
Operator-counting Constraints for Implicit Abstractions

Leonhard Badenberg <leonhard.badenberg@unibas.ch>

Department of Mathematics and Computer Science, University of Basel

July 20, 2023

Introduction

Implicit Abstractions

Constraints for Forward Forks

Constraints for Inverted Forks

Results

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Classical Planning

Definition (Planning Task)

Variables v ∈ V that can each take a value in dom(v)

States s ∈ S assign variables to a value

Operators o ∈ O transition between states

preconditions
effects
a cost

Goal: Find plans from the initial state s0 to a goal state s∗

Operator-counting Constraints for Implicit Abstractions 3

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Optimal Planning

cost(o1) = cost(o2) = cost(o3) = 1

π1 = s0
o1−→ s

o2−→ s∗ cost(π1) = 2

π2 = s0
o3−→ s∗ cost(π2) = 1

To find an optimal plan we can use A∗ search
with any admissible heuristic h.

An admissible heuristic is an underestimation
of the true goal distance.

Operator-counting Constraints for Implicit Abstractions 4

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Abstractions

Definition (Abstraction)

Function that abstracts the state space.

α : S → Sα

s0 remains the initial state in the abstraction

s∗ remains a goal state in the abstraction

The abstraction heuristic hα is the true goal distance in the abstract state space Sα.

hα is admissible if α does not increase the goal distance for any state.

Operator-counting Constraints for Implicit Abstractions 5

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Explicit Abstractions

How do we ensure admissibility?

Most well-known abstractions

preserve the transitions of the original planning task,

search explicitly for optimal plans in the abstract space.

Problem: Abstract state space must be bounded!

Implicit abstractions decompose the planning task until it is tractable to compute.

Operator-counting Constraints for Implicit Abstractions 6

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Implicit Abstractions

Instead of reflecting a few state variables perfectly,

create an abstraction around one variable,

combine those abstractions to reflect many variables.

We ensure admissibility by preserving the cost between two states instead of preserving
the transitions:

cost(α(s), α(s ′)) ≤ cost(s, s ′)

We want to be able to search the abstract space implicitly in polynomial time.

Operator-counting Constraints for Implicit Abstractions 7

Introduction

Implicit Abstractions

Constraints for Forward Forks

Constraints for Inverted Forks

Results

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Example

V = {a, b, c , d} with dom(v) = {0, 1}
O = {o1, o2}

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩ with cost(o1) = 1
o2 = ⟨{b = 1, d = 0}, {c = 1}⟩ with cost(o2) = 1

s0 = {a = 0, b = 0, c = 0, d = 0}
Goal = {a = 1, c = 1}

Operator-counting Constraints for Implicit Abstractions 9

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Example

V = {a, b, c , d} with dom(v) = {0, 1}
O = {o1, o2}

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩ with cost(o1) = 1
o2 = ⟨{b = 1, d = 0}, {c = 1}⟩ with cost(o2) = 1

s0 = {a = 0, b = 0, c = 0, d = 0}
Goal = {a = 1, c = 1}

Operator-counting Constraints for Implicit Abstractions 9

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Example

V = {a, b, c , d} with dom(v) = {0, 1}
O = {o1, o2}

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩ with cost(o1) = 1
o2 = ⟨{b = 1, d = 0}, {c = 1}⟩ with cost(o2) = 1

s0 = {a = 0, b = 0, c = 0, d = 0}
Goal = {a = 1, c = 1}

Operator-counting Constraints for Implicit Abstractions 9

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Example

V = {a, b, c , d} with dom(v) = {0, 1}
O = {o1, o2}

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩ with cost(o1) = 1
o2 = ⟨{b = 1, d = 0}, {c = 1}⟩ with cost(o2) = 1

s0 = {a = 0, b = 0, c = 0, d = 0}
Goal = {a = 1, c = 1}

Operator-counting Constraints for Implicit Abstractions 9

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Example

V = {a, b, c , d} with dom(v) = {0, 1}
O = {o1, o2}

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩ with cost(o1) = 1
o2 = ⟨{b = 1, d = 0}, {c = 1}⟩ with cost(o2) = 1

s0 = {a = 0, b = 0, c = 0, d = 0}
Goal = {a = 1, c = 1}

Operator-counting Constraints for Implicit Abstractions 9

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Example

V = {a, b, c , d} with dom(v) = {0, 1}
O = {o1, o2}

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩ with cost(o1) = 1
o2 = ⟨{b = 1, d = 0}, {c = 1}⟩ with cost(o2) = 1

s0 = {a = 0, b = 0, c = 0, d = 0}
Goal = {a = 1, c = 1}

Operator-counting Constraints for Implicit Abstractions 9

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Causal Graph

Definition (Causal Graph)

