for the landmarks is enhanced by constraints concerned with cyclical depen-

dencies between them. In theory, this approach surpasses a heuristic that only considers

landmarks.

We apply the cycle-covering heuristic in practice where its theoretical dominance is con-

firmed; Many planning tasks contain cyclical dependencies and considering them affects

the heuristic estimates favorably. However, the number of tasks solved using the improved

heuristic is virtually unaffected. We still believe that considering this feature of landmarks

offers great potential for future work.

Table of Contents

1 Introduction 1

2 Classical Planning 3

2.1 Planning Tasks and State Spaces . 3

2.2 Heuristic Search . 4

2.3 Problem Domains . 5

3 Landmarks and Landmark Orderings 8

3.1 Landmarks . 8

3.2 Landmark Orderings . 9

3.3 Landmark Graphs . 11

3.4 Landmark Generators . 13

3.5 Landmark Heuristics . 15

4 Minimum Hitting Sets and Linear Programming 18

4.1 Minimum Hitting Set . 18

4.2 Integer and Linear Programs . 19

4.3 Operator Counting . 20

4.4 Landmark Heuristic Based on Minimum Hitting Sets 20

5 Cycle-Covering Heuristic 22

5.1 Active Landmarks and Cycles . 22

5.2 Decomposing Landmarks from Cycle-Covering 25

5.3 Additional Cycle-Covering Constraints for the Landmarks LP 27

5.4 Strengthening the Cycle-Covering Heuristic via Ordering Types 30

6 Experimental Evaluation 33

6.1 Cycle Detection . 33

6.2 Recomputing vs. Tracking Active Landmarks 36

6.3 Cycle-Covering Heuristic . 39

6.4 Aiming for Optimality . 44

6.5 Comparing to the State of the Art . 44

Table of Contents v

7 Integer Programming 49

7.1 Experimental Evaluation . 49

7.2 Total Unimodularity . 50

7.3 IP Can Influence the Heuristic Value . 53

8 Conclusion 55

8.1 Potential and Flaws of hord . 55

8.2 Future Work . 57

8.3 Full Circle . 60

Bibliography 61

1
Introduction

Sometimes, one needs to take a step back in order to move forward. In essence, this is what

this thesis aims to show for planning problems. But in order to do so, we first need to take

a step back ourselves and start at the very basics of what planning is.

Classical planning formalizes the problem of finding a way to achieve a desired outcome.

Such problems are specified as follows: given an initial state, which sequence of actions

changes the state so that the goal is reached? The solution is a sequence of actions called a

plan that ends in a goal state. In cost-optimal planning the aim is to find the cheapest plan

using actions with associated costs.

Planning is PSPACE-complete. We use heuristics to provide guidance when searching for

the optimal plan. Heuristics are functions that estimate the cost of reaching the goal from a

given state. Search algorithms explore the state space by applying one action at a time. If

the heuristic estimate is lower after applying an action this indicates that the corresponding

state is closer to the goal and should be explored further. In cost-optimal planning heuristics

which provide high estimates but do not overestimate the true cost are preferable.

In this thesis we are interested in a domain-independent version of the cycle-covering heuris-

tics as proposed by Paul and Helmert (2016). Cycle-covering is a concept based on landmarks

for planning. Each landmark describes a property that must be part of every plan for a

given problem. It is also possible to obtain landmark orderings which represent dependencies

between landmarks. Thus, they provide a sequence in which the landmarks must be pro-

cessed in order to find a plan. If these orderings entail cyclical dependencies, it means that

a deadlock is encountered. Deadlocks are situations where each object of a set is blocked.

Every such object is dependent on another object from the set to move first in order to make

progress. Resolving a deadlock requires an action that does not directly contribute towards

the goal. If deadlocks are present, finding optimal solutions for planning tasks is especially

hard (Gupta and Nau 1992). The principle of cycle-covering considers such deadlocks in

addition to the landmark information in order to increase the heuristic estimates.

Previous work on landmarks and landmark orderings has neglected cyclical dependencies

due to their increased complexity (Hoffmann, Porteous, and Sebastia 2004; Richter 2010).

In this thesis we show that the information that is lost when discarding cycles can be of

much value. Our approach, inspired by Paul, Röger, Keller, and Helmert (2017), recognizes

Introduction 2

the need for landmarks to occur multiple times in a plan if cycles are present. Remember

what we stated in the beginning: in order to move forward it is sometimes necessary to take

a step back. In terms of landmarks, a plan must cross the same waypoint twice in order to

resolve the cyclical dependencies between them. We propose the generalized cycle-covering

heuristic hcycle which uses a linear programming approach to evaluate the encountered states.

The problem encoding is based on a minimum hitting set for the landmarks enhanced by

constraints which represent the cyclical aspect.

We provide the theoretical basics to compute the cycle-covering heuristic based on landmark

graphs. Furthermore, we show in an experimental evaluation that it leads to improved

heuristic values in practice. Cycles in the landmark graphs of the analyzed planning tasks are

not a rare occurrence. We use benchmark sets based on planning tasks from the International

Planning Competition (IPC). Our evaluations support the claim that valuable information

is contained in cycles although our approach does not outperform the state of the art.

In this thesis, we describe our work on a generalized, domain-independent cycle-covering

heuristic. We first provide a background on classical planning (Chapter 2) and landmarks

(Chapter 3). Landmarks in planning entail two different kinds of research areas. On the

one hand, there is the question of how to approximate them for a given state in a planning

task. On the other hand, the question of interest is how a set of landmarks can be used in

order to solve the planning task for which they were created. Our contributions aim for the

latter of these problems, using landmark approximation methods suggested in the literature.

We explain how linear programming can be used to compute heuristic estimates based on

landmarks (Chapter 4). Based on this knowledge we present the details of our cycle-covering

heuristic and show that it dominates the analogous landmark heuristic which disregards cy-

cles (Chapter 5). The ordering-aware cycle-covering heuristic hord uses stronger constraints

in the linear program to improve the heuristic further. We implement these heuristics and

evaluate them empirically (Chapter 6). Lastly, we show how integer programming influences

the results of the cycle-covering heuristic (Chapter 7) and discuss ways to use our findings

for future work (Chapter 8).

2
Classical Planning

In this chapter we formalize the planning problem as it is studied in artificial intelligence

research. In particular, we consider classical planning restricting the problems to be fully

observable, meaning that no information is hidden to the planning agent (e.g., Chess is

fully observable whereas Poker is not, because it involves hidden cards).1 Furthermore, only

deterministic actions are present in classical planning, meaning there is no element of chance

in the outcome of taking an action (e.g., Chess is deterministic whereas Backgammon is not,

because it involves dice rolling).

2.1 Planning Tasks and State Spaces
In the following, we consider planning in the SAS+ planning formalism (Bäckström and

Nebel 1995). Definition 1 is adapted from Richter (2010).

Definition 1 (Planning task). A SAS+ planning task is a 4-tuple T = 〈V, s0, G,A〉 with

the following components:

• V is a finite set of finite-domain state variables. A fact v 7→ d is a value assignment

of value d ∈ dom(v) to v ∈ V, where dom(v) is the finite domain of v. (We use set

notation such as v 7→ d ∈ s and function notation such as s(v) = d interchangeably.)

A partial variable assignment is a set of facts, each with a different variable. A state

is a variable assignment defined on all variables in V.

• s0 is a state called the initial state.

• G is a partial variable assignment called the goal.

• A is a finite set of actions (also referred to as operators), each associated with two par-

tial variable assignments pre(a) and eff (a). The facts in pre(a) and eff (a) are called

the preconditions and effects of action a ∈ A, respectively. Each action furthermore

has an associated non-negative cost cost(a).

1 Even though games are not classical planning problems, they are suitable for illustrating the described
properties.

Classical Planning 4

An action a ∈ A is applicable in a state s if s(v) = d for all v 7→ d ∈ pre(a). Applying an

applicable a in s results in s′ = sJaK where s′(v) = d for all v 7→ d ∈ eff (a) and s′(v) = s(v)

otherwise. An action sequence π = 〈a1, . . ., an〉 is applicable in s = s1 if si+1 = siJaiK for

i = 1, . . . , n and each action ai is applicable in si. The state that results from applying π

in s is written as sJπK.
An s-plan is an action sequence π such that G ⊆ sJπK. With Πs we refer to the set of all

s-plans. If s is clear from the context, we use the term plan and Π is the set of all such plans

(e.g., the s0-plans of a planning task T = 〈V, s0, G,A〉). The cost of a plan π = 〈a1, . . ., an〉
is the sum over the action costs of the sequence: cost(π) =

∑n
i=1 cost(ai). A plan π is

optimal (denoted as π∗) if it has minimal cost among all plans: π∗ ∈ arg minπ∈Π [cost(π)].

Every planning task induces a state space. It displays the full list of states together with

the possible actions between them.

Definition 2 (State space). The planning task T = 〈V, s0, G,A〉 induces a state space

S = 〈S,A, cost , T, s0, S?〉 as follows.

• S is the set of all states over V.

• A is the set of actions A.

• cost : A→ R+
0 are the action costs.

• T = {〈s, a, s′〉 | s, s′ ∈ S, a applicable in s, s′ = sJaK} is the transition relation from

one state to another through an applicable action.

• s0 ∈ S is the initial state.

• S? = {s ∈ S | G ⊆ s} is the set of goal states.

2.2 Heuristic Search
One approach to solving planning tasks is heuristic search. A heuristic is a function that

estimates the cost of a state s to the nearest goal state (i.e., the cost of the optimal s-plan).

It is used by search algorithms to evaluate promising actions and avoid irrelevant areas of

the corresponding state space. In this thesis, we always use the A∗ search algorithm (Hart,

Nilsson, and Raphael 1968). States are expanded by generating successor states for all

applicable actions. Repeatedly, the state with the lowest total cost of the path to reach it

combined with its heuristic estimate is expanded to eventually reach a goal state. When

the first goal state is expanded, the search terminates. If no goal state exists (or none is

reachable), A∗ exhaustively expands all reachable states before it terminates without finding

a solution or only dead-end states remain (i.e., all states s where h(s) =∞ are dead-ends).

We say that a heuristic h1 dominates another heuristic h2 if h1(s) ≥ h2(s) for all s. By h∗ we

refer to the perfect heuristic which returns the cost of an optimal s-plan for all states s ∈ S
or ∞ if no plan exists. Computing h∗ is as hard as planning which is PSPACE-complete

(Bylander 1991). A heuristic h is called admissible if it never overestimates the true distance

to the goal (i.e., it is dominated by h∗). A∗ guarantees to find an optimal plan when an

admissible heuristic is used (Hart et al. 1968).

Classical Planning 5

A heuristic is called path-dependent if the estimated cost of an s-plan depends on the path π

from s0 to s. The according evaluation function h(s, π) is not a heuristic in the usual sense,

but can be used as such. If a set of paths Π to s are considered in the heuristic (i.e., h(s,Π)),

it is called multi-path-dependent. This may increase the information considered to estimate

the cost of s-plans and can thus lead to more accurate heuristics.

2.3 Problem Domains
The formalization of planning tasks as given in Definition 1 gives a common ground to a

wide range of specific problems. In planning, we talk about a problem domain to denote a

specific class of problems. Each domain has its own specified rules of which predicates exist

and how they interact with each other. All problems within the same domain are considered

similar, which is not necessarily the case for two problems of completely different domains.

2.3.1 Logistics
In this thesis there will be example planning tasks explaining some ideas, properties, or

problems. Instead of formally describing them every time, we hereby introduce a format

that we use whenever suited. The domain of our examples is a simplified version of the

commonly used logistics domain (McDermott 2000). Figure 2.1 shows the available objects.

A

(a) Location named A

To A

(b) Package with destination A

#1

(c) Truck with ID 1

Figure 2.1: Objects available in our simplified logistics domain.

The logistics domain describes problems where packages need to be transported between

locations. There are vehicles which can execute this task. A package is either at a location

or loaded onto a truck. Trucks can move freely between locations (i.e., routes are connecting

every location with all other locations directly). The goal is to bring all packages to their

destination location. A logistics planning task can have an arbitrary number of locations,

packages, and trucks.2

2 The original logistics domain is more complex than the version we use. Locations and trucks are associated
with a city and trucks can only move between locations in their city. Each city has an airport (which is
also a location) and airplanes can transport packages between the airports of different cities.

Classical Planning 6

Definition 3 (Logistics problem). A logistics problem is specified by a 5-tuple

〈L,P, T, init, goal〉 as follows:

• L, P , and T are the sets of locations, packages, and trucks.

• init : P ∪ T → L assigns a location to every package and truck to denote where they

are located initially.

• goal : P → L maps each package to its destination.

Every logistics problem induces a planning task T = 〈V, s0, G,A〉 according to the following

rules.

• The set of variables V has one entry per package and truck. There is a variable vp for

each package p ∈ P with dom(vp) = L ∪ T . Furthermore, there is a variable vt for

every truck t ∈ T so that dom(vt) = L.

• The initial state is s0 =
⋃
o∈P∪T {vo 7→ init(vo)}.

• The goal of the planning task is to bring all packages to their destination: G =⋃
p∈P {p 7→ goal(p)}.

• The set of actions A consists of the following actions.

– There is an action for every truck to move between any two (distinct) locations:

For all 〈t, l1, l2〉 ∈ T × L × L where l1 6= l2 there is an action move(t, l1, l2). It

has pre(move(t, l1, l2)) = {t 7→ l1} and eff (move(t, l1, l2)) = {t 7→ l2}.

– For every package, there is an action to load that package onto a truck at each

location. For 〈p, t, l〉 ∈ P × T × L we have load(p, t, l) with pre(load(p, t, l)) =

{p 7→ l, t 7→ l} and eff (load(p, t, l)) = {p 7→ t}.

– Similarly, there is an unload action unload(p, t, l) for all 〈p, t, l〉 ∈ P × T × L. It

has pre(unload(p, t, l)) = {p 7→ t, t 7→ l} and eff (unload(p, t, l)) = {p 7→ l}.

All these actions have uniform cost, i.e., cost(a) = 1 for all a ∈ A. There is no

limitation to the number of packages carried by a truck at the same time.

For the remainder of this thesis we do not give the planning tasks for logistics examples

explicitly. Instead we sketch them using the symbols from Figure 2.1. Every truck and

package is placed in front of a location to denote its initial value. The goal is given by the

destinations marked on all packages. The sets of variables and actions are implied by the

number of locations, packages, and trucks as listed above. Variables are named according

to their identifications displayed in the example figures. The objects from Figure 2.1 would

be named A for the location and t1 for the truck. The package pL→A would be sketched in

front of another location L. We will not use examples where two packages have the same

origin and destination, which would lead to ambiguous variable names under this naming

policy.

Classical Planning 7

2.3.2 Domain-Independent Planning
If a planning domain is understood well enough, a good and simple heuristic may be designed

easily. The application of such a heuristic is limited to problems in this domain, though,

because it is usually based on specific characteristics absent in other domains. However,

if the domain is known and shared by all planning tasks one aims to solve, this approach

is a reasonable choice. For example, a package delivery service will always encounter the

same class of problems, namely logistics. A heuristic for logistics could count how many

packages have not been delivered yet. This heuristic could be further improved upon by

incorporating more knowledge about this domain. Paul et al. (2017) applied this technique

for solving logistics tasks using a cycle-covering heuristic. The idea is based on another

domain-dependent heuristic for solving Freecell problems optimally (Paul and Helmert 2016).

If the domain is unspecified or one wants to solve problems in various domains using the

same idea, a domain-independent heuristic is what they aim for. The logistics heuristic de-

scribed above is inapplicable in Freecell problems because it is unclear what an “undelivered

package” relates to in a card-game. Even though the heuristic might yield satisfying results

in the domain it is designed for, it is inapplicable in others. The STRIPS (or goal-count)

heuristic (Fikes and Nilsson 1971) is a domain-independent approach similar to the logis-

tics heuristic; instead of undelivered packages, it counts the number of predicates that are

different from the goal.

In this thesis we introduce a domain-independent version of the cycle-covering heuristic

suggested in the aforementioned papers. Since this is quite an abstract concept, we only use

the simplified logistics domain for our examples. However, our heuristics are also applicable

in other domains.

3
Landmarks and Landmark Orderings

Landmarks play a crucial part in this thesis. They are properties shared by all plans of a

planning task. In this chapter we discuss fundamental landmark background, methods to

find landmarks, and literature that relates to our research.

3.1 Landmarks
As outlined above, landmarks in planning describe properties that are shared by all plans.

Porteous, Sebastia, and Hoffmann (2001) originally introduced the idea to identify facts

which must be true at some point in every plan of a planning task. All facts which hold

in the initial state, as well as facts of the goal, are trivial fact landmarks. It is possible

to deduce further fact landmarks through logical reasoning. For example, in the logistics

problem sketched in Figure 3.1 one package needs to be transported from B to C. As the

truck must pick up the package at B, a non-trivial fact landmark for this planning task

is t1 7→ B. Although not required by the goal, t1 7→ C is also a landmark because the

package must be unloaded from the truck at location C in every plan. Fact landmarks can

be interpreted as sub-goals, which must be achieved in all plans for a given planning task.

