
A Pattern Database Approach
for Solving the TopSpin Puzzle Problem

Pier Paolo Bortoluzzi

University of Basel

Examinar: Malte Helmert

Supervisor: Martin Wehrle

Abstract

Finding optimal solutions for general search problems is a challenging task.

A powerful approach for solving such problems is based on heuristic search

with pattern database heuristics. In this thesis, we present a domain spe-

cific solver for the TopSpin Puzzle problem. This solver is based on the

above-mentioned pattern database approach. We investigate several pattern

databases, and evaluate them on problem instances of different size.

CONTENTS

I Introduction 3

II Preliminaries 5
a TopSpin Puzzle Problem . 5

b Heuristic Search Algorithms . 6

c Heuristics . 7

d Pattern Databases . 9

III Implementation 11
a Representation of States . 11

b Pattern Database Implementation . 11

c Investigated Patterns . 12

IV Experiments 14
a Pattern Sizes . 14

b Pattern Databases . 15

c Search Algorithms . 17

d Discussion . 18

V Conclusion 19

2

Stop looking for solutions to problems and start
looking for the right path.

Andy Stanley

I
INTRODUCTION

Solving a puzzle can be highly interesting or

downright frustrating, but nevertheless, finding

the solution is always exhilarating. When a puz-

zle becomes increasingly difficult to solve, most

people shy away or even cheat and look up solu-

tions. But there is a third and for computer scien-

tists the more preferable solution: implementing

a search algorithm to solve the puzzle for you,

which is technically not cheating. . .

The TopSpin puzzle [6] is one of the more in-

triguing ones which can be put in the same shelf

as the Rubik’s cube [1] when comparing possi-

ble permutations. With its standard 20! distinct

permutations it almost beats the Rubik’s cube in

complexity but obviously it looks less impres-

sive and is not a feat of engineering; it never

reached the same level of fame. But solving it is

still quite complicated even for a computer. The

search space for this problem is too large such

that the memory needed to find a solution can ex-

ceed most standard PCs. On the other hand, find-

ing an efficient solving strategy is equally chal-

lenging.

The TopSpin puzzle was originally designed

by Ferdinand Lammertink and patented in 1988.

The puzzle itself consists of an oval track con-

taining 20 elements. The elements can be moved

on the track by shifting all at once in either direc-

tion. The only way to change the order of the el-

ements is to turn the top part of the puzzle which

results in reversing the order of the 4 elements

on the turntable.

In this thesis we investigated several

domain-specific pattern databases [2] for the

TopSpin puzzle that enhanced the solving speed

of a best-first search algorithm which finds op-

timal solutions. The chosen search algorithm is

IDA* [5] as it is space efficient and is able to

use a heuristic to enhance search speed. The

heuristic used was the pattern database approach

with different types of problem space abstrac-

tion. The solving speed has been compared to

different types of searching algorithms.

The thesis is organised as follows. The sec-

ond chapter discusses the TopSpin puzzle itself

and serves as a refresh of our knowledge of

search problems and heuristics with a focus on

pattern databases. The third chapter contains a

more in-depth description of how we represented

the search problem and what types of pattern

databases have been used. In the forth chapter,

we present and discuss our results. In particu-

lar, we compare our different pattern databases.

As a second analysis we looked at search speed

3

of IDA* compared to breadth-first search and

A* [3]. The fifth and last chapter contains our

conclusions about this thesis and outlook about

possible methods which could improve the pat-

tern databases further.

4

Success is neither magical nor mysterious.
Success is the natural consequence of

consistently applying the basic fundamentals.
Jim Rohn

II
PRELIMINARIES

In this chapter we are going to introduce the

very basics of search problems and how they are

solved. First we provide the terminology which

will be used throughout this thesis. This is fol-

lowed by a short overview of what an actual

search problem is. After we established what a

search problem is we are going to look at stan-

dard search algorithms and how heuristics are

supposed to increase search speed. To round off

this section we are going to explain how pattern

databases work.

a. TopSpin Puzzle Problem
A search problem usually has a starting state

where the search for a solution begins. A state

contains all the information to describe its po-

sition in the search space of the given problem.

The search space is made of all possible states

the problem can occupy. The search space con-

tains the start state and the goal state.

