Master's Thesis Presentation

Generalization of **Cycle-Covering Heuristics**

Clemens Büchner

Department of Mathematics and Computer Science University of Basel

May 14, 2020

Introduction

Introduction

Outline

- 1. Background
- 2. Cycle-covering heuristic
- 3. Experimental results

Background

Background

Simplistic world model for specific problem purposes:

```
Definition (planning task)
```


Simplistic world model for specific problem purposes:

```
Definition (planning task)
```

A planning task is a 4-tuple $\mathcal{T}=\langle\mathcal{V}, s_0, \gamma, \mathcal{A}\rangle$ with

 \blacktriangleright a finite set of variables $\mathcal V$ to describe each world state,

Simplistic world model for specific problem purposes:

Definition (planning task)

- \blacktriangleright a finite set of variables $\mathcal V$ to describe each world state,
- ▶ the initial state s₀,

Simplistic world model for specific problem purposes:

```
Definition (planning task)
```

- \blacktriangleright a finite set of variables $\mathcal V$ to describe each world state,
- the initial state s₀,
- \blacktriangleright the goal condition γ , and

Simplistic world model for specific problem purposes:

```
Definition (planning task)
```

- \blacktriangleright a finite set of variables $\mathcal V$ to describe each world state,
- ▶ the initial state s₀,
- \blacktriangleright the goal condition γ , and
- > a finite set of actions \mathcal{A} to transition between states.

Simplistic world model for specific problem purposes:

```
Definition (planning task)
```

- \blacktriangleright a finite set of variables $\mathcal V$ to describe each world state,
- ▶ the initial state s₀,
- \blacktriangleright the goal condition γ , and
 - a finite set of actions \mathcal{A} to transition between states.

Simplistic world model for specific problem purposes:

```
Definition (planning task)
```

- \blacktriangleright a finite set of variables $\mathcal V$ to describe each world state,
- ▶ the initial state s₀,
- \blacktriangleright the goal condition γ , and
 - a finite set of actions \mathcal{A} to transition between states.

Simplistic world model for specific problem purposes:

```
Definition (planning task)
```

- \blacktriangleright a finite set of variables $\mathcal V$ to describe each world state,
- ▶ the initial state s₀,
- \blacktriangleright the goal condition γ , and
- a finite set of actions \mathcal{A} to transition between states.

Simplistic world model for specific problem purposes:

```
Definition (planning task)
```

- \blacktriangleright a finite set of variables $\mathcal V$ to describe each world state,
- ▶ the initial state s₀,
- \blacktriangleright the goal condition γ , and
- a finite set of actions \mathcal{A} to transition between states.

Simplistic world model for specific problem purposes:

```
Definition (planning task)
```

- \blacktriangleright a finite set of variables ${\cal V}$ to describe each world state,
- ▶ the initial state s₀,
- \blacktriangleright the goal condition γ , and
- a finite set of actions \mathcal{A} to transition between states.

Simplistic world model for specific problem purposes:

```
Definition (planning task)
```

- \blacktriangleright a finite set of variables $\mathcal V$ to describe each world state,
- ▶ the initial state s₀,
- \blacktriangleright the goal condition γ , and
 - a finite set of actions \mathcal{A} to transition between states.

Background

State Space and Heuristic Search

Properties that must hold along all plans:

- move to B to pick up yellow package
- move to C to deliver yellow package
- the blue package induces the same landmarks

Properties that must hold along all plans:

Definition (disjunctive action landmark)

Let $\mathcal{T} = \langle \mathcal{V}, s_0, G, \mathcal{A} \rangle$ be a planning task and let *s* be a state of \mathcal{T} . A disjunctive action landmark of *s* is a non-empty set of actions $\ell \subseteq \mathcal{A}$ such that every *s*-plan contains an action $a \in \ell$.

Properties that must hold along all plans:

Definition (disjunctive action landmark)

Let $\mathcal{T} = \langle \mathcal{V}, s_0, G, \mathcal{A} \rangle$ be a planning task and let *s* be a state of \mathcal{T} . A disjunctive action landmark of *s* is a non-empty set of actions $\ell \subseteq \mathcal{A}$ such that every *s*-plan contains an action $a \in \ell$.

