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Röger for supervising my thesis, providing me insights and guiding me.

Furthermore, I thank both my mother and fiancée for proofreading my work and giving

comments from another perspective. My special thanks goes to my fiancée for her support

and understanding through this time. Also, I want to thank my fiancée, my parents and my

whole family for supporting me throughout the entire time of my studies.



Abstract

Greedy best-first search (GBFS) is a prominent search algorithm for satisficing planning –

finding good enough solutions to a planning task in reasonable time. GBFS selects the

next node to consider based on the most promising node estimated by a heuristic function.

However, this behaviour makes GBFS heavily depend on the quality of the heuristic estimator.

Inaccurate heuristics can lead GBFS into regions far away from a goal. Additionally, if the

heuristic ranks several nodes the same, GBFS has no information on which node it shall

follow. Diverse best-first search (DBFS) is a new algorithm by Imai and Kishimoto [2011]

which has a local search component to emphasis exploitation. To enable exploration, DBFS

deploys probabilities to select the next node.

In two problem domains, we analyse GBFS’ search behaviour and present theoretical results.

We evaluate these results empirically and compare DBFS and GBFS on constructed as well

as on provided problem instances.
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1
Introduction and Related Work

In this thesis, we discuss greedy best-first search (GBFS) – a widely used algorithm for planning.

Planning is a branch of artificial intelligence which involves finding action sequences for

known environments. This involves guiding agents in these environments from an initial state

to one or more specified goal states. Our thesis works in the section of classical planning,

that is the environment is static and known beforehand. It doesn’t change while the agent

is thinking. All actions which the agent executes are deterministic – their outcome is well

defined and known to the agent in advance. Additionally, only one agent operates inside the

environment.

Finding a solution, that is a valid sequence of actions from start to goal can be categorized

into two scopes: satisficing and optimal planning. In optimal planning, the aim is to find

the best possible solution in terms of costs for given actions, thus minimizing the sum of

action costs of solutions. Our thesis works in the field of satisficing planning – finding “good

enough” solutions1, that is not necessarily optimal solutions while still considering the costs.

One of the most prominent algorithms used in satisficing planning is greedy best-first search.

GBFS belongs to the class of graph algorithms called best-first search. GBFS chooses the

next action in the environment greedily, i.e. it selects the most promising node currently

known. This ranking of nodes is done through goal estimators – heuristics. Heuristics try to

estimate the costs from a state to the goal.

Consider the example problem depicted in Figure 1.1. Our goal is to reach s∗ when starting

at s0. GBFS will always select the most promising node it currently knows measured by h.

Thus, starting from s0, GBFS will go to s1 as the heuristic estimate of s1 is lower than the

1 The term satisficing goes back to Simon [1957]:

“Administrative theory is peculiarly the theory of intended and bounded rationality – of
the behaviour of human beings who satisfice because they have not the wits to maximize.”

“Whereas economic man supposedly maximizes – selects the best alternative from among
all those available to him – his cousin, the administrator, satisfices – looks for a course of
action that is satifactory or ‘good enough’.”

In order to reflect that the quality of a solution matters, the International Planning Competition 2008
(IPC-2008) defined the score of a planner by the ratio Q∗/Q, that is the cost of the best known solution
divided by the cost of the solution provided by the planner (Do et al. [2008]).
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Figure 1.1: An example graph problem. The goal is to reach s∗, starting in s0. Each
node in the graph has been assigned goal distance estimate h. Actions include moving
from one node to another – all actions have uniform costs of 1.

one of s4. In s1, it has two nodes with the best heuristic value, s2 and s3. GBFS will visit

both nodes, but the ordering depends on how GBFS handles tie-breaking with the same

heuristic estimates. Only after considering nodes s1, s2 and s3, GBFS will visit nodes s4,

then s5 and finally s∗.

The heuristic estimate of the example lead GBFS into a local plateau where it had to visit

every node with h = 1. Only after visiting all nodes in the local plateau GBFS is directed to

the goal node. This example shows that GBFS heavily depends on the quality of the used

heuristic – if the heuristic estimates are inaccurate, GBFS is lead astray into unpromising

nodes that may be far away from goal states. It also shows that GBFS comes into situations

where multiple nodes have the same heuristic estimate and thus, GBFS has no information

about which node is more promising.

To improve the search behaviour of GBFS, Imai and Kishimoto [2011] introduced the diverse

best-first search (DBFS) algorithm – an algorithm that tries to tackle the problems of local

plateaus and inaccurate heuristics when searching with GBFS. In short, DBFS visits both

promising and unpromising nodes based on a probability parameter and narrows the search

region down to local aspects.

The goal of this work is to locate and describe problems of GBFS theoretically, evaluating

them empirically and compare the results to DBFS’ search behaviour. We focus our analysis

on the h+ heuristic. h+ estimates goal distances optimal for problems that are simplified by

ignoring harmful effects of actions.

In the rest of this chapter we highlight related work to our thesis. The following chapter

covers the background, including formal definitions of planning, planning tasks and the

heuristic function. We also introduce planning domains considered in this thesis and go

into detail about the relevant algorithms GBFS and DBFS. Following the background we

analyse two problem domains, each in a separate chapter. This includes constructing artificial

problems and deriving theoretical properties for them. Both chapters contain an empirical

evaluation of the introduced theory as well as an empirical comparison of GBFS and DBFS

on the artificial and provided problem instances. Finally, we conclude our thesis and point

to possible future work.

The field of satisficing planning is highly relevant in practice. For many practical problems

it is intractable or very expensive to find an optimal solution. Additionally, such problems
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often impose restrictions on time and costs of finding solutions. In these cases, satisficing

planning may be able to find non-optimal but still useful solutions.

A great effort of research goes into improving GBFS and finding other algorithms for

satisficing planning. Multiple enhancements for GBFS were introduced. Preferred operators

are actions applied in a state that are identified to be more likely in a solution path. They

were firstly introduced by Hoffmann and Nebel [2001] under the name of helpful actions.

Helmert [2006] then adapted them to GBFS. Additionally, Helmert [2006] introduced two

other techniques to improve the search: deferred heuristic evaluation and multi-heuristic

best-first search. Deferred heuristic evaluation evaluates successors of a node in a lazy manner

by inserting the successor with the parent’s heuristic value into the open list. Multi-heuristic

best-first search incorporates additional heuristics to identify the most promising node.

This is especially useful when heuristics cover different aspects of the problem. Richter

and Helmert [2009] evaluated the usefulness of preferred operators and deferred heuristic

evaluation empirically. In addition, they employed a controlled, artificial experiment to

analyse the benefit of preferred operators. Röger and Helmert [2010] revisited multi-heuristic

best-first search and provided an extensive study on different methods to combine multiple

heuristics in satisficing planning.

Valenzano et al. [2014] investigated the effects of these knowledge-based enhancements

and compared them to knowledge-free techniques. In particular, they introduced a simple

technique to GBFS called ε-greedy node selection which forces GBFS to expand a random

node from the open list with a probability of ε. Similar to DBFS, Roamer by Lu et al.

[2011] integrates stochastic elements into GBFS by doing random walks when detecting a

local plateau. Xie et al. [2014a] also investigated local plateaus and introduced two local

exploration strategies to exit these plateaus: local GBFS and local random walk search. Very

similar to DBFS, Xie et al. [2014b] introduced a type system (used for heuristic search, by

Lelis et al. [2013]). The resulting type-GBFS expands alternatively from the open list and

the type data structure. A node in the type structure is selected uniformly out of possible

pairs of heuristic value and path costs. Another way to enhance exploration of GBFS is

K-best-first search (KBFS) by Felner et al. [2003]. KBFS(k) is a generalization of best-first

search which expands the first k nodes from the open list at one time and then places the

successors into the open list. López and Borrajo [2010] introduced EKBFS – an enhanced

KBFS with a goal agenda (Koehler and Hoffmann [2000]) and helpful actions.