The solution of search problems are usually

represented as paths from the start state to the

goal state. This path can be seen as a chain of

actions. Internally the search algorithm stores

these states with additional information which

are then called nodes. These nodes usually con-

tain information of the previous node, to allow

generation of the solution, and the cost of the

path so far which is called the path-cost. Ad-

ditionally algorithms like A* store the estimated

cost of the path to the goal which will be rel-

evant when we’re discussing heuristics later in

this chapter.

In our case the search problem is finding the

path from any scrambled state to the solved state.

A state in the TopSpin puzzle is any possible ar-

rangement of the elements and the goal state is

where the elements are in ascending order. This

can be achieve by using one of the three possible

actions: reversing the order of the elements on

the turntable and shifting all elements in either

direction. By applying any action to a state we

arrive at a neighbour state. In this search prob-

lem each state has only three neighbours.

The TopSpin puzzle has been originally pro-

posed to have twenty elements and a turntable

that reverses the order of four elements. These

two parameters can be varied to change the prob-

lem size. In the future the number of total el-

ements will be referred to as N and the size of

the turntable as k. We remark that the standard

TopSpin puzzle with k = 4 and N = 20 is

special because every possible permutation can

be reached without disassembling the puzzle[?].

5

This means that there are 20! possible states.

Note that solving the TopSpin puzzle manu-

ally isn’t as simple as it seems. First: one has to

solve the numbers 1 to N −k which can be done

quite easily. The last k elements can be solved by

using solving patters to either swap two elements

without changing the order of the others or cy-

cling all k elements. Theses approaches like the

solving patterns for the Rubik’s Cube are rather

inefficient but at least allow humans to actually

solve every possible scrambled state.

b. Heuristic Search Algorithms
In this section we are going to introduce

heuristic based search algorithms. There are

many different search algorithms and knowing

their benefits and disadvantages is important.

Some algorithms try to find any solution and oth-

ers aim for the optimal solution. Finding a best

solution costs usually more time. A best or opti-

mal solution is called the solution with the least

path-cost. The path-cost is the combined cost of

each action of the current path.

For solving our puzzle optimally we need a

best-first-search algorithm which finds the best

solution first. For problems with uniform costs,

like ours, breadth-first-search does this but it is

time and space inefficient. Best-first-search al-

gorithms are usually implemented using a pri-

ority queue as an open queue like A*. These

algorithms use the priority of a state which is

a computed estimate of the costs from the state

to the goal. This cost is calculated by a prior-

ity function f . This function f combines the

current path-cost and a heuristic estimate of the

cost to the goal state. The open queue contains

all evaluate but not yet explored nodes. A node

is explored when each possible neighbour has

been evaluated (priority calculated). The priority

queue sorts the nodes such that the next pulled

node has the lowest priority value. A secondary

set called the closed set contains all already ex-

plored nodes.

A* is the most famous best-first search al-

gorithm which finds the least cost solution. A*

is complete viz. it will always find a solution if

it exists like breadth-first search. Let’s take a

Algorithm 1: A* algorithm
openQueue.init();
closedSet.init();
openQueue.push(startNode);
while openSet is not empty do

node := openSet.pull();
if node == goal then

return pathToSolution(node);

closedSet.Add(node);
for each nextNode of node do

if
closedSet.contains(nextNode)
then

continue;

compute priority f(nextNode);
insert nextNode into openSet;

return noSolution;

closer look at the pseudo code of A* in Algo-

rithm 1 1. First we insert the start node into the

priority queue. The while loop ensures that ev-

ery node from the open queue will be evaluated

until a solution has been found. We pull the next

1This algorithm only works for certain classes of
priority functions which will be discussed in the next
section

6

node from the priority queue and add it to the

closed set. If this node is equal to the goal we re-

turn the path to this node. Otherwise we expand

its neighbours and calculate their estimated cost

to the goal and insert those new nodes into the

open queue as long as they are not in the closed

set. The priority queue sorts the nodes by the

priority value.

Another thing we notice is that while using

an open queue and a closed set every single node

processed will be stored, thus continuously in-

creasing memory usage. This is not a hindrance

for smaller problems but when solving large puz-

zles we could run out of memory very fast. If

this is the case, one has to switch to a slower but

more space efficient algorithm like IDA*.