▶ in example: $\{move(A, B), move(C, B)\}$ and $\{move(A, C), move(B, C)\}$

Properties that must hold along all plans:

Definition (disjunctive action landmark)

Let $\mathcal{T} = \langle \mathcal{V}, s_0, G, \mathcal{A} \rangle$ be a planning task and let *s* be a state of \mathcal{T} . A disjunctive action landmark of *s* is a non-empty set of actions $\ell \subseteq \mathcal{A}$ such that every *s*-plan contains an action $a \in \ell$.

▶ in example: $\{move(A, B), move(C, B)\}$ and $\{move(A, C), move(B, C)\}$

landmark generation is <u>not</u> the topic of this thesis

Landmark Heuristic h^{LM}

- one action from each landmark must be part of every plan
- minimum hitting set approach
 - cheapest set of actions that hits each landmark
- solve with linear programming

$$\begin{split} \min \sum_{a \in \mathcal{A}} \mathsf{Y}_a \cdot cost(a) & \text{s.t.} \\ \mathsf{Y}_a \geq 0 & \text{for all } a \in \mathcal{A} \text{ and} \\ \sum_{a \in \ell} \mathsf{Y}_a \geq 1 & \text{for all } \ell \in \mathcal{L} \end{split}$$

- this corresponds to the operator-counting framework
- use objective value as heuristic estimate

Landmark Orderings

Landmark orderings denote dependencies between landmarks.

- natural orderings must hold along all plans
 - e.g., impossible to unload package before loaded
- reasonable orderings are rather "suggestions"
 - e.g., move to the package's origin before its destination

Landmark Orderings

Landmark orderings denote dependencies between landmarks.

- natural orderings must hold along all plans
 - e.g., impossible to unload package before loaded
- reasonable orderings are rather "suggestions"
 - e.g., move to the package's origin before its destination

Represent landmarks and orderings in landmark graphs:

Cycle-Covering

のみの 判所 くぼとくぼとく聞きょう

Valuable Information in Landmark Graphs

- cyclical dependencies between landmarks
- sub-goal must be achieved multiple times to resolve cycle
- one landmark per cycle necessary twice in every plan
- again minimum hitting set problem for cycles

Cycle-Covering Heuristic h^{cycle}

Extending the landmark heuristic with cycle constraints:

$$\begin{split} \min \sum_{a \in \mathcal{A}} \mathsf{Y}_a \cdot cost(a) & \text{s.t.} \\ \mathsf{Y}_a \geq 0 & \text{for all } a \in \mathcal{A} \text{ and} \\ \sum_{a \in \ell} \mathsf{Y}_a \geq 1 & \text{for all } \ell \in \mathcal{L} \text{ and} \\ \sum_{\ell \in c} \sum_{a \in \ell} \mathsf{Y}_a \geq |c| + 1 & \text{for all } c \in \mathcal{C} \end{split}$$

with $\ensuremath{\mathcal{C}}$ the set of cycles in the landmark graph

Heuristics Applied to Running Example

$$\min \mathsf{Y}_{A \to B} + \mathsf{Y}_{C \to B} + \mathsf{Y}_{A \to C} + \mathsf{Y}_{B \to C} \quad \text{s.t.}$$

$$\begin{array}{ll} \mathsf{Y}_{A \rightarrow B} + \mathsf{Y}_{C \rightarrow B} & \geq 1 \\ & \mathsf{Y}_{A \rightarrow C} + \mathsf{Y}_{B \rightarrow C} \geq 1 \end{array}$$

Heuristics Applied to Running Example

$$\min \mathbf{Y}_{A \to B} + \mathbf{Y}_{C \to B} + \mathbf{Y}_{A \to C} + \mathbf{Y}_{B \to C} \quad \text{s.t.}$$

$$\begin{array}{l} \mathsf{Y}_{A \to B} + \mathsf{Y}_{C \to B} & \geq 1 \\ & \mathsf{Y}_{A \to C} + \mathsf{Y}_{B \to C} \geq 1 \end{array}$$

$$h^{\mathsf{LM}}(s_0) = 2 \quad (\mathsf{Y}_{A \to B} = 1, \mathsf{Y}_{B \to C} = 1)$$

