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Classical Planning

Definition (Planning Task)

Variables v ∈ V that can each take a value in dom(v)

States s ∈ S assign variables to a value

Operators o ∈ O transition between states

preconditions
effects
a cost

Goal: Find plans from the initial state s0 to a goal state s∗
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Optimal Planning

cost(o1) = cost(o2) = cost(o3) = 1

π1 = s0
o1−→ s

o2−→ s∗ cost(π1) = 2

π2 = s0
o3−→ s∗ cost(π2) = 1

To find an optimal plan we can use A∗ search
with any admissible heuristic h.

An admissible heuristic is an underestimation
of the true goal distance.
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Abstractions

Definition (Abstraction)

Function that abstracts the state space.

α : S → Sα

s0 remains the initial state in the abstraction

s∗ remains a goal state in the abstraction

The abstraction heuristic hα is the true goal distance in the abstract state space Sα.

hα is admissible if α does not increase the goal distance for any state.
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Explicit Abstractions

How do we ensure admissibility?

Most well-known abstractions

preserve the transitions of the original planning task,

search explicitly for optimal plans in the abstract space.

Problem: Abstract state space must be bounded!

Implicit abstractions decompose the planning task until it is tractable to compute.
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Implicit Abstractions

Instead of reflecting a few state variables perfectly,

create an abstraction around one variable,

combine those abstractions to reflect many variables.

We ensure admissibility by preserving the cost between two states instead of preserving
the transitions:

cost(α(s), α(s ′)) ≤ cost(s, s ′)

We want to be able to search the abstract space implicitly in polynomial time.
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Example

V = {a, b, c , d} with dom(v) = {0, 1}
O = {o1, o2}

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩ with cost(o1) = 1
o2 = ⟨{b = 1, d = 0}, {c = 1}⟩ with cost(o2) = 1

s0 = {a = 0, b = 0, c = 0, d = 0}
Goal = {a = 1, c = 1}

Operator-counting Constraints for Implicit Abstractions 9



Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Example

V = {a, b, c , d} with dom(v) = {0, 1}
O = {o1, o2}

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩ with cost(o1) = 1
o2 = ⟨{b = 1, d = 0}, {c = 1}⟩ with cost(o2) = 1

s0 = {a = 0, b = 0, c = 0, d = 0}
Goal = {a = 1, c = 1}

Operator-counting Constraints for Implicit Abstractions 9



Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Example

V = {a, b, c , d} with dom(v) = {0, 1}
O = {o1, o2}

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩ with cost(o1) = 1
o2 = ⟨{b = 1, d = 0}, {c = 1}⟩ with cost(o2) = 1

s0 = {a = 0, b = 0, c = 0, d = 0}
Goal = {a = 1, c = 1}

Operator-counting Constraints for Implicit Abstractions 9



Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Example

V = {a, b, c , d} with dom(v) = {0, 1}
O = {o1, o2}

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩ with cost(o1) = 1
o2 = ⟨{b = 1, d = 0}, {c = 1}⟩ with cost(o2) = 1

s0 = {a = 0, b = 0, c = 0, d = 0}
Goal = {a = 1, c = 1}

Operator-counting Constraints for Implicit Abstractions 9



Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Example

V = {a, b, c , d} with dom(v) = {0, 1}
O = {o1, o2}

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩ with cost(o1) = 1
o2 = ⟨{b = 1, d = 0}, {c = 1}⟩ with cost(o2) = 1

s0 = {a = 0, b = 0, c = 0, d = 0}
Goal = {a = 1, c = 1}

Operator-counting Constraints for Implicit Abstractions 9



Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Example

V = {a, b, c , d} with dom(v) = {0, 1}
O = {o1, o2}

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩ with cost(o1) = 1
o2 = ⟨{b = 1, d = 0}, {c = 1}⟩ with cost(o2) = 1

s0 = {a = 0, b = 0, c = 0, d = 0}
Goal = {a = 1, c = 1}

Operator-counting Constraints for Implicit Abstractions 9



Introduction Implicit Abstractions Constraints for Forward Forks Constraints for Inverted Forks Results

Causal Graph

Definition (Causal Graph)

Nodes over the variables V

Edges ⟨v , v ′⟩ if an operator o

has a precondition or effect on v
has an effect on v ′

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩

o2 = ⟨{b = 1, d = 0}, {c = 1}⟩

a

b

c

d
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Forward Forks

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩

o2 = ⟨{b = 1, d = 0}, {c = 1}⟩
a

b

c

d

CG (Π)

a

b

b

a c

c d

c
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Forward Forks

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩

o2 = ⟨{b = 1, d = 0}, {c = 1}⟩

O f
b = {ob1 , oa1 , oc2} with

ob1 = ⟨{b = 0}, {b = 1}⟩,
oa1 = ⟨{b = 1}, {a = 1}⟩,
oc2 = ⟨{b = 1}, {c = 1}⟩.

