
Iterative Tunneling A* in Planning

Bachelor Thesis

Natural Science Faculty of the University of Basel

Department of Computer Science

Artificial Intelligence

ai.cs.unibas.ch

Examiner: Prof. Dr. Malte Helmert

Supervisor: Dr. Martin Wehrle

Stefano Branco

stefano.branco@stud.unibas.ch

09-065-863

July 10th, 2013

Acknowledgments

I would like to express my thanks to Dr. Martin Wehrle for his support and supervision of

my work, as well as Dr. Malte Helmert for allowing me to write this thesis in the field of

artificial intelligence. I would also like to thank my friends and colleagues, and especially

my family, for their support during this time.

Abstract

In planning, we address the problem of automatically finding a sequence of actions that

leads from a given initial state to a state that satisfies some goal condition. In satisficing

planning, our objective is to find plans with preferably low, but not necessarily the lowest

possible costs while keeping in mind our limited resources like time or memory. A prominent

approach for satisficing planning is based on heuristic search with inadmissible heuristics.

However, depending on the applied heuristic, plans found with heuristic search might be of

low quality, and hence, improving the quality of such plans is often desirable.

In this thesis, we adapt and apply iterative tunneling search with A* (ITSA*) to planning.

ITSA* is an algorithm for plan improvement which has been originally proposed by Furcy

et al. for search problems. ITSA* intends to search the local space of a given solution

path in order to find ”short cuts” which allow us to improve our solution. In this thesis, we

provide an implementation and systematic evaluation of this algorithm on the standard IPC

benchmarks. Our results show that ITSA* also successfully works in the planning area.

Table of Contents

Acknowledgments i

Abstract ii

1 Introduction 1

2 Background 3

2.1 Planning . 3

2.2 Heuristic Search and A* . 3

3 Iterative Tunneling Search with A* 6

3.1 Idea . 6

3.2 The Algorithm . 7

3.3 Implementation . 9

4 Evaluation 12

4.1 Experimental Setup . 12

4.2 Results . 13

4.2.1 Landmark Cut . 13

4.2.2 Fast Forward . 14

4.3 Discussion . 15

5 Conclusion 17

Bibliography 18

Declaration of Authorship 19

1
Introduction

Planning is the attempt to automatically find a sequence of actions leading from an initial

state to one of many goal states. This sequence of actions is called a plan. There are two

main disciplines in planning - satisficing and optimal planning. While optimal planning is

only interested in finding a plan where there provably does not exist any plan with lower

cost, satisficing planning also accepts suboptimal plans, and instead focuses on managing

limited resources such as time or memory.

One widespread method to find plans is called heuristic search. A heuristic is a mathemat-

ical function that assigns every state a numerical value which represents an approximation

of the distance of each state to a goal. A heuristic based search then uses this value to keep

a sorted list of which states to expand next. It is immediately apparent that the quality of

found plans is highly dependant on the choice of heuristics.

While satisficing planning does not require a plan to be optimal, we are still interested in

obtaining the best possible solution within our limited resources. One possibility to achieve

this goal is plan improvement. Depending on the heuristic used, plans found by common

heuristic search algorithms are often far from the optimal solution, but may still give us

information that we can use to craft better solutions. As the name suggests, plan improve-

ment intends to take an existing plan, e.g. one found by a heuristic search, and improve

that plan. Within the search community, Furcy et al. [1] have proposed and evaluated such

an algorithm called iterative tunneling search with A* (ITSA*) in order to improve their

search results. The basic idea behind ITSA* is to search the area around a found plan for

improvements on our original play, hoping to eventually lead us to a plan as close as possible

to the optimal plan with little additional effort. The contribution of this work is to adapt the

algorithm proposed by Furcy at al. to planning, implement that algorithm in the existing

Fast Downward planning system [2] and evaluate that implementation based on standard

IPC benchmarks.

Introduction 2

The rest of this work is organised as follows. The second chapter will provide the theoretical

background on planning and heuristics. The third chapter will focus on the motivation of

ITSA* and introduce the algorithm in it’s original form as well as the adaptions we made.

The fourth chapter will contain the results of our evaluation, and the last chapter will provide

the conclusions of this work.

2
Background

This chapter will lay the background foundation required to understand the algorithm in-

troduced in chapter three. It will formally define planning tasks and heuristic functions, and

introduce the concepts behind heuristic search and A*.