Nodes over the variables V

Edges ⟨v , v ′⟩ if an operator o

has a precondition or effect on v
has an effect on v ′

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩

o2 = ⟨{b = 1, d = 0}, {c = 1}⟩

a

b

c

d

Operator-counting Constraints for Implicit Abstractions 10

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Causal Graph

Definition (Causal Graph)

Nodes over the variables V

Edges ⟨v , v ′⟩ if an operator o

has a precondition or effect on v
has an effect on v ′

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩

o2 = ⟨{b = 1, d = 0}, {c = 1}⟩

a

b

c

d

Operator-counting Constraints for Implicit Abstractions 11

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Causal Graph

Definition (Causal Graph)

Nodes over the variables V

Edges ⟨v , v ′⟩ if an operator o

has a precondition or effect on v
has an effect on v ′

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩

o2 = ⟨{b = 1, d = 0}, {c = 1}⟩

a

b

c

d

Operator-counting Constraints for Implicit Abstractions 12

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Forward Forks

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩

o2 = ⟨{b = 1, d = 0}, {c = 1}⟩
a

b

c

d

CG (Π)

a

b

b

a c

c d

c

Operator-counting Constraints for Implicit Abstractions 13

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Forward Forks

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩

o2 = ⟨{b = 1, d = 0}, {c = 1}⟩

O f
b = {ob1 , oa1 , oc2} with

ob1 = ⟨{b = 0}, {b = 1}⟩,
oa1 = ⟨{b = 1}, {a = 1}⟩,
oc2 = ⟨{b = 1}, {c = 1}⟩.

b

a c

CG (Πf
b)

Operator-counting Constraints for Implicit Abstractions 14

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Inverted Forks

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩

o2 = ⟨{b = 1, d = 0}, {c = 1}⟩
a

b

c

d

CG (Π)

a

b

b

b d

c d

Operator-counting Constraints for Implicit Abstractions 15

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Inverted Forks

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩

o2 = ⟨{b = 1, d = 0}, {c = 1}⟩

O i
c = {ob1 , oc2} with

ob1 = ⟨{b = 0}, {b = 1}⟩,
oc2 = ⟨{b = 1, d = 0}, {c = 1}⟩.

b d

c

CG (Πi
c)

Operator-counting Constraints for Implicit Abstractions 16

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Tractability

Fork abstractions can be implicitly searched in polynomial time if

for forward forks: dom(r) = {0, 1},
for inverted forks: |dom(r)| = O(1).

Operator-counting Constraints for Implicit Abstractions 17

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Compositions of Fork Abstraction Heuristics

We can admissibly combine the fork abstractions obtained for each variable by

using an optimal cost partitioning,

using operator-counting constraints.

Operator-counting Constraints for Implicit Abstractions 18

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Optimal Cost Partitioning Constraints

The optimal cost partitioning heuristic can be obtained by a linear program (LP):

Maximize
m∑
i=1

hi (αi (s)) subject to C (s)

Where the cost is distributed among all unary-effect operators of all fork abstractions.

We can use those constraints to derive operator-counting constraints.

Operator-counting Constraints for Implicit Abstractions 19

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Operator-counting Constraints

The operator-counting heuristic can be obtained by a linear program (LP):

Minimize
∑
o∈O

cost(o) · Yo subject to C (s)

Where Yo denotes how often the operator o is used in a plan.

Combines different LP based heuristics by combining their constraints.

Operator-counting Constraints for Implicit Abstractions 20

Introduction

Implicit Abstractions

Constraints for Forward Forks

Constraints for Inverted Forks

Results

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Idea

O f
b = {ob1 , oa1 , oc2} with

ob1 = ⟨{b = 0}, {b = 1}⟩,
oa1 = ⟨{b = 1}, {a = 1}⟩,
oc2 = ⟨{b = 1}, {c = 1}⟩.

