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Abstract

We consider the problem of Rubik’s Cube to evaluate modern abstraction heuristics. In order

to find feasible abstractions of the enormous state space spanned by Rubik’s Cube, we apply

projection in the form of pattern databases, Cartesian abstraction by doing counterexample-

guided abstraction refinement as well as merge-and-shrink strategies. While previous pub-

lications on Cartesian abstractions have not covered applicability for planning tasks with

conditional effects, we introduce factorized effect tasks and show that Cartesian abstraction

can be applied to them. In order to evaluate the performance of the chosen heuristics, we

run experiments on different problem instances of Rubik’s Cube. We compare them by the

initial h-value found for all problems and analyze the number of expanded states up to the

last f -layer. These criteria provide insights about the informativeness of the considered

heuristics. Cartesian Abstraction yields perfect heuristic values for problem instances close

to the goal, however it is outperformed by pattern databases for more complex instances.

Even though merge-and-shrink is the most general abstraction among the considered, it does

not show better performance than the others.
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1
Introduction

This thesis aims to give an overview of modern abstraction heuristics as they are used for

solving classical planning tasks. In order to do so, we present three classes of abstractions:

Projections, Cartesian abstractions and merge-and-shrink abstractions. They are applied to

the problem of Rubik’s Cube which is a puzzle where turning the layers of the cube are the

applicable actions and the goal is to move all pieces of the same color onto the same face.

Actions can be applied to Rubik’s Cube so that over 43 quintillion different states can be

reached. Searching the optimal plan in this enormous state space seems to be impossible

for human beings and even with the aid of a computer it must be narrowed down to avoid

running out of memory.

The presented abstractions use different strategies and therefore, we assume that their

performance varies. Merge-and-shrink iteratively performs merge and shrink steps in or-

der to create an abstraction that is the most general among the considered. We apply

counterexample-guided abstraction refinement (CEGAR) in order to obtain Cartesian ab-

stractions which are still more general than projections. The approach for getting projec-

tions is to use pattern databases (PDBs).

To confirm this assumption, we evaluate the performance of the considered abstraction

heuristics using Fast Downward [5]. With merge-and-shrink as well as PDBs already im-

plemented, we have left to adjust the concepts for CEGAR which has only been applied

to planning tasks with no conditional effects. We develop an approach to make CEGAR

also applicable for Rubik’s Cube, which uses conditional effects, and introduce it as factored

effect tasks. By running various experiments we compute initial h-values as well as numbers

of expanded states until the last f -layer for all heuristics. We explore homogeneities and

differences among the values for these and other attributes over all problem instances and

heuristic configurations. The results of these experiments are presented and discussed in the

last part of this thesis.



2
Rubik’s Cube

Originally designed for students to understand three-dimensional problems, Prof. Ernõ Ru-

bik invented Rubik’s Cube, also known as
”
Magic Cube“, in the year 1974 [1]. While his

prototype had a size of 4 × 4 × 4, we will generally refer to the classical Rubik’s Cube as

a 3 × 3 × 3 cube, since nowadays this is the most commonly used model. Meanwhile, a

wide range of forms and variations have been introduced under the denomination of Ru-

bik’s Cube, but we restrict ourselves to the classical one which is a cube with six faces of

equal magnitude which are perpendicular to one another, as it is depicted in Fig. 2.1.

Figure 2.1: Solved classical Rubik’s Cube of size 3.

2.1 Terminology
We introduce terms and expressions to simplify the wording for Rubik’s Cube and its states.

Certain terms introduced in this section correspond to the wording of a cube as a mathe-

matical body. Please note that we only consider three-dimensional (Rubik’s) cubes within

this thesis.

Cubie Rubik’s Cubes are
”
cut“ uniformly into multiple slices parallel to each face, result-

ing in a large amount of smaller cubes which we call cubies. On classical Rubik’s Cubes we
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find three different kinds of cubies. The term category when referring to all cubies of the

same kind. The cubie in the inside of a cube can never appear on the surface as a result of

any combination of actions as described in Section 2.2.2.

Face A set of cubies covering one whole side of Rubik’s Cube is called face. In Fig. 2.2,

the cubies marked grey are those of the face turned towards the viewer. To denote actions

later on, we assign names to the faces. The face highlighted in gray in Fig. 2.2 is called the

front face (F), in the opposite direction we have the back face (B). Furthermore, we have

the left face (L), the right face (R), the upper face (U) and the downward face (D). We call

the faces of a cubie facelet in order to avoid confusion with the term of faces on the cube as

a whole.

Corner The corners of Rubik’s Cube are those cubies positioned on three faces at once.

There are eight corner cubies on a classical Rubik’s Cube. There are three facelets on the

surface on each corner cubie. Fig. 2.3 highlights the visible corner cubies in gray. The corner

cubie that is located on the downward, left and back face is not visible at all.

Edge Adapting the concept from mathematics, edges are the cubies located between two

corner cubies. In Fig. 2.4, edge cubies are visually highlighted in gray. Each of the edge cu-

bies appears on two faces. There are exactly twelve edge cubies on a classical Rubik’s Cube.

Center Center cubies are those which only have one facelet on the outside of Rubik’s Cube.

There is exactly one center-cubie on each face which means that we have a total of six center-

cubies. In Fig. 2.5 they are highlighted in gray, while only half of them are visible from the

given viewpoint.

Figure 2.2: Front
face.

Figure 2.3:
Corner cubies.

Figure 2.4: Edge
cubies.

Figure 2.5:
Center cubies.

Layer We define a layer to be a subset of cubies that form a plane parallel to a face of

the cube. We denote them with the name of the face and an index subscript. The faces

themselves are annotated with index 0. In the classical Rubik’s Cube, a layer is either a

face, or the cubies between two faces. For example we can refer to the front face F as the

F0-layer or also the B2-layer.

Size The size denotes the number of layers in each dimension. Classical Rubik’s Cubes

have a size of 3, which means that each face has a total of 32 = 9 cubies on it.
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2.2 Problem Description
The cube described above is based on the puzzle invented by Prof. Ernõ Rubik. Each cubie

is of different color on its facelets and when the puzzle is solved, each face has only facelets

of one color on it but is colored different than all other faces. It is possible to independently

turn every layer around the cubie in its center by 90 degrees. Turning any layer of the cube

will shift all cubies on that layer and the colors on the faces scramble. Doing an arbitrary

amount of such turns will most likely leave the cube in a state where each face of the cube

has a mixture of facelet-colors on it. Then, the goal is to restore the state of the cube where

each face has only facelets of one color on it, as it is shown in Fig. 2.1. Recently, it has been

proven that any configuration of a classical Rubik’s Cube can be solved with a maximum of

20 moves [14], which was already assumed at least 20 years ago [12].

2.2.1 Reducing the Problem Space
Given their size of 3, classical Rubik’s Cubes consist of 33 = 27 cubies. However, the one in

the center is of no relevance since it is never visible from the outside. Furthermore, six of the

remaining 26 cubies are fixed in their position: The cubies lying in the center of each face

cannot be interchanged. Only turning a middle layer changes the location of such center

cubies, which is equivalent to turning the layers parallel to it in the opposite direction. Also,

the locations relative to all other center cubies do not change when applying such an action

which is why we forbid turning middle layers. Although these cubies do rotate when their

corresponding faces are rotated they form a fixed reference framework disallowing to turn

the entire cube [12]. We do not have to consider them for solving the puzzle and therefore

can narrow it down to a total of 20 cubies necessary for defining our problem space.

From these remaining 20 cubies, eight are corner cubies and twelve are edge cubies. They

always stay within their corresponding category, so a corner cubie can never become an

edge cubie and accordingly the other way around. Since it is only possible to turn layers by

90 degrees, corner cubies will always end up in a corner location and edge cubies accordingly

on edge locations.

2.2.2 Operators
Given the six faces of a Rubik’s Cube, we introduce a total of 18 operations applicable to

the problem. This comes down to three operations per face. We present them on the front

face but apply similarly to the other faces.

The first option is to turn the face by 90 degrees clockwise. We denote this operation with

F, which is an abbreviation for the front face that is turned. The second possibility is to

turn the face by 90 degrees counterclockwise. We denote this operation with F’ (speaking

”
F prime“), where the prime implies the opposite direction of the turn. This is equivalent

to three consecutive F operations. The last possible operation on the is denoted with F2

and describes the move that turns the face upside down, meaning we apply two consecutive

F operations, which is also equivalent to doing two F’ operations.