2.1 Planning

Each planning task is given by a tuple (V,O, s0, s∗). V is a finite set of state variables.

Each variable v ∈ V has it’s own finite Domain Dv. A partial state over V is a function s

over a subset Vs ⊂ V. O is a finite set of operators over V. Each operator O = 〈pre, eff〉
has a precondition pre and an effect eff . A precondition is a partial state over V, and

an operator can only be applied to a state s if it’s preconditions are fulfilled, whereas the

effect represents the effects caused by applying such an operator to a state s. Applying any

operator additionally has a cost linked to it. s0 is the initial state of our problem, and s∗ is

a partial state over V representing our goal.

Planning is the attempt of automatically finding a sequence of operators which, when applied

to our initial state s0 end up arriving at any goal state. Optimal planning is interested only

in plans whose total costs are provably the lowest possible, while statisficing planning, the

discipline we are interested in, accepts suboptimal solutions as well.

2.2 Heuristic Search and A*

A heuristic is a function h : S → R+
0 ∪ {∞} which maps every state to a numeric value

representing an approximation of it’s distance to a goal state. Heuristic functions have

different characteristics which can influence when it is sensible to use a certain heuristic and

when it is not. A heuristic is called admissible if it never overestimates the cost to the goal,

and consistent if for every pair of connected states s and s′, h(s) ≤ cs→s′ +h(s′), where cs→s′

represents the cost of the operator that leads s to s′. A consistent heuristic is automatically

admissible (but not vice-versa).

A heuristic based search can be used to systematically search the state space of a planning

task for a plan. Since a heuristic is supposed to estimate the distance from any state to a

Background 4

goal state, heuristic search prioritizes exploring states with a low heuristic value. Algorithm

1 shows a pseudo code example of how such a heuristic search might look like. In this case,

function priority(s) = h(s) returns the heuristic value of a state s. This is called greedy

search.

There is another piece of information that we can use to improve the above algorithm.

Algorithm 1: Heuristic Search Algorithm

1 open := newpriorityqueue
2 open.insert(s0, priority(s0))
3 closed := ∅
4 while not open.empty() do
5 s = open.pop min()
6 if s /∈ closed then
7 if is goal(s.) then
8 return extract solution(s)
9 end

10 closed.push back(s.state)
11 foreach successor s′ of s do
12 if priority(s′) <∞ then
13 open.insert(s′, priority(s′))
14 end

15 end

16 end

17 end
18 return nosolution

A* uses both the heuristic value of a state as well as the path cost from the starting state to

a state to evaluate which way to go next. The idea behind this is while we want to eventually

reach a goal, we also want to make sure that the path we have taken to that goal is as short

as possible. This way, provided we have a consistent heuristic, we can guarantee not only

to find a plan for a given planning task, but find an optimal plan without having to revisit

any states. The above code can be used for A* as well, with the slight modification that in

this case, priority(s) = g(s) + h(s), where g(s) is the path cost from the initial state up to

the state s, and h(s) is once again the heuristic value of s.

It becomes immediately apparent that both A* and a basic heuristic search are highly

dependant on the quality of the used heuristic. Assigning every state a random number,

while being a valid heuristic, will not be of much help. On the other hand, a heuristic that

could calculate the exact distance of every state to the goal would make the search process

trivial.

However, calculating the heuristic values of a state is not always a simple task. Complex

heuristics, such as Landmark Cut [3], one of the heuristics we are using to evaluate ITSA*

for improving the quality of a suboptimal plan, rely in computationally intensive operations.

This means that by using less complex heuristics, we can save time while at the same time

accept that our solution might not be as close to optimal compared to when using a more

advanced heuristic. This is significant for us in two ways. First, it means that in our

satisficing domain we often deal with suboptimal solution plans, plans that we intend to

improve using ITSA*, which we will introduce in chapter three. And second, since ITSA*

Background 5

is based on A* itself, we can alter the performance of our algorithm by using different

heuristics, which will become important when benchmarking our implementation.

3
Iterative Tunneling Search with A*

In this chapter we will introduce the ITSA* [1] algorithm. We are working under the as-

sumption that we already found a solution plan P , e.g. with a heuristic search algorithm

as proposed in chapter two. ITSA* systematically tries to improve this plan by searching

the area around the plan for short cuts. In chapter 3.1 we will provide the general concept

behind ITSA*, and chapter 3.2 will introduce the actual algorithm.