Just as facts that must hold at some point in every plan can be deduced, it is possible to

identify actions that must be part of every plan. All packages which are not initially at

their destination must be loaded and unloaded to solve the planning task. Thus, the actions

load(pB→C , t1, B) and unload(pB→C , t1, C) are part of every plan for the planning task in

Figure 3.1. Such a property of a planning task is called an action landmark and is first

described by Zhu and Givan (2003).

In the example, move(t1, A,B) is not an action landmark because it is possible to move to B

via C. This is sub-optimal in the example, but we cannot generally make such a deduction.

We can still capture the need to move to B by allowing landmarks of the form “either move

from A to B or move from C to B”. Such landmarks are called disjunctive action landmarks

(Helmert and Domshlak 2009). They can contain any number of alternatives of which at

least one must appear in every plan.

Landmarks and Landmark Orderings 9

A B C

#1

To C

Figure 3.1: Example planning task to demonstrate how landmarks can be deduced. The
truck must load the package at B and later unload it at C. Thus, the truck must eventually
also be at these locations.

Definition 4 (Disjunctive action landmark). Let T = 〈V, s0, G,A〉 be a planning task and

let s be a state of T .

A disjunctive action landmark of s is a non-empty set of actions ` ⊆ A such that every

s-plan contains an action a ∈ `.

It can be confusing to use the term landmark for all of the above ideas. Hence, we provide

a formal definition only for disjunctive action landmarks. They are particularly suited

for large parts of this thesis. Whenever possible, we use disjunctive action landmarks in

provided examples or to explain concepts. Therefore, the term landmark refers to disjunctive

action landmarks unless explicitly stated otherwise. This is not much of a limitation as it is

possible to transform fact landmarks into disjunctive action landmarks and vice versa. A fact

landmark for fact v 7→ d induces a disjunctive action landmark {a ∈ A | v 7→ d ∈ eff (a)}.
An action landmark is simply a disjunctive action landmark with only one alternative.

Landmarks of a planning task correspond to the initial state s0 unless specified otherwise.

However, we do not deem it sensible to completely refraining from using fact landmarks.

First of all, most literature considered uses fact landmarks in one way or another. Their

ideas are based on facts (e.g., various landmark generators in Section 3.4). The meaning

behind these ideas is not as intuitive when translated into the context of disjunctive action

landmarks. Furthermore, we based our implementations on the Fast Downward planning

system (Helmert 2006). It has been equipped with landmark fundamentals since its early

days. These implementations are mainly based on fact landmarks, so we implemented our

extensions accordingly. At some point, we need to transition to disjunctive action landmarks,

which we do exactly as explained above: use the set of actions that produce a fact as the

disjunctive action landmark representing that fact landmark.

3.2 Landmark Orderings
It is intuitive that in logistics problems packages must be loaded before they are un-

loaded. This idea can be formalized by introducing a landmark ordering between the two

corresponding landmarks. In the example from Figure 3.1, such an ordering would be

{load(pB→C , t1, B)} → {unload(pB→C , t1, C)}. It states that before unloading the package

at C, it must be picked up at B.

In the literature, several types of orderings are distinguished. Richter (2010) provides a

detailed overview, which we will only briefly represent here. In the following we use fact

Landmarks and Landmark Orderings 10

Or On Ogn Onec

Figure 3.2: Relationship between the types of landmark orderings used in this thesis. Rea-
sonable orderings Or are the most general, then natural orderings On which must hold in
all plans. Greedy-necessary orderings Ogn are a special case of On and, in turn, necessary
orderings Onec are more restrictive than Ogn.

landmarks because landmark orderings were originally defined using fact landmarks (Hoff-

mann et al. 2004). Understanding the underlying meaning of these ordering constraints

should also be easier in the context of facts. However, if an ordering exists between two fact

landmarks, the ordering also holds for the corresponding disjunctive action landmarks.

In the following, ` and `′ are two landmarks for a state s in a planning task. There is a

natural ordering ` →n `
′ between the two if in every s-plan ` must become true before `′.

Special cases of this ordering relation are necessary orderings ` →nec `
′ and greedy-necessary

orderings ` →gn `
′. The ordering ` →nec `

′ denotes that ` must always hold right before `′

becomes true.3 If this only holds when `′ is first added, there is an ordering ` →gn `
′.

All natural orderings are mandatory in the sense that they must hold along every plan

(Hoffmann et al. 2004). Consequently, they cannot be cyclic in solvable tasks, because

` →n `
′ and `′ →n ` are contradictory. There is a class of non-mandatory orderings called

reasonable orderings.

Definition 5 (Reasonable orderings between landmarks). Let ` and `′ be landmarks for

a state s in a planning task T . There is a reasonable ordering between ` and `′, written

` →r `
′, if the following holds: for every s-plan π = 〈a1, . . ., an〉 where `′ ∈ sJ〈a1, . . ., ai〉K,

` ∈ sJ〈a1, . . ., aj〉K with i < j ≤ n, and ` 6∈ sJ〈a1, . . ., ak〉K for all 1 ≤ k < j; there exists

an l ∈ {i + 1, . . . , j} such that `′ 6∈ sJ〈a1, . . ., al〉K and an m ∈ {j, . . . , n} such that `′ ∈
sJ〈a1, . . ., am〉K.

Reasonable orderings denote that in every plan where `′ is added before ` is added for the

first time, it is required to destroy the fact of `′ in order to achieve `. Thus, it is reasonable

to achieve ` before or at the same time as `′.

Another class of non-mandatory orderings called obedient-reasonable orderings was intro-

duced by Hoffmann et al. (2004). They represent additional ordering constraints ` →Or `′

which only hold when obeying a set of other ordering constraints O (e.g., the set of rea-

sonable orderings). These orderings are only valid if the set of orderings O is considered

mandatory during the planning procedure. By definition, reasonable orderings do not have

this property when used for cost-optimal planning. Hence, obedient-reasonable orderings

are unsuited for our research.

3 It is a necessary precondition for achieving `′.

Landmarks and Landmark Orderings 11

The presented landmark ordering types can be hierarchically ordered by strength as dis-

played in Figure 3.2. Necessary orderings are the most restrictive, followed by greedy neces-

sary orderings. They are both special cases of natural orderings which are in turn stronger

than reasonable orderings. The latter do not necessarily hold in all s-plans (i.e., it is possible

to achieve `′ before ` despite the ordering ` →r `
′). However, an ordering ` →r `

′ implies

the ordering restriction of natural orderings in the sense that `′ must be made true after (or

at the same time as) ` is made true for the first time.

3.3 Landmark Graphs
Landmarks and landmark orderings can be represented in one data structure using graphs.

Definition 6 (Landmarks graph). Let s be a state of planning task T .

A landmark graph G = 〈V,E〉 is a directed graph with a set of vertices V and a set of

edges E. There is a vertex in V for every landmark for s. The graph has an edge 〈`, `′〉
with label t between two vertices ` and `′ if

• there exists a landmark ordering ` →t `
′ with ordering type t, and

• there is no landmark ordering ` →t′ `
′ stronger than t.

In this thesis we are interested in cyclical dependencies between landmarks. They correspond

to deadlocks in the planning task. A deadlock denotes that the current state requires taking

an action that does not directly contribute to the goal (Paul and Helmert 2016). A deadlock

in a state s can be resolved by applying an action a such that the deadlock is not present

in sJaK. Multiple deadlocks may be resolved simultaneously by a single action (Gupta and

Nau 1992).

The example provided in Figure 3.3a entails such a deadlock in the initial state. The

package pB→C needs to be delivered from B to C while pC→B must go from C to B.

In order to load and unload the packages, t1 must be at both locations B and C once

for each transported package. Since it is at neither of these locations in the beginning,

it must eventually move there, making `B = {move(t1, A,B),move(t1, C,B)} and `C =

{move(t1, A,C),move(t1, B, C)} disjunctive action landmarks. It is reasonable to drive to C

after B because otherwise we cannot deliver the package pB→C when arriving at C. Driving

to B after C in order to deliver pC→B when first arriving at B is equally reasonable. Looking

at both packages separately, landmarks `B and `C constitute necessary steps to achieve

the goal of delivering this package. In the initial state, the only applicable actions are

move(t1, A,B) and move(t1, A,C). They can both be used to achieve one of the landmarks.

However, neither of them adds to the overall goal; the so achieved landmark is required

again to deliver the second package.

Recognizing deadlocks provides information about a state in a planning task that can be

used in a heuristic; the cost for resolving deadlocks may be accounted to the heuristic

estimate of that state. The equivalent of a deadlock in terms of landmarks is a cycle in the

landmark graph; it is induced by the landmark orderings which are directed edges between

Landmarks and Landmark Orderings 12

A

B

C
#1

To C

To B

(a) Planning task

`B =

{
move(t1, A,B)
move(t1, C,B)

}

`C =

{
move(t1, A,C)
move(t1, B,C)

}
rr

(b) Landmark graph

Figure 3.3: Logistics planning task with a deadlock. For each package individually, moving
to B as well as moving to C are landmarks. Since it is necessary to load packages before
they can be unloaded at their destination, one of the locations must be driven to twice. A
cycle in the landmark graph represents this deadlock.

the landmark nodes. In order to resolve a deadlock, one landmark in such a cycle must be

achieved twice along all s-plans.

The packages pB→C and pC→B in the planning task from Figure 3.3a constitute reasonable

orderings `B →r `C and `C →r `B ; they must be picked up at one location before they can

be unloaded at the other. The resulting landmark graph is presented in Figure 3.3b. All

further landmarks which could be found for the initial state of this example are ignored.

For the cycle-covering heuristic we are interested in finding as many distinct deadlocks as

possible. Therefore, we search for all elementary cycles in a landmark graph.

Definition 7 (Elementary cycle). Let G be a landmark graph.

A path in G is a sequence of vertices π = 〈v1, . . ., vn〉 such that 〈vi, vi+1〉 ∈ E for 1 ≤ i < n.

A path π is a cycle iff v1 = vn and we write π : v1 → · · · → vn−1 → v1.

A path is elementary if no vertex appears twice. A cycle is elementary if no vertex but the

first and last appears twice.

Two elementary cycles are distinct if one is not a cyclic permutation of the other (e.g.,

v → w → v is a cyclic permutation of w → v → w which makes them the same cycle).

By L(c) we refer to the set of landmarks that occur in a cycle c. Similarly, O(c) refers to

the orderings which produce that cycle.

Our Definitions 6 and 7 are inspired by the definition of a graph in Johnson (1975). He

suggests an algorithm to find all elementary cycles in a graph G = 〈V,E〉 efficiently. The

procedure returns a deterministic list of elementary cycles C. Its running time is bounded

by O
(
(|V |+ |E|)(|C|+ 1)

)
and it has a space-bound of O

(
|V |+ |E|

⋂
).

Landmarks and Landmark Orderings 13

Johnson’s Algorithm4 explores all vertices in lexicographical order. All paths starting from

the current vertex are explored one after the other. All vertices along one path are marked

as blocked. Paths are always elementary because blocked vertices are not considered (except

for the starting vertex). As soon as a path returns at the starting vertex, it is added to

the list of elementary cycles. In this case, or if a dead end is reached (i.e., no unblocked

vertices are available), the procedure goes back along the path, unblocking all vertices until

an unexplored path is available. Only distinct cycles are found because all vertices ordered

before the starting vertex are ignored during exploration.

3.4 Landmark Generators
Above, we have established the definitions of landmarks and landmark orderings. The

problem of finding all landmarks for a planning task is PSPACE-complete (Hoffmann et

al. 2004). In this section we present methods that approximate the landmarks along with

landmark orderings. This thesis is not concerned with analyzing or improving upon these

methods. We rather depend on their generated landmarks for further use in computing a

heuristic.

3.4.1 HPS Landmarks
In their article called “Ordered Landmarks in Planning”, Hoffmann et al. (2004) describe

a backchaining approach to generate ordered landmarks. Their procedure only detects fact

landmarks, thus by landmarks we refer to fact landmarks in this section. They construct a

landmark graph by iteratively adding new landmark candidates along with greedy-necessary

orderings. By showing that the relaxed planning task is unsolvable when a landmark can-

didate is removed, the candidate is provably a landmark. If the relaxed planning task with

the landmark removed is solvable, it might not be a landmark and thus is removed from the

landmark graph.

Greedy-necessary orderings are the only natural orderings that their algorithm finds. These

are concerned with a landmark being first added. Assuming landmarks are only required

once, the greediness lies in the early achievement of landmarks. The authors suggest a

similar ordering criterion concerned with adding a fact for the last time. However, they

leave this for future work since they claim it to be rather unintuitive.

Based on the landmark graph from above, they approximate reasonable and obedient-

reasonable orderings using an aftermath relation. If a landmark `′ is in the aftermath of

another landmark `, this is a sufficient condition for a reasonable order ` →r `
′. Obedient-

reasonable orderings are in turn generated by the landmark graph extended with reasonable

orderings and the obedient aftermath condition. Their name stems from the underlying

assumption that any plan obeys the reasonable orderings, which is not necessarily true.

The algorithm of Hoffmann et al. breaks cycles occurring in the final landmark graph until

4 Johnson also proposed an algorithm to find all shortest paths between vertices in a graph. In this thesis,
however, by “Johnson’s Algorithm” we refer to the described algorithm for finding all elementary cycles
in a directed graph.

Landmarks and Landmark Orderings 14

it is acyclic. This is necessary since their search procedure cannot handle cycles. They

use the remaining landmarks and orderings for finding suboptimal solutions for planning

tasks. Their planner decomposes the original planning task into smaller sub-tasks, which

are easier to solve. Landmarks are achieved one after the other and removed from the

landmark graph after completion. Destructive interactions between landmarks (e.g. due

to conflicting landmarks, which can never be true at the same time) are ignored in their

approach. This may lead to a large decrease of solution quality, if a solution is found at

all. However, their experiments show significant speedup for many problems compared to

previous attempts such as Koehler and Hoffmann’s (2000) forced goal orderings.

The article by Hoffmann et al. (2004) provides us with a strong fundamental knowledge of

landmarks and landmark orderings. However, since their algorithm may produce unsound

landmark orderings makes this method unsuited for cost-optimal planning. We do not

consider their method for generating landmarks in this thesis, but use alternative methods

based on the same ideas.

3.4.2 RHW Landmarks
Richter (2010) writes about generating landmarks and landmark orderings as part of her

dissertation. The algorithm was originally proposed in Richter, Helmert, and Westphal

(2008). It also begins with a backchaining procedure but uses a possibly-before criterion to

ensure only sound orderings are found. Additionally, they consider disjunctive landmarks

instead of only fact landmarks, which yields a larger set of landmarks.

Their method generates even more landmarks by using domain transition graphs which are

atomic projections on the variables (Helmert 2004). A domain transition graph captures how

the value of a variable can change given the set of actions. If all paths leading to an already

found landmark pass through a common node, the corresponding fact is recognized as a

new fact landmark. In order to keep the number of landmarks manageable, their algorithm

prevents landmarks from overlapping.

The orderings their method finds are the same as those found by Hoffmann et al.’s (2004)

algorithm, although adapted to their found landmarks. They enhance this set of orderings by

considering the relaxed planning graph. A landmark that is not possible before some other

landmarks is naturally ordered after them. Reasonable and obedient-reasonable orderings

are gathered similarly to Hoffmann et al. (2004).

3.4.3 ZG Landmarks
An approach that finds significantly more landmarks than the aforementioned methods was

proposed by Zhu and Givan (2003). They were the first to not only consider facts which

must become true in every plan as landmarks; their method also discovers actions which

must be part of every plan. The method builds the relaxed planning graph and propagates

labels referring to actions and facts along paths in that graph. It starts at the first layer

where all nodes are labeled solely as themselves. Afterward, a fact node is labeled with

the intersection of the labels on its predecessor nodes. In contrast, action nodes are labeled

with the union of the labels on their parent nodes. In the final layer, all labels on goal facts

Landmarks and Landmark Orderings 15

are landmarks for the according planning task. Zhu and Givan claim that their procedure

provides a complete list of causal landmarks.

The authors directly suggest an improved version of their algorithm that counts how often

an action needs to be applied and how often variables change their value. It requires a

slightly different label propagation algorithm which updates the counters at each layer of

the relaxed planning graph. A heuristic based on these counters combined with bin-packing5

is suggested. Orderings between landmarks are only mentioned as a topic of future work in

the paper of Zhu and Givan. They could be inferred by any fact or action node in the last

layer, because its labels describe the landmarks for this fact or action, respectively.

3.4.4 hm Landmarks
The last method we consider in this section is from Keyder, Richter, and Helmert (2010)

and generates landmarks based on the m-relaxation of a planning task. With this approach

it is possible to include delete-effects in the generated landmarks, that are not considered

in all previous methods. First, it computes the T m problem which is a transformed version

of the original planning task T . Every fact of T m denotes a set of at most m facts from T .