IDA* is an abbreviation for iterative deepen-

ing A* and is a mixture between iterative deep-

ening depth first search [7] (IDDFS), and A*.

IDDFS is space efficient as it only stores the path

from the start node to the current node. Depth

first search expands each evaluated node but only

tracks one of the neighbours until the depth limit

is reached. After reaching this limit it will re-

turn to the previous node exhaust every possible

neighbour node and so forth. After evaluating

every possible node without finding the goal it

will return to the root and the depth limit will

be increased by 1. Thus the total amount of

searched nodes until a certain depth d is reached

will be

d∑
i=0

(d+ 1− i)bi [7],

where b is the number of neighbours. For the

TopSpin puzzle, parameters could be d = 15

and b = 3 thus a maximum of 32285032 nodes

would been searched. Instead of using an arbi-

trary depth limit, IDA* uses the priority value to

limit its depth search. This limit will be updated

when every possible node within the momentary

limit is evaluated and no solution has been found.

The new limit is the minimum of all newly ob-

served priority value.

IDA* is implemented as a recursive algo-

rithm. In Algorithm 2 we can see a pseudo

code of IDA*. First the cost limit is set by the

priority value. Then the recursive function is

called which returns the new next cost limit and

if found, the solution. The recursive function

first calculates the priority value of the node if

it exceeds the cost limit it will return the pri-

ority value as potential new cost limit or if it’s

the goal it will return the solution. If neither is

the case each neighbour will be evaluated with

a recursive call. The next cost limit is then the

minimum of all new cost limits, which will be

returned if no solution is found. Only the main

loop can increase the cost limit.

IDA* increases search time on the one hand

but on the other hand reduces memory usage

which is usually preferable for larger problems.

c. Heuristics
In the last section, we described heuristic

search algorithms. Preferably we want to ex-

plore states with better priority values. In this

section, we describe in more detail how the pri-

ority values are computed. A common way of

computing these values is based on heuristics.

Heuristics predict the possible cost to the goal

7

Figure 1: The green area on the right contains all searched nodes by a BFS. The cyan area on the
right represents the nodes searched by an algorithm using a heuristic. Where the start node is in
blue and the goal node in red.

Algorithm 2: IDA* algorithm designed for uniform search problems
costlimit = f(startNode);
while costLimit 6=∞ do

costLimit, solution = depthSearch(startNode, costLimit);
if solution exists then

return pathToSolution(solution);

depthSearch(node, costLimit){
minimumCost = node.cost() + h(node);
if minimumCost > costLimit then

return minimumCost, noSolution;

if node is goal then
return costLimit, node;

nextCostLimit =∞;
for all neighbours of node do

neighbour.setCost(node.Cost() + 1);
newCostLimit, solution = depthSearch(neighbour, costLimit);
if solution exists then

return newCostLimit, solution;

nextCostLimit = min(nextCostLimit,newCostLimit);

return nextCostLimit, noSolution;
}

8

state. This information is usually based on a

specifically designed function for the state space.

A good example to demonstrate heuristics is

the shortest path problem. Imagine a city where

crossings are the states and the streets describe

each possible next neighbour. What is the short-

est path from point A to point B? Searching

for the shortest path can be quite costly if there

are many streets to chose from at each crossing.

The breadth-first search algorithm would expand

its search into every possible direction and waste

time on searching in the wrong direction. An

easy solution to know if the search expands into

the right direction would be to calculate the bee-

line from the current searching position to B.

We know the cost to the position we are at g and

we can predict that the distance to the goal B is

at least the calculated beeline h. Thus the total

estimated cost to the goal is at least f = g + h.

In this example, sorting all nodes by f and pick-

ing the smallest value makes sure that the search

algorithm expands into the right direction and re-

duces the time spent searching. Figure 1 shows

how many states are never explored because their

f -score is too high to be considered.

As mentioned in the previous section the A*

Algorithm ?? is only valid for certain priority

classes. They are called consistent heuristics. A

heuristic is consistent when

h(s) ≤ h(s′) + 1 and h(s∗) = 0 ,

where s′ is the previous node and s∗ is the goal

state. This means that the algorithm will never

arrive at a higher priority value when the heuris-

tic predicted a lower value. In this case the action

cost is uniform.