3.1 Idea

As proposed by Furcy at al., the idea behind iterative tunneling search with A* is to search

the neighbourhood of a solution plan P for plans P ′ with lower total cost than P . In more

figurative way, we are looking for shortcuts (tunnels) between the initial state s0 and our

goal state s∗ which decrease the total cost of our original plan P .

The image 3.1 shows a scenario where ITSA* is applicable and would result in a decrease in

Figure 3.1: Visualisation of a possible scenario where ITSA* is applicable

overall plan cost. The yellow fields mark our initial and goal states. The cost of transitioning

Iterative Tunneling Search with A* 7

from any square to another is uniform, meaning it is the same for all squares. By applying

any kind of algorithm, we have found our original plan P , marked in red. Green marks

two possible improvements to our initial plan P which would decrease our total cost. The

intention of ITSA* is to find these short cuts. To do this, Furcy et al. propose to search a

larger and larger area around the original plan P with A* for shorter solution plans until we

run out of memory. Intuitively, one might define the neighbourhoods of our plan as shown

in figure 3.2. Bright Circles in the dark grey area correspond to points on our initial Plan

Figure 3.2: Solution plan and it’s neighbourhood

P . Each new state accessible via application of one operator on at least one of the states

part of P is part of the immediate neighbourhood, which is represented by the brighter

area. New states accessible via states of iteration level one are assigned iteration level two

(brightest area), and so forth. However, to assign each state it’s correct distance from the

initial plan, we would have to pre-process our search by expanding the state space around

our plan P using a breadth-first search. This is highly inefficient, since it basically requires

us to perform two searches. To prevent this, Furcy et al. suggest an alternative method

of assigning the distance values that can be performed during the actual search. Whenever

a state is newly generated by A*, it is assigned the iteration value of it’s parent plus one,

or zero if it’s part of the original plan. Only states with iteration levels smaller than the

current iteration limit get inserted into the open list. While this might initially seem like

the same thing, it is actually a slightly more strict requirement. This is because once a state

is assigned a distance, it is never changed, however it might very well be closer (in terms

of states) to another part of the original plan, as opposed to the one the algorithm arrived

from. The search depth of a state therefore depends on which way the algorithm took to

expand that state, which means a state may have different search depth values depending on

the heuristic. Figure 3.3 illustrates that issue. Every circle represents a state. Green states

are our initial plan, while red ones are it’s neighbourhood. Our algorithm travels along the

black path. The numbers represent the distance from the initial plan as calculated with

this method. When the successors of the state with distance 2 and 3 are created, they are

assigned the value of their parents increased by one, which is 3 and 4 respectively, even

though their actual distance from the solution plan is lower (1 and 2. In every other way,

the algorithm performs exactly like a basic A* algorithm.

Iterative Tunneling Search with A* 8

Figure 3.3: Illustration of Distance Assignement

3.2 The Algorithm

Algorithm 2 shows pseudo code of the algorithm as it was proposed by Furcy et al. Since

this is basically a slightly modified A*, open is a min-heap ordered by f(n) = g(n) + h(n).

We start with our initial state in the open list and an empty closed list, as well as a iteration

level of one (1-4). get P lan() returns our original plan we found with whatever algorithm

we used beforehand (5). While there are elements in our open list, we remove our minimum

(6). We ignore it if it is already in our closed list(8). If it’s a goal state, we extract our

solution, save it and continue with our next iteration (9-12), otherwise create our successor

states for each successor who’s heuristic value is smaller than infinity, and assign them their

distance values (14-21). We insert those with distances smaller than our current iteration

limit (22-24), and repeat this until we found a solution. Once we found one, we increase our

iteration level (29) and repeat the process. Eventually we will run out of memory, at which

point our last solution saved will be our resulting plan.