These encode conjunctions of facts which must hold all at once for some action to be taken

in the original task. Facts and actions of T m encode delete-effects although none are present

in its actions. Using the technique of Zhu and Givan (2003), Keyder et al. get conjunctive

landmarks for the original problem. These can either be used as such, or be split because

every part of a conjunction must be made true for the conjunction to be true. In terms of

landmarks this means that every component of a conjunctive landmark is a landmark on its

own.

With this approach, it is not only possible to find all causal landmarks for the delete relax-

ation of a problem, but all causal landmarks for the original planning task. This requires

building the T m for a sufficiently large m which can be very inefficient. The empirical

evaluations of Keyder et al. consider only m = 1 (which is identical to Zhu and Givan) and

m = 2. They claim to find more landmarks than the RHW method in all tested domains

for all m. The number of expanded states decreases the most when conjunctive landmarks

are used. However, treating all facts of each conjunction as individual landmarks enables

solving more problems than using the conjunctions themselves as landmarks.

3.5 Landmark Heuristics
Heuristics based on landmarks have been studied since landmarks were first introduced by

Porteous et al. (2001). They were a popular subject in their early days and have made strong

appearances in planning competitions (e.g., the LAMA planner by Richter and Westphal

(2010), two-time winner of the IPC Sequential Satisficing Track 2008 and 2011). However,

contributions to the topic seem to have diminished over the past few years. In this chapter,

we revisit some of the heuristics proposed in literature over the last two decades.

5 This is similar to the hitting set approach as described in Chapter 4.

Landmarks and Landmark Orderings 16

3.5.1 Landmark-Count Heuristic
The work of Richter (2010) does not only introduce the landmark generator described above;

it also suggests a path-dependent landmark heuristic that uses these generated landmarks

and landmark orderings. The landmarks are generated once for the initial state. Landmarks

for all other states are approximated by the following rule:

L(s, π) = L \ (Accepted(s, π) \ReqAgain(s, π)) (3.1)

where Accepted(s, π) ⊆ L are the landmarks that are true at some point along π and

ReqAgain(s, π) ⊆ Accepted(s, π) is a set of landmarks for which it can be induced that they

are required again. A landmark is required again if it is part of the goal or greedy-necessarily

ordered before a landmark that has not been accepted yet. The cost of an s-plan is estimated

by the total number |L(s, π)| of landmarks which are not accepted in s or required again.

This heuristic is inadmissible because multiple landmarks can be achieved at once. As the

heuristic is used for sub-optimal planning, this is no problem.

In contrast to Hoffmann et al. (2004), Richter and Westphal (2010) do not force orderings

upon the planner. Rather, landmark orderings are used to guide the search by trying out

paths obeying them more frequently. To enforce this procedure, they implemented anytime

search together with multi-queue heuristic search. The results of this implementation were

astonishing. Richter and Westphal surprised themselves by outperforming all other contes-

tants at the IPC 2008 with the LAMA planner. In their experimental setup, they compared

different enhancements such as landmarks and cost-sensitive heuristics to previous state of

the art planning systems and showed improvement of solution quality by a large margin.

In this thesis, we are interested in cost-optimal planning. Thus, we ignore all search en-

hancements except the generation of landmarks and landmark orderings. At the time of

writing, Richter et al.’s method outmatched the other landmark ordering generators signif-

icantly. This makes their method particularly interesting for this thesis, as the number of

cycles is likely to correlate with the number of found orderings.

3.5.2 Admissible Landmark Heuristic
Karpas and Domshlak (2009) have used landmarks to derive an admissible heuristic for cost-

optimal planning. One of their contributions provides a way to make the landmark-count

heuristic admissible; instead of counting the landmarks which are yet to be achieved, they

sum up the costs required to achieve all these landmarks. The cost of a landmark is the

cheapest option to achieve this landmark based on an action cost partitioning; the cost of

each action is partitioned among all landmarks it achieves. This adaption ensures that the

cost of an action is counted at most once, even if multiple landmarks exist which can be

achieved by this action.

The choice of the cost partitioning is unrestricted. However, Karpas and Domshlak show

that uniform cost partitioning is sub-optimal. Moreover, an optimal cost partitioning scheme

is provided which can be computed in polynomial time using an LP. Besides being optimal,

this cost partitioning outmatches uniform cost-sharing due to monotonically increasing costs

for growing landmark sets; they show that the heuristic value may drop when considering

more landmarks if uniform cost partitioning is used.

Landmarks and Landmark Orderings 17

In a further step, they suggest using action landmarks to enhance their heuristic. If an

action a which is a landmark has not been applied to reach a state s, its full cost can be

accounted for the heuristic. All landmarks that can be achieved by a are then removed from

the remaining landmarks before applying the cost partitioning scheme described above.

They call this approach action landmark covering and the according heuristic dominates

their previous approach. If solving LPs is too time-consuming, it can also be combined with

uniform cost partitioning which renders it computationally efficient. The contribution of

using action landmark covering is shown to be substantial by empirical results.

The landmarks for a planning task are only computed once before starting the search for a

plan. Thus, the landmark set of a state s is based on the path(s) to s similar to Richter et al.

(2008). A modified version of A∗ is introduced in order to handle the additional information

which results from finding multiple paths to s. LM-A∗ computes the heuristic value of a

state by approximating the remaining landmarks based on all paths to s. Whenever a new

path to s is found, the heuristic is therefore reevaluated. An increased h-value is a more

accurate estimate of the true cost of the optimal s-plan.

3.5.3 LM-Cut Heuristic
One of the most popular landmark heuristics is the LM-cut heuristic hLM-cut which was

introduced by Helmert and Domshlak (2009). It is a highly accurate estimate of the optimal

delete relaxation heuristic h+. Unlike other methods, hLM-cut produces disjunctive action

landmarks during its heuristic computation. The procedure repeatedly searches for cuts

in justification graphs for a state in a planning task. The set of actions in each cut is a

disjunctive action landmark. Action costs are eroded while accumulating the cheapest cost

to resolve the landmarks. The sum of these costs then constitutes the heuristic estimate for

a state.

The LM-cut heuristic can be interpreted as a cost-partitioning based on the cut landmarks

(Bonet and Helmert 2010). Every iteration provides one component to the cost partitioning.

The cost function of a component assigns c = mina∈L cost(a) to all actions in a cut L and 0

to all other actions. Afterward, the original cost function is adapted by reducing the action

costs of all actions in the cut by c. Simultaneously, the heuristic value of the state that is

currently evaluated is increased by c. The evaluation for that state stops as soon as no more

cuts of cost c > 0 can be found.

LM-cut provides a very accurate estimate of h+ and is a strong heuristic for cost-optimal

planning. Since h+ ignores delete effects, all of its approximations have in common that

they apply each operator at most once. Thus, the heuristic is prone to behave poorly where

operators are necessary more than once.

4
Minimum Hitting Sets and Linear Programming

In the previous chapter we have presented methods that approximate the sets of landmarks

in a planning task. Most of the discussed literature also provides a way to use the found

landmarks for planning, although these problems can be approached independently. In this

thesis we examine an unexplored way of dealing with landmarks. We present the concepts

for our approach in this chapter.

Given a set of disjunctive action landmarks, we can ask the question “What is the cheapest

way to satisfy all landmarks?” Landmarks could overlap, thus the answer to this question

is not necessarily to pick the cheapest action from every landmark and combine them to a

plan. Instead, we search for the cheapest set of actions so that every landmark contains at

least one action from that set. This is called a minimum hitting set (MHS) problem6 (Karp

1972).

4.1 Minimum Hitting Set
The following is a formal definition of hitting sets.

Definition 8 (Hitting set). Let X be a set, F = {F1, . . . , Fn} ⊆ 2X be a family of subsets

of X, and c : X → R+
0 be a cost function for X.

A hitting set is a subset H ⊆ X that “hits” all subsets in F , i.e., H ∩F 6= ∅ for all F ∈ F .

The cost of H is
∑
x∈H c(x).

A minimum hitting set (MHS) is a hitting set with minimal cost.

Using hitting sets is the most accurate approach to define a heuristic when considering

solely disjunctive action landmarks as a source of information. However, computing the

MHS is NP-hard and thereby not feasible for complex problems (Karp 1972). By relaxing

the problem as discussed in Section 4.2 we can still use the fundamental idea of MHS for

our needs.

In a planning task T = 〈V, s0, G,A〉 where G 6⊆ s0 (i.e., the initial state is not a goal state),

the set of all actions is trivially a landmark; at least one action needs to be applied to leave

6 Also known as the set cover problem.

Minimum Hitting Sets and Linear Programming 19

the non-goal initial state. This landmark might not be very relevant for most planning

tasks. This is because it provides information that is also contained in landmarks of smaller

cardinality. Any landmark that does not contain all actions further restricts which of the

actions need to be considered for reaching a goal state from the initial state s0.

Generally speaking, an element F ∈ F in a hitting set problem can be removed without

changing the solution if another element F ′ ⊆ F exists in F . In terms of landmarks ` and `′,

if `′ ⊆ `, then every solution that hits `′ inevitably also hits `; applying an action in `′ means

applying an action in ` (but not vice versa).

4.2 Integer and Linear Programs
MHS problems can be solved using integer programming. An integer program (IP) consists

of a linear objective function that needs to be maximized or minimized over a set of variables.

These variables are constrained by a linear system of inequalities and their value must be

integral in the solution. In this section we explain how the IP for an MHS is constructed.

Consider an MHS with X, F , and c as in Definition 8. The objective is to find the subset

of X that hits all F ∈ F and has minimal cost.

min
∑
x∈X

Yxc(x) s.t. (4.1)

Yx ∈ {0, 1} for all x ∈ X and∑
x∈F

Yx ≥ 1 for all F ∈ F (4.2)

Solving this IP gives a solution for the MHS problem. The variables Yx in Equations (4.1)

and (4.2) denote whether x is in the hitting set H or not: H = {x ∈ X | Yx = 1}.
The variables Yx are restricted to be either 1 or 0 in order to model the hitting set; an

item x can either be in the hitting set or not. Same as the MHS problem, Karp (1972) has

shown that the 0-1 integer problem is NP-complete. In order to approximate the solution,

one can define a corresponding linear program (LP). LPs are computable in polynomial

time (Khachiyan 1979; Aspvall and Stone 1980) since they relax the restrictions by allowing

variables to have any real-numbered value greater or equal to 0 in a solution. The LP-

relaxation of the above MHS has the following form.

min
∑
x∈X

Yxc(x) s.t. (4.3)

0 ≤ Yx ≤ 1 for all x ∈ X and∑
x∈F

Yx ≥ 1 for all F ∈ F (4.4)

This adaption enables finding a solution to the minimization problem in polynomial time.

However, it comes at the cost of possibly having an item n times in the solution where

0 < n < 1. This does not make much sense given the original definition of the MHS

problem. Still, the LP solution is an adequate approximation most of the time.

Now consider a minimization IP and its corresponding LP-relaxation with the same set of

constraints. Every variable assignment that is a solution of the IP does inevitably adhere to

Minimum Hitting Sets and Linear Programming 20

these constraints. This remains true if the same values are used in the LP setting, thus it is

possibly also a solution for the LP. However, as the variables are not restricted to integers

in the LP, a cheaper solution may exist. Hence, the LP solution never overestimates the IP

solution. In terms of a planning heuristic, if it is based on an IP, the according LP solution is

an admissible approximation. Moreover, the IP heuristic dominates the LP-relaxed version

of the same heuristic.

4.3 Operator Counting
The operator-counting framework is a family of heuristics based on LPs which was intro-

duced by Pommerening, Röger, Helmert, and Bonet (2014). As the name suggests, it counts

how often each action is required to get from a state to the goal.

All operator-counting LPs share the following objective function for a planning task with

action set A.

min
∑
a∈A

Ya · cost(a) (4.5)

A new LP is considered in every state that is encountered during the search of a planning

task T = 〈V, s0, G,A〉. Let C be a function that maps the states of T to a set of operator-

counting constraints. The LP variables include one variable Ya for each action a ∈ A. All

constraints in C(s) must be feasible in the following sense; if Y πa is the number of occurrences

of a in a plan π for T , then all constraints must hold for all plans π ∈ Π if Ya is replaced

with Y πa for all a ∈ A. Then, the objective value of Equation (4.5) subject to C(s) is an

admissible approximation of the optimal s-plan.

There is a variety of possible operator-counting constraints that capture different aspects of a

state (Pommerening et al. 2014). One valuable property of the operator-counting framework

is that different ideas can be combined into one strong heuristic. Take a setH = {h1, . . . , hn}
of operator-counting heuristics and let Ci(s) be the set of LP constraints for hi(s). We can

combine all heuristics in H in one heuristic hH by joining together all LP constraints in

every state. The constraints for hH(s) would be
⋃n
i=1 Ci(s). The resulting heuristic hH

dominates the maximum of all component heuristics (i.e., hH(s) ≥ maxh∈H h(s) for all s)

(Pommerening et al. 2014).

For the sake of completeness we present another important finding by Pommerening et al.

It is used in a proof later in this thesis.

Proposition 1 (Dominance). Let C, C ′ be functions that map states s of a planning task T
to constraint sets for s such that C(s) ⊆ C ′(s) for all states s. Then the IP/LP heuristic

for C ′ dominates the respective heuristic for C.

4.4 Landmark Heuristic Based on Minimum Hitting Sets
One way of defining constraints for the operator counting framework uses the aforementioned

MHS constraints for the LP. By definition, each landmark must occur at least once in every

plan. In other words, if Aπ ⊆ A is the set of actions used in an s0-plan π, then Aπ ∩ `
must be non-empty for all landmarks ` ∈ L(s0). This is basically the definition of the

Minimum Hitting Sets and Linear Programming 21

hitting set problem. A solution of the MHS over all disjunctive action landmarks is a lower

bound on the true cost of an optimal plan. Thus, we introduce a simple constraint for every

landmark ` of the state s. ∑
a∈`

Ya ≥ 1 (4.6)

It denotes that at least one of the actions contained in ` must be used by each plan.

(Since we use the LP-relaxation, a valid solution may for example indicate to apply two

actions 0.5 times.) We define hLM(s) to be the solution of an LP with the constraints from

Equation (4.6) for all landmarks of state s. The resulting heuristic hLM is a landmark

heuristic that uses the MHS solution as an estimate for the optimal s-plan in a planning

task.

All such LPs find solutions where 0 ≤ Ya ≤ 1 for all a ∈ A. On the one hand, setting

the count of an operator to 1 already satisfies all constraints in which that operator occurs.

On the other hand, concerning cost minimization, it is never beneficial to count the same

operator more than once. A heuristic based on the MHS solution over a set of landmarks

is thus bounded by the optimal delete relaxation heuristic h+ (Bonet and Castillo 2011).

However, there are planning tasks that require applying the same operator multiple times

to reach the goal. Cycles in the landmark graph may hint to this necessity by requiring that

one landmark in the cycle must be achieved at least twice.

5
Cycle-Covering Heuristic

In this chapter we present the main contribution of this thesis. We explain how a generalized

version of the cycle-covering heuristic based on the ideas of Paul et al. (2017) could be

implemented. In the first part we present two alternatives for deciding which landmarks

need to be considered in a state of a planning task. The second part contains explanations

of how the heuristic is computed in each state.

5.1 Active Landmarks and Cycles
We introduce the term active landmarks referring to a set L(s) of landmarks for a state s.

It serves two purposes which make the notation in the upcoming sections easier. On the

one hand, given a set L of landmarks for state s, the set of active landmarks L(s) ⊆ L
denotes those landmarks which must hold along all s-plans, but are not true in s. This is

only relevant when considering fact landmarks where all facts in s are trivial landmarks.

One can use L(s) = L if only disjunctive action landmarks are considered.

On the other hand, since the set of landmarks changes during the act of planning, the set

of active landmarks changes with each state. Consider for example a logistics problem as

shown in Figure 5.1. In the initial state s0, ` = {load(pB→A, t1, B)} is a landmark because

the package must inevitably be loaded in order to bring it to its destination. Now consider

a state s where the fact pB→A 7→ t1 holds. Obviously, ` is not a landmark for s because not

every s-plan unloads and reloads the package at B. The landmark-count heuristic (Richter

et al. 2008) uses the set of landmarks from the initial state removing landmarks which have

already been true at some point on the path to s. While this method does not explicitly

store active landmarks, we introduce an algorithm which does in Section 5.1.2.

Landmark orderings denote dependencies between the involved landmarks. In the landmark

graph, such orderings might lead to cycles which denote that the involved landmarks are

cyclically dependent on one another. If one of the landmarks in the cycle is not active, the

cyclical dependency is not valid. A cycle c is active in a state s if all its landmarks are

active in s: L(c) ⊆ L(s). The set of active cycles is C(s). In this section we explain two

techniques for deciding which landmarks and cycles are active in a state of a planning task.

Both methods use a landmarks generation method according to Section 3.4.

Cycle-Covering Heuristic 23

A B

#1

To A

Figure 5.1: Small logistics task where load(pB→A, t1, B) is an action landmark for all states
where pB→A is located at B. It is not a landmark in all states where this is not the case.