σ(r) = ⟨0, 1, 0, . . . ⟩

b = 0

a = 0 c = 0

Operator-counting Constraints for Implicit Abstractions 22

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Idea

O f
b = {ob1 , oa1 , oc2} with

ob1 = ⟨{b = 0}, {b = 1}⟩,
oa1 = ⟨{b = 1}, {a = 1}⟩,
oc2 = ⟨{b = 1}, {c = 1}⟩.

σ(r) = ⟨0, 1, 0, . . . ⟩

b = 1

a = 0 c = 0

Operator-counting Constraints for Implicit Abstractions 23

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Idea

O f
b = {ob1 , oa1 , oc2} with

ob1 = ⟨{b = 0}, {b = 1}⟩,
oa1 = ⟨{b = 1}, {a = 1}⟩,
oc2 = ⟨{b = 1}, {c = 1}⟩.

σ(r) = ⟨0, 1, 0, . . . ⟩

b = 1

a = 1 c = 1

Operator-counting Constraints for Implicit Abstractions 24

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Idea

O f
b = {ob1 , oa1 , oc2} with

ob1 = ⟨{b = 0}, {b = 1}⟩,
oa1 = ⟨{b = 1}, {a = 1}⟩,
oc2 = ⟨{b = 1}, {c = 1}⟩.

σ(r) = ⟨0, 1⟩

b = 1

a = 1 c = 1

No unary root-effect operator to change b back to 0.

Operator-counting Constraints for Implicit Abstractions 25

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Notation

1. Yov denotes how often the unary-effect operator ov is
used to change the value of a leaf variable v .

2. Yl(v , θ, θ
′) denotes how often v is changed from θ to θ′

at root sequence step l .

3. Yσl
denotes how often a partial root sequence σ of length

l is taken.

σ(r) = ⟨0, 1⟩

b

a c

Operator-counting Constraints for Implicit Abstractions 26

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Notation

1. Yov denotes how often the unary-effect operator ov is
used to change the value of a leaf variable v .

2. Yl(v , θ, θ
′) denotes how often v is changed from θ to θ′

at root sequence step l .

3. Yσl
denotes how often a partial root sequence σ of length

l is taken.

σ(r) = ⟨0, 1⟩

b

a c

Operator-counting Constraints for Implicit Abstractions 26

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Notation

1. Yov denotes how often the unary-effect operator ov is
used to change the value of a leaf variable v .

2. Yl(v , θ, θ
′) denotes how often v is changed from θ to θ′

at root sequence step l .

3. Yσl
denotes how often a partial root sequence σ of length

l is taken.

σ(r) = ⟨0, 1⟩

b

a c

Operator-counting Constraints for Implicit Abstractions 26

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Operator Count Inequalities

Yo1 ≥ Yσ2

Yo1 ≥ Yoa
1

Yo2 ≥ Yoc
2

σ1 = ⟨0⟩
σ2 = ⟨0, 1⟩

b

a c

O f
b = {ob1 , oa1 , oc2} with

ob1 = ⟨{b = 0}, {b = 1}⟩,
oa1 = ⟨{b = 1}, {a = 1}⟩,
oc2 = ⟨{b = 1}, {c = 1}⟩.

Operator-counting Constraints for Implicit Abstractions 27

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Operator Count Inequalities

Yo1 ≥ Yσ2

Yo1 ≥ Yoa
1

Yo2 ≥ Yoc
2

σ1 = ⟨0⟩
σ2 = ⟨0, 1⟩

b

a c

O f
b = {ob1 , oa1 , oc2} with

ob1 = ⟨{b = 0}, {b = 1}⟩,
oa1 = ⟨{b = 1}, {a = 1}⟩,
oc2 = ⟨{b = 1}, {c = 1}⟩.

Operator-counting Constraints for Implicit Abstractions 28

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Operator Count Inequalities

Yo1 ≥ Yσ2

Yo1 ≥ Yoa
1

Yo2 ≥ Yoc
2

σ1 = ⟨0⟩
σ2 = ⟨0, 1⟩

b

a c

O f
b = {ob1 , oa1 , oc2} with

ob1 = ⟨{b = 0}, {b = 1}⟩,
oa1 = ⟨{b = 1}, {a = 1}⟩,
oc2 = ⟨{b = 1}, {c = 1}⟩.