Iterative Tunneling Search with A* 9

Algorithm 2: Iterative Tunneling Search with A*

1 iteration = 1;
2 while true do
3 open := new priority queue;
4 open.insert(s0, g(s0) + h(s0));
5 closed := ∅;
6 P := get plan();
7 while not open.empty() do
8 s = open.pop min();
9 if s /∈ closed then

10 if is goal(s) then
11 solution = extract solution(s);
12 break;

13 end
14 closed.push back(s);
15 foreach successor s′ of s do
16 if h(s′) <∞ then
17 if s′ ∈ P then
18 s′.distance = 0;
19 end
20 else
21 s′.distance = s.distance + 1;
22 end
23 if s′.distance < iteration then
24 open.insert(s′, g(s′) + h(s′));
25 end

26 end

27 end

28 end

29 end
30 iteration = iteration + 1;

31 end

3.3 Implementation

ITSA* has been implemented for the Fast Downward[2] planner, or to be more exact, as

an improvement for the eager-greedy search within the planner. The original idea of ITSA*

is to iteratively search further and further away from the initial plan, until one eventually

runs out of memory. As we are interested in getting the best possible result while keeping in

mind our limited resources, we have slightly modified the original ITSA*. We have removed

the iterative nature of ITSA*, and instead made the maximum search depth a parameter

of the actual search. That way, we only need to perform one search up to the maximal

depth, rather than performing multiple searches with increasing iterations. This saves us a

significant amount of time, and also allows us to observe the difference in performance of

our implementation with different maximum search depths. In pseudo code, this changes

the original version to something like Algorithm 3, where depthlimi is the parameter that

marks our maximum search depth.

Iterative Tunneling Search with A* 10

Algorithm 3: Modified Tunneling Search with A*

1 open := new priority queue;
2 open.insert(s0, g(s0) + h(s0));
3 closed := ∅;
4 P := get plan();
5 while not open.empty() do
6 s = open.pop min();
7 if s /∈ closed then
8 if is goal(s) then
9 return extract solution(s);

10 end
11 closed.push back(s);
12 foreach successor s′ of s do
13 if h(s′) <∞ then
14 if s′ ∈ P then
15 s′.distance = 0;
16 end
17 else
18 s′.distance = s.distance + 1;
19 end
20 if s′.distance < depth limit then
21 open.insert(s′, g(s′) + h(s′));
22 end

23 end

24 end

25 end

26 end

4
Evaluation

This chapter contains information about the experimental setup, the results of our evaluation

as well as a discussion about these results.

4.1 Experimental Setup

All experiments were performed on a Intel Xeon E5-2660 (2.2GHz) with a time limit of 30

minutes and a memory limit of 2GB respectively. As discussed in the previous chapter, we

have chosen to not iteratively search deeper and deeper, but instead directly search at our

iteration limit. This was a bit optimistic, since our algorithm runs out of memory more

often than expected. In these cases, our resulting plan is simply the initial plan, rather than

the improved one of smaller depth limits.

To find our initial plans, we have used two different heuristics with a greedy search - Land-

mark Cut [3], which is consistent, admissible and comparatively precise, but also rather

costly in terms of computation time, as well as Fast Forward (ff) [4], the less precise but

computationally more efficient heuristic of the two.

Our tunneling algorithm itself was run with three different heuristics. Blind search is very

fast, but, as the name suggest, uninformed and therefore rather inaccurate. Landmark Cut

once again marks the top end of our benchmark spectrum, with it’s high accuracy and low

computation speed. The last of the three is H Max [5], which places itself somewhere in

between those two. Not all domains are compatible with all heuristics - some domains have

no solutions, even no initial solutions. These are obviously not interesting in the evaluation

of our algorithm.

Evaluation 12

4.2 Results

This chapter will show the results of our evaluation and specifically will show how our

implementation of ITSA* performed with our different setups.

4.2.1 Landmark Cut

All three heuristics perform very similar in terms of plan cost when using Landmark Cut

to find our initial plan. That is, they improve the result, but only slightly. The difference

between the different heuristics is negligible at best in terms of resulting plan cost for most

domains. Figure 4.1 show a selection of domains and problems and their average cost for

Landmark Cut, while table 4.2 shows the average search time required for those results. It is

noteworthy that in table 4.3 and 4.4, which show the same total averages as table 4.1 but for

all setup combinations, Landmark Cut actually performs worse than blind. The reason for

that is most likely the difference in search depth values assigned to some states, as mentioned

in chapter three. The differences in search time required however vary greatly more between

heuristics. It seems apparent that when starting with a good initial plan, finding short cuts

does not require a sophisticated heuristic. While H Max and blind perform better in terms

of search time required, it is still questionable whether the small decreases in plan cost is

worth the time.