On delete relaxations and h+, Betz and Helmert [2009] provided domain-dependent results

on the complexity of calculating h+ including Schedule. They did experiments to conclude

that h+ provides informative estimates compared to merge-and-shrink abstractions (hm&s,

Helmert et al. [2007]). Katz et al. [2013] introduced the red-black relaxation. This type of

delete relaxation considers some delete effects by partitioning the variables of the planning

task into two sets: black state variables and red state variables. Black variables take delete

effects into account whereas red variables ignore them.



2
Background

This chapter introduces definitions that our work bases on. Here we define the notation used

throughout the thesis and provide preliminaries to our work.

Firstly we describe planning including planning tasks, state spaces and heuristics. Secondly,

the relevant algorithms are introduced and described. Lastly, we give an outline of the

considered problem domains.

2.1 Planning
Planning is the task of solving tasks domain-independently, i.e. by working on a generalized

model. In our thesis we work with the STRIPS planning task introduced by Fikes and

Nilsson [1971] with a small extension.

Definition 1 (STRIPS Planning task). A STRIPS planning task is a 4-tuple Π = 〈V,O, I,G〉
with

• V , a finite set of propositional state variables

• O, a finite set of operators, each operator o ∈ O has preconditions pre(o) ⊆ V , add

effects add(o) ⊆ V , delete effects del(o) ⊆ V and costs cost(o) ∈ N0

• I ⊆ V , the initial state

• G ⊆ V , the set of goals

The original planning task by Fikes and Nilsson [1971] does not include a cost function for

operators and assumed uniform action costs. We extended the original task by the cost

function to allow non-uniform action costs. This type of planning task enables us to define

problems in a simple yet effective manner. In the following we omit STRIPS if it is clear

from context.

The goal of planning is to solve such planning tasks. Planning tasks are efficient repre-

sentations of planning problems. However as the main goal of these tasks is to provide a

complete but compact description of the problem definition, planning tasks are unsuitable

for theoretical analysis. For this reason, we work conceptually with state spaces:
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Definition 2 (State space). A state space is a 6-tuple S = 〈S,A, cost, T, s0, S
∗〉 with

• S, a finite set of states

• A, a finite set of actions

• cost : A→ N0, action costs

• T ⊆ S×A×S, the transition relation which is deterministic in the first two arguments,

i.e. for all s ∈ S, a ∈ A, there is at most one s′ with 〈s, a, s′〉 ∈ T

• s0 ∈ S, the initial state

• S∗ ⊆ S, the set of goal states

We call an action applicable if it can be applied to state s, i.e. action a is applicable in s if

there exists a 〈s, a, s′〉 for any state s′ with 〈s, a, s′〉 ∈ T . We write transitions as s
a−→ s′ to

denote that applying action a in s results in s′.

In order to solve a planning task, we need to define how such a task induces a state space.

Definition 3 (Π induced state space). The state space S(Π) = 〈S,A, cost, T, s0, S
∗〉 induced

by the planning task Π = 〈V,O, I,G〉 is defined as:

• A set of states S = P(V ). A state s ⊆ V consists of a set of facts, representing all

propositions that are true in s.

• A set of actions A = O.

• The cost function as defined in Π.

• The transition relation

T = {〈s, a, s′〉 | s, s′ ∈ S, a ∈ A : pre(a) ⊆ s and s′ = (s \ del(a)) ∪ add(a)}.

In words, a transition s
a−→ s′ exists if the preconditions of a are met. The state s′

results from applying the add and delete effects of a to s.

• The initial state s0 = I.

• The set of goal states S∗ = {s | s ∈ S : G ⊆ s}. A state is a goal if the set of goal

propositions are true in s.

Along with state spaces, we need several other definitions. A path is a sequence of actions

leading from one state to another:

Definition 4 (Path). Let S = 〈S,A, cost, T, s0, S
∗〉 be a state space. Let s(0), . . . , s(n) ∈ S

be states and π1, . . . , πn ∈ A actions such that s(0) π1−→ s(1), . . . , s(n−1) πn−−→ s(n).

The path from s(0) to s(n) is defined as

π = 〈π1, . . . , πn〉 (2.1)
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The length of a path π is given as |π| = n, the costs as cost(π) =
∑n
i=1 cost(πi). We call

paths starting from s0 to a goal state s∗ ∈ S∗ solutions. When interested in the cheapest

solution, we speak of optimal planning.

Solving state spaces without any further information is called uninformed search as no

properties of the problem other than its formal definition are considered. Ideally, we want

to differentiate between promising and unpromising states. For this reason, we introduce

heuristics:

Definition 5 (Heuristic). Let S be a state space with states S. A heuristic function for

state space S is a function

h : S → N0 ∪ {∞} (2.2)

which assigns each state a non-negative number or infinity.

The intuition of h(s) is to estimate the goal distance from s. This estimate is often based on

the properties of the underlying state spaces and its actions. Heuristics enable us to rank

states and prioritize states with lower estimates over states with higher ones.

The heuristic that estimates the best goal distance is called h∗:

Definition 6 (h∗). Let S be a state space with states S. The perfect heuristic h∗S assigns

each state s ∈ S the costs of the cheapest path from s to any goal state or ∞ if there exists

no path to any goal state.

We write h∗ for h∗S when the state space is clear from context. Calculating h∗(s) means

finding the cost of the best solution from s – exactly the goal of optimal planning. Thus, h∗

is a theoretical property that usually doesn’t get calculated in practice.

One class of heuristic functions – heuristics based on delete relaxations – estimates its value

by considering simplified planning tasks without problematic action effects. We can classify

effects of operators of planning tasks into two categories: beneficial and harmful. As goals

and preconditions are defined over a set of true propositions, add effects are always beneficial

whereas delete effects are always harmful. Thus, the basic concept of relaxed operators is to

ignore any delete effect:

Definition 7 (Relaxed operator). Let Π be a planning task with operators O. The relaxation

o+ of an operator o ∈ O is the operator with pre(o+) = pre(o), add(o+) = add(o), cost(o+) =

cost(o) and del(o+) = ∅.

A relaxed operator is an operator without its delete effects. When relaxing every operator of

a planning task, we call this task a relaxed planning task:

Definition 8 (Relaxed planning task). Let Π = 〈V,O, I,G〉 be a planning task. The relaxed

planning task Π+ of Π is defined as Π+ := 〈V, {o+ | o ∈ O}, I, G〉.

As the states are the same for both tasks, we can define heuristics on the relaxed problem

for the original task. One such heuristic is h+, the optimal heuristic of the relaxed task:

Definition 9 (h+). Let Π be a planning task with states S. The optimal relaxation heuristic

function h+(s) for S(Π) for all s ∈ S is defined as the perfect heuristic function of S(Π+):

h+(s) := h∗S(Π+)(s). (2.3)
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h+ is the optimal estimate for a simplified problem. As delete effects can only result in

having to apply more actions but never less, it holds that h+ never overestimates and thus

h+(s) ≤ h∗(s) for all s ∈ S.