Applying the same semantics to the other faces B, L, R, U and D calls for an explanation

of the terms clockwise and counterclockwise. These apply to the direction when looking
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directly onto the considered face. For example, using the F operator moves the top left

corner on the front face to the top right corner on the front face, whereas using the B

operator will move the top left corner on the back face to the bottom left corner on the back

face.



3
Classical Planning

Rubik’s Cube as it is described in Chapter 2 is a classical planning task. The goal of classical

planning is to find a path from one state to another in a state space by applying multiple

actions [10]. Since such state spaces are mostly by far too large to search paths without

any further information, we make use of heuristics that help us search towards promising

directions.

3.1 Planning Tasks and State Spaces
A planning task is defined as an assignment of finding a path from an initial state to a goal

state. The following definition in finite-domain representation is taken from Helmert and

Röger [9].

Definition 1. A planning task is a 4-tuple Π = 〈V, I,O, γ〉 where

• V is a finite set of finite-domain state variables,

• I is a state over V called the initial state,

• O is a finite set of finite-domain operators over V, and

• γ is a formula over V called the goal.

The following additions to this definition are adopted from Seipp and Helmert [15]:

• The mapping V 7→ v ∈ dom (V ) of a variable V ∈ V is called an atom. We denote a

formula over V as a partial state. Atoms are used to assign values in their respective

domains to a subset of variables vars (() s) ⊆ V in partial state s. We write s [V ] ∈
dom (V ) for the value which s assigns to the variable V . Partial states defined on all

variables are called states, and S(Π) is the set of all states of Π.

• Each operator o ∈ O has a precondition pre (o), an effect eff (o) and a non-negative

cost costo ∈ R+
0 . The precondition pre (o) and effect eff (o) are partial states. An

operator o ∈ O is applicable in state s if pre (o) ⊆ s.

Each planning task induces a state space which we define according to Helmert [6].
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Definition 2. A state space is a 6-tuple S = 〈S,A, cost , T, s0, S?〉 with

• S a finite set of states,

• A a finite set of actions,

• cost : A→ R+
0 the action costs,

• T ⊆ S ×A× S the transition relation from one state to another through an action,

• s0 ∈ S the initial state, and

• S? ⊆ S the set of concrete goal states.

A plan is a path from s0 to s? ∈ S? labeled by the actions of each transition taken to get to

s?. The plan is called optimal if the sum of costs along the path is minimal.

We further define effects according to Helmert and Röger [9].

Definition 3. Effects over state variables V are inductively defined as follows:

• If V ∈ V is a state variable, then V 7→ d ∈ dom (V ) is an effect (atomic effect).

• If e1, . . . , en are effects, then (e1∧· · ·∧en) is an effect (conjunctive effect). The special

case with n = 0 is the empty effect >.

• If X is a logical formula and e is an effect, then (X B e) is an effect (conditional

effect).

3.2 Abstraction Heuristics
The solution strategies evaluated within this thesis are connected since they abstract the

considered state space in order to simplify a planning task. Abstraction usually happens

when a state space is modified into a coarser version by losing some distinctions [15]. Ab-

stract state spaces have fewer states and lead to a more tractable analysis [8]. According to

Helmert et al., every abstraction yields an admissible heuristic, since abstractions preserve

paths in the underlying transition graph [7]. The following sections present the methods we

apply in our evaluations.

3.2.1 Projections
Instead of solving a comparatively large problem, we can use projections to shrink the

effort. By only focusing on parts of the underlying problem, projections disregard some of

the available information on purpose. We use pattern databases and only take into account

a subset of all state variables. The method can be seen as an adaption of human problem

solving behavior for combinatorial puzzles or multi-player games where we often apply a

”
divide-and-conquer“ strategy to reach intermediate goals [3].

We use the term of target patterns similar to Culberson and Schaeffer: One target pattern

describes a partial specification of the goal. Then the pattern database (PDB) is the set of
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all patterns that can be obtained by permutations over the variables in a target pattern. We

compute the cost of each pattern in the PDB, which corresponds to the minimal distance

to its target pattern. These values are stored in a lookup table. This gives a lower bound to

the complete planning task since we cannot find a solution without solving the sub-problem

for the considered target pattern [12].

We can either look up the value found for one pattern or combine the values of multiple

patterns in order to come up with a heuristic value for a state. For example, taking the

maximum value over two or more patterns will always be at least as good as looking only

at one of these values. Since the pattern that provides the maximum value is still a lower

bound on satisfying its target pattern, this value is the minimum cost we must expect for

solving the overall problem.

3.2.2 Cartesian Abstractions
The idea behind Cartesian abstraction, which is a rather new class of abstractions, is to

start from a coarse and maybe inaccurate abstraction and iteratively improve it [15]. The

refinements in each iteration happen only where flaws in the previous abstraction were

detected. The method introduced by Seipp and Helmert is called counterexample-guided

abstraction refinement (CEGAR). Its goal is to derive Cartesian abstraction heuristics for

optimal classical planning. It is a variation of the work published by Clarke et al. [2] who

have applied this technique for model checking.

The concept is more general than PDBs. In comparison, Cartesian abstraction does not

choose patterns of variables present in a planning task but takes apart the corresponding

domains of the variables. We define Cartesian sets and Cartesian abstraction according to

Seipp and Helmert [15] in Definition 4.

Definition 4. A set of states for a planning task with variables 〈v1, . . . , vn〉 is called Carte-

sian if it is of the form A1 ×A2 × · · · ×An, where Ai ⊆ dom(vi) for all 1 ≤ i ≤ n.

An abstraction is called Cartesian if all its abstract states are Cartesian sets.

For an abstract state a = A1 × · · · × An, we define dom(vi, a) = Ai ⊆ dom(vi) for all

1 ≤ i ≤ n as the set of values that variable vi can have in abstract state a.

An abstraction of a state space is called Cartesian if all its abstract states are Cartesian

sets [15]. Given a planning task with variables 〈V1, . . . , Vn〉, a set of states is Cartesian

if it is of the form A1 × A2 × · · · × An where Ai ⊆ dom (Vi) for all 1 ≤ i ≤ n. In other

words, abstract states are collections of concrete states with certain similarities. A transition

between two abstract states is present if a transition between two concrete states, one from

either abstract state, exists.

Another difference to pattern databases is the variance in granularity of the different abstract

states. In Cartesian abstraction, abstract states can either consist of a single concrete state

or of a large number of concrete states [15].

Instead of searching for one abstraction of the state space, Seipp and Helmert suggest using

additive abstractions that can also be used to estimate a heuristic value when combined

together. In order to combine Cartesian abstractions admissibly, they further introduce

saturated cost partitioning. Since this part diverges from the aims of this thesis, we will
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not go any further into detail. However, their work also provides an overview over other

abstraction methods present in our evaluations.

3.2.3 Merge-and-Shrink Abstractions
The idea behind merge-and-shrink abstractions originated in model checking for automata

networks [8]. The idea was carried further to be used as a heuristic function and was later

applied by Helmert et al. to planning as a new class of abstracting planning tasks.

Building merge-and-shrink abstractions is an iterative procedure and consists of the merge

step and the shrink step. Starting from atomic projections, abstractions are merged together

and therefore grow during the merge step, whereas in the shrink step, others are shrunk and

apply additional abstractions.

Merge-and-shrink is the most general among the considered classes of abstractions. In other

words, instances of the less general abstractions can also be the result when applying merge-

and-shrink. So, merge-and-shrink can derive the same abstractions as Cartesian abstraction

and projections, but can also find abstractions that are considered to be neither Cartesian

nor projections. We therefore expect merge-and-shrink to perform better in the evaluations.



4
Related Work

When talking about Rubik’s Cube and abstraction heuristics it is essential to mention

the publication of
”
Finding Optimal Solutions to Rubik’s Cube Using Pattern Databases“

published by Korf [12] in the year 1997.

He begins by introducing Rubik’s Cube as the problem on which he applies his experiments.

Also working on the classical Rubik’s Cube of 3×3×3 cubies, he only uses the corner cubies

and edge cubies (20 cubies in total) to represent a state in the state space and there are

18 applicable operators. This corresponds exactly to our model of the state space, which is

described in Chapter 5.

Discussing the memory used for the lookup tables, he shows that it is possible to use mem-

ory in a very compact and therefore efficient manner, even though the state space of Ru-

bik’s Cube is enormous. He uses three pattern databases for which the the manhattan

distance is computed for all cubies in the target pattern. One pattern covers all corner cu-

bies and two patterns each cover one half of the edge cubies. The difference that he observes

with taking the maximum over these three patterns compared to only the one of the corner

cubies is stated to be a significant increase in performance. All problem instances he used

for his experiments could be solved optimally.

In the last part, the presented research focuses on analyzing the performance of the method.