In the context of optimal search, another im-

portant property of heuristics is the knowledge

that the predicted cost to the goal is smaller or

equal the actual cost. Formally, this means that

h(n) ≤ C(n)for all nodes n, (1)

where n is a node and C(n) the actual cost for

the node to the goal. If this equation does not

hold the search might end up in the wrong direc-

tion, be stuck in a dead-end or the solution found

does not have to be the best solution there is. A

heuristic that fulfils the condition (1) is called an

admissible heuristic. Every consistent heuristic

is also admissible but not the other way around.

Finding an admissible heuristic can be quite

easy given a simple problem e.g. the sliding puz-

zles [4]. In this example counting all the mis-

placed tiles is an admissible heuristics. However,

for more complex problems finding, a good and

admissible heuristic can become more compli-

cated. This is where pattern databases are useful.

d. Pattern Databases
Pattern databases are basically lookup ta-

bles where for each state in the search space

there is a pre calculated cost of the path to the

goal. Though instead of using the search space

of the problem pattern databases map the prob-

lem space onto an abstract space, which is usu-

ally a lot smaller. Important is that each state

in the search space maps onto a corresponding

abstract state. This reduction allows the pattern

database to contain each abstract state and store

their cost to the abstract goal. Consider In Figure

9

2 as an example. The search space is represented

by the black circles. Let the centre state be the

goal state. The coloured areas which combine

several states together are the abstract states. The

colour of the areas represent the path-cost to the

abstract goal, which grow by one with each step

away from the abstract goal.

Figure 2: Visualisation of the abstract space.
The different areas combine certain states into
abstract states and the cost to the solution is rep-
resented by the colour. Red is the goal, blue
equals cost of 1, green is 2 and yellow is cost
of 3

The pattern describes which parts of the

original problem are kept and which become in-

terchangeable. The pattern defines a mapping

function from the search space into the abstract

space. The less information we keep in the ab-

stract state the smaller the abstract space be-

comes. A small abstract space is less expressive

as the path-costs will be smaller as well but it is

processed a lot faster. This is the trade-off pat-

tern databases must be balanced around.

In Figure 3 the 15-puzzle is shown. On the

left side is the puzzle in the search space and is

mapped into an abstract state on the left. The red

marked area represents the pattern. Even though

the blue part is still scrambled the heuristic will

Figure 3: The 15 puzzle in a given state is
mapped into the abstract space. The top repre-
sents a state which has h(s) = 0 and the bottom
state has h(s) = 1

return h(s) = 0 as the mapped state is the ab-

stract goal state. The bottom state mapped into

the abstract space is only one action away from

the goal state and thus return h(s′) = 1.

The advantage of pattern databases, com-

pared to other heuristics, is that they can be pre-

calculated and stored for later use. Another posi-

tive aspect of pattern databases is that because of

their design they are most of the time admissible.

Problems that are too complicated to find a

good admissible heuristic for or problems which

will be solved many times over are predestined

for pattern databases. We remark that in case of

repetitive usage a more complex pattern could be

chosen. It may take longer to build the database

but once it stands and many different searches

have been completed the time consuming pro-

cess of building the database becomes less im-

portant.

10

The important thing in science is not so much to
obtain new facts as to discover new ways of

thinking about them.
Sir William Bragg

III
IMPLEMENTATION

In this section we will take a closer look at

our implementation of the search problem and

because we implemented the search algorithms

and pattern databases ourselves we will also de-

scribe how we are building the pattern databases.

We will also discuss the different patterns we

chose to evaluate in our experiments.

a. Representation of States
The search problem at hand has states which

will be represented by a tuple. The tuple contains

the numbers in the order in which they appear in

the puzzle. The length of the tuple is N (k will

be stored separately as it won’t change during the

search). In Figure 4 we can see a representation

of such a tuple; note that the line between the 4th

and 5th is purely a visualisation of k = 4 in this

example.

Each state has three neighbours: one with

the reversed order of the first k elements, one

with all elements shifted to the right and one to

the left. When the search algorithm asks for the

next neighbours these three new states will be re-

1 2 3 4 5 6 7 8 9 10 11

Figure 4: Tuple representation of the TopSpin
puzzle with N = 11 and k = 4.

turned.