Table 4.1: Average Cost of Landmark Cut over Selected Problems and Domains

lmcut - lmcut depth 1 depth 2 depth 3 depth 5 depth 7 depth 10
airport 79 79 79 79 79 78.9
blocks 56.4 55.2 55.2 51.1 49.4 44.3
driverlog 18 18 18 17.7 17.5 16.6
freecell 19.11 18.8 18.8 18.7 18.6 18
gripper 53 53 53 53 52.3 51.9
logistics00 27.1 27.1 27.1 27 27 26.5
miconic 31.3 31.3 31.1 31.1 30.9 30.7
movie 7 7 7 7 7 7
mprime 5.4 5.4 5.4 5.4 5.4 5.4
mystery 6.9 6.9 6.9 6.5 6.2 5.9
pegsol-08-strips 13.3 13.3 13.3 13.3 13.3 13.3
pegsol-sat11-strips 8.9 8.9 8.9 9 9 8.9
pipesworld-notankage 11.3 11.3 11.3 11.4 11.4 11.2
pipesworld-tankage 23.8 23.2 23.1 22.1 21.4 20.5
psr-small 25 24.8 24.8 24.4 23.7 21.8
schedule 24.6 24.6 24.1 22.6 21.4 21.4
sokoban-sat08-strips 3.8 3.8 3.8 3.8 3.8 3.8
sokoban-sat11-strips 49.3 493 49.3 49.3 49.1 49
storage 58.3 58.3 58.3 58.3 58.1 58
trucks-strips 652.7 620.7 610.2 581.8 540 541.7
zenotravel 55 55 50 50 50 50
average 26.9 26.8 26.7 26.3 26 25.5

Evaluation 13

Table 4.2: Average Total Time of Landmark Cut over Selected Problems and Domains

lmcut - lmcut depth 1 depth 2 depth 3 depth 5 depth 7 depth 10
airport 33 36.5 38.7 46.2 53.8 71.9
blocks 0.7 0.7 0.9 2.3 9.8 121.6
driverlog 0.1 0.2 0.4 1.6 4 7.4
freecell 3.7 5.5 10.4 45.1 112.9 176.8
gripper 0.2 0.5 1.1 5.7 24.3 150
logistics00 0.1 0.2 0.4 1 2.3 2.9
miconic 0.2 0.8 1.2 5.9 22.7 114.4
movie 0.1 0.1 0.1 0.1 0.1 0.1
mprime 24.4 27.9 44.2 43.6 45.5 45.9
mystery 51.6 55.1 61.9 77.3 69.2 55.9
pegsol-08-strips 1.4 1.4 1.4 1.6 2.3 7.6
pegsol-sat11-strips 2.1 2.1 2.1 2.4 3.6 11.6
pipesworld-notankage 27.3 27.5 28.4 33.8 56.4 146.5
pipesworld-tankage 35.8 37.7 40 52.3 67.1 121.2
psr-small 0.4 0.5 0.6 2 5.4 17.6
schedule 0.2 0.7 2.2 11.3 39.9 162.8
sokoban-sat08-strips 0.1 0.1 0.1 0.1 0.1 0.1
sokoban-sat11-strips 85.1 85.7 85 85.1 85.8 86.6
storage 130.9 131.7 131.7 132.4 132.6 133.8
trucks-strips 0.3 0.4 0.6 2 7.7 38.8
zenotravel 0.2 0.4 1.1 5.3 20.1 85.7
average 19 19.8 21.5 26.5 36.5 74.2

4.2.2 Fast Forward

Starting with a ff provides a higher initial starting cost, though not as much as initially

expected. This setup is where our tunneling starts to show it’s strength. The average costs

as shown in table 4.2 are about the same as with the better initial plan, while the total time

required is significantly lower. Blind and H Max achieve comparable results while needing

not nearly as much time as Landmark Cut. A direct comparison between blind and H Max

is shown in figure 4.1 below, which shows that blind is clearly the best choice for performing

tunneling, both in terms of plan quality as well as time cost.