Heuristics Applied to Running Example

$$\min \mathbf{Y}_{\boldsymbol{A} \rightarrow \boldsymbol{B}} + \mathbf{Y}_{\boldsymbol{C} \rightarrow \boldsymbol{B}} + \mathbf{Y}_{\boldsymbol{A} \rightarrow \boldsymbol{C}} + \mathbf{Y}_{\boldsymbol{B} \rightarrow \boldsymbol{C}} \quad \text{s.t.}$$

$$\begin{array}{l} \mathsf{Y}_{A \to B} + \mathsf{Y}_{C \to B} & \geq 1 \\ & \mathsf{Y}_{A \to C} + \mathsf{Y}_{B \to C} \geq 1 \\ & \mathsf{Y}_{A \to B} + \mathsf{Y}_{C \to B} + \mathsf{Y}_{A \to C} + \mathsf{Y}_{B \to C} \geq 3 \end{array}$$

►
$$h^{\text{LM}}(s_0) = 2$$
 ($Y_{A \to B} = 1, Y_{B \to C} = 1$)

Heuristics Applied to Running Example

▶ $h^{\text{cycle}}(s_0) = 3$ ($Y_{A \rightarrow B} = 1, Y_{B \rightarrow C} = 1, Y_{C \rightarrow B} = 1$)

Ordering-Aware Cycle-Covering Heuristic hord

- natural orderings are acyclic by definition
- candidates for resolving cycles must have an incoming reasonable ordering

 $\min \mathsf{Y}_a + \mathsf{Y}_b + \mathsf{Y}_c \quad \text{s.t.}$

$$\begin{array}{ccc} \mathsf{Y}_{a} & \geq 1 \\ \mathsf{Y}_{b} & \geq 1 \\ \mathsf{Y}_{c} \geq 1 \\ \mathsf{Y}_{a} + \mathsf{Y}_{b} & \geq 3 \\ \mathsf{Y}_{b} + \mathsf{Y}_{c} \geq 3 \end{array}$$

►
$$h^{cycle}(s) = 4$$
 (Y_a = 1, Y_b = 2, Y_c = 1)

Ordering-Aware Cycle-Covering Heuristic hord

- natural orderings are acyclic by definition
- candidates for resolving cycles must have an incoming reasonable ordering

 $\min \mathsf{Y}_a + \mathsf{Y}_b + \mathsf{Y}_c \quad \text{s.t.}$

$$\begin{array}{ccc} \mathsf{Y}_{a} & \geq 1 \\ \mathsf{Y}_{b} & \geq 1 \\ \mathsf{Y}_{c} \geq 1 \\ \mathsf{Y}_{a} + \mathsf{Y}_{b} & \geq 3 \\ \end{array}$$

$$h^{cycle}(s) = 4 \quad (Y_a = 1, Y_b = 2, Y_c = 1)$$

$$h^{ord}(s) = 5 \quad (Y_a = 1, Y_b = 2, Y_c = 2)$$

Ordering-Aware Cycle-Covering Heuristic hord

- natural orderings are acyclic by definition
- candidates for resolving cycles must have an incoming reasonable ordering

Ordering-aware cycle-covering heuristic:

$$\begin{split} \min \sum_{a \in \mathcal{A}} \mathsf{Y}_a \cdot cost(a) & \text{s.t.} \\ \mathsf{Y}_a \geq 0 & \text{for all } a \in \mathcal{A} \text{ and} \\ \sum_{a \in \ell} \mathsf{Y}_a \geq 1 & \text{for all } \ell \in \mathcal{L} \text{ and} \\ \\ \sum_{\ell \in \mathbf{c}_r} \sum_{a \in \ell} \mathsf{Y}_a \geq |\mathbf{c}_r| + 1 & \text{for all } \mathbf{c} \in \mathcal{C} \end{split}$$

with $c_r \subseteq c$ the set of landmarks with incoming reasonable orderings

Experimental Evaluation

Experimental Evaluation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Cycles in Landmark Graphs