5.1.1 Recomputing the Landmarks Graph
Our first approach is to compute the landmarks graph in every state s that is encountered

during search. The active landmarks L(s) are recomputed from scratch repeatedly. However,

we need to adapt the original planning task T = 〈V, s0, G,A〉 in order to get the landmarks

for s because the landmark generators always compute the landmarks for s0. The landmarks

of any state s ∈ S of T can be generated by computing the landmark graph for Ts =

〈V, s,A, G〉. The only thing that differs from the original planning task is the initial state.

If Gs = 〈Ls,Os〉 is the landmark graph computed with the chosen landmark generator, then

L(s) = Ls when using disjunctive action landmarks. Otherwise, if fact landmarks are used,

then only those landmarks which do not hold in s are active: L(s) = {` ∈ Ls | ` \ s 6= ∅}.
If Cs is the set of elementary cycles induced by Os, then C(s) = {c ∈ Cs | L(c) ⊆ L(s)}.
Using this method, the time required to compute the heuristic value of a state depends

on how long it takes to generate the according landmark graph. As the computation of

landmarks might be expensive, we expect performance issues with this approach. On top of

this, all computations based on the graph (e.g., finding cycles) must also be repeated. We

present an alternative to surpass computing landmark graphs over and over again in the

following section.

5.1.2 Tracking Unresolved Landmarks and Landmark Orderings
This approach computes the landmark graph once for the initial state at the beginning

of the search procedure. Until termination of the planner it works with this graph and

keeps track of which landmarks and landmark orderings have not been resolved since the

beginning. In the following we explain how to keep track of active landmarks and cycles.

Note that the provided algorithms are based on fact landmarks. The decision to refrain from

using disjunctive action landmarks here was driven by the current implementation of the

Fast Downward planner. It produces landmark graphs with fact landmarks together with a

list of possible achievers. In our implementation we keep them as fact landmarks until after

deciding whether they are active or not.

We track the active landmarks and cycles by maintaining two sets of information for each

state s. The first is the set of active landmarks itself and it captures which landmarks

have not been achieved in all found paths to s. The second is a list of landmark orderings

which still need to be considered in s. If a cycle consists only of orderings that are not

resolved, this means the cyclical dependency is still valid. These sets are propagated and

updated along the paths during search. Consider a planning task T = 〈V, s0, G,A〉. The

Cycle-Covering Heuristic 24

Algorithm 1 Initialization of tracking which landmarks and landmark orderings need to be
achieved. This procedure requires a set of landmarks L and a set of landmark orderings O
based on the initial state s0 of a planning task. The set openL[s0] contains all landmarks
in L which are not present in s0. Similarly, openO[s0] contains the landmark orderings for
which the first element is not present in s0.

1: procedure InitializeInformation
2: openL[s0]← ∅
3: openO[s0]← ∅
4: for all ` ∈ L do
5: if ` 6∈ s0 then
6: openL[s0]← openL[s0] ∪ {`}
7: for all `1 → `2 ∈ O do
8: if `1 6∈ s0 then
9: openL[s0]← openL[s0] ∪ {`1, `2}

10: openO[s0]← openO[s0] ∪ {`1 → `2}

landmark generator has produced the landmark graph G = 〈L,O〉 for s0. L denotes the

set of landmarks and O denotes the set of landmark orderings. The graph G may contain

elementary cycles which we collect in the set C.
We now present our algorithms which makes it possible to track this information. For

a state s we store active landmarks in openL[s] and the remaining landmark orderings

in openO[s]. Algorithm 1 is concerned with initializing these sets for s0. All landmarks in L
that are not true in the initial state are inserted in line 6. A landmark ordering `1 → `2

remains unresolved for as long as `1 has not been made true, because it is still necessary to

make `2 true after that. Thus, in line 9 all landmarks where ` is not true in s0 are inserted

into openL[s0]; even though `2 may be true in s0, it must again be true after `1 has been true

for the first time. The unresolved ordering itself is inserted in the according list in line 10.

During search, this information is updated for each state transition. The procedure provided

in Algorithm 2 handles a transition from parent state p to another state s. If s is expanded

for the first time, meaning no other path was found to lead to s previously, all landmarks

which were unresolved in p and are not true in s remain unresolved. Should the search

algorithm expand s again, it means another path to s has been found. The landmarks

which were previously found to be unresolved remain in openL[s]; even though they might

be true along the new path, since they must be true along all paths they remain unresolved.

The set is extended with all landmarks which were unresolved in the new p and are not

true in s. Thus, we may gain information by reaching a state through multiple paths. For

example, assume s can be reached through two paths: one where a landmark ` was true at

some point, and another where it was never true. Since ` must hold at some point in all

plans, but is not required to reach s, we deduce it must still occur in every s-plan.

In order to incorporate this additional information, we only initialize openL[s] and openO[s]

as empty when s is expanded for the first time in lines 3 and 4. Otherwise we add unresolved

landmarks and orderings on top of what we know from the last call of UpdateInformation

for the same s. It is never necessary to remove something from the sets, because a new path

to s can only prove that landmarks need not be achieved to reach s, but not vice versa.

Independent of how often s has been expanded before, the procedure adds a landmark `

to openL[s] in line 7 if it is active in p and not true in s. Similarly, the procedure loops over

Cycle-Covering Heuristic 25

Algorithm 2 Updating the set of unfulfilled landmarks and landmark orderings based on
a state transition from p to s. The set openL[s] is extended with all landmarks which were
not achieved in the parent state p and are also not modeled by s. Similarly, openO[s] is
extended with the unfulfilled orderings from the parent state where the first element is not
modeled by s.

1: procedure UpdateInformation(State p, State s)
2: if s is expanded for the first time then
3: openL[s]← ∅
4: openO[s]← ∅
5: for all ` ∈ openL[p] do
6: if ` 6∈ s then
7: openL[s]← openL[s] ∪ {`}
8: for all `1 → `2 ∈ openO[p] do
9: if `1 6∈ s then

10: openL[s]← openL[s] ∪ {`1, `2}
11: openO[s]← openO[s] ∪ {`1 → `2}

all orderings `1 → `2 which are not resolved in p. If `1 does not hold in s, then `2 must

still become true in the future and both landmarks as well as the ordering are added to the

according sets.

In comparison to using the approach described in Section 5.1.1, a heuristic using this ap-

proach is multi-path-dependent. Consider the case where multiple paths are found to a

state s. If the latest path brings new information, namely that a landmark ` must not be

achieved to arrive at s, this could improve our knowledge about all successors of s. Pre-

viously, all successors had information that ` was achieved before state s and thus do not

have it in their list of unfulfilled landmarks (unless an ordering requires so of course). Based

on the new information, they could be updated accordingly up to the point where ` holds

in such a successor. We did not implement this behavior but reevaluate states with our

heuristic before they are expanded. If the h-value has changed since the insertion into the

open list of A∗, it is reinserted with the improved heuristic estimate. A state is expanded

by A∗ only if this is not the case.

Furthermore, we expect tracking landmarks to be less informative than recomputing the

landmark graph for every state. Consider again the example task from Figure 3.1. The

path 〈move(t1, A,B), load(pB→C , t1, B),move(t1, B,A), unload(pB→C , t1, A)〉 is a valid se-

quence of actions. It brings us to a state where the package and the truck are at A. When

recomputing the landmark graph in this state, we might find that now {load(pB→C , t1, A)}
is a landmark. Since there exist s0-plans that do not use load(pB→C , t1, A) (e.g., the opti-

mal plan 〈move(t1, A,B), load(pB→C , t1, B),move(t1, B,C), unload(pB→C , t1, C)〉), it is not

a landmark for s0 and can thus never be in the set openL[s].

5.2 Decomposing Landmarks from Cycle-Covering
The MHS landmark heuristic from Section 4.4 provides a cost estimate for achieving each

landmark once. With cycle-covering we aim for an increase of this value due to the cyclical

dependencies between landmarks; if the orderings in the landmark graph induce a cycle,

then one of the landmarks in that cycle must be achieved at least twice in every plan. In

Cycle-Covering Heuristic 26

{x} {y} {z}

{x, z}

Figure 5.2: Minimal example landmark graph to show that the MHS LP solution may
include the costs to resolve deadlocks in the according problem.

this section we show that decomposing the cycle-covering problem and the landmarks MHS

to solve two hypothetically simpler problems does not result in an admissible heuristic.

The cycle-covering problem appears to be another MHS also known as the Minimum Feed-

back Vertex Set ; X is the set of all actions and F contains one element per cycle. Each such

element consists of all the actions that achieve a landmark in that cycle. The solution of this

MHS denotes the cheapest way to achieve (again) one landmark per cycle. Adding this cost

to hLM gives an estimate of the cost for achieving all landmarks plus an additional landmark

per cycle. The following counterexample proves that this heuristic is not admissible.

In Figure 5.2 we see four landmarks, thus our landmark LP would be the following.

`x : Yx ≥ 1

`y : Yy ≥ 1

`z : Yz ≥ 1

`xz : Yx + Yz ≥ 1

(5.1)

The last constraint `xz is redundant and we get hLM(s0) = 3 for the planning task belonging

to this landmark graph. The cycle LP has exactly one constraint.

c : Yx + Yy + Yz ≥ 1 (5.2)

We must hit one element in cycle c an additional time, so this is simply the union over the

actions in L(c). It is easy to see that the objective value of an MHS LP with only this

constraint is 1. Hence, we add 1 to the estimate above and get h(s0) = 4 as our heuristic

estimate.

The plan π = 〈x, y, z〉 has a cost lower than the estimate of h. By analyzing the landmark

graph we find that π satisfies all landmarks and landmark ordering restrictions.

1. Applying x satisfies `x and `xz.

2. Applying y satisfies `y.

• Furthermore, this satisfies `x → `y and `xz → `y.

3. Applying z satisfies `z and `xz.

• This also satisfies `y → `z and `y → `xz.

• The cycle `xz → `y → `xz is thus completed.

Cycle-Covering Heuristic 27

This result proves the possibility that deadlocks are already resolved in the MHS solution

for only the landmarks. Thus, it is inadmissible to add the solution of an MHS for hitting

all cycles in the landmark graph to hLM.

5.3 Additional Cycle-Covering Constraints for the Landmarks LP
Instead of a separate MHS problem, it is possible to enhance hLM with additional constraints

for the LP. The resulting heuristic is part of the operator-counting framework same as the

MHS landmark heuristic. Besides the landmark constraints according to Equation (4.6),

there is a constraint for each active cycle in s. While the landmark constraints are an

immediate consequence of the hitting set characteristic, the cycle-covering constraints are

not as straightforward.

5.3.1 LP Cycle Constraints
A constraint as presented in Equation (5.3) is added for every elementary cycle c which is

active in state s. ∑
`∈L(c)

∑
a∈`

Ya ≥ n+ 1 (5.3)

In combination with the landmark constraints it states that all landmarks in the cycle must

be achieved at least once (captured by the number n) and one of them must be achieved

an additional time due to the cyclic dependencies. The generalized cycle-covering heuristic

corresponds to the objective value of the described LP in each state.

We explain the idea further based on the logistics planning task in Figure 3.3; among others,

it entails the landmarks `B = {move(t1, A,B),move(t1, C,B)} and `C = {move(t1, A,C),

move(t1, B,C)}. To keep the example small, we restrict it to only consider the move opera-

tors. (Assume that packages are loaded and unloaded automatically when arriving at their

departure point or destination, respectively.) The last landmark concerned with moving to

locations is `A = {move(t1, B,A),move(t1, C,A)}. Since the truck is at A in the beginning,

it is not active in the initial state of this planning task.

The landmarks `B and `C are cyclically dependent on one another due to the reasonable

orderings `B →r `C and `C →r `B . The landmark graph in Figure 3.3b shows all relevant

information when only considering move operators. To simplify the notation, we write Yx→y

for the operator-counting variable for move(t1, x, y). The complete set of LP constraints for

landmarks and cycles is provided in Equation (5.4).

`B : YA→B + YC→B ≥ 1

`C : YA→C + YB→C ≥ 1

c : YA→B + YC→B + YA→C + YB→C ≥ 3

(5.4)

The landmark heuristic hLM solely considers the landmark constraints `B and `C but not

the cycle constraint c. A solution to the according LP for hLM(s0) is YA→B = YB→C = 1

and all other variables are set to 0. In particular, the according actions can be applied in

sequence; 〈move(t1, A,B),move(t1, B,C)〉 is a valid sequence of actions. However, not all

Cycle-Covering Heuristic 28

packages are at their destination at the end of this sequence, because pC→B was only just

loaded into t1.

Enhancing the heuristic with the cycle constraint c yields a different solution to the LP. It

is evident that the solution from before does not satisfy the cycle constraint. Hence, the LP

solver must increase the variable values in order to satisfy it. While there are many ways

to achieve this, the solution that also can be applied as an action sequence and is a plan

would be to set YA→B = YB→C = YC→B = 1 and everything else to 0. In this example,

the cycle-covering heuristic estimates that 3 move operators must be applied, while the

landmark heuristic only accounts 2.

5.3.2 Overlapping Landmarks in Cycles
It may be the case that the same action appears in multiple landmarks within the same cycle.

If so, the according LP variable occurs multiple times on the left-hand side of Equation (5.3).

Consider an action a that occurs in x landmarks of cycle c where x ∈ N. Then, x is the

coefficient of Ya in the LP constraint for c. The interpretation of this is that we can

potentially make x of the landmarks in c true by applying one single operator.

In the extreme case, all landmarks in the cycle contain the same action. Generally speaking,

two consecutive landmarks may have a non-empty intersection because of the way reasonable

orderings are defined; in case of a reasonable ordering ` →r `
′, it is possible and allowed for `

and `′ to be achieved simultaneously. If a ∈
⋂
`∈L(c) ` 6= ∅, this means that all landmarks in c

can potentially be achieved at once by applying a. Hence, the LP constraint for c according

to Equation (5.3) is incorrect; when removing all variables but Ya from the constraint, only

the following remains:

nYa ≥ n+ 1 (5.5)

where n = |L(c)|. In order to satisfy this constraint, it is necessary to set Ya ≥ n+1
n > 1,

but actually, Ya = 1 resolves the cycle completely.

The following example illustrates how it is even possible that such cycles occur in landmark

graphs. It is adapted from Hoffmann et al.’s (2004) Figure 2. They use the STRIPS

formalism together with fact landmarks, similar to the way presented here. There are seven

facts L, L′, P1, P2, P ′2, P3, and P ′3. Initially only P1 is true, and the goal is to have L ∧ L′.
Their actions are:

opL1 : pre(opL1) = P1, eff (opL1) = L ∧ P2 ∧ ¬P1

opL′1 : pre(opL′1) = P1, eff (opL′1) = L′ ∧ P ′2 ∧ ¬P1

opL2 : pre(opL2) = P ′2, eff (opL2) = L ∧ P3 ∧ ¬L′ ∧ ¬P ′2
opL′2 : pre(opL′2) = P2, eff (opL′2) = L′ ∧ P ′3 ∧ ¬L ∧ ¬P2

opL3 : pre(opL3) = P ′3, eff (opL3) = L ∧ ¬P ′3
opL′3 : pre(opL′3) = P3, eff (opL′3) = L′ ∧ ¬P3

(5.6)

Hoffmann et al. show with this example that sometimes it is not possible to find a plan

that obeys every reasonable ordering. Fundamentally, this is the motivation of this thesis,

because such situations are the source of cycles in the landmark graph.

Cycle-Covering Heuristic 29

P1

L,P2

L′, P ′2

L′, P ′3

L,P3

L,L′

opL1

opL′1

opL′2

opL2

opL3

opL′3

goal

Figure 5.3: State space of the example from Hoffmann, Porteous, and Sebastia (2004)
extended by an operator goal marked as dashed. The landmark graph for this problem
has a cycle of reasonable orderings which renders the estimate of hcycle inadmissible when
including the according constraint in the LP.

We introduce an additional action which achieves the top-level goals of this planning task

directly:

goal : pre(goal) = P1, eff (goal) = L ∧ L′ (5.7)

The corresponding state space is displayed in Figure 5.3 where goal is highlighted as a dashed

arc. The goal facts L and L′ are the only active landmarks in this problem. There are three

plans: π1 = 〈opL1, opL
′
2, opL3〉, π2 = 〈opL′1, opL2, opL

′
3〉, and π∗ = 〈goal〉. The latter is the

optimal plan in a uniform cost setting.

According to the definition, there is a reasonable ordering ` →r `
′ if the following holds

along all plans where `′ becomes true before `:

• `′ must be destroyed in order to achieve `, and

• it is necessary that `′ is true at the same time or after ` (e.g., `′ is part of the goal).

In the above example, π1 is the only plan where L becomes true before L′. In order to

achieve L′ along π1 it is necessary to delete L, but L is again necessary in the goal. Hence,

there is a reasonable ordering L′ →r L. Equivalently, there is an ordering L→r L
′ because

along all plans where L′ is true before L (i.e., π2), L′ is removed to achieve L. These two

landmark orderings form a cycle in the according landmark graph.