It has been shown by Bylander [1994] that computing h+ is a NP-hard problem and thus

often intractable in practice. Thus, practical heuristics try to estimate h+. Studied relaxation

heuristics include hadd and hmax (Bonet and Geffner [2001]), hFF (Hoffmann and Nebel

[2001]), additive hmax (Coles et al. [2008], Haslum et al. [2005]), hpmax (Mirkis and Domshlak

[2007]), hsa (Keyder and Geffner [2008]), hlst (Keyder and Geffner [2009]) and hLM-cut

(Helmert and Domshlak [2009]).

In our thesis we consider hFF and hLM-cut. hFF overestimates h+, whereas hLM-cut underes-

timates, i.e. hLM-cut(s) ≤ h+(s) ≤ hFF(s) for all s ∈ S.

2.2 Search Algorithms
In the following we present two algorithms that try to solve planning tasks in terms of

satisficing planning. Greedy best-first search (GBFS) is a standard textbook algorithm (e.g.

Russell and Norvig [2009]) whereas diverse best-first search (DBFS) introduced by Imai and

Kishimoto [2011] is a new approach to improve GBFS with focus on avoiding local plateaus.

Both algorithms make use of search nodes of which the search graph is made of. Algorithm 1

shows the definition of search nodes (line 1) as well as additional functions to simply the

following algorithms. make node constructs a node from the parent node as well as its

state and the action that leads from the parent state to the node. make root node is a

utility function to create the initial node without any parent or action. Lastly, extract path

constructs the path that leads from the initial node to this node by prepending all actions

when traversing the graph to the root node.

2.2.1 Greedy Best-First Search
GBFS is a graph search algorithm that always expands nodes with minimal h value. Algo-

rithm 2 shows the pseudo-code of GBFS. Like other best-first search algorithms, GBFS keeps

track of possible nodes to expand in the open list and states which were already expanded in

the closed set. GBFS takes the next element from the list (line 8), the node with the lowest

h value, and expands it by inserting all successors into the open list (line 14 to 17). This

process is repeated until GBFS either expands a node with a goal state (line 12 and 13) or

the whole state space has been expanded and the open list is empty (line 18).

The shown algorithm is a graph search algorithm in contrary to tree search algorithms. This

results in GBFS eliminating duplicates which is the usual behaviour of GBFS if not specified

otherwise.

2.2.2 Diverse Best-First Search
DBFS tries to improve GBFS by avoiding local plateaus. The main goal of this algorithm is

to consider multiple search directions. DBFS provides two main differences to GBFS: First,
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1 SearchNode :: SearchNode(parent: SearchNode, state: State, a: Action, g: N0)

2 make node(parent: SearchNode, a: Action, s′: State)
3 begin
4 n← new SearchNode
5 n.parent← parent
6 n.state← s′

7 n.a← a
8 n.g ← parent.g + cost(a)
9 return n

10 make root node()
11 begin
12 n← new SearchNode
13 n.state← s0

14 n.parent← nil
15 n.a← nil
16 n.g ← 0
17 return n

18 extract path(n: SearchNode)
19 begin
20 list ← empty list of Actions
21 while n.a 6= nil do
22 list.prepend(n.a)
23 n← n.parent

24 return list

Algorithm 1: Definition of search nodes and utility functions to create new nodes as
well as extract the path from the initial node to the given node.

DBFS has a probability to expand suboptimal nodes with respect to both heuristic value as

well as path costs. Secondly, after fetching a node from the open list, DBFS limits its search

locally.

The outline of DBFS is shown in Algorithm 3. DBFS uses a global open set and a global

closed list. Each iteration starts with fetching a new node from the global open set (line 27).

Starting from this node, DBFS searches locally by performing GBFS for a limited amount of

expansions. When no solution is found, all locally found nodes are merged into the global

open set (line 40) and a new iteration begins.

Algorithm 4 shows the procedure of extracting the next node from the global open set. DBFS

assigns a probability to each pair 〈h, g〉 of possible heuristic and path cost values (lines 52

to 58). The parameter T ∈ (0, 1]2 controls the probability of selecting nodes with higher

h values than hmin by raising T to the power of h − hmin (line 57). Additionally, DBFS

provides a second parameter G: G controls the probability by restricting the maximal path

2 In contrast to DBFS introduced by Imai and Kishimoto [2011], we don’t allow T = 0. The reason for
this is to avoid cases where ptotal = 0. This can happen when T = 0, G < gmax and all nodes with
h(n.state) = hmin have path costs of n.g = gmax. Then, the only way to increase ptotal is by selecting
nodes with hmin (T (h−hmin) = 00 = 1). However, exactly these nodes are not considered as G < gmax

and thus, ptotal = 0.
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costs of considered nodes (line 47 and 53).

2.3 Planning domains
In our thesis we considered two planning domains: Pathways and Schedule. Pathways

originates from the Fifth International Planning Competition (IPC-5) (Gerevini et al. [2009])

whereas Schedule was used in the Second International Planning Competition (IPC-2)

(Bacchus [2001]). Both domains have uniform action costs of 1. The domain definitions of

Pathways and Schedule can be found in the appendix in Section A.3.1 and A.3.2.

We chose these two planning domains as the experiments conducted by Imai and Kishimoto

[2011] show that DBFS is able to solve at least 3 times more problems than GBFS. For

Pathways, DBFS solved all 30 instances. Additionally, both domains have a simple structure

which simplifies a theoretical analysis.

2.3.1 Pathways
Pathways is a problem domain about chemical reactions. The basic goal is to make certain

complex molecules available in the pool of present molecules as a result of chemical reactions.

Complex molecules are molecules that can only be made from reacting reagents whereas

simple molecules are the starting point. A limited amount of them can be chosen. Chosen

molecules can then be made available indefinitely by initializing them.

The possible actions to create a new product are the following:

25 GBFS(Π: planning task, h: heuristic)
26 begin
27 open ← priority queue of SearchNodes ordered by h
28 if h(s0) <∞ then
29 open.insert(make root node())

30 closed ← empty set of States
31 while open is not empty do
32 n ← open.pop min()
33 if n.state ∈ closed then
34 continue

35 closed.insert(n)
36 if n.state ∈ S∗ then
37 return extract path(n)

38 for each 〈a, s′〉 with n.state
a−→ s′ do

39 if h(s′) <∞ then
40 n′ ← make node(n, a, s′)
41 open.insert(n′)

42 return unsolvable

Algorithm 2: Pseudo-code of GBFS, a variant of best-first search.
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• associate that consumes both reagents,

• associate-with-catalyze which consumes only one of the reagents, the other serves as a

catalyst and remains available after the reaction

• and synthesize that creates the product from one reagent without consuming any

molecule.

For all problems, the goal is to reach all sub-goals – a sub-goal consists of two molecules

whereat at least one has to be available.

One interesting property of this domain is that the only possible dead-ends can result from

choosing the wrong simple molecules. Accordingly, finding any solution solely depends on

the set of chosen molecules and not on the delete effects of the reactions. This also means

that as soon as the limit of chosen molecules is reached, h+ immediately detects dead-ends

and results in choosing a valid set of chosen molecules. Notice however, that this set can be

too large.