ロトス聞をえばを入りためのの

Experimental Evaluation

Initial *h*-Value – h^{LM} vs. h^{cycle}

Experimental Evaluation

Initial *h*-Value – h^{LM} vs. h^{ord}

Experimental Evaluation

Aiming for Optimality

Aiming for Optimality

きょう しょう しょう しょう しょう

Planning with the Cycle-Covering Heuristic

Coverage barely affected

- tasks with many cycles prone to exceed memory limit
- increased complexity of optimization problems

Overall results are inconclusive and vary depending on several factors:

- Which landmark generator is used?
 - various options in Fast Downward
- How to update landmarks in encountered states?
 - recomputing vs. tracking based on previous state

Planning with the Cycle-Covering Heuristic

Summary

Summary

- cyclical dependencies between landmarks contain valuable information
- cycle-covering heuristic dominates minimum hitting set landmark heuristic for the same landmark graph
- considering ordering types improves cycle-covering heuristic
- increased heuristic accuracy in practice
- does not (yet) pay off in coverage

Appendix

の 2 (2 m l = (=) (=) (=) (=)

Initial h-Values - LP vs. IP

- IP solutions identical to LP-relaxation
- possible explanation: totally unimodular matrices
 - ► all squared sub-matrices have det ∈ {-1, 0, 1}
 - LP solutions are integral
- but not generally the case
 - Counterexample with $LP \neq IP$

Comparison to LM-Cut

Decomposing Cycle-Covering from Landmark Hitting Set

▶ Minimum landmark hitting set: 3, minimum cycle hitting set: $1 \Rightarrow h = 4$

Decomposing Cycle-Covering from Landmark Hitting Set

Minimum landmark hitting set: 3, minimum cycle hitting set: 1 ⇒ h = 4
Optimal plan: (a, b, c) ⇒ h* = 3

Decomposing Cycle-Covering from Landmark Hitting Set

• Minimum landmark hitting set: 3, minimum cycle hitting set: $1 \Rightarrow h = 4$

• Optimal plan:
$$\langle a, \mathbf{b}, \mathbf{c} \rangle \Rightarrow h^* = 3$$

Decomposing Cycle-Covering from Landmark Hitting Set

Minimum landmark hitting set: 3, minimum cycle hitting set: $1 \Rightarrow h = 4$

• Optimal plan:
$$\langle a, b, c \rangle \Rightarrow h^* = 3$$

Recomputing vs. Tracking Landmarks

Update landmarks in every state:

- always recompute
 - + potentially find **new** landmarks
 - might be time-consuming
- or track along paths
 - + compute landmarks only once in the beginning
 - applying actions can only decrease heuristic estimates
 - $\pm\,$ heuristic is path-dependent

Recomputing vs. Tracking Landmarks

Coverage Results

870 planning tasks from domains with cyclical initial states

	LMRHW		LM^{h^m}	
	recomp	track	recomp	track
h^{LM}	342	308	222	298
h ^{cycle}	336	305	228	305
h ^{ord}	340	306	231	308

Coverage Results

870 planning tasks from domains with cyclical initial states

	LM ^{RHW}		LM^{h^m}	
	recomp	track	recomp	track
h ^{LM}	342	308	222	298
h ^{cycle}	336	305	228	305
h ^{ord}	340	306	231	308

success of recomputing vs. tracking depends on landmark generator

Coverage Results

870 planning tasks from domains with cyclical initial states

	LM ^{RHW}		LM^{h^m}	
	recomp	track	recomp	track
h^{LM}	342	308	222	298
h ^{cycle}	336	305	228	305
h ^{ord}	340	306	231	308

- success of recomputing vs. tracking depends on landmark generator
- considering cycles is not always beneficial
 - memory is a limitation
 - optimization problems have increased complexity