Figure 4.1: Comparison Between Blind and H Max

Evaluation 14

Table 4.3: Comparison of Average Cost For All Setups

lmcut - lmcut 26.9 26.8 26.7 26.3 26 25.5
lmcut - hmax 26.9 26.7 26.7 26.2 26 25.5
lmcut - blind 26.9 26.7 26.7 26.1 25.8 25.3
ff - lmcut 26.7 26.6 26.6 25.9 25.7 25.1
ff - hmax 26.7 26.6 26.4 25.9 25.6 25.1
ff - blind 26.7 26.6 26.3 25.8 25.5 24.9

Table 4.4: Comparison of Average Time For All Setups

lmcut - lmcut 19 19.8 21.5 26.5 36.5 74.2
lmcut - hmax 18.8 19 20 24.9 28.9 40.8
lmcut - blind 18.8 18.9 19.2 20.5 23 29.1
ff - lmcut 4.3 4.9 6.4 10.3 20.2 57.4
ff - hmax 4.1 4.3 4.9 9.3 12.8 26
ff - blind 4 4 4.4 5.7 8.1 13.8

4.3 Discussion

There is a problem that plagues both benchmarks - memory shortage. For quite a few

domains that were not represented in the averages above, there was not enough memory to

calculate up to a depth where significant improvements, or even any improvements, can be

achieved. The time costs are also a fact to consider. It is therefore questionable whether

tunneling can be used as a general method to improve suboptimal plans. Regardless of

that, as can be seen in our averages of domains not plagued by that issue, Fast Forward in

combination with a Blind heuristic can provide results comparable with the sophisticated

Landmark Cut heuristic in lower time. There are even domains where tunneling can be

applied to greatly improve our results with very little effort, such as the blocks domain. The

results of performing tunneling with a depth limit of one and ten respectively can be seen in

figure 4.2 below. All in all, the results did not meet our expectations. In some circumstances,

Figure 4.2: Blocks Domain Costs With Search Depth 1 and 10

Evaluation 15

especially with high initial plan costs, tunneling is certainly worth the additional time it

needs. More often than not however, massive memory cost and little benefit compared to

the time required cripple the effects of tunneling. Going back to the original iterative method

might soften the burden of the memory cost, but will only decrease the ratio of information

gain and computation time.

5
Conclusion

In this Thesis we have adapted ITSA* for the Fast Downward planner and evaluated it’s

performance. It’s iterative nature has been dropped for a more direct approach in hope of

reducing search time while keeping information gain.

The planned evaluations were performed with different initial paths as well as different

heuristics used to perform the actual tunneling. Our evaluation results showed that the

expected improvement exists, however that on average it is rather small compared to the

time it costs. This is especially true if the initial plan is already close to the optimal solution.

For many domains, a search distance of around five from the initial plan is required to provide

satisfying results. For many domains however, that search depth was already reaching the

limit of available memory.

This results in a sobering overall result, with many domains performing worse than expected.

A return to the iterative method might provide more consistent improvements, but will

further reduce time effectiveness of our algorithm.

While it was expected that Landmark Cut would perform badly in terms of time required,

it was a surprise that after ten iterations, for many domains the quality was not better

than of our tests with Blind or H Max. Regardless, for some domains, like the blocks

domain, tunneling performs exceptionally well, producing decent results in reasonable time.

As a general improvement for suboptimal solution plan, it is therefore not practical. As a

domain-specific improvement for plans which are expected to be rather far from the optimal,

it is certainly an option. It is also interesting to note that out of our three heuristics, the

Blind heuristic actually performed best.

Bibliography

[1] Furcy, D. A. ITSA*: Iterative Tunneling Search with A*. AAAI Workshop on Heuristic

Search, Memory-Based Heuristics and Their Applications, pages 21–26 (2006).

[2] Helmert, M. The Fast Downward Planning System. Journal of Artificial Intelligence

Research, 26:191–246 (2006).

[3] Helmert, M. and Domshlak, C. LM-Cut: Optimal Planning with the Landmark-Cut

Heuristic (2009).

[4] Hoffmann, J. FF: The Fast-Forward Planning System. AI magazine, 22:57–62 (2001).

[5] Bonet, B. and Geffner, H. Planning as Heuristic Search. Artificial Intelligence, 129:5–33

(2001).

Declaration of Authorship

I hereby declare that this thesis is the result of my own work and includes nothing which

is the outcome of work done in collaboration except as declared in the bibliography and

specified in the text.

This thesis is not substantially the same as any that I have submitted or will be submitting

for a degree or diploma or other qualification at this or any other University.

Basel, date

Author

	Acknowledgments
	Abstract
	1 Introduction
	2 Background
	2.1 Planning
	2.2 Heuristic Search and A*

	3 Iterative Tunneling Search with A*
	3.1 Idea
	3.2 The Algorithm
	3.3 Implementation

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results
	4.2.1 Landmark Cut
	4.2.2 Fast Forward

	4.3 Discussion

	5 Conclusion
	Bibliography
	Declaration of Authorship