The disjunctive action landmarks corresponding to L and L′ are `L = {opL1, opL2, opL3, goal}
and `L′ = {opL′1, opL′2, opL′3, goal}, respectively. According to Equation (5.3), they entail

the following cycle constraint in the LP of the initial state of the above planning task:∑
a∈`L

Ya +
∑
a∈`L′

Ya = YopL1 + YopL2 + YopL3 + YopL′
1

+ YopL′
2

+ YopL′
3

+ 2Ygoal ≥ 3 (5.8)

In the LP, the objective function
∑
a∈A Ya is minimized and the cheapest solution to fulfill

this constraint is to set Ygoal = 1.5. Consequently,
∑
a∈A Ya ≥ 1.5 > 1 = cost(π∗) and hence

the LP solution overestimates the true cost. It is thus necessary to exclude all cycles which

can be resolved by a single action from the LP. Only then, the generalized cycle-covering

heuristic is an admissible extension of the landmark heuristic hLM.

Cycle-Covering Heuristic 30

5.3.3 Cycle-Covering Heuristic
We conclude Section 5.3 by defining the cycle-covering heuristic hcycle and provide its

theoretical implications.

Definition 9 (Generalized cycle-covering heuristic). Let G = 〈L,O〉 be a landmark graph

in a planning task T = 〈V, s0, G,A〉 and let C be the set of distinct elementary cycles in G.

Furthermore, let C∅ ⊆ C be the set of cycles with an empty intersection of their landmarks:

C∅ = {c ∈ C |
⋂
`∈L(c) ` = ∅}.

The cycle-covering LP for G is

min
∑
a∈A

Yacost(a) s.t.∑
a∈`

Ya ≥ 1 for all ` ∈ L and

∑
`∈L(c)

∑
a∈`

Ya ≥ |L(c)|+ 1 for all c ∈ C∅.

The generalized cycle-covering heuristic hcycle is the objective value of the cycle-covering

LP for the landmark graph in each state s of T .

Note that a feasible solution for the cycle-covering LP always exists in solvable planning

tasks; setting Ya = 2 for all a ∈ A satisfies all constraints of the LP.

The landmark heuristic hLM can never yield a higher heuristic estimate than hcycle ; it

considers only a subset of the LP constraints of the cycle-covering heuristic and thus the LP

is less constrained.

Theorem 1. The cycle-covering heuristic hcycle dominates the landmark heuristic hLM for

the same set of active landmarks and cycles.

Proof. Let T be a planning task with states S and let CLM be the function that maps a

state to its landmark constraints. Similarly, let Ccycle be the function that maps the states

of T to the according cycle-constraints.

The constraint set for the LP evaluating hLM(s) is CLM(s). The constraint set for the LP

evaluating hcycle(s) is CLM(s) ∪ Ccycle(s).

We use Proposition 1: Since CLM(s) ⊆ CLM(s) ∪ Ccycle(s) holds for all s ∈ S, the cycle-

covering heuristic hcycle dominates the landmark heuristic hLM.

5.4 Strengthening the Cycle-Covering Heuristic via Ordering Types
In Section 3.2 we provide a collection of different ordering types between landmarks. The

constraints of hcycle consider the cycles induced by these orderings but do not take the

ordering types into account. The following observation suggests that valuable information

is thereby neglected. Cycles can only occur where reasonable orderings are present; by

definition, natural orderings cannot form cycles on their own. We can use this knowledge

to define a stronger LP constraint for the cycles in the landmark graph. In this section

we explain how the cycle-covering heuristic can be improved based on the ordering types

occurring in a cycle.

Cycle-Covering Heuristic 31

{x} {y} {z}

n

r

r

r

Figure 5.4: Small example landmark graph to demonstrate the superiority of hord over hcycle .
The natural ordering `x →n `y prevents `y to be achieved before `x. Thus, the according
cycle must be resolved by achieving `x twice.

Consider a cycle c : `x →n `y →r `x as shown in Figure 5.4. The landmark `y cannot be

resolved before `x because there is a natural ordering `x →n `y. The definition of such a

natural ordering states that it is impossible to achieve `y without achieving `x first. Thus,

the only possibility to resolve c is to achieve `x twice. In other words, only the landmarks

with an incoming reasonable ordering are candidates for being necessary multiple times.

This observation allows for a stronger definition of the cycle constraints in the LP; only the

landmarks with an incoming reasonable ordering should be considered.

Let G = 〈L,O〉 be a landmark graph for a state s in a planning task and let c be an

elementary cycle in G. Then Lr = {`′ | ` →r `
′ ∈ O(c)} is the nonempty set of landmarks

with an incoming reasonable ordering in c. Compared to Equation (5.3), the following is a

stronger version of the LP constraint for cycle c.∑
`∈Lr

∑
a∈`

Ya ≥ |Lr|+ 1 (5.9)

In order to clarify the idea, we explain it on the example from Figure 5.4. We provide the

complete list of LP constraints according to Definition 9.

`x : Yx ≥ 1

`y : Yy ≥ 1

`z : Yz ≥ 1

cxy : Yx + Yy ≥ 3

cyz : Yy + Yz ≥ 3

(5.10)

Setting Yx = Yz = 1 and Yy = 2 is a valid solution for the according LP. However, imple-

menting the stronger constraints yields the following:

cxy : Yx ≥ 2

cyz : Yy + Yz ≥ 3
(5.11)

The constraint for cxy is more restrictive while cyz remains the same because it consists only

of reasonable orderings. The above solution does not satisfy the constraint cxy, because it

requires Yx to be at least 2. Reducing Yy to 1 is not an option unless Yz is also increased to 2

because otherwise the constraint cyz is unsatisfied. Hence, considering the ordering types of

the landmark orderings involved in the cycles increases the LP solution in this example.

Cycle-Covering Heuristic 32

We define the ordering-aware cycle-covering heuristic hord .

Definition 10 (Ordering-aware cycle-covering heuristic). Let G = 〈L,O〉 be a landmark

graph in a planning task T = 〈V, s0, G,A〉 and let C be the set of distinct elementary cycles

in G. Furthermore, let Lr(c) = {`′ | ` →r `
′ ∈ O(c)} be the set of landmarks with incoming

reasonable orderings in all cycles c ∈ C.

The ordering-aware cycle-covering LP for G is

min
∑
a∈A

Yacost(a) s.t.∑
a∈`

Ya ≥ 1 for all ` ∈ L and

∑
`∈Lr(c)

∑
a∈`

Ya ≥ |Lr(c)|+ 1 for all c ∈ C.

The ordering-aware cycle-covering heuristic hord is the objective value of the ordering-aware

cycle-covering LP for the landmark graph in each state s of T .

The ordering-aware cycle-covering LP is feasible for the same reason than the cycle-covering

LP.7 The ordering-aware cycle-covering heuristic hord improves the heuristic estimates com-

pared to the cycle-covering heuristic hcycle presented in the previous section.

Theorem 2. The ordering-aware cycle-covering heuristic hord dominates the cycle-covering

heuristic hcycle for the same set of active landmarks and cycles.

Proof. Consider a cycle c consisting of n = |L(c)| landmarks. Let Lr ⊆ L(c) be the set

of landmarks with incoming reasonable orderings in c. The stronger constraint for the

cycle-covering LP according to Equation (5.9) is∑
`∈Lr

∑
a∈`

Ya ≥ m+ 1 (5.12)

where m = |Lr|. It forms an LP together with other cycle constraints as well as the basic

landmark constraints. If we add the landmark constraints
∑
a∈` Ya ≥ 1 for all landmarks

` ∈ L(c) \ Lr to the constraint in Equation (5.12), it becomes the following.∑
`∈Lr

∑
a∈`

Ya +
∑

`∈L(c)\Lr

∑
a∈`

Ya ≥ m+ 1 + n−m

∑
`∈L(c)

∑
a∈`

Ya ≥ n+ 1 (5.13)

This is precisely the cycle constraint according to Equation (5.3). Thus, the weaker cycle-

covering constraint is implied by the LP with the stronger constraint.

7 The ordering-aware cycle constraints are infeasible in the case of cycles consisting only of natural orderings.
Such cycles can exist only in unsolvable planning tasks.

6
Experimental Evaluation

In order to empirically evaluate the proposed heuristics, we implemented them in the

Fast Downward8 planner version 19.06 (Helmert 2006; Helmert 2009). In the experiments

we consider 122 domains with a total of 3298 planning tasks from the IPC benchmark

set9. These domains do not include axioms and domains where the translator component of

Fast Downward yields non-deterministic results are also not considered. All experiments are

conducted on Intel Xeon E5-2660 CPU’s running on 2.2GHz. Calculations were performed

using Downward Lab (Seipp, Pommerening, Sievers, and Helmert 2017) at sciCORE10 scien-

tific computing center at the University of Basel. We allow the tasks to run up to 30 minutes

and to require at most 4GB of memory. The heuristics based on linear programming are

computed using IBM CPLEX11 version 12.9.0 as an LP solver (IBM 2019).

Our contributions are not concerned with landmark generation. Thus, we use landmarks

produced by the landmark generators already implemented in Fast Downward, of which some

are described in Section 3.4. We refer to them as LMZG (Zhu and Givan 2003), LMRHW

(Richter et al. 2008), and LMhm

(Keyder et al. 2010). For the latter, we use m = 2 and split

conjunctive landmarks into two separate fact nodes in the landmark graph. Additionally,

Fast Downward offers a method for exhaustive landmark generation LMexh that checks for

each fact whether it is a landmark in the relaxed planning task. Lastly, LMmerged combines

the results of any number of landmark generators. Specifically, it merges the landmark

graphs created by its components into one graph. In our experiments this configuration

combines all other landmark generators LMZG, LMRHW, LMhm

, and LMexh into one.

6.1 Cycle Detection
Since the fundamental idea of this thesis is based on cyclical dependencies of landmarks,

we start by showing that cycles appear regularly in landmark graphs. In order to do so,

we changed the implementations of landmark generators in Fast Downward so that cycles

8 http://www.fast-downward.org
9 https://github.com/aibasel/downward-benchmarks
10 http://scicore.unibas.ch/
11 https://www.cplex.com

http://www.fast-downward.org
https://github.com/aibasel/downward-benchmarks
http://scicore.unibas.ch/
https://www.cplex.com

Experimental Evaluation 34

Domains Tasks Maximum Sum Average Timeout

LMexh 0 0 0 0 – 0
LMZG 0 0 0 0 – 41
LMhm

27 183 194’754 665’804 3’638.3 750
LMRHW 31 274 779’493 1’601’012 5’843.1 73
LMmerged 26 205 3’648’030 18’628’971 90’873.0 747

Table 6.1: Overview of the amount of cycles found by the different landmark generators.
The presented numbers correspond to the cycles in the initial state of each planning task.

within the landmark graphs are not removed during their construction. In order to find all

elementary cycles in these graphs, we use our own implementation of Johnson’s Algorithm

(Johnson 1975). The different landmark generators compute distinct landmark graphs,

making the amount of cycles dependent on these methods.

In our opinion, defining a measure to evaluate the susceptibility of planning tasks to cycles

is difficult. In Table 6.1 give an overview of the number of cycles in the landmark graphs

of the initial states. The columns “domains” and “tasks” show how many domains and

tasks have cycles. The “maximum” refers to the amount of cycles found in the task with

the most cycles. In “sum” we provide the sum of all cycles in the initial states of all tasks

and “average” denotes the average amount of cycles in cyclical tasks (i.e., “sum” divided

by “tasks”). Computing the landmark graph of the initial state is not possible within the

time-limits for the amount of tasks provided under “timeout”.

The number of cyclical domains and tasks found by LMmerged is lower than that of its

components. This is because our time limit is exceeded before completing the computation

and merger of all component landmark graphs in some cases. In particular, the computation

of LMhm

landmarks is the most problematic. We cannot explain why LMhm

ran into more

timeouts than LMmerged.

Despite the larger number of timeouts with LMmerged, its average amount of cycles indicates

that combining the landmark graphs of the different methods is beneficial. A method may

even be interesting if it does not find cycles on its own. For example, consider two landmark

generators which find the same set of landmarks {`, `′}. The first method finds an ordering

` → `′ and the second method finds `′ → `. Independently, they are acyclic, but when

combined, they produce the cycle ` → `′ → `. Hence, including LMexh and LMZG in

LMmerged even though they never yield cycles can lead to an increased number of cycles in

LMmerged.

For a domain-wise comparison of cyclicity we use LMRHW which finds the most tasks with

cycles. Figure 6.1 displays the amount of cycles found for all problem instances. (Visual-

izing the numbers for the other landmark generators results in similar output but scaled

accordingly.) The plotted functions fi(x) = fi−1(x) + yi (using f0(x) = 0) depict that in

the corresponding domain there are yi problems with x or more cycles. Note that the plot

is logarithmic in x. Domains, where no cycles are found at all, are not shown.

The above measure of cycles is flawed because it only considers one state from every planning

task; if the landmark graph of the initial state is acyclic, this does not necessarily mean that

the landmark graphs of all states are acyclic. A domain may have characteristics which

Experimental Evaluation 35

100 101 102 103 104 105
0

100

200

300

400

500

600

700

800

900

1,000

1,100

1,200

1,300

100

caldera
blocks
spider
sokoban
agricola
flashfill
pathways
airport
scanalyzer
thoughtful
nomystery
parcprinter
logistics
depot
miconic
zenotravel
elevators

Figure 6.1: Amount of planning tasks with x or more cycles in the initial state stacked by
domain. Displayed are the domains with at least 1 cycle in the initial state and domains
with a shared prefix are combined. For example, logistics98 and logistics00 are displayed
collectively as logistics.

Experimental Evaluation 36

Domains Tasks Maximum Sum Average

LMexh 0 0 0 0 –
LMZG 7 89 13 210 2.4
LMhm

44 443 11’001’628 36’021’787 81’313.3
LMRHW 87 1’220 16’894’636 686’455’439 562’668.4

Table 6.2: Overview of the amount of cycles found by the different landmark generators.
The presented numbers correspond to the state with the maximal number of cycles for each
planning task.

never lead to cycles in the initial state, but this is not generally true for all states in that

domain. By considering more states we get a more general assessment of cyclicity in the

problem instances. Thus, we provide another evaluation in Table 6.2 where we consider

the landmark graphs of all states encountered when searching for a plan. The numbers

correspond to the maximal number of cycles found in any state of each planning task.

Hence, “maximum” is the planning task which has the most cycles in any state. Similarly,

“sum” adds up the maximal amount of cycles found for each problem. LMmerged is missing

in Table 6.2 because we found recomputing and merging four landmark graphs in every state

to be infeasible.

The number of cyclical tasks is much higher if all encountered states of each planning task

are considered. Again, a domain-wise overview using LMRHW is provided in Figure 6.2.

This indicates that only considering the initial state is not conclusive. In planning we may

benefit from a cycle-covering landmark heuristic even if the landmark graph of the initial

state is acyclic.

6.2 Recomputing vs. Tracking Active Landmarks
In the preceding section we show that cycles occur regularly in the landmark graphs of

planning tasks. Now, we start using the according information in heuristic search. Two

approaches to decide which landmarks are active in the states of a planning task are described

in Section 5.1. The first method which we refer to as recomp recomputes the landmark

graph in every encountered state. Our second approach called track uses the landmark

graph from the initial state and tracks which landmarks have since been achieved. According

to the previous section, we should always use recomp; using track if the initial state is

acyclic entails that there are never cycle constraints in the LPs. However, there is more

to the decision between these methods; in this section we discuss further advantages or

disadvantages. In order to do so, we compare their performance using hLM. The results

when also considering cycles (e.g., with hcycle) look similar.

In Table 6.3 we display the coverage (i.e., the amount of problems solved) along with the

main error sources for unsolvability. It can be observed that the number of solved tasks is

significantly smaller when recomputing the landmark graph in every state. The difference

is mostly due to time restrictions terminating the search before finding a solution with

recomp. Memory restrictions were never a problem for LMRHW and LMexh, and only rarely

for LMZG. Over 600 planning tasks could not be solved using LMhm

for both recomp and

track due to memory restrictions.

Experimental Evaluation 37

100 101 102 103 104 105 106 107
0

100

200

300

400

500

600

700

800

900

1,000

1,100

1,200 organic-synthesis
spider
caldera
nurikabe
barman
floortile
blocks
ged
pegsol
sokoban
settlers
nomystery
parcprinter
cavediving
airport
agricola
thoughtful
hiking
flashfill
pipesworld
pathways
snake
depot
termes
woodworking
parking
freecell
psr
tidybot
scanalyzer
mystery
logistics
grid
miconic
maintenance
zenotravel
storage
rovers
childsnack
schedule
elevators

Figure 6.2: Comparing the maximal amount of cycles found in any state of each planning
task. The amount of tasks with x or more cycles is stacked by domain and domains with
a shared prefix are combined. There are 1’220 problems with at least one cycle which
corresponds to roughly half of the planning tasks available in the listed domains.

Experimental Evaluation 38

LMRHW LMZG LMhm

LMexh LMmerged

Coverage

recomp 840 636 484 765 –
track 1000 1042 938 976 998

Errors

Timeout
recomp 2402 2577 2135 2478 –
track 2240 2197 1685 2264 1627

Out of Memory
recomp 0 27 622 0 –
track 0 1 616 0 613

Table 6.3: Coverage results of the hLM heuristic comparing two approaches to determine
the set of active landmarks. We use recomp for the configuration which recomputes the
landmark graph for every state and track when updating the information from the initial
state.