He compares his expectations with the computations of his implementation and often finds

discrepancies because of duplicates in the generated search tree. He suggest storing larger

heuristic tables which was not possible on his hardware given the latency of disks as the

storage component would not have been bearable.



5
Modeling Rubik’s Cube

Even though Rubik’s Cube exists in a range of various forms and sizes, we decided to restrict

our evaluations to use only the classical 3×3×3 cube as described in Chapter 2. This chapter

introduces the chosen formalization for the problem.

5.1 Choice of State Space
When choosing a state space representation of a problem, we always want to keep it as small

as possible in order to find solutions faster. The smaller the state space is, the less states

have to be considered within the search. For Rubik’s Cube, we have examined two different

approaches.

5.1.1 Model using Facelets
The state of Rubik’s Cube can be described by its facelets. There are 24 facelets on corner

cubies and 24 facelets on edge cubies. Also, there are 24 locations where a corner-facelet can

possibly be placed, as well as 24 locations for edge-facelets. This results in a total amount

of 2424 · 2424 = 2448 possible permutations of all facelets.

For each operator we find the following amount of effects: Having 12 facelets on the corner

cubies of one face and 24 facelets on corner cubies in total, one operator will yield 12·24 = 288

effects. Additionally, with 8 facelets on the edge cubies of one face and totally 24 facelets

on edge cubies, we have another 8 · 24 = 192 effects . This sums up to a total of 480 effects

per operator.

Because we ignore the fact that all facelets on the same cubie are stuck together and cannot

be moved around the cube independently, this model allows a lot of unreachable states. The

resulting numbers of states and effects are thus suboptimal.

5.1.2 Model using Cubies
We can improve this representation by focusing on cubies instead of facelets. Given 8

corner cubies with 3 possible rotations and 12 edge cubies with 2 possible rotations and

only 8 locations for corner cubies and 12 locations for edge cubies, we get a reduction



Modeling Rubik’s Cube 12

of the state space. Thus, the number of permutations within our state space reduces to

(8 · 3)8 · (12 · 2)12 = 248 · 2412 = 2420 states.

The number of effects per operator is also reduced: For any action, we have 4 corner cubies

on the according face, each with three rotations. Therefore, there are 4 · 3 · 8 = 96 effects

for corner cubies. Accordingly, we have 4 edge cubies on a face with 2 rotations each, which

yields 4 · 2 · 12 = 96 effects as well. Summing up these yields a total of 192 effects per

operator.

We could go even further and remove one more cubie per category from the model. This

is because its position and rotation can be determined by the positions and rotations of all

other cubies of the same category [12]. However, this is not done within the scope of this

thesis in order to keep the generation of problem files a little simpler and more intuitive.

5.2 Coordinate System
We establish an ordering of cubies on Rubik’s Cube by enumerating them starting at the

top left corner of the front face with a value of 0. Each category is considered for itself,

since cubies cannot move between locations of different categories. From top to bottom,

left to right, front to back, we assign the next higher integer number to each cubie of the

given category. Fig. 5.1 illustrates the values of the visible cubies where the categories are

distinguished by the color of the labels: Corner cubies are displayed in red whereas edge

cubies are marked in blue.

0

1

2

3

4 6

70

1

2

3

4 6

7

9

11

Figure 5.1: The coordinate system used for our model of a classical Rubik’s Cube.

5.3 Locations and Rotations
Each cubie considered for classical Rubik’s Cubes has two values which define its state

unambiguously. Firstly, we need to specify where on Rubik’s Cube each cubie is located

in a state. For example, a corner cubie can be located on either of the eight corner cubie

locations. Secondly, it can lie in one of three different rotation directions. Edge cubies,

however, can be located on either of the twelve edge cubie locations and their rotation can

be either of two directions.

We take the coordinate as the value for denoting its location on the cube. Even though

we have the same values for coordinates of corner cubies as for edge cubies, this is still
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unambiguous since we know whether a cubie is a corner cubie or an edge cubie.

For describing the rotation value, we imagine a three-dimensional object as shown in Fig. 5.2.

We describe its current rotation by a triple 〈x, y, z〉 where x corresponds to the color of the

plane perpendicular to the x-axis, namely the y-z-plane. Accordingly y is the color of the

x-z-plane and z the color of the x-y-plane. The example shown in Fig. 5.2 is denoted as

〈r, g, b〉, where the starting letter of the colors are taken as the values in the triple.

As in the Rubik’s Cube-problem, we only allow rotations by 90 degrees around either of

the x-, y- or z-axis. Applying a rotation around the x-axis switches the values of y and z

in the triple and in our example results in the triple 〈r, b, g〉 which corresponds to Fig. 5.3.

Similarly, turning around the y-axis will switch the values of x and z and turning around

the z-axis switches x with y accordingly. The resulting rotation triple is not dependent on

the direction of the turn and turning by 180 degrees does not have any effects.

x

y

z

Figure 5.2: Rotation imagination aid.

x

y

z

Figure 5.3: Rotation after a turn of
90 degrees around the x-axis.

For edge cubies we use the same notation, but denote one plane’s color as # (speaking

”
blank“), which corresponds to the direction where no facelet is visible from the outside of

the cube. Then, rotations on the rotation triple can be performed similar to the case of

corner cubies.

We have stated before that we only need three rotation values to manifest a cubie’s state

together with its location. The reason for this is that every corner cubie has three visible

facelets which cannot be interchanged and each facelet can be turned towards either of

three directions in one position. However, there are six different rotation triples that can be

achieved by applying rotations. In order to reduce the representation as a rotation triple to

only three values (or rather two for edge cubies) we apply the following: From a rotation

triple 〈x, y, z〉 we only need information about the value in one direction and then together

with the position of the cubie can conclude the other two. Therefore, the first non-blank

element of the triple is taken to be the rotation value, which has three possibilities in the

case of corner cubies and two for edge cubies.

5.4 Formalization
We formalize planning tasks considered within this thesis in the commonly used SAS+

formalism. As we have established in Section 5.1, we have a rather compact description of

the state space when using cubies.
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5.4.1 Separating Locations from Rotations
Our first version of the model uses 40 variables, which makes two per cubie. One of these

is concerned with the location, the other denotes the rotation. The domain of the location

variable for corner cubies therefore is a value from 0 through 7, whereas for edge cubies it is

a value from 0 through 11. The domain of the rotation variable for corner cubies is a value

from 0 through 2, whereas for edge cubies it is either 0 or 1.

If one corner cubie is at any location, no other corner cubie can be located there as well.

This knowledge can be modeled with eight mutexes for corner cubies and twelve for edge

cubies. There are even more restrictions that could be captured with mutexes in the SAS+

formalism. For example, it is not possible to mutate a single cubie, meaning that we cannot

apply a series of actions that returns to its starting state and only changes the rotation

value of one cubie. Even interchanging two cubies is not possible, so literature talks about

3-cycles that can be performed on Rubik’s Cube [11]. However, we did not model these in

our description of the state space.

Operators for Rubik’s Cube do not have preconditions, so they are all applicable in every

state. However, the effects of each operator only happen under certain circumstances. We

call these the effect conditions and all effects of operators have at least one such condition.

For example, a cubie will only be affected by the F operator if it is located on the front face

before F is applied. Consequently, it will also be on the front face after applying F since all

cubies not on F keep their location. Effects for location variables, on one hand, have exactly

this effect condition. On the other hand, effects for the rotation variable of the same cubie

need information about its location as well as its rotation value in order to tell whether or

not the effect triggers. Example 1 illustrates the explanations above.

Example 1. Let ci be the variable for the cubie that is located at coordinate i in the solved

Rubik’s Cube. Let ri be the rotation of the same cubie. The atom ci 7→ j maps ci to

coordinate j. Accordingly, ri 7→ j maps ri to one of the possible rotation values. Then

applying operator U to turn the upper face by 90 degrees has the following effects a B b

where a is the effect condition and b is the effect fact:

c0 7→ 0 B c0 7→ 4

c0 7→ 0 ∧ r0 7→ 0 B r0 7→ 1

c0 7→ 0 ∧ r0 7→ 1 B r0 7→ 2

c0 7→ 0 ∧ r0 7→ 2 B r0 7→ 0

c0 7→ 2 B c2 7→ 0

. . .

c7 7→ 6 ∧ r7 7→ 2 B r7 7→ 0

c8 7→ 1 B c9 7→ 4

. . .

c19 7→ 9 ∧ r19 7→ 1 B r19 7→ 1
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5.4.2 Combining Locations and Rotations
The model described above does not meet all requirements needed for purposes explained in

Chapter 6. We want our model to have effects with only one effect condition and furthermore,

the condition can only depend on the variable that is changed by the effect fact. We can

keep our cube model as it is, but we have to apply some minor changes to its formalization.