b

a c

CG (Πf
b)
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Inverted Forks

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩

o2 = ⟨{b = 1, d = 0}, {c = 1}⟩
a

b

c

d

CG (Π)

a

b

b

b d

c d
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Inverted Forks

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩

o2 = ⟨{b = 1, d = 0}, {c = 1}⟩

O i
c = {ob1 , oc2} with

ob1 = ⟨{b = 0}, {b = 1}⟩,
oc2 = ⟨{b = 1, d = 0}, {c = 1}⟩.

b d

c

CG (Πi
c)
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Tractability

Fork abstractions can be implicitly searched in polynomial time if

for forward forks: dom(r) = {0, 1},
for inverted forks: |dom(r)| = O(1).
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Compositions of Fork Abstraction Heuristics

We can admissibly combine the fork abstractions obtained for each variable by

using an optimal cost partitioning,

using operator-counting constraints.
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Optimal Cost Partitioning Constraints

The optimal cost partitioning heuristic can be obtained by a linear program (LP):

Maximize
m∑
i=1

hi (αi (s)) subject to C (s)

Where the cost is distributed among all unary-effect operators of all fork abstractions.

We can use those constraints to derive operator-counting constraints.
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Operator-counting Constraints

The operator-counting heuristic can be obtained by a linear program (LP):

Minimize
∑
o∈O

cost(o) · Yo subject to C (s)

Where Yo denotes how often the operator o is used in a plan.

Combines different LP based heuristics by combining their constraints.
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Idea

O f
b = {ob1 , oa1 , oc2} with

ob1 = ⟨{b = 0}, {b = 1}⟩,
oa1 = ⟨{b = 1}, {a = 1}⟩,
oc2 = ⟨{b = 1}, {c = 1}⟩.

σ(r) = ⟨0, 1, 0, . . . ⟩

b = 0

a = 0 c = 0
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O f
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O f
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Idea

O f
b = {ob1 , oa1 , oc2} with

ob1 = ⟨{b = 0}, {b = 1}⟩,
oa1 = ⟨{b = 1}, {a = 1}⟩,
oc2 = ⟨{b = 1}, {c = 1}⟩.

σ(r) = ⟨0, 1⟩

b = 1

a = 1 c = 1

No unary root-effect operator to change b back to 0.
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Notation

1. Yov denotes how often the unary-effect operator ov is
used to change the value of a leaf variable v .

2. Yl(v , θ, θ
′) denotes how often v is changed from θ to θ′

at root sequence step l .

3. Yσl
denotes how often a partial root sequence σ of length

l is taken.

σ(r) = ⟨0, 1⟩

b

a c
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Operator Count Inequalities

Yo1 ≥ Yσ2

Yo1 ≥ Yoa
1

Yo2 ≥ Yoc
2

σ1 = ⟨0⟩
σ2 = ⟨0, 1⟩

b

a c

O f
b = {ob1 , oa1 , oc2} with

ob1 = ⟨{b = 0}, {b = 1}⟩,
oa1 = ⟨{b = 1}, {a = 1}⟩,
oc2 = ⟨{b = 1}, {c = 1}⟩.
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Path Inequalities

Yoa
1
≥ Yl=2(a, 0, 1)

Yoc
2
≥ Yl=2(c , 0, 1)

σ(r) = ⟨0, 1⟩

b

a c

O f
b = {ob1 , oa1 , oc2} with

ob1 = ⟨{b = 0}, {b = 1}⟩,
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Goal Inequality

Yσ1 + Yσ2 ≥ 1

σ1 = ⟨0⟩
σ2 = ⟨0, 1⟩

b

a c

O f
b = {ob1 , oa1 , oc2} with

ob1 = ⟨{b = 0}, {b = 1}⟩,
oa1 = ⟨{b = 1}, {a = 1}⟩,
oc2 = ⟨{b = 1}, {c = 1}⟩.
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Root-sequence Flow Inequalities

Yl=1(a, 0, 0)− Yl=2(a, 0, 0)− Yl=2(a, 0, 1) ≥ 0

Yl=1(a, 0, 1)− Yl=2(a, 1, 0)− Yl=2(a, 1, 1) ≥ Yσ1

Yl=2(a, 0, 0) + Yl=2(a, 1, 0) ≥ 0

Yl=2(a, 0, 1) + Yl=2(a, 1, 1) ≥ Yσ2

Similar for v = c .

σ(r) = ⟨0, 1⟩

b

a c

σ1 = ⟨0⟩
σ2 = ⟨0, 1⟩
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Notation

1. Yov denotes how often a unary-effect operator ov is used
to change the value of a parent variable v .

2. Yπc
l
denotes how often a particular plan for the sink πc of

length l is taken.
c

b d

πc = αc(s)[c] → · · · → G i
c [c]
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Operator Count Inequalities

Yo1 ≥ Yob
1

Yo2 ≥ Yπc
1

πc
1 = {c = 0}

oc
2−→ {c = 1}

b d

c

O i
c = {ob1 , oc2} with

ob1 = ⟨{b = 0}, {b = 1}⟩,
oc2 = ⟨{b = 1, d = 0}, {c = 1}⟩.
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Path Inequalities
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Goal Inequality