Operator-counting Constraints for Implicit Abstractions 29

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Path Inequalities

Yoa
1
≥ Yl=2(a, 0, 1)

Yoc
2
≥ Yl=2(c , 0, 1)

σ(r) = ⟨0, 1⟩

b

a c

O f
b = {ob1 , oa1 , oc2} with

ob1 = ⟨{b = 0}, {b = 1}⟩,
oa1 = ⟨{b = 1}, {a = 1}⟩,
oc2 = ⟨{b = 1}, {c = 1}⟩.

Operator-counting Constraints for Implicit Abstractions 30

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Path Inequalities

Yoa
1
≥ Yl=2(a, 0, 1)

Yoc
2
≥ Yl=2(c , 0, 1)

σ(r) = ⟨0, 1⟩

b

a c

O f
b = {ob1 , oa1 , oc2} with

ob1 = ⟨{b = 0}, {b = 1}⟩,
oa1 = ⟨{b = 1}, {a = 1}⟩,
oc2 = ⟨{b = 1}, {c = 1}⟩.

Operator-counting Constraints for Implicit Abstractions 31

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Goal Inequality

Yσ1 + Yσ2 ≥ 1

σ1 = ⟨0⟩
σ2 = ⟨0, 1⟩

b

a c

O f
b = {ob1 , oa1 , oc2} with

ob1 = ⟨{b = 0}, {b = 1}⟩,
oa1 = ⟨{b = 1}, {a = 1}⟩,
oc2 = ⟨{b = 1}, {c = 1}⟩.

Operator-counting Constraints for Implicit Abstractions 32

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Root-sequence Flow Inequalities

Yl=1(a, 0, 0)− Yl=2(a, 0, 0)− Yl=2(a, 0, 1) ≥ 0

Yl=1(a, 0, 1)− Yl=2(a, 1, 0)− Yl=2(a, 1, 1) ≥ Yσ1

Yl=2(a, 0, 0) + Yl=2(a, 1, 0) ≥ 0

Yl=2(a, 0, 1) + Yl=2(a, 1, 1) ≥ Yσ2

Similar for v = c .

σ(r) = ⟨0, 1⟩

b

a c

σ1 = ⟨0⟩
σ2 = ⟨0, 1⟩

Operator-counting Constraints for Implicit Abstractions 33

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Root-sequence Flow Inequalities

Yl=1(a, 0, 0)− Yl=2(a, 0, 0)− Yl=2(a, 0, 1) ≥ 0

Yl=1(a, 0, 1)− Yl=2(a, 1, 0)− Yl=2(a, 1, 1) ≥ Yσ1

Yl=2(a, 0, 0) + Yl=2(a, 1, 0) ≥ 0

Yl=2(a, 0, 1) + Yl=2(a, 1, 1) ≥ Yσ2

Similar for v = c .

σ(r) = ⟨0, 1⟩

b

a c

σ1 = ⟨0⟩
σ2 = ⟨0, 1⟩

Operator-counting Constraints for Implicit Abstractions 34

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Root-sequence Flow Inequalities

Yl=1(a, 0, 0)− Yl=2(a, 0, 0)− Yl=2(a, 0, 1) ≥ 0

Yl=1(a, 0, 1)− Yl=2(a, 1, 0)− Yl=2(a, 1, 1) ≥ Yσ1

Yl=2(a, 0, 0) + Yl=2(a, 1, 0) ≥ 0

Yl=2(a, 0, 1) + Yl=2(a, 1, 1) ≥ Yσ2

Similar for v = c .