The SAS+-representation we established combines the rotation variable with the location

variable. This leads to a total number of only 20 variables, which means one variable per

cubie. The domain of each variable corresponds to the cross-product of the possible locations

and rotations of the according cubie. To calculate the value for any cubie, we multiply the

location value by the number of possible rotations and add the rotation value. For example,

a corner cubie at coordinate 5 with rotation 2 is assigned the value 5 · 3 + 2 = 17. The other

way around, if v is the value of a cubie in our adjusted state space and r is the number of

possible rotations for the cubie, we get the location of a cubie by calculating
⌊
v
r

⌋
and its

rotation value by v mod r. Example 2 shows the same effects as Example 1 but for the

newly introduced model.

Example 2. Let ci be the variable for the cubie that is located at coordinate i in the solved

Rubik’s Cube. Let ri be the number of possible rotations for the same cubie. The atom

ci 7→ j maps ci to coordinate
⌊

j
ri

⌋
and the rotation value j mod ri. Then applying operator

U to turn the upper face by 90 degrees has the following effects a B b where a is the effect

condition and b is the effect fact:

c0 7→ 0 B c0 7→ 13

c0 7→ 1 B c0 7→ 14

c0 7→ 2 B c0 7→ 12

c0 7→ 6 B c0 7→ 5

. . .

c7 7→ 20 B c7 7→ 6

c8 7→ 2 B c8 7→ 8

. . .

c19 7→ 19 B c19 7→ 13



6
Factored Effect Tasks for

Cartesian Abstraction Refinement

The theory presented by Seipp and Helmert [15] computes refinements of the abstractions

in each iteration by applying regression. However, the regression of a Cartesian state over

general operators with conditional effects is not Cartesian. Since Rubik’s Cube has only

operators with conditional effects, we provide the theory for allowing conditional effects by

introducing factored effect tasks.

The first step is to understand why the theory proposed would not work for conditional

effects. The crucial point is to see that with conditional effects, the value of a variable

in the state space is dependent on the state before applying the operator with conditional

effects. However, this is not the case when using operators without conditional effects:

When applied, they will effect each variable occurring in their effects no matter which value

they had before. In their theory, Seipp and Helmert [15] used the function post(o) to denote

the partial state over all variables occurring either in the precondition pre (o) or the effect

eff (o) of an operator o.

For the problem of Rubik’s Cube considered in this thesis, only one special case of conditional

effects occurs: For all (conditional) effects triggered by an operator o it is never necessary to

check for other variables than the one that is changed by the effect. We therefore introduce

factored effect tasks using factored effect operators.

Definition 5. Operator o is a factored effect operator if eff (o) has the following form:

X 7→ x1 B X 7→ x2 ∧X 7→ x3 B X 7→ x4 ∧ · · · ∧ Z 7→ z1 B Z 7→ z2

We write effects (o) for the set of effects 〈X 7→ x1, X 7→ x2〉 where x1, x2 ∈ dom(X), x1 6= x2

and X 7→ x1 is the effect condition and X 7→ x2 is the effect fact. A factored effect operator

cannot have two effects with equal effect conditions, i.e., x1 6= x3 for all pairs of effects

〈X 7→ x1, X 7→ x2〉, 〈X 7→ x3, X 7→ x4〉 ∈ effects (o).

We say X ∈ vars (o) if either X ∈ vars (pre (o)) or there is an effect 〈X 7→ x1, X 7→ x2〉 ∈
effects (o).

Let further effects (o) [X] ⊆ effects (o) be the set of fact pairs 〈X 7→ x1, X 7→ x2〉 that are

concerned with variable X ∈ V. The set effects (o) [X] can be the empty set.
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Definition 6. A factored effect task is a planning task Π = 〈V,O, s0, s?〉 where all o ∈ O
are factored effect operators.

Let us clarify the meaning of Definitions 5 and 6 with the following example:

Example 3. Let Π = 〈V,O, s0, s?〉 be the factored effect task of counting from zero to three

with

• V = {c} where c is the counter variable with dom(c) = {0, 1, 2, 3},

• O = {count} with effects (count) = {〈c = 0, c = 1〉, 〈c = 1, c = 2〉, 〈c = 2, c = 3〉} and

pre (count) = ∅,

• s0 = {c 7→ 0} and s? = {c 7→ 3}

In Example 3 it is impossible to tell the value of c after applying count , when we do not

have any information about the value of c before applying count . Therefore, it is impossible

to take on the concept of a function post(o). However, we can find another way to achieve

the same goal.

Considering a factored effect task Π = 〈V,O, s0, s?〉, let a be an abstraction of Π, let

o ∈ O be a factored effect operator and let X ∈ V be a state variable. Then the function

resulting fact (X 7→ x1, o) computes the value of X after applying o if X has the value x1

before applying o.

resulting fact (X 7→ x1, o) =

{
X 7→ x2 if 〈X 7→ x1, X 7→ x2〉 ∈ effects (o)

X 7→ x1 otherwise
(6.1)

We define the function possible (a, o,X) to obtain a set of values that X can possibly have

after applying o in any concrete state s ∈ a.

possible (a, o,X) =
⋃

x∈dom(X,a)

{resulting fact (x, o)} (6.2)

We go on by working those revisions into the pseudo-code provided within the work of Seipp

and Helmert [15]. Algorithm 1 checks whether a transition exists between two abstract

states via a given operator. This corresponds to Algorithm 4 in the submission of Seipp and

Helmert [15].

Algorithm 1 Transition check. Returns true iff factorized effect operator o induces at least
one transition between abstract states a and b.
1: function CheckTransition(a, o, b)
2: for all v ∈ V do
3: if v ∈ vars (pre (o)) and pre (o) [v] 6∈ dom(v, a) then
4: return false
5: if v ∈ vars (o) and possible (a, o, v) ∩ dom(v, b) = ∅ then
6: return false
7: if v 6∈ vars (o) and dom(v, a) ∩ dom(v, b) = ∅ then
8: return false
9: return true

We also need to update the regression described by Seipp and Helmert [15] in property P4.

In order to do that, we first need to define effect conditions.
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Definition 7. Let ` 7→ dom(v) be an atomic effect. The effect condition effcond (`, e) under

which ` triggers given the effect e is a propositional formula defined as follows:

• effcond (`, `) = >

• effcond (`, `′) = ⊥ for atomic effects `′ 6= `

• effcond (`, (e1 ∧ · · · ∧ en)) = effcond (`, e1) ∨ · · · ∨ effcond (`, en)

• effcond (`, (X B e)) = X ∧ effcond (`, e)

The regression computes which value a variable X can have before an operator o has been

applied, given the value assigned to X at the moment. Before applying o, X can be mapped

to either one of the following options:

• The value of the effect condition of an effect with effect fact X 7→ x1, or

• x1 itself, if there is no effect condition that triggers an effect X 7→ x2 where x1 6= x2.

Definition 8. Let X 7→ x1 be an atomic effect and let o be an operator in a (general)

planning task. Then the regression of X through o is defined as follows:

regr (X 7→ x1, eff (o)) = pre (o) [X] ∧ (effcond (X 7→ x1, eff (o))∨

(X 7→ x1 ∧ ¬effcond (X 6= x1, eff (o))))

Considering the special case of factored effect tasks, we can specialize the regression for

the case of factored effect operators. Let o be such a factored effect operator, leading

Equation 6.3 to show the regression of an atomic effect X 7→ x2 as described in Definition 8.

regr (X 7→ x2, o) = pre (o) [X] ∧ (6.3) ∨
〈X 7→x1,X 7→x2〉∈

effects(o)

X 7→ x1 ∨

X 7→ x2 ∧ ¬
∨

〈X 7→x3,X 7→x4〉∈
effects(o):x2 6=x4

X 7→ x3




We can rewrite Equation 6.3 by reasoning that eitherX 7→ x2 occurs as the effect condition of

a factored effect or it does not. This information is contained in the term ¬
∨
〈X 7→x3,X 7→x4〉∈effects(o):x2 6=x4

X 7→
x3: For all factored effect pairs which do not have X 7→ x2 as their effect fact, we check

whether their effect condition is false. If so, we add x2 to the possibilities of previous values

for X in order to end up with X 7→ x2 after applying o. In other words, if X 7→ x2 occurs as

the effect condition for any effect, this effect triggers for the case where X 7→ x2 held before

applying o and therefore cannot hold anymore afterwards. This contradicts our knowledge

since we are regressing over the fact X 7→ x2 and therefore x2 is not a valid value for X

before applying o. This leads to the case distinction shown in Equation 6.4.

regr (X 7→ x2, o) = pre (o) [X] ∧ (6.4)
∨

〈X 7→x1,X 7→x2〉∈
effects(o)

X 7→ x1 ∨


X 7→ x2

if X 7→ x2 does not

occur as an effect

condition in o

⊥ otherwise
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This definition is illustrated by Example 4.