Because the pattern database will need to

solve abstract states of the puzzle we simply re-

place the values which the pattern maps as inter-

changeable with a wild card and modify the goal

to match the abstract state.

b. Pattern Database Implementation
The computation of the pattern databases

usually starts at the abstract goal state. Then

each neighbour gets evaluated and stored in the

database. This is repeated until all abstract states

have been evaluated. However this forces the

pattern database to keep track of each evaluated

abstract state which means it has to store the

complete abstract space.

In our implementation we started from each

possible abstract state by creating a lexicograph-

ical list of all permutations. Then we compute

for each state the path-cost to the abstract goal

state and insert this value into a hash table. The

hash value is calculated by using zobrist hash-

ing [8]. Zobrist hashing calculates hash values

with very low collision rates. In a rare case of a

collision we pick the lower cost value to ensure

that our pattern database stays admissible. As

11

an advantage, we don’t have to store the abstract

states but the heuristic probably won’t be con-

sistent any more. A heuristic is consistent when

h(N) ≤ c(N,P) + h(P) and h(G) = 0 where

h is the heuristic and c the cost of N to P . Our

experiments have shown that no collisions have

been detected which means our pattern database

is consistent.

Zobrist hashing uses a single N × N ta-

ble with random values. One dimension rep-

resents the N positions available in the puzzle

and the other dimensions represents the N ele-

ment. Such that each element at every position

has a unique value within the table. To calcu-

late the hash value we bitwise XOR all values

from the table which represent the state. For ex-

ample if the numeral 5 is at position 1, 6 at po-

sition 2 and 8 at position 3 etc. the first three

operations would be (((0 XOR table(5,1)) XOR

table(6,2)) XOR table(8,3)). The order in which

we XOR these values is irrelevant as XOR is as-

sociative. This means effectively we simply hash

the pattern as it appears in the abstract state. Our

database is therefore a lot smaller when not stor-

ing any actual state. For each possible state we

only store 2 values instead of N + 1. As a con-

sequence at the possible cost of slower building

speed.

The solver is capable of using multiple pat-

tern databases at once. It then picks the highest

cost value from the pattern databases. This al-

lows us to combine several patterns to enhance

the search speed. This is because we always pick

the higher cost value which means we have a bet-

ter estimate.

c. Investigated Patterns
Our pattern database implementation allows

us to modify the pattern on the fly with passing

either one or multiple pattern files to the solver.

This makes it easier to experiment with differ-

ent patterns and pattern combinations to find out

which have the best potential. We will introduce

the four different patterns we used for our bench-

marking.

Please note that each pattern will use 0 as the

wild card.

i Linear

The first pattern represent the first n ele-

ments of the problem. This approach was prac-

tical as it can be used with every problem with

N ≥ n. We are going to look at two different

sets of this pattern, one as seen in Figure 5 on

the turntable and a second one off the turntable

to find out if there is a significant difference.

1 2 3 4 0 0 0 0 0 0 0

Figure 5: Standard linear pattern

ii Stride

The second pattern is a superset of the lin-

ear pattern. Here we simply add a gap between

each element. Using a gap size of one results in

an even/odd pattern as seen in Figure 6 the top

tuple. The bottom tuple uses a gap size of two.

Increasing the gap value could lead to a pattern

that can span the entire problem.

12

1 0 3 0 5 0 7 0 0 0 0

1 0 0 4 0 0 7 0 0 10 0

Figure 6: Pattern with gaps in-between the ele-
ments with gap-size one and two.

iii Multiple Pattern Databases

Last but not least we used multiple pattern

databases to estimate the distance to the goal

state. We created out of each of the two shown

pattern a mixtures of pattern database to find out

if the combinations increase the search speed as

much or even more than the increase in build-

ing time of the pattern databases. In Figure 7

we combined two stride patterns one represent-

ing the first n = 4 odd elements and the second

pattern the first n = 4 even elements.

1 2 3 4 5 6 7 8 0 0 0

Figure 7: Each colour represents a different pat-
tern which are evaluated separately but shown
together.

13

Insanity: doing the same thing over and over
again and expecting different results.

Albert Einstein

IV
EXPERIMENTS

In the first part we compare the efficiency

of different pattern sizes of each previously in-

troduced pattern to find out at which point the

patterns are most efficient. Then we compare

the different patterns with each other to find out

which of them is the most effective for different

problems sizes. Afterwards we used the fastest

of these patterns to compare them to the dif-

ferent search algorithms: A* and breadth-first

search (which of courses doesn’t use the pattern

database).