43 DBFS(Π: planning task, h: heuristic, P : [0, 1], T : (0, 1])
44 begin
45 open ← empty set of SearchNodes
46 closed ← empty set of States
47 if h(s0) <∞ then
48 open.insert(make root node())

49 while open is not empty do
50 local ← empty priority queue of SearchNodes ordered by h

51 n ← fetch node(open, P , T )
52 local.insert(n)

// Perform local GBFS rooted at n

53 for each i ∈ {1, . . . ,min(1, h(n.state))} do
54 if local is empty then
55 break

56 m ← local.pop min()

57 closed.insert(m.state)
58 if m.state ∈ S∗ then
59 return extract path(m)

60 for each 〈a, s′〉 with m.state
a−→ s′ do

61 if h(s′) <∞ and s′ /∈ closed then
62 m′ ← make node(m, a, s′)
63 local.insert(m′)

64 open.insert all(local)

65 return unsolvable

Algorithm 3: The outline of the algorithm introduced by Imai and Kishimoto [2011].
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2.3.2 Schedule
The domain Schedule models the processing and machining of objects on different types

of machines. The goal is to give certain objects the correct properties. Possible properties

are shape, surface condition and paint. Additionally, objects have a temperature – either

cold or hot. Each machine modifies different aspects of an object and can also remove other

properties during the process:

• Roller shapes the object cylindrical, but makes the object hot and removes any surface

and paint.

• Similar to rolling, the lathe makes objects cylindrical, but removes the paint and makes

their surface rough.

• The polisher simply polishes the surface of the object. The polisher requires objects to

be cold.

• Grinding an object results in a smooth surface without any paint.

• Lastly, the immersion painter and spray painter paint objects. Additionally, the spray

painter removes the surface condition and requires cold objects.

Notice that in the original domain definition, two additional machines punch and drill-press

are defined. As none of the machines are required for the defined problems (the additional

prepositions don’t appear in any goal condition), we omitted them to simplify our analysis.

66 DBFS :: fetch node(open: set of SearchNodes, P : [0, 1], T : (0, 1])
67 begin
68 〈hmin, hmax〉 ← minimum and maximum of {h(n.state) | n ∈ open}
69 〈gmin, gmax〉 ← minimum and maximum of {n.g | n ∈ open}
70 if with probability of P then
71 G← select uniformly from {gmin, . . . , gmax}
72 else
73 G← gmax

74 ptotal ← 0

75 p← empty map from 〈h, g〉 to R+
0

76 for each h ∈ {hmin, . . . , hmax} do
77 for each g ∈ {gmin, . . . , G} do
78 if there is no n ∈ open with h(n.state) = h and n.g = g then
79 p(〈h, g〉)← 0
80 else
81 p(〈h, g〉)← Th−hmin

82 ptotal ← ptotal + p(〈h, g〉)

83 〈h, g〉 ← select 〈h, g〉 with respect to probability p(〈h,g〉)/ptotal

84 n← select uniformly from {n | n ∈ open : h(n.state) = h, n.g = g}
85 return n

Algorithm 4: Details about the method to fetch the next node from the global open
set used in DBFS.
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Machining an object results in the machine being busy and the object being scheduled. In

order to free machines and objects, we have to apply a time-step. The intention of time-step

is to enable parallel processing of different objects on different machines.

Important to notice is that there is no action to cool objects down – thus, any hot object

stays hot. This characteristic is the only way to result in a dead end: an object that has

to be polished needs to be processed by the polisher – however, the polisher requires cold

objects.



3
Pathways Analysis

In the following we begin by analysing the Pathways domain. The goal of this analysis

is to locate specific problems of GBFS when searching with h+. We show that in specific

situations, GBFS has to search uninformed through local plateaus of exponential sizes.

One important aspect of the domain is that most of the reactions consume molecules. h+

ignores the consumption in such reactions. In situations where two reactions consume the

same molecule, h+ underestimates the costs as it ignores the costs to build the consumed

molecule. Figure 3.1 illustrates exactly this situation and shows that this property of h+

can lead GBFS into a large local plateau. Notice that unlike the predefined problems of the

Pathways domain our example requires both molecules V1X and V1Y to be available as a

goal state. In order to construct the same situation in which only one of two molecules are

needed for a goal, we can introduce another associate reaction that merges V1X and V1Y

into the new goal molecule and then duplicate the graph. Then we require that only one of

these goal molecules has to be available to reach the goal.

G

V1X

V1Y

cat. ass.

cat. ass.

X

V1

Y

ass.

V2

V3

· · ·

Vi

Vj

ass.

ass.

V2i

V2i+1

V2j

V2j+1

...

Figure 3.1: An exemplary Pathways problem. Actions choose and initialize are
omitted for reasons of readability. Molecules X and Y serve as catalysts and don’t
get consumed when reacting with V1.
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3.1 Preliminaries
Let N := {V1, . . . , Vn} with |N | = n be the set of all molecules of the binary tree. As we use

associate actions, every inner node needs to have two children and as such the number of

molecules needs to be odd: n = 2k + 1 with k ∈ N0.

Let M := N ∪ {X,Y, V1X,V1Y } with |M| = n + 4 be the set of all molecules, dM be the

depth of the layer containing molecule M ∈ N with dV1
= 0, . . . , dVi

= blog2(i)c, . . . ,
dVn

=: d and Ni be the set of molecules in depth i with

|Ni| =


2i if i < d

n−
d−1∑
j=0

|Nj | = n− 2d + 1 if i = d.
(3.1)

Let Ns := {Vi | Vi ∈ N : 2i > n} = Nd ∪ {Vi | Vi ∈ Nd−1 : 2i > n} be the set of all molecules

of the binary tree which cannot be made available by any reaction. It contains all molecules

Nd in the outermost depth d and all simple molecules in depth d− 1. The size of this set is

given as:

|Ns| = |Nd|+ |Nd−1| −
|Nd|

2

=
1

2
(|Nd|+ 2|Nd−1|)

(3.1)
=

1

2
(n− 2d + 1 + 2 · 2d−1)

=
(n+ 1)

2
(3.2)

To reach the goal in this example all molecules have to be made available at least once. Thus

every simple molecule has to be chosen as well. For this reason, we assume that all simple

molecules are already chosen in the initial state s0 = {chosen(M) | M ∈ Ns ∪ {X,Y }}.
When all simple molecules are already chosen, we can no longer apply any choose action and

omit them in the following discussion as it is not part of our analysis. One side effect of this

decision is that we can describe states as the set of available molecules s̃ ⊆M:

s = s0 ∪ {available(M) |M ∈ s̃}. (3.3)

For readability, we omit the tilde character and directly describe states s ⊆ M as sets of

available molecules.

3.2 Heuristic Value
To calculate h+(s) and h∗(s) values for any state s ∈ S in this example problem, we define

the costs cost(M, s) to create molecule M ∈M in state s.