Example 4. Let o be an operator of a planning task with no precondition (pre (o) = >) and

the following effect: eff (o) = X 7→ x1 B X 7→ x2 ∧ Z 7→ z1 B Z 7→ z2 ∧ Z 7→ z2 B Z 7→ z1.

Then

regr (Z 7→ z1, o) = > ∧ regr (Z 7→ z1, eff (o))

= (Z 7→ z2 ∨ (Z 7→ z1 ∧ ¬(Z 7→ z1)))

= Z 7→ z2

Since we want to compute the regression not only for one atomic effect but for a whole

abstract state, we need to add the following to our definition:

For a set X ⊆ dom(X) of values for a variable X we define the regression as

regr (X , o) =
⋃
x∈X

regr (X 7→ x, o) (6.5)

and for an abstract state a as

regr (a, o) = A1 × · · · ×An (6.6)

where Ai = regr (dom(vi, a), o). These changes suffice to make CEGAR applicable to fac-

tored effect tasks.
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Evaluation

In this chapter we present our evaluations of the abstraction heuristics introduced in Sec-

tion 3.2. Before doing so, we describe the setting of our experiments.

7.1 Experiment Setup
In order to evaluate abstraction heuristics for Rubik’s Cube we first needed to generate a

set of problem files. We did so by writing a Python script which takes input parameters

like the size, a parameter to choose which operators should be allowed, and the number of

turns for scrambling Rubik’s Cube. When allowing all 18 operators, this last parameter

gives an upper bound on the number of turns needed to solve the problem instance that

is generated, since we could simply reverse the order of the scrambling moves and switch

the turn direction to obtain a plan to solve the task. In some instances of the scrambling

process, moves cancel each other out, thus the actual optimal plan could be shorter than

the number of turns passed to the script.

Using the script described above, which we called 10 times for each value from 1 through

20 for the turns parameter, we then generated a set of 200 problem instances for the Ru-

bik’s Cube. In the process, we made sure to avoid duplicates by storing hashes of the initial

states and redoing the generation step for detected duplicates in the hash map.

We used Downward Lab [16] in order to facilitate to set up the evaluation of our problems.

Furthermore, we ran our experiments on the sciCORE high-performance computing infras-

tructure. The following paragraphs provide more information about the heuristics used for

our final experiments. The search was done with the commonly used and well known A∗

search algorithm [4].

Blind Search Heuristic As a base line we used the blind search heuristic. We expected

it to only work on the problems that have short solutions, but we use the number of states

expanded in comparison to the other heuristics. The heuristic is part of Fast Downward [5].

Maximum over Manual Patterns We divided the 20 variables into five patterns of equal

size. Following Korf [12], each pattern consists either only of corner cubies or only of edge
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cubies. Since we were using an implementation of pattern databases that is not optimized

for Rubik’s Cube, we were not able to make our patterns as large as the ones Korf used.

While he kept all corner cubies in one pattern and divided the edge cubies only into two

patterns, we had two patterns for corner cubies and three for edge cubies. This makes four

cubies per pattern, which was the limit that could be handled by the implementation that

was already provided in Fast Downward [5]. Our patterns are the following:

• corner cubies of the F0-layer,

• corner cubies of the F2-layer,

• edge cubies of the F0-layer,

• edge cubies of the F1-layer, and

• edge cubies of the F2-layer.

After looking up the abstract goal distance for each pattern independently, we took the

maximum over these values for each pattern to get a lower bound on the number of moves

necessary to get to the goal.

Maximum over Systematic Patterns The strategy applied here is the same as for the

fixed patterns: We take the maximum value over the values computed for a set of smaller

patterns. The difference, however, lies in the choice of these patterns. While before, we were

selecting patterns manually, we now use all interesting patterns up to a given size [13]. This

method too was already implemented in Fast Downward [5]. The only parameter needed

by the algorithm is the maximum size of each pattern. We ran a separate experiment that

tested different values from 2 up to 6 in order to find this value. The most promising one

was found to be 3 which was then adopted into our final experiment.

Single Pattern of Corner Cubies or Edge Cubies We also wanted to find out how

informative a single pattern of four variables is. Assuming to have symmetries in the patterns

of corner cubies and also in the patterns of edge cubies, we include the pattern for the corner

cubies of layer F0 and the pattern for the edge cubies of the same layer.

CEGAR As already discussed in Chapter 6, the implementation provided by Seipp and

Helmert [15] was not applicable for tasks that have operators with conditional effects. How-

ever, their implementation was taken as a basis for our evaluations. Therefore, we had to

change the code in the same places as the theory. We then did some experiments on vary-

ing parameters for the search with CEGAR. Concretely, we tested which configuration of

limiting the number of transitions or the time yields the best result. In the end, we chose

to limit time by a maximum of 900 seconds and allowing infinitely many transitions for the

final experiments.



Evaluation 22

Merge-and-Shrink For the merge-and-shrink heuristic it was possible to take the al-

ready implemented version which can also handle conditional effects. It uses the currently

recommended merge-and-shrink configuration that employs the DFP-SCC merge strategy,

bisimulation and at most 50’000 states.

7.2 Results
For the results presented and discussed in this section we refer to the tables gathered in

Appendix A, which show a portion of the reports generated with Downward Lab [16]. They

contain the initial h-values computed or rather the number of expanded states until the last

f -layer for all of our 200 problem instances and all heuristics evaluated.

7.2.1 Coverage and Errors
Table 7.1 provides an overview of the number of solved problems with each configuration

and also the reason of failure regarding the unsolved problems. The coverage denotes the

amount of problems that could be solved by either configuration. The sum over coverage,

out-of-memory and timeout sums up to 200 for each configuration. The last entry denoted

as total time is the calculated geometric mean of time used to find a solution. Problems

where no solutions were found are not considered in this value.

Summary blind man syst corner edge cegar m&s

coverage 68 128 122 108 105 111 95
out-of-memory 132 72 0 92 95 89 105
timeout 0 0 78 0 0 0 0
total time 0.32 16.98 141.36 2.64 2.21 0.61 19.94

Table 7.1: Values summed up over all 200 instances and the geometric mean for the time
needed to find a solution.

Within the limits of our working environment, all heuristic search algorithms find more

solutions than blind search. The highest coverage is found by applying projection using

pattern databases with our manual patterns, followed by systematic patterns. The configu-

ration using systematic pattern generation needs significantly more time for finding paths.

It is also the only configuration that ever runs out of time before memory. In fact, it never

runs out of memory. Since an initial h-value is found with systematic PDBs for all problem

instances, we can rule out that the process of generating the patterns takes too long. We

deduce that this heuristic is slow to evaluate whereas all other heuristics are fast to evaluate.

The systematic pattern size of three finds 1’350 interesting patterns for Rubik’s Cube, which

are actually all patterns of size three or smaller. Thus, we assume that the difference in

time needed for evaluating is dominated by the number of patterns. Still, it performs better

than only using one single pattern to estimate the goal distance.

Only using approximately double the time of blind search, our CEGAR implementation is

in third place considering coverage. Meanwhile, the memory overhead of merge-and-shrink

seems to be rather high, given that it only finds solutions for less than 50% of the problems,

while our manual patterns cover almost 65% of the problems. We find nine instances with
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a solution cost 12, which is the highest solution cost among all instances. This leads to the

conclusion that we are not able to solve problems of Rubik’s Cube with an optimal plan cost

of 13 or more using any of our configurations. This means that with our configurations we

can only solve 0.0001% of all 43’252’003’274’489’856’000 reachable states in the state space.

This is according to the list2 that emerged as a byproduct of the proof that all configurations

of classical Rubik’s Cubes can be solved in 20 steps [14].

The plan costs found in our experiments are identical throughout either configuration for

each problem. They are never higher than the number of turns to initialize the problem.

7.2.2 Initial h-value
In order to compare the configurations by their informativeness, we use the h-values found

for the initial states of our problem instances. The higher the value is, the more informed

we assume the heuristic to be. In Table A.1 we see that CEGAR is the undisputed leader in

this category. It shows the highest value over all configurations for every problem instance.

Furthermore, it agrees with the costs for the found plans up to 9 initial turns. From then

on, the initial h-value varies somewhere in the range of 8 and 9, but interestingly never goes

up to 10 or higher.