σ(r) = ⟨0, 1⟩

b

a c

σ1 = ⟨0⟩
σ2 = ⟨0, 1⟩

Operator-counting Constraints for Implicit Abstractions 35

Introduction

Implicit Abstractions

Constraints for Forward Forks

Constraints for Inverted Forks

Results

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Notation

1. Yov denotes how often a unary-effect operator ov is used
to change the value of a parent variable v .

2. Yπc
l
denotes how often a particular plan for the sink πc of

length l is taken.
c

b d

πc = αc(s)[c] → · · · → G i
c [c]

Operator-counting Constraints for Implicit Abstractions 37

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Notation

1. Yov denotes how often a unary-effect operator ov is used
to change the value of a parent variable v .

2. Yπc
l
denotes how often a particular plan for the sink πc of

length l is taken.
c

b d

πc = αc(s)[c] → · · · → G i
c [c]

Operator-counting Constraints for Implicit Abstractions 37

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Operator Count Inequalities

Yo1 ≥ Yob
1

Yo2 ≥ Yπc
1

πc
1 = {c = 0}

oc
2−→ {c = 1}

b d

c

O i
c = {ob1 , oc2} with

ob1 = ⟨{b = 0}, {b = 1}⟩,
oc2 = ⟨{b = 1, d = 0}, {c = 1}⟩.

Operator-counting Constraints for Implicit Abstractions 38

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Operator Count Inequalities

Yo1 ≥ Yob
1

Yo2 ≥ Yπc
1

πc
1 = {c = 0}

oc
2−→ {c = 1}

b d

c

O i
c = {ob1 , oc2} with

ob1 = ⟨{b = 0}, {b = 1}⟩,
oc2 = ⟨{b = 1, d = 0}, {c = 1}⟩.

Operator-counting Constraints for Implicit Abstractions 39

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Operator Count Inequalities

Yo1 ≥ Yob
1

Yo2 ≥ Yπc
1

πc
1 = {c = 0}

oc
2−→ {c = 1}

b d

c

O i
c = {ob1 , oc2} with

ob1 = ⟨{b = 0}, {b = 1}⟩,
oc2 = ⟨{b = 1, d = 0}, {c = 1}⟩.

Operator-counting Constraints for Implicit Abstractions 40

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Path Inequalities

Yob
1
≥ Yπc

1

πc
1 = {c = 0}

oc
2−→ {c = 1}

b d

c

O i
c = {ob1 , oc2} with

ob1 = ⟨{b = 0}, {b = 1}⟩,
oc2 = ⟨{b = 1, d = 0}, {c = 1}⟩.

Operator-counting Constraints for Implicit Abstractions 41

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Goal Inequality

Yπc
1
≥ 1

πc
1 = {c = 0}

oc
2−→ {c = 1}

b d

c

O i
c = {ob1 , oc2} with

ob1 = ⟨{b = 0}, {b = 1}⟩,
oc2 = ⟨{b = 1, d = 0}, {c = 1}⟩.

Operator-counting Constraints for Implicit Abstractions 42

Introduction

Implicit Abstractions

Constraints for Forward Forks

Constraints for Inverted Forks

Results

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Coverage

Success Out-of-Memory Out-of-Time

Implicit 281 637 894
Delete Relaxation 577 207 1027
LM-Cut 909 0 901
Post-Hoc 748 2 1058
State Equation 770 0 1041

Coverage comparison of 1827 planning tasks. Implicit denotes the operator-counting heuristic
for forward fork abstractions.

Operator-counting Constraints for Implicit Abstractions 44

Implicit vs Delete Relaxation

Implicit vs LM-Cut

Implicit vs Post-Hoc

Implicit vs State Equation

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Conclusion

Implicit abstractions tractably decompose large state spaces

We derived operator-counting constraints from cost-partitioning for forks

Forward fork constraints are too expensive in practice

Future work: practicality of inverted fork constraints

Operator-counting Constraints for Implicit Abstractions 49

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Conclusion

Implicit abstractions tractably decompose large state spaces

We derived operator-counting constraints from cost-partitioning for forks

Forward fork constraints are too expensive in practice

Future work: practicality of inverted fork constraints

Operator-counting Constraints for Implicit Abstractions 49

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Conclusion

Implicit abstractions tractably decompose large state spaces

We derived operator-counting constraints from cost-partitioning for forks

Forward fork constraints are too expensive in practice

Future work: practicality of inverted fork constraints

Operator-counting Constraints for Implicit Abstractions 49

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Conclusion

Implicit abstractions tractably decompose large state spaces

We derived operator-counting constraints from cost-partitioning for forks

Forward fork constraints are too expensive in practice

Future work: practicality of inverted fork constraints

Operator-counting Constraints for Implicit Abstractions 49

Questions?