The cost to build M is 0 if it is already included in s. For all simple molecules Ns, X
and Y we have costs of 1 to make them available if not already given. The costs of all

other molecules Vi in the binary tree are the costs to build the reactants V2i and V2i+1 and

associating them to Vi. Similarly the costs to build the goal molecules V1X and V1Y are

given by the costs to build their reactants V1 and X/Y and associating them.
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Formally, the costs cost(M, s) to create M ∈M in s ∈ S are given by:

M ∈ Ns ∪ {X,Y } : cost(M, s) :=

{
0 if M ∈ s

1 otherwise

M = Vi ∈ N \ Ns : cost(M, s) :=


0 if M ∈ s

1 + cost(V2i, s)

+ cost(V2i+1, s)

otherwise

M = V1Z,Z ∈ {X,Y } : cost(M, s) :=

{
0 if M ∈ s

1 + cost(V1, s) + cost(Z, s) otherwise
(3.4)

Now, h+(s) is given as the costs to build both goal molecules V1X and V1Y while counting

the costs of V1 only once:

h+(s) =

{
cost(V1X, s) + cost(V1Y, s)− cost(V1, s) if V1X /∈ s and V1Y /∈ s

cost(V1X, s) + cost(V1Y, s) otherwise
(3.5)

3.3 Problem Analysis
The key molecule is molecule V1. The problem arises as soon as GBFS expands the state

s := {V 1, X, Y } with

h+(s)
(3.5)
= cost(V1X, s) + cost(V1Y, s)− cost(V1, s)

= 1 + cost(V1, s) + cost(X, s) + 1 + cost(V1, s) + cost(Y, s)− cost(V1, s)

= 2 + cost(X, s) + cost(Y, s) + cost(V1, s) = 2. (3.6)

h+ leads GBFS directly to this state. State s has two successors which lead on a shortest path

to the goal – combining V1 with either X or Y : s′ := {V1X,X, Y } and s′′ := {V1Y,X, Y }.
Both states have the same heuristic estimate of

h+(s′)
(3.5)
= cost(V1Y, s

′) = 1 + cost(V1, s
′) = 1 + cost(V1, s

′′) = h+(s′′). (3.7)

Notice that the estimate of h+ is the cost of the optimal path to reach the goal, thus

h+(s′) = h+(s′′) = h∗(s′) = h∗(s′′).

Apart from these two successors s has |Ns| more successors si := {Vi, V1, X, Y } for all

Vi ∈ Ns, each making one of outermost molecules available. Important to notice is that the

heuristic values stays the same for all si: h
+(si) = h+(s) = 2. Going a layer further, all

successors of si – with the exception of states that combined V1 with either X or Y – also

have a heuristic value of 2.

Generally the set of states S reached from s with heuristic estimate 2 is made of three sets:

• The set S1 := P ({V2, . . . , Vn})× s, containing all combinations of molecules needed to

build V1 combined with s . The heuristic value h+(ŝ) for all ŝ ∈ S1 is the same as h+(s)

as making molecules available that are located before V1 does not influence h+ at all:

h+(s)
(3.5)
= 2 + cost(X, s) + cost(Y, s) + cost(V1, s)

= 2 + cost(X, ŝ)︸ ︷︷ ︸
0

+ cost(Y, ŝ)︸ ︷︷ ︸
0

+ cost(V1, ŝ)︸ ︷︷ ︸
0

= h+(ŝ). (3.8)
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• The two sets

S2 := P({V4, . . . , Vn})× ({V2, V3} ∪ s′)

S3 := P({V4, . . . , Vn})× ({V2, V3} ∪ s′′)

containing all combinations of molecules needed to build V2 and V3 when combined

with V2, V3 and either s′ or s′′. The addition of V2 and V3 to s′ and s′′ changes their

heuristic value to 2:

h+(s′ ∪ {V2, V3})
(3.5)
= cost(V1Y, s

′ ∪ {V2, V3})

= 1 + cost(V1, s
′ ∪ {V2, V3}) + cost(Y, s′ ∪ {V2, V3})

= 2 + cost(V2, s
′ ∪ {V2, V3}) + cost(V3, s

′ ∪ {V2, V3}) = 2 (3.9)

Similar to S1, the addition of any molecules {V4, . . . , Vn} ∪X to {V2, V3} ∪ s′ does not

change the heuristic value.

GBFS reaches a local plateau after expanding state s. The set of states that enable GBFS to

leave the plateau is S2 ∪S3. For each state in this set – an exit state – there exists the action

to associate V2 with V3 to V1 and then reach the goal by associating V1 with either X or Y :

{V2, V3, V1X, . . .}

{V2, V3, V1Y, . . .}
associate V2 and V3−−−−−−−−−−−−→

{V1, V1X, . . .}
associate V1 and Y−−−−−−−−−−−−→

{V1, V1Y, . . .} −−−−−−−−−−−−→
associate V1 and X

{V1X,V1Y, . . .} ∈ S∗

For these successors the h+ value as well as the optimal costs are 1.

V2, V1

h+: 2

V3, V1

h+: 2

V1
h+: 2

V1X

h+: 4

V1Y
h+: 4

V3, V2, V1

h+: 2

V2, V1X

h+: 3

V3, V1X

h+: 3

V2, V1Y

h+: 3

V3, V1Y

h+: 3

V3, V2, V1X
h+: 2

V3, V2, V1Y
h+: 2

V1, V1X
h+: 1

V1, V1Y
h+: 1

V1X,V1Y
h+: 0

S1

S2 ∪ S3

Figure 3.2: Simplified search graph with n = 3, starting from state s = {V1, X, Y }.
As molecules X and Y are in all states available, we omitted them for reasons of
readability.
Dashed nodes are nodes that GBFS never creates when searching with h+.
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To illustrate the three sets S1, S2 and S3, Figure 3.2 shows a small search graph with n = 3.

Notice that GBFS has to reach the exit states while searching uninformed. Following the

higher valued states V1X and V1Y leads to an informed search.

3.4 Quantification of GBFS’ Search Effort
How many states GBFS has to expand to reach an exit state heavily depends on the method

that GBFS uses to handle tie-breaking h-values. When reaching the local plateau, GBFS has

to search uninformed. If GBFS handles tie-breaking in a first in, first out (FIFO) manner,

then GBFS searches the plateau accordingly to breadth-first search. If GBFS uses a stack

for tie-breaking, then GBFS uses depth-first search.

We don’t go into detail in the case of depth-first tie-breaking as the standard way to tie-break

is in a FIFO manner. Notice however that GBFS’ search behaviour depends on the action

ordering. The optimal ordering relates to associating the most important molecules first.

One possible ordering is associating goal molecules first, then associating complex Vi from

lower to higher i and finally initializing simple molecules with Vi from lower to higher i. We

assume that the number of expanded states scales exponentially even with an optimal action

ordering.

When GBFS is tie-breaking with a FIFO queue, then GBFS will find the shortest path π

from s to the nearest exit state. This is because breadth-first search is both complete and

optimal when searching with uniform action costs. The costs of this path is given by costs of

creating V2 and V3 and then reaching the exit state. As s does not contain any molecules

V2, . . . , Vn, we can simply count the number of molecules required to create V2 and V3:

cost(π) = 1 + cost(V2, s) + cost(V3, s) = n. (3.10)

It is obvious that at least all simple molecules Ns have to be made available at least once

(cost(π) = n > |Ns| for n > 1). This results in breadth-first search having to expand at least

all combinations |P(Ns)| before reaching an exit state:

|P(Ns)| = 2|Ns| (3.2)
= 2(n+1)/2 = 2(n+4−3)/2 = 2(|M|−3)/2 (3.11)

Equation 3.11 gives a lower bound on the number of states that need to be expanded to

reach an exit state in the local plateau. That means that the number of expanded states

scales at least exponentially with |M| when GBFS is using a FIFO queue for tie-breaking

h-values.

3.5 Evaluation
In order to evaluate the theoretical results, we created a test domain according to Figure 3.1

with problems having a number of molecules ranging from 5 to 67. On these problems we

counted the number of expanded states by GBFS. We used the Fast Downward framework

(Helmert [2006]) and its GBFS implementation eager greedy without any enhancements.

This and all following experiments were conducted single-threaded on Intel Xeon E5-2660

processors with 2.20 GHz and 64 GiB DDR3 1600 MHz memory. As we are mainly interested
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in the number of expanded states of GBFS, we used a time limit of 5 hours search time and

a memory limit of 3.75 GiB.