The second best informed heuristic among the evaluated is one of the projections. Both

manual patterns as well as systematic patterns perform somewhere on the same level where

they mostly compute the same value and only rarely vary by more than 1. It is not clear

which one is more informative since none of them is always better or worse than the other.

They never compute an initial h-value of more than 7. The projection heuristics that

only consider one pattern do even worse, where again it is not clear whether one of them

outperforms the other. For example, for problem p 2 of 4 turns we can see that they can

vary a lot, even though both are concerned with the cubies belonging to the front face.

Surprisingly, merge-and-shrink performed rather poorly. Even though being the most gen-

eral class of abstractions among the considered, it has the lowest coverage and does not

convince with the found initial h-values. At least for Rubik’s Cube, it seems that our

implementation does not fulfill the expectations of higher potential over other classes of ab-

stractions. While the initial h-value is perfect for problem instances with 1 through 3 turns,

the initial h-value only varies between 3 and 4 for all other instances. Therefore, assuming

that most states in the state space will have a value of 3 or 4, we suppose that not much

change in the h-value can be expected from one state to another. We can only assume that

this behavior originates where the abstraction is built, even though there is no evidence of

running out of time or anything alike.

7.2.3 Expansions Until Last f -layer
In this section, we set the heuristics in relation to one another. In order to do so, we compare

the strategies in pairs, where the pairs are neighbors in the order of generality. We use the

number of expansions until the last f -layer and we display the values in scatter plots. This

2 available online at http://cube20.org (accessed: May 29, 2018)

http://cube20.org
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number denotes how many expansions are necessary to get to the point where the next

expansion could reach a goal state.

Fig. 7.1 shows that our implementation of CEGAR outperforms the merge-and-shrink heuris-

tic. Most of the data points are situated on the bottom line of the scale, which means that

CEGAR barely has to do any expansions before reaching the goal. Only very few values

approach the diagonal, which indicates the threshold on whether a data point speaks for

one or the other implementation.
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Figure 7.1: Expansions until the last f -layer for merge-and-shrink vs. CEGAR on a loglog
scale.

Next up in the ordering are the projections. We compare CEGAR to the fixed patterns in

Fig. 7.2. While at first CEGAR again has a set of values very close to zero, at some point its

numbers of expansions until the last f -layer increase rapidly and the data points fall below

the boundary set by the diagonal. The behavior is similar for either manual patterns as

well as for systematic pattern generation. We interpret that for problem instances that are

further away from the goal, the heuristics using pattern databases both outperform CEGAR.

Also, when comparing the singleton PDB’s for the corner cubies, or rather edge cubies, on

the front face, we recognize high correlation. In Fig. 7.3 we see that neither can get ahead

of its counterpart.

When using CEGAR, we find a lot of problem instances for which we do not have to do

any expansions until the last f -layer, which denotes the heuristic to be perfect for these

instances. However, as soon as we get to more complex instances, the number goes up and

CEGAR is outperformed by PDBs, which have also shown higher coverage.
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Figure 7.2: Expansions until the last f -layer for CEGAR vs. PDB heuristics on a loglog
scale.
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Figure 7.3: Expansions until the last f -layer for one pattern of corner cubies vs. one
pattern for edge cubies on a loglog scale.



8
Conclusion

This chapter provides a summary of the work we have done within this thesis and also looks

ahead of what else could be done in the same area.

8.1 Results
We have evaluated a range of different abstraction heuristics on Rubik’s Cube. In order to

do so, we formalized the state space with a focus on keeping it compact. The model chosen

consists of a variable for each cubie and represents both its location as well as its rotation.

The heuristics considered for our studies have in common that they abstract the state space

spanned by the planning task of solving Rubik’s Cube. We used three different classes of

abstractions to do so: projection, Cartesian abstraction and merge-and-shrink abstraction.

For evaluating these heuristics, we used Fast Downward [5] where we need to update the

implementation for CEGAR since it does not support conditional effects in order to apply

regression. Changes were only needed for the rewiring process where we have to distinguish

whether it is possible given one abstract state to reach another via an operator. We intro-

duced the function possible that computes all values a variable can have after applying an

operator in an abstract state.

Within our evaluations we then found that CEGAR yields a perfect heuristic for a majority of

the solved problem instances. We can see this by the number of expanded states until the last

f -layer, which is zero for these instances. However, PDBs perform better on more challenging

instances. The merge-and-shrink configuration, in turn, has shown a performance worse than

expected: it finds the least solutions among all evaluated heuristics, has the lowest initial

h-values and needs a lot of expansions until the last f -layer.

8.2 Future Work
The results presented in this thesis provide a baseline on how abstraction heuristics perform

in Fast Downward [5]. The work could be continued in several ways.

For example, there is another class of abstraction heuristics that we have completely left out

in our analysis. They are called domain abstractions and are placed between projections
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and Cartesian abstraction in terms of generality. It could be interesting to see how they

perform compared to our evaluated configurations.

Furthermore, we are aware of some efficiency issues in our implementations of CEGAR

with conditional effects. Fixing these and rerunning our experiments could lead to different

findings and provide further knowledge. We have already seen that it behaves perfectly for

problem instances that are close to the goal. We assume that with more efficient code, we

could reach problems further away from the goal without doing expansions until the last

f -layer.
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A
Results of Final Experiments

The tables following on the next few pages display the most important results of the exper-

iments done in this thesis. In order to keep table headers short, we introduce the following

shortcuts for the experiments outlined in Section 7.1.

blind blind search
man maximum over manual patterns
syst maximum over systematic patterns

corner single pattern of corner cubies
edge single pattern of edge cubies

cegar single Cartesian abstraction heuristic
m&s merge-and-shrink heuristic

Table A.1 shows the initial h-values for all problem instances. Table A.2 does the same for

the number of expanded states before the last f -layer to find the goal.
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turns problem blind man syst corner edge cegar m&s

1 p 0 1 1 1 1 1 1 1
1 p 1 1 1 1 1 1 1 1
1 p 2 1 1 1 1 1 1 1
1 p 3 1 1 1 1 1 1 1
1 p 4 1 1 1 1 1 1 1
1 p 5 1 1 1 1 1 1 1
1 p 6 1 1 1 1 1 1 1
1 p 7 1 1 1 1 1 1 1
1 p 8 1 1 1 1 1 1 1
1 p 9 1 1 1 0 0 1 1
2 p 0 1 2 2 2 2 2 2
2 p 1 1 2 2 2 2 2 2
2 p 2 1 2 2 2 2 2 2
2 p 3 1 2 2 2 2 2 2
2 p 4 1 2 2 2 2 2 2
2 p 5 1 2 2 1 1 2 2
2 p 6 1 2 2 2 2 2 2
2 p 7 1 2 2 2 2 2 2
2 p 8 1 2 2 2 2 2 2
2 p 9 1 2 2 2 2 2 2
3 p 0 1 3 3 3 2 3 3
3 p 1 1 3 3 3 2 3 3
3 p 2 1 2 3 2 2 3 3
3 p 3 1 3 3 3 3 3 3
3 p 4 1 2 3 2 2 3 3
3 p 5 1 3 3 3 3 3 3
3 p 6 1 2 3 2 2 3 3
3 p 7 1 3 3 3 3 3 3
3 p 8 1 3 3 3 3 3 3
3 p 9 1 3 3 2 2 3 3
4 p 0 1 4 4 3 4 4 3
4 p 1 1 4 4 4 2 4 3
4 p 2 1 4 4 4 1 4 3
4 p 3 1 4 4 3 2 4 3
4 p 4 1 3 4 3 3 4 3
4 p 5 1 4 4 3 3 4 3
4 p 6 1 4 4 3 3 4 3
4 p 7 1 4 4 4 2 4 3
4 p 8 1 3 4 3 3 4 3
4 p 9 1 4 4 3 4 4 3
5 p 0 1 5 5 5 4 5 4
5 p 1 1 4 5 3 3 5 3
5 p 2 1 5 5 2 4 5 3
5 p 3 1 5 5 5 5 5 4
5 p 4 1 5 5 5 4 5 3
5 p 5 1 5 5 4 4 5 3
5 p 6 1 4 5 3 4 5 3
5 p 7 1 5 5 4 3 5 3
5 p 8 1 3 5 3 3 5 3
5 p 9 1 5 5 2 3 5 3

Table A.1: Initial h-values computed for our problems, part 1.
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turns problem blind man syst corner edge cegar m&s