100 102 104 106

100

102

104

106

uns.

uns.

r
e
c
o
m
p

LMRHW

100 102 104 106

100

102

104

106

uns.

uns.

LMZG

100 102 104 106

100

102

104

106

uns.

uns.

track

r
e
c
o
m
p

LMhm

100 102 104 106

100

102

104

106

uns.

uns.

track

LMexh

Figure 6.3: The number of expanded states before the last f -layer for each problem using
the different landmark generators. Data points at the upper or right end of the scale were
unsolved within the time- and memory-bounds. Recomputing the landmark graph in all
evaluated states reduces the number of necessary expansions heavily.

Experimental Evaluation 39

We compare the number of expanded states before the last f -layer in Figure 6.3. There,

the lower coverage of recomp can also be observed since all data points in the top rows

correspond to unsolved tasks. At the same time, it is evident from these plots that in

most cases recomp expands significantly fewer states. This indicates that recomp has

more accurate information compared to track. In particular, we assume that recomp

recognizes landmarks which are required again or finds new landmarks. In contrast, the

tracking approach cannot find heuristic estimates higher than in the initial state. On the

contrary, some landmarks are likely achieved independently of whether search proceeds

towards the goal. This leads to reduced h-values which in turn lead to a higher priority for

such states to be expanded by A∗.

The few instances where recomp expands more states than track indicate that sometimes

it is not beneficial to recompute the landmark graph when transitioning to a new state.

Remember, that the set of landmarks found by the landmark generators is mostly an in-

complete approximation of all landmarks. We suspect that sometimes landmarks are lost

when transitioning between two states s and p through an action a. Consider a landmark

` ∈ L(s) which is not resolved when applying a. It may be possible that ` is not found in the

landmark graph for p and thus it is not considered as a landmark with recomp although it is

still valid. A combination of recomp and track which extends the recomputed landmarks

with unfulfilled landmarks from the predecessor states could thus be beneficial.

While the number of expansions strongly speak for recomp, the data provided in Figure 6.4

has the opposite effect. It shows that recomputing the landmarks in all encountered states

is infeasible most of the time. The benefit of having a more informed heuristic does not

pay off in terms of the running time; recomputing the landmarks in each state requires

exponentially more time than tracking the landmarks. The most negative effect is observed

when using LMhm

.

One more problem which occurs with recomp is the size of the LP when a lot of cycles are

present. As shown in Table 6.2 there are problems with almost 17 million cycles. Since each

cycle implies one LP constraint, LPs for such states become huge. While time requirements

may be a problem, the main issue is the high memory consumption to store all these con-

straints. The results of an unreported experiment emphasize this assumption; the number

of tasks running out of memory using LMRHW with recomp increases from 0 to 281 when

using hcycle instead of hLM.

The upcoming sections analyze the performance of the cycle-covering heuristics. Since the

results in this section are inconclusive, we do not exclude either recomp or track from

these experiments. Instead we show results for both methods or explain why it might not

be interesting to consider both of them.

6.3 Cycle-Covering Heuristic
In Section 6.1 we have shown that cycles are not a rare occurrence in landmark graphs.

An analysis of whether considering cycles in a heuristic pays off follows in this section.

We first compare our implementation of the generalized cycle-covering heuristic hcycle to

the landmark heuristic hLM. Moreover, we show how the stronger LP constraints for hord

influence the performance of cycle-covering.

Experimental Evaluation 40

10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

r
e
c
o
m
p

LMRHW

10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

LMZG

10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

track

r
e
c
o
m
p

LMhm

10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

track

LMexh

Figure 6.4: Search time in seconds comparing recomp and track with hLM. Points below
the diagonal correspond to problem instances that find a solution faster when recomputing
the landmark graph in every state. Similarly, track is faster for all instances above the
diagonal which happens more often with all landmark generators.

All presented results consider only the track approach because its coverage is higher for hLM

and it is sufficient for this analysis. The unreported results for recomp look similar or even

identical in some cases. For example, we compare the h-values in the initial state using the

different heuristics; since track and recomp compute the identical landmark graphs in

the initial state, those values are equal for both methods.

Furthermore, only the landmark generators which yield cycles in the initial states are of

interest; evidently, hLM and hcycle are identical in states where no cycles are present because

they consider the same set of LP constraints in this case. While LMRHW and LMhm

as well

as LMmerged produce cycles consistently, this is not the case for LMZG and LMexh. Not a

single instance was found to have cycles in the landmark graph of any evaluated state when

using LMexh. The LMZG landmark graphs never have cycles in the initial state and thus we

exclude both LMexh and LMZG from this analysis.

Lastly, we use a reduced benchmark set for this evaluation. Using track we can never

add cycle constraints if the landmark graph in the initial state is acyclic. Hence, we only

consider domains where at least one problem has cycles. This leaves us with a total of 870

planning tasks in 26 domains.

Experimental Evaluation 41

101 102

101

102

h
c
y
c
le

LMRHW

101 102

101

102

hLM

h
c
y
c
le

LMhm

101 102

101

102

hLM

LMmerged

agricola
blocks
caldera
depot
elevators
logistics
miconic
nomystery
scanalyzer
zenotravel

Figure 6.5: The initial state h-values of hLM compared to hcycle . Only problem instances
where hLM(s0) 6= hcycle(s0) are displayed. An improvement of the initial h-value can be
observed when using the cycle-covering heuristic.

6.3.1 hLM vs. hcycle

First of all, the initial h-values displayed in Figure 6.5 confirm Theorem 1. Each data point

corresponds to a planning task where hLM(s0) 6= hcycle(s0). The diagonal line separates the

instances where hcycle(s0) > hLM(s0) or rather hcycle(s0) < hLM(s0) (i.e., the upper and

lower triangle, respectively). All data points lie above the diagonal which means that hcycle

yields higher or equal initial h-values in all problem instances. In turn, this means that hcycle

gives more accurate estimates of the cheapest plan cost since both heuristics are admissible.

Generally speaking, we expect that a more accurate heuristic leads to fewer expansions due

to its better heuristic estimates. Figure 6.6 shows the number of expanded states for each

problem with either configuration. Problems which were unsolved by hLM or hcycle lie on

the upper or right end of the scale, respectively.

Experimental Evaluation 42

10−1 101 103 105

10−1

101

103

105

uns.

uns.

h
c
y
c
le

LMRHW

10−1 101 103 105

10−1

101

103

105

uns.

uns.

hLM

h
c
y
c
le

LMhm

10−1 101 103 105

10−1

101

103

105

uns.

uns.

hLM

LMmerged

agricola blocks
caldera depot
elevators flashfill
logistics miconic
nomystery parcprinter
scanalyzer sokoban
spider zenotravel

Figure 6.6: Expansions before the last f -layer comparing hLM and hcycle . Only problem
instances where the number of expanded states differs are shown. hLM expands more states
in all solved problems which indicates that hcycle has better information.

100 101 102

100

101

102

hcycle

h
o
rd

LMRHW

100 101 102

100

101

102

hcycle

LMhm

100 101 102

100

101

102

hcycle

LMmerged

agricola blocks caldera flashfill spider

Figure 6.7: The initial state h-values of hcycle compared to hord . Only problem instances
where hcycle(s0) 6= hord(s0) are displayed. The stronger cycle-constraints in the LP lead to
improved initial h-values.

Experimental Evaluation 43

`1 `2 . . . `n `n+1

`

gn gn gn gn

gnt

r r r r

Figure 6.8: Structure in landmark graphs which may lead to a large number of cycles. All
landmarks `1, . . . , `n are reasonably ordered before ` according to Hoffmann, Porteous, and
Sebastia (2004). If an ordering ` →t `1 is present, it induces n cycles but only ` is considered
in the cycle constraints of hord .

6.3.2 hcycle vs. hord

Similarly to the previous section, we compare the initial h-values of hcycle to those of hord in

Figure 6.7. The number of tasks influenced by the stronger cycle constraints is fairly small,

but not negligible. Especially when using LMRHW, there are several instances where this

makes a difference. One interesting observation is that it seems to affect those domains with

many cycles; they are all at the upper end of the scale in Figure 6.1 which means that these

domains contain the problems with the most cycles. While we cannot pinpoint the reason for

this, we assume a connection to the algorithm approximating reasonable orderings suggested

by Hoffmann et al. (2004). Figure 6.8 may help to understand the following explanations.

Consider a set of landmarks {`, `1, . . . , `n+1} such that `i →gn `i+1 for all 1 ≤ i ≤ n and

` →gn `n+1. Then, the algorithm by Hoffmann et al. adds reasonable orderings `i →r ` for

all 1 ≤ i ≤ n because ` is in the aftermath of all `i. If there is also an ordering ` →t `1 of

any type t, then each reasonable ordering from above induces a cycle. These are exactly the

cases where the stronger constraints may affect the LP solution; all natural orderings are not

considered in the cycle constraints of hord . In particular, this would explain why LMRHW

is affected the most, because it uses this algorithm to approximate the set of reasonable

orderings.

The number of expanded states before the last f -layer with hord is almost identical to the

results of hcycle . Thus, we see no point in visualizing them in a scatter-plot.

6.3.3 Coverage Results
While the results from the previous sections look promising, the change in coverage does not

as clearly represent the dominance of hcycle and hord , respectively. In Table 6.4 we compare

the numbers to those of hLM on the benchmark set of domains with cyclical initial states.

Here, we also include the numbers of the recomp approach to give a broader overview.

The only landmark generation method which consistently improves from hLM to hcycle

to hord is LMhm

. Both LMRHW and LMmerged decrease from hLM to hcycle and then regain

some tasks from hcycle to hord . The numbers for LMZG are only provided for the recomp

approach because it yields no cycles in the initial state; the results of hcycle and hord are

thus not influenced in this case.

We gain new insights on the comparison between recomp and track in these results; when

only considering tasks with cycles in the landmark graph of the initial state are considered,

Experimental Evaluation 44

track recomp

LMRHW LMhm

LMmerged LMRHW LMhm

LMZG

Coverage

hLM 308 298 355 342 222 350
hcycle 305 305 351 336 228 350
hord 306 308 355 340 231 350

Errors

T
im

eo
u

t hLM 556 474 417 522 550 514
hcycle 554 465 406 447 529 514
hord 555 463 406 439 526 514

O
u

t
of

M
em

or
y hLM 0 92 92 0 92 0

hcycle 5 94 92 81 107 0
hord 3 93 103 85 107 0

Table 6.4: Coverage results of hLM, hcycle , and hord . Considering cycles only pays off
considering LMhm

landmarks. The stronger cycle constraints of hord yield increased coverage
using all methods.

recomp results in higher coverage considering LMRHW. Computing the landmark graph

in every state with LMhm

however is still too time-consuming. Memory seems to be a

limitation more often when using recomp especially for LMRHW landmark graphs. Yet,

the majority of the tasks are still unsolved due to time restrictions.

6.4 Aiming for Optimality
In cost-optimal planning we aim for a heuristic which approximates h∗ as closely as possi-

ble. Paul et al. (2017) provide results of their cycle-covering heuristic12 for logistics which

estimates the cost of s0-plans perfectly. Aiming to generalize their concepts we investigate

how closely our domain-independent cycle-covering heuristic approaches h∗. In order to do

so we compare the costs of the optimal plans in solved planning tasks with the estimates

of hord . The according results are shown in Figure 6.9. We see some proximity to the di-

agonal where hcycle(s0) = h∗(s0). However, these results must be interpreted with caution

since they are somewhat biased towards good initial estimates; we can only plot the results

from solved instances because for all others, the true cost (i.e., h∗(s0)) is unknown. One

clear observation is that LMmerged yields the best results concerning the closeness of hord

compared to h∗.

6.5 Comparing to the State of the Art
In this last section of our experimental evaluation we compare our heuristics to related

work. At the time of writing, LM-cut is one of the most successful non-portfolio heuristics

for cost-optimal planning. Additionally, it also uses landmarks in order to compute its

heuristic values. Our analysis is thus centered around a comparison with LM-cut. Since

12 They call it “integrated cycle heuristic”.

Experimental Evaluation 45

100 101 102

100

101

102

h
o
rd

LMRHW

100 101 102

100

101

102

h∗

h
o
rd

LMhm

100 101 102

100

101

102

h∗

LMmerged

blocks caldera
depot elevators
logistics miconic
nomystery parcprinter
scanalyzer sokoban
spider zenotravel

Figure 6.9: Comparison of the initial h-values of hord and h∗. The h∗ values are generated
by taking the plan-cost of solved problem instances.

10−2 100 102

10−2

100

102

uns.

uns.

hord

h
L

M
-c

u
t

search time

10−1 102 105

10−1

102

105

uns.

uns.

hord

expansions until the last f -layer

100 101 102 103

100

101

102

103

hord

initial h-value

Figure 6.10: We show different aspects of hLM-cut which is a state of the art landmark heuris-
tic compared to hord . The ordering-aware cycle-covering heuristic uses LMRHW landmarks
with the track approach which is the configuration resulting in the highest coverage.

LM-cut does not support conditional effects, we use yet another benchmark set consisting

of 2937 planning tasks in 111 domains.

The results of this comparison are provided in Table 6.5 and Figure 6.10. They show that

our heuristics cannot compete with hLM-cut. All of our configurations solve fewer tasks and

Experimental Evaluation 46

Coverage Timeout Memory-out

hLM-cut 1’165 1’733 0

t
r
a
c
k

LMRHW
hLM 880 2’020 0
hcycle 873 2’024 3
hord 874 2’024 2

LMZG
hLM 865 2’035 0
hcycle 860 2’040 0
hord 861 2’039 0

LMhm
hLM 819 1’529 551
hcycle 829 1’519 551
hord 829 1’521 551

LMmerged
hLM 826 1’524 548
hcycle 822 1’518 558
hord 821 1’521 556

r
e
c
o
m
p

LMRHW
hLM 751 2’151 0
hcycle 721 1’949 232
hord 730 1’938 234

LMZG
hLM 484 2’389 27
hcycle 484 2’389 27
hord 484 2’389 27

LMhm
hLM 424 1’924 553
hcycle 433 1’904 564
hord 434 1’904 564

Table 6.5: Comparing the different configurations of our landmarks and cycle-covering
heuristics to the state of the art.

they generally need significantly more time to do so. The plots in Figure 6.10 are generated

using hord together with track and LMRHW which is the most successful ordering-aware

cycle-covering configuration. In a few tasks it can be observed that the number of expanded

states is less for hLM, but these are rare exceptions. The tasks where hord finds a solution

quickly and hLM-cut does not (i.e., the leftmost instances in the first plot) correspond to

unsolvable tasks from the IPC satisficing track. Based on the data of the rightmost plot it

is inconclusive which of the methods gives better heuristic estimates. This leads us to the

next analysis concerning delete-relaxation in general.

In LM-cut, like all delete-relaxation heuristics, it is never beneficial to apply the same action

multiple times; delete-relaxation assumes that facts are available from when they are first

achieved onward and they cannot be deleted. In terms of this thesis, this means that a

landmark holds forever as soon as it is achieved for the first time. The motivation for the

cycle-covering heuristic is different; it takes into account destructive interactions in order to

gain additional information about the costs. Hence, hord has the potential to yield higher

heuristic estimates than the perfect delete-relaxation heuristic h+ if cycles are present in

the landmark graphs.

We evaluate this possibility by using the Fast Downward feature to translate planning tasks

such that they are delete-free. If solvable, the solution costs of these tasks correspond to

the h+ value of their initial states. In Figure 6.11 we compare these values to those of

Experimental Evaluation 47

100 101 102

100

101

102

h+

h
o
rd

LMRHW

100 101 102

100

101

102

h+

LMhm

100 101 102

100

101

102

h+

LMmerged

higher lower equal

104

1304

948

250

1348

618

127

551

424

Figure 6.11: The heuristic values of the initial state comparing hord to the optimal delete-
relaxation heuristic h+. The pie charts show how many problem instances with higher,
lower, and equal h-values are found, respectively. In the plots below, these categories are
highlighted similarly for the landmark generators LMRHW, LMhm

, and LMmerged.

our ordering-aware cycle-covering heuristic hord . All instances where hord(s0) > h+(s0)

are displayed in green, hord(s0) < h+(s0) in red, and hord(s0) = h+(s0) in orange. Since

the scatter-plots themselves might be misleading due to overlapping data points, we also

provide how often the different cases occur. The actual numbers, however, are not of great

importance; what we take away from this analysis is that the heuristic estimates of hord can

indeed surpass those of h+.

In the following we give a more theoretical analysis of this topic. According to Bonet

and Helmert (2010), the cost of an MHS solution for the complete set of delete-relaxation

landmarks is equal to h+. Hence, the landmark heuristic hLM is equal to h+ when computed

using IPs. Since hord dominates hLM, theoretically all of its estimates should be at least

as good as h+. In practice, however, this is not the case because of two reasons. On

the one hand, the considered sets of landmarks are generally not complete. On the other

hand, we only use the LP-relaxation in our experiments which enables computing heuristics

in polynomial time. The fact that we find better heuristic estimates in polynomial time

despite these reasons is worth mentioning; h+ is considered a strong heuristic, but NP-hard

to compute (Bylander 1994).