Figure 3.3 shows the experimental results – comparing the empirical number of states

compared to our lower bound in Equation 3.11. The experiment data can be found in the

appendix in Table A.2.

An useful approximation of GBFS’ scaling for higher problem sizes (|M| ≥ 13) is: a · 2b·|M|

with a = 3
50 and b = 7

8 . Notice that GBFS scales almost with the same exponential factor

of 2|M| which clearly indicates that GBFS searches uninformed through the local plateau

and has to expand many combinations of molecules. It is also clear that our lower bound

clearly holds but greatly underestimates the number of expansion in the local plateau. This

is because our estimate only counts the combinations of simple molecules. However, GBFS

needs to expand many combinations with complex molecules that Equation 3.11 ignores.
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Figure 3.3: Plot comparing expanded states by GBFS to the number of combinations
of simple molecules. Function 2|M| is shown for reference.

3.6 Comparison of GBFS and DBFS
In the following we compare GBFS and DBFS on the Pathways problem domain. First we

show the performance of DBFS on our example problem and then compare the performance

on the problems provided by IPC-5. For both figures, we run DBFS with three different

random seeds3, denoted by the markers , and . We fixed DBFS’ parameters to T = 0.5

and P = 0.14. These experiments had limits of 30 minutes and 2 GiB memory. For all

experiments with DBFS, we used the implementation of Marxer [2013].

Figure 3.4 shows the number of expanded states of both algorithms on our example problem.

We plotted for both algorithms approximations in the form of a · 2b·|M| whereas for GBFS

3 The exact seeds can be found in Table A.1 in the appendix.
4 We chose the parameters accordingly to Imai and Kishimoto [2011]. They conducted most of their

experiments with these parameters.
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Figure 3.4: Comparison of the number of expanded states of GBFS and DBFS in our
example problem with approximations for both algorithms. When using GBFS, both
hFF and hLM-cut result in the same number of expansions. For DBFS, we used hFF

as an approximation to h+.

we used the approximation mentioned in Section 3.5. For DBFS, we set a = 4 and b = 29
80 .

We can clearly see that DBFS is able to solve the problems with less expansions. We assume

the reason is because DBFS conducts a local search with sometimes unpromising nodes. After

arriving in the local plateau, expanding the states s′ = {V1X,X, Y } and s′′ = {V1Y,X, Y }
enables DBFS to advance directly to the goal, depending on the quality of the h+ estimates

of the used heuristic. With h+, DBFS would reach directly the goal as the h+ estimates of

all successors of s′ and s′′ are also the best goal distances h∗.

The number of expanded states of DBFS scales exponentially as well. We assume this is

related to the structure of our local plateau. Notice that the local plateau contains the goal

states itself. This means that GBFS does not have to expand the whole plateau to finally

expand a higher estimate node that leads to the goal. Thus, DBFS does not benefit directly

from expanding an unpromising node to avoid the plateau. Instead, the higher estimated

nodes simply provide an informed search when ignoring the local plateau.

Additionally we conducted experiments for the standard problems of Pathways to compare

the practical performance. Figure 3.5 shows the scatter plots of the results, comparing

the number of expanded states for both hFF and hLM-cut. We can clearly see that DBFS

dominates GBFS in terms of both number of expansions as well as number of solved instances.

DBFS was able to solve between 16 and 19 instances, depending on the heuristic (hLM-cut

has more solved instances) as well as the random seed, whereas GBFS was able to solve 9

with hLM-cut and 10 with hFF.
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Figure 3.5: Scatter plots comparing the number of expansions of GBFS to DBFS.
The left image shows the results using hFF, the right using hLM-cut. Data points
appearing on the right-most side of the plot indicate that GBFS was not able to solve
the problem whereas DBFS was.



4
Schedule Analysis

After analysing the Pathways domain, we now take a closer look at Schedule: The Schedule

domain has several machines that modify properties of a machined part. For example, the

lathe makes an object cylindrical but removes any paint and surface finish. h+ underestimates

these costs as it ignores the removal of such properties. Additionally, if no object is scheduled,

h+ ignores the cost of processing an object by doing a time-step.

smooth(A)

smooth(A)
scheduled(A)
busy(grinder)

smooth(A)
yellow(A)

scheduled(A)
busy(painter)

cylindrical(A)
scheduled(A)
busy(roller)

hot(A)

smooth(A)
yellow(A)

cylindrical(A)
hot(A)

...

cylindrical(A)
smooth(A)
yellow(A)

hot(A)

h+ : 2

h+ : 3 h+ : 3h+ : 2

h+ : 1

h+ : 2

h+ : 0

grin
d

ste
p

paint
roll

step paint

grind
ro

ll

step

Figure 4.1: Simplified state space of an exemplary Schedule problem with a local
minimum. Several details were simplified to improve readability of the graph: painting
with the immersion-painter has been abbreviated to paint, the color of the paint as
well as the three machines polisher, lathe and spray-painter were omitted in this
example.

Figure 4.1 shows a simplified example of a Schedule problem. In the initial state object A is

already smooth. The goal is that A is cylindrical, yellow and smooth. In this example the

h+ heuristic results in a local minimum: A already has the correct surface condition at the
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start. h+ estimates the costs as 2 – rolling and painting A. Rolling A makes it cylindrical

but removes any paint and surface finish. This results in an increased heuristic estimate

of 3: A is still missing two properties but is now scheduled on a machine and needs to be

processed first. On the other hand, painting first does not increase the estimate as now a

time-step and the roll process is needed. Having A both painted yellow and made smooth –

state s = {smooth, yellow(A)} – results in a local minimum.

In order to scale our example problem, we introduce additional objects B2, . . . , Bn. With

these additional parts, the local minimum transforms into a local plateau. Even though

all objects Bi are irrelevant for the goal, the planner cannot ignore actions applied on

these objects. This is because machines get occupied – busy – by processing these objects.

Additionally, several machines have the temperature proposition in their preconditions and

effects. Thus, the planner has also to consider the temperature state of each object Bi.

This means that we can schedule every object Bi onto every machine in state s without

changing the h+ value. Even when occupying the roller, we still have the possibility to

use the lathe to make A cylindrical. The resulting local plateau has multiple layers, each

containing a number of combinations of processing an object Bi on a machine. In the first

layer reached from s, we can combine each machine with each part. This results in
(
m
1

)(
n−1

1

)
combinations with m as the number of machines. In the second layer, we combine two

machines with two parts, thus
(
m
2

)(
n−1

2

)
. The number of combinations of the kth layer is

given by

|Skp | =
(
m

k

)(
n− 1

k

)
(4.1)

where k ≤ min(m,n− 1). The size of the whole plateau is given as the sum of all layers:

|Sp| =
min(m,n−1)∑

k=0

|Skp | (4.2)

For larger n (n− 1 > m), we can simplify the formula to:

|Sp| =
m∑
k=0

|Skp | (4.3)

The size of the local plateau scales polynomially with O((n− 1)m) or O
(
(n− 1)6

)
considering

that the Schedule domain has a fixed number of machines m = 6. |Sp| gives us a lower bound

to the number of expanded states needed to reach the goal when using GBFS.