6 p 0 1 6 6 4 5 6 4
6 p 1 1 5 6 5 5 6 3
6 p 2 1 5 5 4 5 6 3
6 p 3 1 4 4 2 3 4 3
6 p 4 1 5 5 4 5 6 4
6 p 5 1 6 6 5 5 6 4
6 p 6 1 5 5 5 5 6 4
6 p 7 1 5 6 5 5 6 4
6 p 8 1 5 6 4 4 6 4
6 p 9 1 4 4 4 4 4 4
7 p 0 1 6 6 5 5 7 4
7 p 1 1 7 6 5 4 7 4
7 p 2 1 4 4 4 3 4 3
7 p 3 1 6 6 6 5 7 4
7 p 4 1 5 6 5 5 7 4
7 p 5 1 4 5 4 4 5 4
7 p 6 1 5 5 5 4 7 4
7 p 7 1 6 6 6 5 7 4
7 p 8 1 6 6 4 6 7 3
7 p 9 1 6 6 6 5 7 3
8 p 0 1 6 6 6 6 8 4
8 p 1 1 6 6 6 5 8 4
8 p 2 1 6 5 6 5 8 3
8 p 3 1 5 6 3 4 8 3
8 p 4 1 5 5 5 4 5 3
8 p 5 1 6 6 5 5 8 4
8 p 6 1 5 6 5 5 8 4
8 p 7 1 7 6 5 5 8 3
8 p 8 1 6 5 4 5 8 4
8 p 9 1 5 6 4 4 8 3
9 p 0 1 5 6 5 5 8 3
9 p 1 1 6 6 4 6 7 3
9 p 2 1 6 6 5 5 9 4
9 p 3 1 7 6 5 6 8 4
9 p 4 1 6 6 5 5 9 4
9 p 5 1 6 6 6 5 9 4
9 p 6 1 6 6 6 5 8 3
9 p 7 1 6 6 6 6 8 3
9 p 8 1 6 7 6 6 9 4
9 p 9 1 6 6 5 4 8 3
10 p 0 1 4 6 4 3 7 3
10 p 1 1 6 6 5 5 8 3
10 p 2 1 6 6 6 5 9 3
10 p 3 1 6 6 6 4 8 4
10 p 4 1 6 6 5 6 8 4
10 p 5 1 6 6 5 5 8 3
10 p 6 1 6 6 6 5 9 4
10 p 7 1 6 6 5 6 8 3
10 p 8 1 6 6 6 5 9 3
10 p 9 1 6 6 6 6 8 3

Table A.1: Initial h-values computed for our problems, part 2.
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turns problem blind man syst corner edge cegar m&s

11 p 0 1 5 5 4 5 8 4
11 p 1 1 7 6 5 6 8 4
11 p 2 1 6 6 3 4 8 3
11 p 3 1 5 6 4 4 8 3
11 p 4 1 6 6 4 5 8 3
11 p 5 1 6 6 6 6 9 4
11 p 6 1 5 6 5 5 8 3
11 p 7 1 6 6 6 5 9 4
11 p 8 1 6 6 5 5 9 4
11 p 9 1 7 6 4 5 8 4
12 p 0 1 7 6 5 7 8 4
12 p 1 1 6 6 6 5 8 3
12 p 2 1 5 6 5 5 8 3
12 p 3 1 6 6 4 6 8 3
12 p 4 1 5 6 5 3 8 3
12 p 5 1 7 6 4 7 8 4
12 p 6 1 6 6 3 6 8 3
12 p 7 1 6 6 4 6 8 3
12 p 8 1 6 6 5 6 9 4
12 p 9 1 6 6 5 6 8 3
13 p 0 1 6 6 5 6 8 4
13 p 1 1 7 6 6 5 8 4
13 p 2 1 6 6 6 3 8 3
13 p 3 1 6 7 6 5 9 4
13 p 4 1 6 6 6 6 8 3
13 p 5 1 7 6 6 6 8 3
13 p 6 1 6 7 6 5 9 4
13 p 7 1 6 6 3 6 8 3
13 p 8 1 6 6 3 6 8 3
13 p 9 1 7 7 5 6 8 4
14 p 0 1 5 6 5 5 8 3
14 p 1 1 6 6 5 6 8 3
14 p 2 1 6 7 5 5 8 4
14 p 3 1 7 6 6 5 9 4
14 p 4 1 7 6 6 5 9 4
14 p 5 1 7 6 6 7 9 4
14 p 6 1 6 6 5 6 8 3
14 p 7 1 6 6 5 6 8 4
14 p 8 1 7 6 5 5 8 3
14 p 9 1 6 6 4 6 8 4
15 p 0 1 6 6 5 6 8 4
15 p 1 1 7 7 6 6 8 4
15 p 2 1 5 6 5 5 8 3
15 p 3 1 6 7 6 6 8 4
15 p 4 1 6 6 4 5 8 3
15 p 5 1 7 7 5 7 8 4
15 p 6 1 7 6 4 7 8 4
15 p 7 1 6 6 6 4 9 4
15 p 8 1 7 6 4 6 8 3
15 p 9 1 5 6 5 4 8 4

Table A.1: Initial h-values computed for our problems, part 3.
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turns problem blind man syst corner edge cegar m&s

16 p 0 1 6 7 5 6 8 4
16 p 1 1 6 6 5 6 8 4
16 p 2 1 6 6 5 5 8 4
16 p 3 1 7 6 6 7 8 4
16 p 4 1 6 6 6 5 9 4
16 p 5 1 7 7 6 5 9 4
16 p 6 1 6 6 5 6 8 4
16 p 7 1 7 6 5 4 8 4
16 p 8 1 6 6 6 6 9 3
16 p 9 1 6 6 5 6 8 3
17 p 0 1 7 7 5 7 8 3
17 p 1 1 7 6 6 6 9 4
17 p 2 1 6 6 4 5 8 3
17 p 3 1 7 6 5 5 8 4
17 p 4 1 6 6 4 5 8 4
17 p 5 1 6 6 5 6 8 4
17 p 6 1 6 6 6 6 9 4
17 p 7 1 6 6 6 6 9 3
17 p 8 1 6 6 6 5 9 4
17 p 9 1 7 6 4 7 8 4
18 p 0 1 6 6 6 3 9 4
18 p 1 1 6 6 6 6 9 4
18 p 2 1 7 6 5 7 8 4
18 p 3 1 5 6 4 4 8 3
18 p 4 1 7 7 6 7 8 4
18 p 5 1 6 6 6 5 9 3
18 p 6 1 7 7 6 6 9 3
18 p 7 1 6 7 6 6 9 4
18 p 8 1 5 6 5 5 8 3
18 p 9 1 7 6 5 7 8 3
19 p 0 1 6 6 5 5 8 3
19 p 1 1 6 7 5 6 8 4
19 p 2 1 7 7 7 6 9 4
19 p 3 1 7 6 6 5 9 4
19 p 4 1 6 6 6 6 9 3
19 p 5 1 7 6 7 7 9 4
19 p 6 1 6 6 4 6 8 3
19 p 7 1 6 6 5 6 8 3
19 p 8 1 6 6 5 6 8 3
19 p 9 1 7 6 6 3 8 4
20 p 0 1 6 6 5 6 8 4
20 p 1 1 6 6 5 5 8 3
20 p 2 1 6 7 6 5 9 3
20 p 3 1 6 7 5 6 8 4
20 p 4 1 7 6 5 6 8 4
20 p 5 1 6 6 6 6 9 3
20 p 6 1 6 6 5 6 9 4
20 p 7 1 6 6 6 5 9 4
20 p 8 1 7 7 5 7 8 3
20 p 9 1 6 6 5 5 8 3

Table A.1: Initial h-values computed for our problems, part 4.
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turns problem blind man syst corner edge cegar m&s