Our ordering-aware cycle-covering heuristic hord is bounded similar to the way hLM-cut

is bounded by h+; it never accounts for the cost of each operator more than twice. The

argument here is similar to what we explain in Section 4.4 for hLM; if the LP variable Ya = 2

for an action a in each cycle-constraint, then all of them are satisfied under the assumption

Experimental Evaluation 48

that all the landmark constraints are already satisfied. Furthermore, the cycle-covering

LPs are minimization problems; it is not beneficial to set the variable to something larger

than 2 and thus, Ya ≤ 2 for all a. This may become a problem for planning tasks where

the same operators must be applied over and over again.13 However, since this shortcoming

also applies to delete-relaxation, the cycle-covering heuristic is still better suited for such

planning tasks; this structure most likely yields cyclical dependencies in the landmark graph

which may lead to an increased heuristic estimate when considered.

13 Consider for example the following model of a binary counter: each bit has a corresponding operator
which increments it applied. The preconditions of such an operator are that the according bit is 0 and
all lower-ordered bits are 1. The effect is that the corresponding bit is set to 1 and all lower-ordered bits
are set to 0. For a planning task to count to an arbitrary natural number, every second operator which
is applied must be the one increasing the least significant bit.

7
Integer Programming

We have introduced the MHS problem applied to landmarks using IPs in Section 4.2. How-

ever, in all previous chapters we use LPs as an approximation because they can be computed

in polynomial time. Since it is not impossible to find IP solutions in practice, we present

some of our findings when experimenting with LP variables restricted to be integral. We

isolate these results from the preceding chapter because they are not as conclusive. Our in-

terpretations are rather speculative and thus we set them apart from the results concerning

our generalized cycle-covering heuristic. In this chapter we only use the strongest heuris-

tic hord in two versions. For reasons of simplicity, we write hLP for the LP version and hIP

for the IP version of hord .

7.1 Experimental Evaluation
Independently of the chosen landmark generator, the results are identical. Thus, we only

show the results for LMRHW. The plots in Figure 7.1 provide an overview of our findings.

We do not deem it sensible to distinguish the domains for this comparison.

As expected, more time is required to search for a plan due to the increased hardness of

IPs compared to LPs. This is also reflected in the number of unsolved tasks which lie in

the top row of the center plot in Figure 7.1. However, all problem instances solved by both

methods, do not differ at all; they all lie on the diagonal line which indicates that their value

is identical. The same holds for the initial h-values which are identical for LP and IP in all

benchmark tasks.

This is unexpected because we assume that the integer solution should increase the initial

h-value at least in some problem instances. However, there is not a single instance where the

objective value of the IP is higher than its LP counterpart. When analyzing the LP solutions

in more detail we find that there are only few problems with non-integer valued solutions.

Although our initial assumptions suggested differently, it is actually to be expected that the

IP objective values are identical in all cases where the LP solution is integral. There are

two explanations for all cases where the LP solution has non-integer values: either there

must be an integral solution with the same objective value or it is rounded up to the IP

solution. The latter may happen because in practice we apply the ceiling function to LP

Integer Programming 50

10−2 100 102

10−2

100

102

uns.

uns.

hLP

h
IP

search time

101 104

101

104

uns.

uns.

hLP

expansions until the last f -layer

100 101 102

100

101

102

hLP

initial h-value

Figure 7.1: Comparison of computing our heuristics as IP rather than LP. The results show
no increase in the heuristic values or number of expanded states, whereas running time
is affected negatively. Both hLP and hIP correspond to the ordering-aware cycle-covering
heuristic hord using LMRHW landmarks.

solutions because we know that all costs are natural numbers. (We refer to Pommerening

et al. (2014) for an explanation of why this is still admissible.) Still whenever this happens,

the difference of the LP objective value is < 1 compared to the IP in all benchmark tasks.

7.2 Total Unimodularity
Questioning our findings about the initial h-values has brought up the hypothesis of having

to deal with totally unimodular (TU) matrices in our LPs. Since the solution for an LP with

a TU matrix must be integral it is possible to find the according IP solution in polynomial

time (Hoffman and Kruskal 1956). In our case, the argument starts in the opposite direction:

since our solutions for LPs are integral, we suspect the corresponding matrices to be TU.

However, the LP matrix must not necessarily be TU if the LP solution is integral. In this

section we present an argument that nevertheless supports this case.

Definition 11 (Totally unimodular matrix). A matrix A ∈ Rm×n is called totally unimod-

ular (TU) if all minors of A are in {−1, 0, 1}.

In other words, all squared sub-matrices must be TU themselves. Moreover, it is a necessary

(but not sufficient) condition that all aij ∈ {−1, 0, 1} where aij is the entry of A in row i

and column j.

We now explain the potential of our cycle-covering constraints to yield TU matrices. In

order to do so, we consider the landmark graph G of an arbitrary state s in a planning

task T for the remainder of this chapter.

Generally, the constraint set of the cycle-covering heuristic hcycle does not allow for the

assumption of TU. One example of this is if G contains a cycle c with overlapping landmarks.

Let L = {`1, . . . , `n} ⊂ L(c) be a set of n ≥ 2 landmarks so that a ∈
⋂
`∈L ` and a 6∈⋃

`∈L(c)\L `. The cycle constraint according to Equation (5.3) can be written as follows:

nYa +
∑
`∈L(c)

∑
a′∈`\{a}

Ya′ ≥ |L(c)|+ 1. (7.1)

Integer Programming 51

Hence, the LP matrix has an entry n 6∈ {−1, 0, 1} and consequently it is not TU. However,

if G has no such cycles, all entries of the matrix are either 0 or 1.

Proposition 2. Let G be the landmark graph of an arbitrary state s in a planning task and

let C be the set of elementary cycles in G.

All entries of the LP matrix A resulting from the constraint sets CLM(s) and Ccycle(s) are

either 0 or 1 if the following condition holds for all cycles c ∈ C:

` ∩ `′ = ∅ for all `, `′ ∈ L(c), ` 6= `′.

Proof. We distinguish between constraints in CLM(s) and constraints in Ccycle(s).

• Let ` ∈ L(s) be a landmark for state s in a planning task. The corresponding constraint

in CLM(s) has the following properties: the coefficient for Ya is 0 if a 6∈ ` and it is 1

if a ∈ `. Thus, the proposition holds for all landmark constraints.

• Now let c ∈ C be a cycle in the landmark graph of state s. The coefficient of Ya

corresponds to the amount of landmarks ` ∈ L(c) in which a occurs. Since ` ∩ `′ = ∅
for all pairs 〈`, `′〉 ∈ L(c) × L(c) where ` 6= `′ we infer that a appears in at most one

landmark. The according entry in A must thus either be 0 or 1.

Assume the matrix A of a state in T satisfies the above conditions and has only 0 and 1

entries. If it is possible to rearrange A so that the 1s in each row occur consecutively, this is

a sufficient condition for A to be TU (Ghouila-Houri 1962). This is called the consecutive-

ones property. We suggest an idea to decide whether this property is feasible further down.

Rearranging the rows so that the columns have the consecutive-ones property is also sufficient

because a matrix is TU if its transposed is TU. However, this is generally impossible if there

are cycles consisting of three or more landmarks; the rows of the corresponding landmark

constraints should all be neighboring the row of such a cycle but there are only two such

spots available.

We now present our idea to achieve the consecutive-ones property for the columns. Consider

a landmark graph G = 〈L,O〉 and let C be the set of cycles induced by O. The cycles

in C do not overlap and hence all entries of the cycle-covering LP are 0 or 1 according to

Proposition 2. For this idea, we interpret each action or rather its corresponding column

in the LP matrix as an individual of a community. These individuals participate in groups

according to the following rules:

• Each landmark ` ∈ L induces a group g such that all actions a ∈ ` are in this group:

g = `.

• Each cycle c ∈ C induces a group g′ such that all actions a ∈
⋃
`∈L(c) ` are in this

group: g′ =
⋃
`inL(c) `.

• Two groups g1 and g2 are opposing if g1 \ g2 6= ∅ and g2 \ g1 6= ∅. Otherwise, they are

either identical or one is a sub-group of the other (i.e., g1 ⊂ g2 or g2 ⊂ g1).

Integer Programming 52

{a}

{b}

{c} {d}

(a) Landmark graph

Ya Yb Yc Yd ≥
`a 1 0 0 0 1
`b 0 1 0 0 1
`c 0 0 1 0 1
`d 0 0 0 1 1

cab 1 1 0 0 3
cbc 0 1 1 0 3
cbd 0 1 0 1 3

(b) LP matrix

Figure 7.2: Example of a landmark graph for which the according LP matrix is TU but does
not have the consecutive-ones property.

The rows of an LP matrix A of G correspond to the different groups present in the entire

community. Each column of A corresponds to an action a and has a 1-entry for all groups

in which a participates. The columns which participate in the same group must occur

consecutively in A to fulfill the consecutive-ones property. If two groups are opposing, this

means that they restrict the order in which groups must be aligned in the matrix. We

propose the following conjecture for which an in-depth analysis exceeds the scope of this

thesis.

Conjecture 1. The columns of a matrix A ∈ {0, 1}m×n can be rearranged to have the

consecutive-ones property if

• each group of A has at most two opposing groups, and

• the strings of opposing groups are acyclic.

Our idea to construct a formal proof is to order the groups so that each of them is surrounded

by its opposing groups; elements which occur in both groups build the transition between

the groups. The restriction to two oppositions ensures that this is possible and also does not

interfere with sub-groups. We assume that whether or not this criterion is satisfied highly

depends on the domain of a problem.

This is by far not the only situation which may yield TU matrices for our LPs. For example,

consider a landmark graph as displayed in Figure 7.2a. Since landmark {b} is involved in

three cycles, b occurs in three opposing groups; its neighbors in the LP matrix should be a, c,

and d. The table in Figure 7.2b represents the according LP matrix. It goes without saying

that making the Yd column a neighbor of Yb destroys the consecutive-ones property of cab

or cad. Nonetheless, the matrix is TU and the optimal (integral) solution in this case is

Ya = Yc = Yd = 1 and Yb = 2.

Integer Programming 53

{x}

{y} {z}

(a) Landmark graph

Yx Yy Yz ≥
`x 1 0 0 1
`y 0 1 0 1
`z 0 0 1 1

cxy 1 1 0 3
cxz 1 0 1 3
cyz 0 1 1 3
cxyz 1 1 1 4
cxzy 1 1 1 4

(b)

Figure 7.3: A landmark graph consisting of 3 landmarks and 6 orderings, making all land-
marks dependent on each other.

7.3 IP Can Influence the Heuristic Value
In the previous section, we explore why we only find identical objective values for LP and

IP. However, if a matrix is not TU it is possible to show that different objective values are

found. The following example is based on the landmark graph displayed in Figure 7.3a.

In Equation (7.2) we present a squared sub-matrix of Figure 7.3b which represents the

constraints for all cycles of exactly two landmarks.

A =

1 1 0

1 0 1

0 1 1

⇒ det(A) = −2 (7.2)

As the minor of A is not in {−1, 0, 1}, the complete LP matrix cannot be TU although its

entries are only 0 and 1. Indeed, the LP solution of this problem assigns Yx = Yy = Yz = 1.5

which are all non-integers. Solving this problem as an IP yields that two out of the three

actions must be applied twice and the third only once; hence, the LP objective value is 4.5

and for the IP it is 5.

Based on this analysis we construct a logistics problem as presented in Figure 7.4. Arrows

are added to better visualize the cycles induced by the packages. The structure of Fig-

ure 7.3a appears twice in this problem; once for locations B, C, and D as well as once for

locations E, F , and G. In the landmark graph, this triangular structure can be found in

independent sub-graphs. The involved disjunctive action landmarks are the unions of move-

operators to each location. As an effect, the LP solution will find that each location must be

driven to 1.5 times. Consequently, the move-operators contribute a total value of 9 to the

heuristic estimate. If we use an IP instead, we find that in each of the location triangles, two

out of the three must be driven to twice and the third only once. The move-operators thus

contribute 10 to the heuristic, which improves the total heuristic value compared to the LP

solution. We implemented the according planning task in PDDL and can confirm that the

h-value in the initial state is different when comparing the LP with the IP computation.

Integer Programming 54

A

B

C

D

E

F

G

#1

To C To D

To B To D

To B To C

To F To G

To E To G

To E To F

Figure 7.4: Example of a planning task where the solutions of LP and IP differ when
using cycle-covering constraints. Arrows indicate the routes of the packages which yield the
triangular structure also found in Figure 7.3a twice.

8
Conclusion

In this thesis, we use LPs to compute a landmark heuristic. Each landmark induces an LP

constraint which states that this landmark must be part of every plan. The landmarks for

this heuristic are approximated by landmark generators from recent literature. In addition,

these landmark generators provide ordering constraints between the landmarks. Such land-

mark orderings may induce cycles that correspond to deadlocks in the according planning

task. Deadlocks can only be resolved by applying an action that does not directly contribute

to the goal; in other words, one landmark from each cycle must hold twice along all plans.

This additional information can be used to enhance the landmark heuristic. We provide the

theory for a generalized cycle-covering heuristic hcycle inspired by Paul and Helmert (2016)

and Paul et al. (2017). It dominates the landmark heuristic because it adds additional LP

constraints which means that the estimated h-values cannot be worse. This dominance is

also confirmed by an experimental evaluation.

Landmark orderings can be of different types; natural orderings must hold along all plans

while there might be plans which do not obey reasonable orderings. By definition, natural

orderings cannot induce cycles in the landmark graph of a solvable planning task. Thus, all

cycles induced by landmark orderings consist of at least one reasonable ordering. Based on

the definition of natural orderings, we infer that only landmarks with incoming reasonable

orderings are candidates to resolve the deadlocks. The LP constraints for all cycles can be

strengthened by this information and brings a stronger cycle-covering heuristic to light; we

show that the ordering-aware cycle-covering heuristic hord dominates hcycle .

8.1 Potential and Flaws of hord

This thesis mainly serves as a proof of concept; cycle-covering is a way to increase the

information extracted from landmark graphs in heuristic search for cost-optimal planning.

We have shown the theoretical dominance and provided experiments where this dominance

is confirmed to some extent. At the moment, this is not represented in the problem coverage.

However, we still see high potential in this information and list some of our reasons here.

Conclusion 56

8.1.1 Balancing Search Time and Heuristic Accuracy
We experiment with two approaches which we call recomp and track. They describe

whether the landmarks are recomputed in every state encountered during search or if they

are computed once in the beginning and tracked along paths. While recomputing provides

better guidance for the search algorithm, its running time highly depends on the time

required to compute landmark graphs. This becomes an issue for most of the examined

landmark generators.

We show that cycles are present in various planning domains. Finding all elementary cycles

in a graph can be done efficiently using Johnson’s Algorithm. Considering them as LP

constraints in addition to the landmarks MHS increases the heuristic accuracy. However,

solving an LP in every evaluated state also impairs the running time. Our heuristics need

significantly more search time than for example LM-cut which is a state of the art landmark

heuristic.

8.1.2 Surpassing Delete-Relaxation
With cycle-covering, we have the potential to exceed estimates from delete-relaxation heuris-

tics. These heuristics apply each operator at most once because their delete-effects are ig-

nored. Hence, the accumulated costs considers each operator at most once. In this setting,

a landmark should never be necessary more than once because all its implications hold

after achieving it for the first time. The cycle covering heuristic dominates the optimal

delete-relaxation heuristic h+ under the assumption of a complete set of delete-relaxation

landmarks. In our results we show that already good approximations of these landmarks

can yield heuristic estimates higher than h+.

However, our heuristic is bounded similar to how delete-relaxation heuristics are bounded

by h+; while in delete relaxation it is never beneficial to apply the same operator more

than once, with hord each operator will never be counted more than twice. The reason for

this lies in the LP constraints which are satisfied when the according action count variables

are set to 2. Perhaps analyzing the landmark graphs of planning tasks where operators

are necessary more than twice can lead to interesting observations; common structural

characteristics could be used to define additional LP constraints in a similar way to the

cyclical dependencies used for cycle-covering.

8.1.3 Operator-Counting Framework
Our implementation of the cycle-covering heuristic is in accordance with the operator-

counting framework. Thus, it may be combined with other operator-counting heuristics

to create a stronger heuristic. For example, combining it with a network-flow heuristic

may resolve the shortcoming outlined in the preceding section; repeated delete-effects when

achieving different landmarks may be recognized by such an approach. In this fashion, each

of the combined heuristics can compensate for the weaknesses of its counterparts. We leave

it to future work to follow this path and try out synergistic combinations including the

cycle-covering heuristic.

Conclusion 57

8.2 Future Work
The results presented in Chapter 6 support the claim that considering cycles in landmark

graphs provides valuable additional information compared to only the landmarks. However,

our research has many open ends which might be explored further in the future. In this sec-

tion, we point out the discoveries which we found most interesting for further investigation.