We used for all problems N = 9 and k = 4

unless otherwise noted. We averaged all values

over 20 different random problems. The first col-

umn describes the explored nodes. We ignored

the evaluated nodes as IDA* has usually almost

as many evaluated as explored nodes. The sec-

ond and third column represents the search time

and pattern database building time (short PDB

time). The last column shows the total time.

All time values are represented in seconds. The

second row in the tables of each pattern entry

shows the standard deviation which is important

to properly analyse the results. All benchmarks

have been performed on the same computer with

an Intel Core 2 Quad CPU Q8400 2.66GHz.

a. Pattern Sizes
i Linear

In Table 1 we can clearly see that the smaller

patterns are less robust and slower than their

larger counterparts. The (5 6) pattern probably

outperformed (1 2) because the pattern in its goal

state is off the turntable, which means the aver-

age path-cost will be larger. Another interest-

ing fact is that the larger problems spend almost

the same time in building the pattern database

and the search. In contrast the smaller pattern

databases spent all their time in the search. We

will pick pattern (1 2 3) for further investigation

as it performed best and has the lowest standard

deviation.

ii Stride

The stride patterns performed almost the

same compared to the larger linear patterns.

Their PDB times are all smaller than the ones for

the linear patterns as we can see in Table 2. The

shorter PDB times lead to longer search times

except for (1 3 5) and (1 4 7) which are even quite

robust. It will be interesting to see how well

they will scale for different problem sizes. All of

the other patterns show longer search times than

14

Pattern Explored Search time PDB time Total time
1 2 29842550.4 20.550 0.034 20.584
sd 47939863.7 33.454 0.017 33.460
5 6 12559905.6 8.278 0.036 8.313
sd 16838833.2 11.012 0.008 11.010
1 2 3 2410149.0 1.942 2.092 4.034
sd 3326810.0 2.667 0.049 2.652
5 6 7 1815534.5 1.414 3.766 5.180
sd 4168910.4 3.208 0.055 3.235

Table 1: Results for linear patterns comparing explored nodes, search, pattern database building
and total time averaged over 20 random problems. Each second row shows the standard deviation
of the mean values above.

PDB times which makes them less interesting for

scalability. None of them achieved a robustness

as good as the ones we picked out. These results

show that in general stride patterns are less ro-

bust and perform worse than linear ones.

iii Multiple Databases

The multiple database approach has shown

to be the most effective in terms of smallest

search time and total solving time. The small

linear pattern approach has been shown to be in-

effective before but when we combine several of

them together we arrive at a very fast PDB time

and a surprisingly good search time. The pat-

tern combination (1 2)(3 4)(5 6)(7 8) is so far the

fastest of them all. On the other hand we have the

pattern (1 2 3)(5 6 7) with the highest PDB time

but the fastest search time of all patterns so far.

The (1 2 3)(5 6 7) pattern is a perfect example

of pattern databases because in this case build-

ing the database once and using it for multiple

search problems would be the most cost effec-

tive solution of them all. It is even very robust

with the lowest standard deviation yet.

All the other patterns are almost indistin-

guishable in their solving time.

b. Pattern Databases
In this section we will examine most of the

previously selected patterns on different problem

sizes to find out which of the selected patterns

has an overall best performance. We had to mod-

ify the patterns slightly such that they can fit into

smaller sized problems. We also create new and

more random problems to get a better average.

Each graph shows the PDB, search and total time

of the patterns across problem sizes from six to

nine. The best performing pattern will then be

used for our final evaluation comparing IDA* to

A* and breadth-first search.

In Figure 8 we can see that the (1 2 3) pattern

grew quickly with the problem size. The PDB to

search time ratio stays almost the same through-

out each problem size. This pattern is very ro-

bust and with it’s relative low solving times, one

of the best pattern we have found.