4.1 Evaluation
We created the example problem with different numbers of objects. Figure 4.2 shows the

empirically measured number of expansions of GBFS in relation to our theoretical lower

bound |Sp|. The plot shows that our lower bound is indeed correct, but it appears that

the expansions scale faster than our estimate. We suspect that the problem lies within the

machines lathe and roller. In our example problem, the local plateau exists because rolling

removes two goal propositions. In terms of operator effects, the lathe is very similar to the

roller. It makes objects cylindrical and removes the paint as well. Instead of removing the
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surface condition, lathing makes objects rough. In our example, this has the same effect as

we still have to grind object A to make it smooth.
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Figure 4.2: Plot comparing the number of expansions done by GBFS and our theoret-
ical lower bound |Sp|.
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Figure 4.3: Three plots showing the number of expanded states by GBFS compared
to the lower bound |Sp| with modified domains. From right to left, in each sub-plot
one more machine is disabled. Every plot is missing the lathe.
Identical to our example Figure 4.1, the left plot (m = 3) starts with the grinder,
roller and immersion-painter. The polisher was appended to the middle one (m = 4)
and the polisher and the spray-painter to the right (m = 5).
When excluding the lathe from the available machines, we can only combine m− 1
machines as rolling increases the heuristic value because of the costs of time-step.

Thus, for these plots, |Skp | =
(
m−1
k

)(
n−1
k

)
and |Sp| =

∑min(m−1,n−1)
k=0 |Skp |.

The function c · nm−1 is shown as an approximation with cleft = 7, cmiddle = 2 and
cright = 0.5.

This fact leads to the conclusion that having two different machines setting the relevant

goal proposition increases the local plateau substantially. This results in GBFS expanding

more than a polynomial number of states in relation to the number of objects. To confirm

this assumption, we concluded additional experiments by disabling the lathe and further
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adjusting the number of machines. Figure 4.3 shows the results of these experiments. The

left plot shows exactly our example problem with the three machines roller, grinder and

immersion-painter. The middle one contains additionally the polisher and to the right one,

we appended both the polisher and the spray-painter. Thus, the three modified domains have

3, 4 and 5 machines. The data from Figure 4.2 can be found in the appendix in Table A.3.

By removing the lathe, GBFS indeed scales similar to our theoretical lower bound |Sp|.
This strengthens our assumption that the addition of the lathe is responsible for GBFS’

super-polynomial scaling.

4.2 Comparison of GBFS and DBFS
The following section contains empirical comparisons of GBFS and DBFS. We used the same

experiment setup as in Section 3.6.

Figure 4.4 compares the performance of GBFS and DBFS on our example problem. Notice

that even for greater problem sizes, the number of expansions by DBFS is very low (less

than 103). Additionally, DBFS was able to solve all provided instances. To show the scaling

of DBFS, we plotted the linear function 3n to show the remarkable performance of DBFS.
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Figure 4.4: Comparison of GBFS and DBFS on our example Schedule problem. For
both algorithms we plotted an approximation. For GBFS that is the function 3 · 4.2n
used in Figure 4.2 – for DBFS we used 3n.
As an approximation to h+ we used hFF. Notice that in the case of GBFS, the number
of expansions is the same for hFF and hLM-cut.

There are several reasons why DBFS exits the local plateau so fast. One important aspect of

the problem is that the possible heuristic values are very limited – the maximum possible

value for h+ is 4 – doing a time-step and achieving every property individually. This results

in DBFS doing short local searches and fetching many nodes using Algorithm 4. Additionally,

exit states (h+(s) = 3) have a short distance to the plateau in terms of heuristic value. Thus,

DBFS has a high chance to expand one of the unpromising exit states.

To investigate whether DBFS dominates GBFS on the provided Schedule problems as well,
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we conducted experiments and plotted the results in Figure 4.5 as scatter plots. One can

notice very clearly that DBFS solves more difficult problem instances with less expansions

than GBFS. Additionally, DBFS was able to solve between 87% and 95% instances, whereas

GBFS solved only 35%.
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Figure 4.5: Scatter plot empirically comparing the number of expanded states of
GBFS and DBFS on the Schedule problems of IPC-2. The left subfigure shows the
values using hFF, the right using hLM-cut. All data points that appear on the right
axis indicate that GBFS was not able to solve the instance.



5
Conclusion and Future Work

In this thesis we discussed the search algorithms greedy and diverse best-first search. We

have given theoretical lower bounds on the scaling of GBFS with h+ on artificial problems

on the Pathways and Schedule domain and verified these bounds empirically with GBFS and

DBFS. Additionally we evaluated GBFS and DBFS on the provided problems on Pathways

and Schedule and concluded that DBFS outperforms GBFS on both our artificial and the

provided problems.

Possible future work includes extending the theoretical analysis of the introduced artificial

problems on DBFS and providing both lower bounds as well as expected values for DBFS.

Further extending the theory, one could construct state space models suited for GBFS and

DBFS. These models would enable the model-specific evaluation of expected costs, expansions

and runtime of GBFS and DBFS. The main goal behind this theoretical analysis would be

to find theoretical verified properties and reasons on why DBFS outperforms GBFS in terms

of expansions and coverage.

Having such results at hand, one could try to extend DBFS and/or construct other algorithms

that improve the performance of GBFS. Such work could also try to include additional

algorithms in the studies, for example enforced hill-climbing (Hoffmann and Nebel [2001]) or

K-best-first search (Felner et al. [2003]).



References

Fahiem Bacchus. AIPS’00 planning competition: The fifth international conference on

artificial intelligence planning and scheduling systems. AI Magazine, 22(3):47–56, 2001.

Christoph Betz and Malte Helmert. Planning with h+ in theory and practice. In Proceedings

of the Second Workshop on Heuristics for Domain-independent Planning at ICAPS 2009,

2009.
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A
Appendix

A.1 Random Seeds used by DBFS

marker seed

19074890
874709

12278773

Table A.1: The three random seeds we used for conducting our experiments with
DBFS.

A.2 Experimental Results of Domain Analysis

A.2.1 Pathways

expansions

|M| |Ns| |P(Ns)| GBFS ∅DBFS

5 1 2 10 11.00
7 2 4 16 30.33
9 3 8 27 45.33

11 4 16 68 69.00
13 5 32 168 60.33
15 6 64 555 160.67
17 7 128 1755 247.00
19 8 256 6286 633.67
21 7 512 19512 621.33
23 10 1024 67821 1758.00
25 11 2048 221754 2826.00
27 12 4096 808896 3655.67
29 13 8192 2567689 4198.33
31 14 16384 8749064 13354.67
33 15 32768 — 12761.67
35 16 65536 — 28287.67
37 17 131072 — 48900.67
39 18 262144 — —

Table A.2: Measured number of expansions by GBFS and DBFS with our theoretical
bound |P(Ns)| on our example Pathways problem. DBFS’ expansions are shown as
the average over all three different random seeds. Figure 3.3 and 3.4 use this data.
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A.2.2 Schedule

expansions

n |Sp| GBFS ∅DBFS

1 1 10 16.66
2 7 38 37.66
3 28 228 27.33
4 84 1235 72.33
5 210 5772 111.33
6 462 24019 41.66
7 924 91507 42.00
8 1716 325527 68.66
9 3003 1096423 118.00

10 5005 3531655 74.66
15 38760 — 59.33
20 177100 — 58.00
25 593775 — 150.33
30 1623160 — 106.00
35 3838380 — 75.00

Table A.3: Measured number of expansions by GBFS and DBFS in relation to our
theoretical lower bound |Sp| of our our example Schedule problem. As in Table A.2,
expansions by DBFS are shown as the average number over all three seeds. Figure 4.2
and 4.4 use this data.