leonhard.badenberg@unibas.ch

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Extension Results

Success Out-of-Memory Out-of-Time

Implicit 281 637 894
Implicit-General 274 650 888
Delete Relaxation 577 207 1027
LM-Cut 909 0 901
Post-Hoc 748 2 1058
State Equation 770 0 1041

Coverage comparison of all 1827 planning tasks. The winner of each category is highlighted in
bold. We note that the reason for Implicit-General having the lowest out-of-time error is due
to it running out of memory for those tasks before running out of time. We omitted 56619 out
of 173555 fork abstractions as they did not contain any goal variables.

Operator-counting Constraints for Implicit Abstractions 51

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Extension Results

Implicit Delete Relaxation Combined
Implicit − 270 0
Delete Relaxation 493 − 0
Combined 172 411 −

Implicit State Equation Combined
Implicit − 396 0
State Equation 570 − 0
Combined 714 619 −

Comparison of the initial h-value. We compare the row heuristic to the column heuristic and
denote in each cell for how many tasks it yields a higher value in the initial state. The winner of
each pairwise comparison is highlighted in bold.

Operator-counting Constraints for Implicit Abstractions 52

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Extension Results

Implicit LM-Cut Combined
Implicit − 135 0
LM-Cut 903 − 0
Combined 958 208 −

Implicit Post-Hoc Combined
Implicit − 313 0
Post-Hoc 486 − 0
Combined 525 484 −

Comparison of the initial h-value. We compare the row heuristic to the column heuristic and
denote in each cell for how many tasks it yields a higher value in the initial state. The winner of
each pairwise comparison is highlighted in bold.

Operator-counting Constraints for Implicit Abstractions 53

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Forward Fork Constraint: Operator Count Inequalities

For the unary-effect operator or ∈ O f
r [r](o) and ov ∈ O f

r [v](o) for all v ∈ V f
r , where

Pre(ov)[r] is the set of root values for which ov can be applied. For each o ∈ O:

Yo ≥

∑
σ∗
l ∈σ(r)

∑
o′∈O f

r [r]
eff(o′)[r]=1−eff(or)[r]

⌈
l − 1

2

⌉
· Yi

σ∗
l
(or , o ′) if eff(or)[r] ̸= si [r]

∑
σ∗
l ∈σ(r)

∑
o′∈O f

r [r]
eff(o′)[r]=1−eff(or)[r]

⌊
l − 1

2

⌋
· Yi

σ∗
l
(o ′, or) if eff(or)[r] = si [r]

,

Yo ≥
∑

θ∈dom(v)
θ ̸=eff(ov)[r]

∑
θr∈Pre(ov)[r]

Yi
θr (v , θ, eff(o

v)[r], ov).

Operator-counting Constraints for Implicit Abstractions 54

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Cheapest Fixed-root Path Inequalities

For all goal variables v ∈ V f
r \ {r}, each θ, θ′ ∈ dom(v), and θr ∈ {0, 1}. Let l ≥ 1 if

si [v] = θ, and l ≥ 2 otherwise:
For θ = θ′, we have:

Yi
θr (v , θ, θ,□) ≥

∑
l≤|σ(r)|
σ(r)[l]=θr

Yi
l (v , θ, θ) +

∑
o′∈O f

r [v]
pre(o′)[v]=θ
θ ̸=eff(o′)[v]
θr∈Pre(o′)[r]

Yi
θr (v , θ, eff(o

′)[v], o ′)

For θ ̸= θ′, we have:∑
o∈O f

r [v]
eff(o)[v]=θ′

θr∈Pre(o)[r]

Yi
θr (v , θ, θ

′, o) ≥
∑

l≤|σ(r)|
σ(r)[l]=θr

Yi
l (v , θ, θ

′) +
∑

o′∈O f
r [v]

pre(o′)[v]=θ′

θ ̸=eff(o′)[v]
θr∈Pre(o′)[r]

Yi
θr (v , θ, eff(o

′)[v], o ′)

Operator-counting Constraints for Implicit Abstractions 55

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Root-sequence-induced-distance Flow Inequalities

For all goal variables v ∈ V f
r \ {r}, each θ′ ∈ dom(v), and 1 ≤ l ≤ |σ(r)|:

For l = 1, we have:

Yi
1(v , si [v], θ

′)−
∑

θ∈dom(v)

Yi
2(v , θ

′, θ) ≥

{∑
σ∗
1 (o,o

′) Y
i
σ∗
1
(o, o ′) if θ′ = G f

r [v]

0 otherwise

For l ≥ 2, we have:

∑
θ∈dom(v)

Yi
l (v , θ, θ

′)−
∑

θ′′∈dom(v)

Yi
l+1(v , θ

′, θ′′) ≥

{∑
σ∗
l (o,o

′) Y
i
σ∗
l
(o, o ′) if θ′ = G f

r [v]

0 otherwise

Operator-counting Constraints for Implicit Abstractions 56

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Goal Inequality

A goal inequality: ∑
σ∗
l ∈σ(r)

∑
o∈O f

r [r]
eff(o)[r]=1−si [r]

∑
o′∈O f

r [r]
eff(o′)[r]=si [r]

Yi
σ∗
l
(o, o ′) ≥ 1

Operator-counting Constraints for Implicit Abstractions 57

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Inverted Fork Constraint: Operator Count Inequalities

For the unary-effect operator ov ∈ O i
r [v](o) for all v ∈ V i

r and or ∈ O i
r [r](o). For each

operator o ∈ O:

Yo ≥
∑

θ∈dom(v)
θ ̸=eff(ov)[v]

Yi (v , θ, eff(ov)[v], ov),

...

Yo ≥
∑

π∗
m∈P(r)

Y
π∗
m

or · Yi
π∗
m
,

where Y
π∗
m

or denotes the number of occurrences of or in π∗
m.

Operator-counting Constraints for Implicit Abstractions 58

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Inverted Fork Constraint: Cheapest Path Inequalities

For all parent variables v ∈ V i
r \ {r} and each θ, θ′ ∈ dom(v):

For θ = θ′, we have:

Yi (v , θ, θ,□) ≥
∑

π∗
m∈P(r)

∑
0≤j≤m
pj [v]=θ

pj+1[v]=θ′

Yi
π∗
m
+

∑
o′∈O i

r [v]
pre(o′)[v]=θ
θ ̸=eff(o′)[v]

Yi (v , θ, eff(o ′)[v], o ′)

For θ ̸= θ′, we have:∑
o∈O i

r [v]
eff(o)[v]=θ′

Yi (v , θ, θ′, o) ≥
∑

π∗
m∈P(r)

∑
0≤j≤m
pj [v]=θ

pj+1[v]=θ′

Yi
π∗
m
+

∑
o′∈O i

r [v]
pre(o′)[v]=θ′

θ ̸=eff(o′)[v]

Yi (v , θ, eff(o ′)[v], o ′)

Operator-counting Constraints for Implicit Abstractions 59

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Inverted Fork Constraint: Goal Inequality

A goal inequality: ∑
π∗
m∈P(r)

Yi
π∗
m
≥ 1

Operator-counting Constraints for Implicit Abstractions 60

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Forward Forks

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩

o2 = ⟨{b = 1, d = 0}, {c = 1}⟩

O f
a = {oa1 , ob1} with

oa1 = ⟨{ }, {a = 1}⟩,
ob1 = ⟨{a = 1, b = 0}, {b = 1}⟩.

a

b

CG (Πf
a)

Operator-counting Constraints for Implicit Abstractions 61

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Forward Forks

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩

o2 = ⟨{b = 1, d = 0}, {c = 1}⟩

O f
d = {oc2} with

oc2 = ⟨{d = 0}, {c = 1}⟩.

d

c

CG (Πf
d)

Operator-counting Constraints for Implicit Abstractions 62

Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Inverted Forks

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩

o2 = ⟨{b = 1, d = 0}, {c = 1}⟩

O i
a = {ob1 , oa1} with

ob1 = ⟨{b = 0}, {b = 1}⟩,
oa1 = ⟨{b = 1}, {a = 1}⟩.

a

b

CG (Πi
a)

Operator-counting Constraints for Implicit Abstractions 63

	Introduction
	Implicit Abstractions
	Constraints for Forward Forks
	Constraints for Inverted Forks
	Results