The slightly modified (1 4 6) pattern per-

formed very badly compared to our previous re-

sults. This might be due to us modifying the pat-

15

Pattern Explored Search time PDB time Total time
1 3 5 2118077.0 1.769 1.909 3.678
sd 3465754.5 2.895 0.073 2.947
2 4 6 3041088.8 2.514 1.934 4.447
sd 5521276.4 4.502 0.067 4.490
1 4 7 2227634.0 1.836 1.794 3.630
sd 3340768.7 2.736 0.024 2.737
2 5 8 4989883.1 4.080 1.865 5.944
sd 11002262.0 8.937 0.081 8.951
3 6 9 8475263.9 6.517 1.839 8.355
sd 13186127.4 10.047 0.075 10.047
1 5 9 8964459.3 6.920 2.057 8.977
sd 17328509.6 13.299 0.027 13.306

Table 2: Results for stride patterns comparing explored nodes, search, pattern database building
and total time averaged over 20 random problems. Each second row shows the standard deviation
of the mean values above.

0

2

4

6

8

10

12

14

16

18

6 7 8 9

Ti
m

e
[s

]

Problem size

(1 2 3)

Total time
Search time

PDB time

Figure 8: Results of the time measurements over
four problem sizes with the (1 2 3) pattern.

tern but this is probably just caused by the larger

set of problems. If we look at the graph in Figure

9 we can see that the search speed increased dis-

proportionally compared to before. This is prob-

ably caused by an unlucky set of problems. We

mentioned before that the stride patterns weren’t

performing that well and this confirms our pre-

vious assumption. Nonetheless it had the worst

results compared to every other pattern.

0

2

4

6

8

10

12

14

16

18

6 7 8 9

Ti
m

e
[s

]

Problem size

(1 4 6)

Total time
Search time

PDB time

Figure 9: Results of the time measurements over
four problem sizes with the (1 4 6) pattern.

The (1 2 3)(4 5 6) pattern even with the light

modification solved each problem the fastest.

The interesting property of this pattern database

is that the PDB time is higher than the search

time by a big margin. This is the only pattern

where we found this occurrence. We have seen

that it performed quite well in the previous re-

sults but still this outcome came as a surprise.

The one with the highest PDB time still man-

16

Pattern Explored Search time PDB time Total time
1 2 ,5 6 4277835.9 5.440 0.070 5.509
sd 7049937.9 9.244 0.012 9.245
1 2 ,4 5 7 8 1361676.3 2.075 0.093 2.168
sd 1623383.1 2.453 0.027 2.446
1 2 ,3 4 ,5 6 ,7 8 713799.3 1.549 0.135 1.684
sd 900026.4 1.967 0.024 1.975
1 2 3 ,5 6 7 66153.2 0.106 6.763 6.869
sd 62540.3 0.094 0.406 0.399
1 3 5 ,2 4 6 219812.9 0.348 4.282 4.630
sd 383164.8 0.602 0.352 0.638
1 4 7 ,2 5 8 301834.8 0.475 4.104 4.579
sd 394720.2 0.611 0.246 0.563
1 4 7 ,3 6 9 445714.2 0.661 3.900 4.561
sd 705597.0 1.048 0.268 1.062
2 5 8 ,3 6 9 517225.1 0.786 4.135 4.921
sd 666857.2 0.997 0.329 0.973

Table 3: Results for multiple patterns comparing explored nodes, search, pattern database build-
ing and total time averaged over 20 random problems. Each second row is showing the standard
deviation of the mean values above

0

2

4

6

8

10

12

14

16

18

6 7 8 9

Ti
m

e
[s

]

Problem size

(1 2 3)(4 5 6)

Total time
Search time

PDB time

Figure 10: Results of the time measurements
over four problem sizes with the (1 2 3)(4 5 6)
pattern.

aged to be the fastest. In Figure 10 we can see

that in the smaller problem sizes the PDB domi-

nated the solving time until the problem became

larger.

c. Search Algorithms
The pattern (1 2 3)(4 5 6) outperformed all

of the other patterns and its unique property with

more PDB time than search time makes it a very

valuable pattern combination. In this last section

we will show the difference in solving speed of

A*, IDA* and breadth-first search. We will use

the same problem set as the section before. Prob-

lem sizes from six to nine with each twenty prob-

lems. We only compare the overall solving time,

explored and evaluated nodes.