A.3 PDDL Definitions
The following section contains the planning task definition in the Planning Domain Definition

Language (PDDL). In practice, PDDL is used as the standard formalism to describe planning

tasks. PDDL describes planning tasks more compact in comparison to STRIPS as it uses

limited predicate instead of propositional logic.

Important to notice is that in contrast to STRIPS, PDDL allows negative preconditions. In

order to transform such preconditions into a STRIPS equivalent, one needs to introduce a

new predicate for all predicates that appear as negative in preconditions and goals. These

predicates model the exact opposite of the original predicate. For example in Pathways,

the action choose requires that the molecule is possible and not chosen. As chosen appears

negative, we introduce another predicate not-chosen. In all preconditions and goals where

not chosen appears, we replace it with not-chosen. All effects that change the predicate

chosen need to change the inverse predicate not-chosen accordingly. Additionally, we need

to extend the initial state of problems to explicitly list all molecules as not-chosen which are

not already chosen.

We omitted this transformation for the Schedule domain to retain the readability of the

PDDL definition.
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A.3.1 Pathways

; IPC5 Domain: Pathways Propositional

; Authors: Yannis Dimopoulos, Alfonso Gerevini and Alessandro Saetti

(define (domain Pathways-Propositional)

(:requirements :typing :adl)

(:types

level molecule - object

simple complex - molecule)

(:predicates

(association-reaction ?x1 ?x2 - molecule ?x3 - complex)

(catalyzed-association-reaction ?x1 ?x2 - molecule ?x3 - complex)

(synthesis-reaction ?x1 ?x2 - molecule)

(possible ?x - molecule)

(available ?x - molecule)

(chosen ?s - simple)

(not-chosen ?s - simple)

(next ?l1 ?l2 - level)

(num-subs ?l - level))

(:action choose

:parameters (?x - simple ?l1 ?l2 - level)

:precondition (and (possible ?x) (not-chosen ?x)

(num-subs ?l2) (next ?l1 ?l2))

:effect (and (chosen ?x) (not (not-chosen ?x))

(not (num-subs ?l2)) (num-subs ?l1)))

(:action initialize

:parameters (?x - simple)

:precondition (and (chosen ?x))

:effect (and (available ?x)))

(:action associate

:parameters (?x1 ?x2 - molecule ?x3 - complex)

:precondition (and (association-reaction ?x1 ?x2 ?x3)

(available ?x1) (available ?x2))

:effect (and (not (available ?x1)) (not (available ?x2)) (available ?x3)))

(:action associate-with-catalyze

:parameters (?x1 ?x2 - molecule ?x3 - complex)

:precondition (and (catalyzed-association-reaction ?x1 ?x2 ?x3)

(available ?x1) (available ?x2))

:effect (and (not (available ?x1)) (available ?x3)))

(:action synthesize

:parameters (?x1 ?x2 - molecule)

:precondition (and (synthesis-reaction ?x1 ?x2) (available ?x1))

:effect (and (available ?x2)))

)

Listing A.1: PDDL definition of Pathways
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A.3.2 Schedule

;; Schedule World

(define (domain schedule)

(:requirements :adl :typing)

(:types temperature-type ashape surface machine part colour)

(:constants cold hot - temperature-type

cylindrical - ashape

polisher roller lathe grinder spray-painter immersion-painter - machine

polished rough smooth - surface)

(:predicates (temperature ?obj - part ?temp - temperature-type)

(available ?machine - machine)

(busy ?machine - machine)

(scheduled ?obj - part)

(objscheduled)

(surface-condition ?obj - part ?surface-cond - surface)

(shape ?obj - part ?shape - ashape)

(painted ?obj - part ?colour - colour)

(has-paint ?machine - machine ?colour - colour))

(:action do-polish

:parameters (?x - part)

:precondition (and (available polisher) (not (busy polisher))

(not (scheduled ?x)) (temperature ?x cold))

:effect (and (busy polisher) (scheduled ?x)

(surface-condition ?x polished)

(when (not (objscheduled))

(objscheduled))

(forall (?oldsurface - surface)

(when (and (surface-condition ?x ?oldsurface)

(not (= ?oldsurface polished)))

(not (surface-condition ?x ?oldsurface))))))

(:action do-roll

:parameters (?x - part)

:precondition (and (available roller) (not (busy roller))

(not (scheduled ?x)))

:effect (and (busy roller) (scheduled ?x)

(temperature ?x hot) (not (temperature ?x cold))

(shape ?x cylindrical)

(when (not (objscheduled))

(objscheduled))

(forall (?oldsurface - surface)

(not (surface-condition ?x ?oldsurface))))

(forall (?oldpaint - colour)

(not (painted ?x ?oldpaint)))

(forall (?oldshape - ashape)

(when (and (shape ?x ?oldshape)

(not (= ?oldshape cylindrical)))

(not (shape ?x ?oldshape)))))

(:action do-lathe
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:parameters (?x - part)

:precondition (and (available lathe) (not (busy lathe))

(not (scheduled ?x)))

:effect (and (busy lathe) (scheduled ?x)

(surface-condition ?x rough) (shape ?x cylindrical)

(when (not (objscheduled))

(objscheduled))

(forall (?oldshape - ashape)

(when (and (shape ?x ?oldshape)

(not (= ?oldshape cylindrical)))

(not (shape ?x ?oldshape))))

(forall (?oldsurface - surface)

(when (and (surface-condition ?x ?oldsurface)

(not (= ?oldsurface rough)))

(not (surface-condition ?x ?oldsurface))))

(forall (?oldpaint - colour)

(not (painted ?x ?oldpaint)))))

(:action do-grind

:parameters (?x - part)

:precondition (and (available grinder) (not (busy grinder))

(not (scheduled ?x)))

:effect (and (busy grinder) (scheduled ?x)

(surface-condition ?x smooth)

(when (not (objscheduled))

(objscheduled))

(forall (?oldsurface - surface)

(when (and (surface-condition ?x ?oldsurface)

(not (= ?oldsurface smooth)))

(not (surface-condition ?x ?oldsurface))))

(forall (?oldpaint - colour)

(not (painted ?x ?oldpaint)))))

(:action do-spray-paint

:parameters (?x - part ?newpaint - colour)

:precondition (and (available spray-painter) (has-paint spray-painter ?newpaint)

(not (busy spray-painter)) (not (scheduled ?x))

(temperature ?x cold))

:effect (and (busy spray-painter) (scheduled ?x)

(painted ?x ?newpaint)

(when (not (objscheduled))

(objscheduled))

(forall (?oldsurface - surface)

(not (surface-condition ?x ?oldsurface)))

(forall (?oldpaint - colour)

(when (and (painted ?x ?oldpaint)

(not (= ?oldpaint ?newpaint)))

(not (painted ?x ?oldpaint))))))

(:action do-immersion-paint

:parameters (?x - part ?newpaint - colour)

:precondition (and (available immersion-painter) (has-paint immersion-painter ?newpaint)

(not (busy immersion-painter)) (not (scheduled ?x)))

:effect (and (busy immersion-painter) (scheduled ?x)
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(painted ?x ?newpaint)

(when (not (objscheduled))

(objscheduled))

(forall (?oldpaint - colour)

(when (and (painted ?x ?oldpaint)

(not (= ?oldpaint ?newpaint)))

(not (painted ?x ?oldpaint))))))

(:action do-time-step

:parameters ()

:precondition (objscheduled)

:effect (and (forall (?x - part)

(not (scheduled ?x)))

(forall (?m - machine)

(not (busy ?m)))))

)

Listing A.2: PDDL definition of Schedule
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