1 p 0 0 0 0 0 0 0 0
1 p 1 0 0 0 0 0 0 0
1 p 2 0 0 0 0 0 0 0
1 p 3 0 0 0 0 0 0 0
1 p 4 0 0 0 0 0 0 0
1 p 5 0 0 0 0 0 0 0
1 p 6 0 0 0 0 0 0 0
1 p 7 0 0 0 0 0 0 0
1 p 8 0 0 0 0 0 0 0
1 p 9 0 0 0 1 1 0 0
2 p 0 1 0 0 0 0 0 0
2 p 1 1 0 0 0 0 0 0
2 p 2 1 0 0 0 0 0 0
2 p 3 1 0 0 0 0 0 0
2 p 4 1 0 0 0 0 0 0
2 p 5 1 0 0 2 2 0 0
2 p 6 1 0 0 0 0 0 0
2 p 7 1 0 0 0 0 0 0
2 p 8 1 0 0 0 0 0 0
2 p 9 1 0 0 0 0 0 0
3 p 0 19 0 0 0 5 0 0
3 p 1 19 0 0 0 5 0 0
3 p 2 19 2 0 3 3 0 0
3 p 3 19 0 0 0 0 0 0
3 p 4 19 1 0 3 3 0 0
3 p 5 19 0 0 0 0 0 0
3 p 6 19 2 0 3 3 0 0
3 p 7 19 0 0 0 0 0 0
3 p 8 19 0 0 0 0 0 0
3 p 9 19 0 0 3 3 0 0
4 p 0 262 0 0 4 0 0 1
4 p 1 262 0 0 0 28 0 1
4 p 2 262 0 0 0 54 0 1
4 p 3 262 0 0 4 34 0 1
4 p 4 262 4 0 17 5 0 1
4 p 5 262 0 0 5 7 0 1
4 p 6 262 0 0 4 4 0 1
4 p 7 262 0 0 0 14 0 1
4 p 8 262 1 0 4 4 0 1
4 p 9 262 0 0 9 0 0 1
5 p 0 3502 0 0 0 9 0 2
5 p 1 3502 1 0 33 53 0 13
5 p 2 3502 0 0 95 6 0 18
5 p 3 3502 0 0 0 0 0 2
5 p 4 3502 0 0 0 12 0 11
5 p 5 3502 0 0 49 6 0 16
5 p 6 3502 1 0 40 5 0 13
5 p 7 3502 0 0 14 64 0 12
5 p 8 3502 7 0 87 51 0 15
5 p 9 3502 0 0 84 57 0 19

Table A.2: Number of expanded states until last f -layer, part 1.
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turns problem blind man syst corner edge cegar m&s

6 p 0 46741 0 0 427 17 0 171
6 p 1 46741 1 0 19 20 0 125
6 p 2 46741 2 1 66 16 0 159
6 p 3 262 0 0 13 4 0 1
6 p 4 46741 4 1 123 26 0 162
6 p 5 46741 0 0 58 39 0 186
6 p 6 46741 3 1 10 25 0 125
6 p 7 46741 1 0 6 33 0 95
6 p 8 46741 2 0 63 95 0 192
6 p 9 262 0 0 0 0 0 0
7 p 0 - 3 1 279 308 0 1858
7 p 1 - 0 1 982 631 0 1710
7 p 2 262 0 0 0 6 0 1
7 p 3 621649 1 2 121 357 0 1573
7 p 4 621649 11 2 560 256 0 1793
7 p 5 3502 2 0 25 6 0 11
7 p 6 - 45 15 275 2791 0 1770
7 p 7 621649 1 1 22 118 0 1564
7 p 8 - 2 1 590 21 0 1900
7 p 9 - 3 1 133 777 0 1817
8 p 0 - 12 18 1064 1479 0 21253
8 p 1 - 22 16 2660 2635 0 23694
8 p 2 - 54 53 1895 6300 0 25708
8 p 3 - 109 18 16291 6891 0 29599
8 p 4 3502 0 0 0 9 0 13
8 p 5 - 28 19 6759 3552 0 25148
8 p 6 - 57 17 3700 3557 0 25607
8 p 7 - 10 18 6903 2056 0 25094
8 p 8 - 128 28 7458 5802 0 24857
8 p 9 - 90 22 5810 11003 0 25358
9 p 0 - 624 266 57897 47820 2679 334127
9 p 1 621649 3 1 987 8 0 2018
9 p 2 - 336 235 44534 82312 0 331620
9 p 3 - 158 181 96079 10198 12281 337013
9 p 4 - 199 227 28718 119293 0 306260
9 p 5 - 238 251 35060 67285 0 312170
9 p 6 - 295 251 43734 69930 1877 325420
9 p 7 - 503 262 44115 18614 3083 346482
9 p 8 - 189 178 18987 13438 0 317322
9 p 9 - 590 267 66453 143833 4018 327089
10 p 0 621649 29 3 436 1916 0 2057
10 p 1 - 4581 3279 801478 823975 160173 -
10 p 2 - 2730 2888 396664 265510 125787 -
10 p 3 - 57 30 2879 19996 0 22338
10 p 4 - 3141 3028 649535 118553 175686 -
10 p 5 - 6576 3113 660254 - 163346 -
10 p 6 - 3336 3175 469899 - 113988 -
10 p 7 - 5144 3337 532140 511765 133556 -
10 p 8 - 6021 3255 469114 931033 80724 -
10 p 9 - 3406 3280 605098 288976 163086 -

Table A.2: Number of expanded states until last f -layer, part 2.
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turns problem blind man syst corner edge cegar m&s

11 p 0 - 220 58 8896 5505 0 24331
11 p 1 - 185 195 52936 9229 5110 339528
11 p 2 - 52061 40634 - - - -
11 p 3 - 107135 46206 - - - -
11 p 4 - 78290 43905 - - - -
11 p 5 - 348 260 38743 18464 0 328611
11 p 6 - 8568 3417 - 642863 170888 -
11 p 7 - 51344 39776 - - - -
11 p 8 - 4495 3200 509300 - 101737 -
11 p 9 - 24969 34911 - - - -
12 p 0 - 264838 422388 - - - -
12 p 1 - 5381 2953 - - 154561 -
12 p 2 - 72654 41225 - - - -
12 p 3 - 8425 3422 1103345 614099 436403 -
12 p 4 - 92674 42822 - - - -
12 p 5 - 648582 - - - - -
12 p 6 - 504767 470133 - - - -
12 p 7 - 465130 472772 - - - -
12 p 8 - 461938 - - - - -
12 p 9 - 593546 - - - - -
13 p 0 - 65972 42606 - - 3037235 -
13 p 1 - - - - - - -
13 p 2 - - - - - - -
13 p 3 - 42149 39036 - - - -
13 p 4 - - - - - - -
13 p 5 - - - - - - -
13 p 6 - - - - - - -
13 p 7 - - - - - - -
13 p 8 - 678664 - - - - -
13 p 9 - - - - - - -
14 p 0 - 5001 2890 683755 573371 188261 -
14 p 1 - 632243 - - - - -
14 p 2 - - - - - - -
14 p 3 - - - - - - -
14 p 4 - - - - - - -
14 p 5 - - - - - - -
14 p 6 - 446262 - - - - -
14 p 7 - - - - - - -
14 p 8 - - - - - - -
14 p 9 - 8574 3596 808694 646654 210704 -
15 p 0 - - - - - - -
15 p 1 - - - - - - -
15 p 2 - - - - - - -
15 p 3 - - - - - - -
15 p 4 - - - - - - -
15 p 5 - - - - - - -
15 p 6 - - - - - - -
15 p 7 - - - - - - -
15 p 8 - - - - - - -
15 p 9 - - - - - - -

Table A.2: Number of expanded states until last f -layer, part 3.
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turns problem blind man syst corner edge cegar m&s

16 p 0 - - - - - - -
16 p 1 - - - - - - -
16 p 2 - - - - - - -
16 p 3 - - - - - - -
16 p 4 - - - - - - -
16 p 5 - - - - - - -
16 p 6 - - - - - - -
16 p 7 - - - - - - -
16 p 8 - - - - - - -
16 p 9 - - - - - - -
17 p 0 - - - - - - -
17 p 1 - - - - - - -
17 p 2 - - - - - - -
17 p 3 - - - - - - -
17 p 4 - - - - - - -
17 p 5 - - - - - - -
17 p 6 - - - - - - -
17 p 7 - - - - - - -
17 p 8 - - - - - - -
17 p 9 - - - - - - -
18 p 0 - - - - - - -
18 p 1 - - - - - - -
18 p 2 - - - - - - -
18 p 3 - 14721 3839 1149696 - 537668 -
18 p 4 - - - - - - -
18 p 5 - - - - - - -
18 p 6 - - - - - - -
18 p 7 - - - - - - -
18 p 8 - - - - - - -
18 p 9 - - - - - - -
19 p 0 - - - - - - -
19 p 1 - - - - - - -
19 p 2 - - - - - - -
19 p 3 - - - - - - -
19 p 4 - - - - - - -
19 p 5 - - - - - - -
19 p 6 - - - - - - -
19 p 7 - - - - - - -
19 p 8 - - - - - - -
19 p 9 - - - - - - -
20 p 0 - - - - - - -
20 p 1 - - - - - - -
20 p 2 - - - - - - -
20 p 3 - - - - - - -
20 p 4 - - - - - - -
20 p 5 - - - - - - -
20 p 6 - - - - - - -
20 p 7 - - - - - - -
20 p 8 - - - - - - -
20 p 9 - - - - - - -

Table A.2: Number of expanded states until last f -layer, part 4.
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