As we can see in Figure 11 IDA* evaluates

a lot more nodes than breadth-first search and

A*. In Figure 12 we can also see that IDA*

and breadth-first search explore almost the same

amount of nodes as they evaluated but A* ex-

plored only half the nodes it evaluated. The fi-

nal but most impressive plot in Figure 13 shows

17

100

1000

10000

100000

1e+006

6 7 8 9

N
od

es

Problem size

Evaluated Nodes

BFS
A*

IDA*

Figure 11: Comparing the number of evaluated
nodes by all three algorithms. The mean value is
calculated over 20 random problems. Y axis is
in log scale.

that breadth first search is faster for smaller prob-

lems but between problem size seven and eight

breadth-first search literally explodes. At prob-

lem size nine breadth-first search is 100 times

slower than A* and IDA*. Surprisingly IDA*

could keep up with A* but is slower by a fifth.

d. Discussion
The experiments have shown that the chosen

pattern can have a huge impact on both the pat-

tern database building time and the search time.

Patterns with the size of three have shown the

best results everything above will increase the

database build time exponentially and everything

below increases the search time.

The comparison between the different search

algorithms was pretty much what has been ex-

pected breadth-first search was the slowest for

larger problem sizes. A* was faster than IDA*

which was clear from the beginning but the small

margin was actually surprising. The only rea-

son this could be is because A* and breadth-first

10

100

1000

10000

100000

1e+006

6 7 8 9

N
od

es

Problem size

Explored Nodes

BFS
A*

IDA*

Figure 12: Comparing the number of explored
nodes by all three algorithms. The mean value is
calculated over 20 random problems. Y axis is
in log scale.

0.001

0.01

0.1

1

10

100

1000

6 7 8 9

Ti
m

e
[s

]

Problem size

Total time

BFS
A*

IDA*

Figure 13: Comparing the time used to solve the
problem. The mean value is calculated over 20
random problems. Y axis is in log scale.

search need a lot more space and thus have to al-

locate more memory which is probably the bot-

tleneck and allows IDA* to keep up. The Top-

Spin puzzle itself scaled very well.

18

If . . . the past may be no rule for the future, all
experience becomes useless and can give rise to

no inference or conclusion.
David Hume

V
CONCLUSION

We created our own solver for the TopSpin

puzzle problem with a domain specific pattern

databases. We have shown that the choice of pat-

terns is important for solving speed and knowing

which will be better is not something that can

be done intuitively. The experiments have also

shown that even for a large set of problems the

variance can be very high. Solving speeds from

2 seconds to 100 seconds isn’t unusual for the

same problem size and same pattern database.

We have also used a different approach to build

a pattern database and it worked quite well. Zo-

brist hashing has also proved how simple one

can calculate hash values with very low collision

rates. In our case we haven’t encountered a sin-

gle collision. Which makes this implementation

even for A* consistent.

Using pattern database to solve a search

problem has been shown to be quite successful

and without a lot of tweaking the solving speed

was way ahead of an exhaustive search.
For future projects it would be interesting to

evaluate the patterns for larger problem sizes and
find out if they scale well with size or if the pat-
terns have to be scaled as well. Comparing the
solver to a universal solver would be interesting
as well to see how much faster our solver is. And

last but not least, implementing additive pattern
database heuristics.

REFERENCES

[1] Hana M. Bizek. Mathematics of the Rubik’s

Cube Design. Pittsburgh, Pa.: Dorrance Pub.

Co., 1997.

[2] Schaeffer J. Culberson, J. Pattern databases.

Computational Intelligence, 14 (3):318–334,

1998.

[3] N. J.; Raphael B. Hart, P. E.; Nilsson. Correc-

tion to a formal basis for the heuristic determina-

tion of minimum cost paths. SIGART Newsletter,

37:2829, 1972.

[4] Wm. Woolsey Johnson. Notes on the 15-puzzle

(1). American Journal Mathematics, pages 397–

399, 1879.

[5] Richard Korf. Depth-first iterative-deepening:

An optimal admissible tree search. Artificial In-

telligence, 27:97109, 1985.

[6] Ferdinand Lammertink. Puzzle or game having

token filled track and turntable, 1988. United

States Patent.

[7] Peter Russell, Stuart J.; Norvig. Artificial Intel-

ligence: A Modern Approach (2nd ed.). Upper

Saddle River, New Jersey: Prentice Hall, 2003.

19

[8] Albert L. Zobrist. A new hashing method with

application for game playing. Technical Report,

88, April 1970.

20