8.2.1 Recomputing the Landmarks Graphs
We have shown that there are many planning domains where cyclical dependencies between

landmarks occur. The number of domains with cycles in the landmark graphs of the initial

state is significantly lower. However, recomputing the landmark graph in every encountered

state is often too time-consuming using the considered landmark generators. Our alternative

approach computes the landmark graph once in the initial state and tracks which landmarks

are achieved along the searched paths. Hence, the resulting heuristic is path-dependent and

cannot find new information (i.e., landmarks and cycles) when exploring the state-space.

This especially leads to never evaluating a state to be farther from the goal than the initial

state. The number of expanded states is likely rather high; this follows naturally because

some landmarks might be achieved even though search moves away from the goal.

This is undesirable behavior and we would prefer the heuristic to recompute the landmark

graph in every state. Maybe, the two approaches can be combined in one way or another to

get the best from both worlds. For example, one could recompute the landmark graph not

in every state, but regularly according to some criterion. The issue with this approach is

that search expands different areas of the state space simultaneously; the landmark graphs

for two states evaluated right after one another might differ significantly and thus there is

not a commonly shared landmark graph for all states like the one of the initial state. This

circumstance may require storing many landmark graphs in order not to have to recompute

them again and again. Memory restrictions could bring this approach to a halt very fast.

A different idea may be to make the computation of a landmark graph more efficient. Some

effort might be spared by not starting from scratch, but updating a previous version. Nodes

are removed based on the action sequence from the last stored instance to the current state.

Additionally, new landmarks may be added to the graph according to a criterion (which may

or may not exist). This idea is of course again dependent on storing the landmark graph

from time to time in order to keep these updating procedures tractable. The only way to

avoid this is to recompute it in every encountered state. We found this to be too inefficient

with the available landmark generators, which might just be unsuited for our purposes.

Hypothetically, there might be faster methods which suffice for the needs of cycle-covering

and enable recomputing the landmark graph in every state.

8.2.2 Landmark Generation
We limited our research to some extent by solely considering previously suggested landmark

generation methods. Cyclical dependencies between landmarks are described as problem-

atic in the studied literature. Thus, cycles in the landmark graphs are discarded by these

methods; maybe they are even designed in a way that avoids encountering too many cy-

Conclusion 58

cles. While our experiments suggest that this is not the case, it could still be worthwhile

investigating new approaches to generate landmarks. Or maybe the existing methods can

be enhanced by new types of landmark orderings.

For example, Hoffmann et al. (2004) suggest an ordering relation similar to greedy-necessary

orderings. As a reminder, greedy-necessary orderings denote conditions for making a fact

true for the first time. Another approach could be to investigate conditions for making

a fact true for the last time. In some sense, this also relates to Paul et al. (2017) who

use a landmark ordering relation different from the ones used in this thesis. Consider two

disjunctive action landmarks ` and `′ and an ordering ` → `′. In Paul et al.’s definition of

landmark orderings this denotes that the first action from ` occurs before the last action

from `′ in every plan.

The potential of cycles in the landmark graph increases with additional orderings between

the landmarks. Furthermore, additional cycles can only improve the heuristic estimates of

a cycle-covering heuristic. However, the complexity of the according LPs will also increase,

and the required memory to store all these cycles might become a problem.

8.2.3 Reduce Excessive Memory Usage
In our experiments we observed that most of the unsolved tasks fail because of time-

restrictions. However, the number of out-of-memory errors increases when using hcycle

or hord compared to hLM. This is not surprising if we consult the numbers of cycles found

in some encountered states; the maximal number of cycles found in any state is nearly 17

million according to Table 6.2. On the one hand, it might exceed the memory limits to store

the LP constraints for all these cycles. On the other hand, it should not even be necessary

to store them all.

In Figure 6.8, a single ordering ` →t `1 yields a lot of cycles. Translating all of them

into ordering-aware cycle constraints for the LP results n times the identical constraint; all

landmarks with greedy-necessary incoming orderings are discarded and what remains (i.e.,

only ` and maybe `1 if t is not reasonable) is identical for all cycles. This indicates that

(n− 1) of these constraints are redundant.

This observation can be generalized further by going back to the example landmark graph

in Figure 7.3a. The constraints for cycles cxyz and cxzy are redundant because they are

implied by the other cycle and landmark constraints; adding the constraints

cxy : Yx + Yy ≥ 3

`z : Yz ≥ 1
(8.1)

results in

Yx + Yy + Yz ≥ 4 (8.2)

which corresponds to the constraints of cxyz and cxzy. The constraints for these cycles can

thus be discarded because they do not influence the solution; all solutions which satisfy cxy

and `z automatically also apply to cxyz and cxzy. In general, this deduction holds for any

two cycles c and c′ where L(c) ⊆ L(c′): it is redundant to add the constraint for c′ on top

of the constraint for c. We deduce that filtering out redundant cycles before setting up the

LP may prevent our algorithm from running out of memory.

Conclusion 59

In our experiments we did not do this because CPLEX supports such optimizations auto-

matically as pre-solve step of the LP procedure. We did not deem it sensible to compete

with software designed for optimization by handling these redundancies in our implemen-

tation. Given the results, however, it seems sensible to consider this observation to reduce

the number of LP constraints. Maybe the algorithm for finding cycles in the landmark

graphs (i.e., Johnson’s Algorithm) can be optimized in the sense that redundant cycles are

discarded right away.

8.2.4 Integer Programming
In Chapter 7 we discuss the use of IPs instead of LPs in order to restrict the number of

action applications to integer values. It would be interesting to learn why so many LPs have

integral solutions. Currently, we cannot explain why IPs, if a solution is found despite their

hardness, do not yield higher estimates than LPs. Analyzing the LP matrices concerning

the characteristic of total unimodularity may provide important insights. If there are other

reasons why the LP and IP solutions are equal so often, these might also be of great interest.

8.2.5 Temporal Interpretation of Landmark Orderings
Our consideration of landmark orderings is based on the structures they induce in the

landmark graph. When first proposed, however, they were used to split the underlying

planning task into smaller problems that are easier to solve (Hoffmann et al. 2004). This

approach temporally interprets these relations; landmarks that are ordered before other

landmarks may be achieved earlier in a plan. However, this is sub-optimal because the used

set of orderings is incomplete.

In this context, our suggestion is a new approach for constructing LP constraints based on

the landmark graph. It renders finding cycles redundant and adds constraints to the LP for

all landmark orderings as well as the landmarks themselves. Additional LP variables that

are ignored in the objective function serve the purpose of representing the temporal aspect

of landmark orderings. For example, the constraint for a natural ordering `1 →n `2 could

be constructed as follows.

TF`1 + 1 ≤ TF`2 (8.3)

where the TF` denotes the time at which ` was first achieved. A reasonable ordering `3 →r `4

with `3 ∪ `4 = ∅ can be formalized as

TF`3 + 1 ≤ TL`4 (8.4)

where TL` is the time step in which ` is resolved for the last time. Then, if TF` < TL` we can

deduce that ` must be true at least twice in all plans. The LP constraint for ` should thus

be conditional in order to distinguish this case from the case where TF` = TL` .

Although intrigued by this idea, we refrained from looking deeper into this as part of the

present thesis. However, the approach would be more open to be extended with new ordering

types compared to the cycle-covering heuristic; similarly to reasonable orderings in hord , they

might imply the possibility of discoveries concerning their role in cycles. This may change

Conclusion 60

the overall construction of cycle-constraints, whereas in the temporal approach they simply

induce additional constraints.

8.3 Full Circle
This thesis started by declaring it necessary to take a step back in order to move forward from

time to time. Indeed we have advanced in the understanding of cycle-covering for landmark

heuristics by doing so. In this context, taking a step back corresponds to repeatedly achieving

the same sub-goals which is required in order to solve certain planning tasks. Both our

theoretical and practical results look promising. So now, we get to look forward to the next

steps — in whichever direction they may go.

Bibliography

Aspvall, Bengt and Richard E. Stone (1980). “Khachiyan’s Linear Programming Algorithm”.

In: Journal of Algorithms 1.1, pp. 1–13.

Bäckström, Christer and Bernhard Nebel (1995). “Complexity Results for SAS+ Planning”.

In: Computational Intelligence 11.4, pp. 625–655.

Bonet, Blai and Julio Castillo (2011). “A Complete Algorithm for Generating Landmarks”.

In: Proceedings of the 21st International Conference on Automated Planning and Sche-

duling (ICAPS 2011), pp. 315–318.

Bonet, Blai and Malte Helmert (2010). “Strengthening Landmark Heuristics via Hitting

Sets”. In: Proceedings of the 19th European Conference on Artificial Intelligence (ECAI

2010), pp. 329–334.

Bylander, Tom (1991). “Complexity Results for Planning.” In: Proceedings of the 12th In-

ternational Joint Conference on Artificial Intelligence (IJCAI 1991), pp. 274–279.

Bylander, Tom (1994). “The Computational Complexity of Propositional STRIPS Plan-

ning”. In: Artificial Intelligence 69.1-2, pp. 165–204.

Fikes, Richard E. and Nils J. Nilsson (1971). “STRIPS: A new approach to the application

of theorem proving to problem solving”. In: Artificial intelligence 2.3–4, pp. 189–208.

Ghouila-Houri, Alain (1962). “Caractérisation des matrices totalement unimodulaires”. In:

Comptes Redus Hebdomadaires des Séances de l’Académie des Sciences 254, pp. 1192–

1194.

Gupta, Naresh and Dana S. Nau (1992). “On the Complexity of Blocks-World Planning”.

In: Artificial Intelligence 56.2–3, pp. 223–254.

Hart, Peter E., Nils J. Nilsson, and Bertram Raphael (1968). “A formal basis for the heuristic

determination of minimum cost paths”. In: IEEE Transactions on Systems Science and

Cybernetics 4.2, pp. 100–107.

Helmert, Malte (2004). “A Planning Heuristic Based on Causal Graph Analysis”. In: Pro-

ceedings of the 14th International Conference on Automated Planning and Scheduling

(ICAPS 2004), pp. 161–170.

Helmert, Malte (2006). “The Fast Downward Planning System”. In: Journal of Artificial

Intelligence Research 26, pp. 191–246.

Conclusion 62

Helmert, Malte (2009). “Concise Finite-Domain Representations for PDDL Planning Tasks”.

In: Artificial Intelligence 173.5–6, pp. 503–535.

Helmert, Malte and Carmel Domshlak (2009). “Landmarks, Critical Paths and Abstractions:

What’s the Difference Anyway?” In: Proceedings of the 19th International Conference

on Automated Planning and Scheduling (ICAPS 2009), pp. 162–169.

Hoffman, Alan J. and Joseph B. Kruskal (1956). “Integral Boundary Points of Convex Poly-

hedra, in HW Kuhn and AW Tucker (Eds.) Linear Inequalities and Related Systems”.

In: Annals of Mathematical Studies 38, pp. 223–246.

Hoffmann, Jörg, Julie Porteous, and Laura Sebastia (2004). “Ordered Landmarks in Plan-

ning”. In: Journal of Artificial Intelligence Research 22, pp. 215–278.

IBM (2019). IBMr ILOGr CPLEXr Optimization Studio, v12.9.0. url: https://www.

ibm.com/products/ilog-cplex-optimization-studio.

Johnson, Donald B. (1975). “Finding all the Elementary Circuits of a Directed Graph”. In:

SIAM Journal on Computing 4.1, pp. 77–84.

Karp, Richard M. (1972). “Reducibility among Combinatorial Problems”. In: Complexity of

Computer Computations, pp. 85–103.

Karpas, Erez and Carmel Domshlak (2009). “Cost-Optimal Planning with Landmarks”. In:

Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI

2009), pp. 1728–1733.

Keyder, Emil, Silvia Richter, and Malte Helmert (2010). “Sound and Complete Landmarks

for And/Or Graphs”. In: Proceedings of the 19th European Conference on Artificial

Intelligence (ECAI 2010), pp. 335–340.

Khachiyan, Leonid Genrikhovich (1979). “A Polynomial Algorithm in Linear Programming”.

In: Doklady Akademii Nauk, pp. 1093–1096.

Koehler, Jana and Jörg Hoffmann (2000). “On Reasonable and Forced Goal Orderings and

their Use in an Agenda-Driven Planning Algorithm”. In: Journal of Artificial Intelli-

gence Research 12, pp. 338–386.

McDermott, Drew M. (2000). “The 1998 AI Planning Systems Competition”. In: AI Mag-

azine 21.2, pp. 35–55.

Paul, Gerald and Malte Helmert (2016). “Optimal Solitaire Game Solutions using A∗ Search

and Deadlock Analysis”. In: Proceedings of the 9th Annual Symposium on Combinatorial

Search (SoCS 2016), pp. 135–136.

Paul, Gerald, Gabriele Röger, Thomas Keller, and Malte Helmert (2017). “Optimal Solutions

to Large Logistics Planning Domain Problems”. In: Proceedings of the 10th Annual

Symposium on Combinatorial Search (SoCS 2017), pp. 73–81.

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio

Conclusion 63

Pommerening, Florian, Gabriele Röger, Malte Helmert, and Blai Bonet (2014). “LP-based

Heuristics for Cost-Optimal Planning”. In: Proceedings of the 24th International Con-

ference on Automated Planning and Scheduling (ICAPS 2014), pp. 226–234.

Porteous, Julie, Laura Sebastia, and Jörg Hoffmann (2001). “On the Extraction, Ordering,

and Usage of Landmarks in Planning”. In: Proceedings of the 6th European Conference

on Planning (ECP 2001), pp. 37–48.

Richter, Silvia (2010). “Landmark-Based Heuristics and Search Control for Automated Plan-

ning”. PhD thesis. Griffith University, Brisbane, Australia.

Richter, Silvia, Malte Helmert, and Matthias Westphal (2008). “Landmarks Revisited”.

In: Proceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI 2008),

pp. 975–982.

Richter, Silvia and Matthias Westphal (2010). “The LAMA Planner: Guiding Cost-Based

Anytime Planning with Landmarks”. In: Journal of Artificial Intelligence Research 39,

pp. 127–177.

Seipp, Jendrik, Florian Pommerening, Silvan Sievers, and Malte Helmert (2017). Downward

Lab. doi: 10.5281/zenodo.790461. url: https://doi.org/10.5281/zenodo.790461.

Zhu, Lin and Robert Givan (2003). “Landmark Extraction via Planning Graph Propaga-

tion”. In: ICAPS 2003 Doctoral Consortium, pp. 156–160.

https://doi.org/10.5281/zenodo.790461
https://doi.org/10.5281/zenodo.790461

Declaration on Scientific Integrity

Erklärung zur wissenschaftlichen Redlichkeit

includes Declaration on Plagiarism and Fraud

beinhaltet Erklärung zu Plagiat und Betrug

Author — Autor

Clemens Büchner

Matriculation number — Matrikelnummer

2015-059-603

Title of work — Titel der Arbeit

Generalization of Cycle-Covering Heuristics

Type of work — Typ der Arbeit

Master’s Thesis

Declaration — Erklärung

I hereby declare that this submission is my own work and that I have fully acknowledged

the assistance received in completing this work and that it contains no material that has

not been formally acknowledged. I have mentioned all source materials used and have cited

these in accordance with recognised scientific rules.

Hiermit erkläre ich, dass mir bei der Abfassung dieser Arbeit nur die darin angegebene

Hilfe zuteil wurde und dass ich sie nur mit den in der Arbeit angegebenen Hilfsmitteln

verfasst habe. Ich habe sämtliche verwendeten Quellen erwähnt und gemäss anerkannten

wissenschaftlichen Regeln zitiert.

Basel, April 20, 2020

Signature — Unterschrift

	Table of Contents
	1 Introduction
	2 Classical Planning
	2.1 Planning Tasks and State Spaces
	2.2 Heuristic Search
	2.3 Problem Domains

	3 Landmarks and Landmark Orderings
	3.1 Landmarks
	3.2 Landmark Orderings
	3.3 Landmark Graphs
	3.4 Landmark Generators
	3.5 Landmark Heuristics

	4 Minimum Hitting Sets and Linear Programming
	4.1 Minimum Hitting Set
	4.2 Integer and Linear Programs
	4.3 Operator Counting
	4.4 Landmark Heuristic Based on Minimum Hitting Sets

	5 Cycle-Covering Heuristic
	5.1 Active Landmarks and Cycles
	5.2 Decomposing Landmarks from Cycle-Covering
	5.3 Additional Cycle-Covering Constraints for the Landmarks LP
	5.4 Strengthening the Cycle-Covering Heuristic via Ordering Types

	6 Experimental Evaluation
	6.1 Cycle Detection
	6.2 Recomputing vs. Tracking Active Landmarks
	6.3 Cycle-Covering Heuristic
	6.4 Aiming for Optimality
	6.5 Comparing to the State of the Art

	7 Integer Programming
	7.1 Experimental Evaluation
	7.2 Total Unimodularity
	7.3 IP Can Influence the Heuristic Value

	8 Conclusion
	8.1 Potential and Flaws of
	8.2 Future Work
	8.3 Full Circle

	Bibliography