Yπc
1
≥ 1
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b d
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Coverage

Success Out-of-Memory Out-of-Time

Implicit 281 637 894
Delete Relaxation 577 207 1027
LM-Cut 909 0 901
Post-Hoc 748 2 1058
State Equation 770 0 1041

Coverage comparison of 1827 planning tasks. Implicit denotes the operator-counting heuristic
for forward fork abstractions.
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Conclusion

Implicit abstractions tractably decompose large state spaces

We derived operator-counting constraints from cost-partitioning for forks

Forward fork constraints are too expensive in practice

Future work: practicality of inverted fork constraints
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Extension Results

Success Out-of-Memory Out-of-Time

Implicit 281 637 894
Implicit-General 274 650 888
Delete Relaxation 577 207 1027
LM-Cut 909 0 901
Post-Hoc 748 2 1058
State Equation 770 0 1041

Coverage comparison of all 1827 planning tasks. The winner of each category is highlighted in
bold. We note that the reason for Implicit-General having the lowest out-of-time error is due
to it running out of memory for those tasks before running out of time. We omitted 56619 out
of 173555 fork abstractions as they did not contain any goal variables.
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Extension Results

Implicit Delete Relaxation Combined
Implicit − 270 0
Delete Relaxation 493 − 0
Combined 172 411 −

Implicit State Equation Combined
Implicit − 396 0
State Equation 570 − 0
Combined 714 619 −

Comparison of the initial h-value. We compare the row heuristic to the column heuristic and
denote in each cell for how many tasks it yields a higher value in the initial state. The winner of
each pairwise comparison is highlighted in bold.
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Extension Results

Implicit LM-Cut Combined
Implicit − 135 0
LM-Cut 903 − 0
Combined 958 208 −

Implicit Post-Hoc Combined
Implicit − 313 0
Post-Hoc 486 − 0
Combined 525 484 −

Comparison of the initial h-value. We compare the row heuristic to the column heuristic and
denote in each cell for how many tasks it yields a higher value in the initial state. The winner of
each pairwise comparison is highlighted in bold.
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Forward Fork Constraint: Operator Count Inequalities

For the unary-effect operator or ∈ O f
r [r ](o) and ov ∈ O f

r [v ](o) for all v ∈ V f
r , where

Pre(ov )[r ] is the set of root values for which ov can be applied. For each o ∈ O:

Yo ≥



∑
σ∗
l ∈σ(r)

∑
o′∈O f

r [r ]
eff(o′)[r ]=1−eff(or )[r ]

⌈
l − 1

2

⌉
· Yi

σ∗
l
(or , o ′) if eff(or )[r ] ̸= si [r ]

∑
σ∗
l ∈σ(r)

∑
o′∈O f

r [r ]
eff(o′)[r ]=1−eff(or )[r ]

⌊
l − 1

2

⌋
· Yi

σ∗
l
(o ′, or ) if eff(or )[r ] = si [r ]

,

Yo ≥
∑

θ∈dom(v)
θ ̸=eff(ov )[r ]

∑
θr∈Pre(ov )[r ]

Yi
θr (v , θ, eff(o

v )[r ], ov ).
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Cheapest Fixed-root Path Inequalities

For all goal variables v ∈ V f
r \ {r}, each θ, θ′ ∈ dom(v), and θr ∈ {0, 1}. Let l ≥ 1 if

si [v ] = θ, and l ≥ 2 otherwise:
For θ = θ′, we have:

Yi
θr (v , θ, θ,□) ≥

∑
l≤|σ(r)|
σ(r)[l ]=θr

Yi
l (v , θ, θ) +

∑
o′∈O f

r [v ]
pre(o′)[v ]=θ
θ ̸=eff(o′)[v ]
θr∈Pre(o′)[r ]

Yi
θr (v , θ, eff(o

′)[v ], o ′)

For θ ̸= θ′, we have:∑
o∈O f

r [v ]
eff(o)[v ]=θ′

θr∈Pre(o)[r ]

Yi
θr (v , θ, θ

′, o) ≥
∑

l≤|σ(r)|
σ(r)[l ]=θr

Yi
l (v , θ, θ

′) +
∑

o′∈O f
r [v ]

pre(o′)[v ]=θ′

θ ̸=eff(o′)[v ]
θr∈Pre(o′)[r ]

Yi
θr (v , θ, eff(o

′)[v ], o ′)
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Root-sequence-induced-distance Flow Inequalities

For all goal variables v ∈ V f
r \ {r}, each θ′ ∈ dom(v), and 1 ≤ l ≤ |σ(r)|:

For l = 1, we have:

Yi
1(v , si [v ], θ

′)−
∑

θ∈dom(v)

Yi
2(v , θ

′, θ) ≥

{∑
σ∗
1 (o,o

′) Y
i
σ∗
1
(o, o ′) if θ′ = G f

r [v ]

0 otherwise

For l ≥ 2, we have:

∑
θ∈dom(v)

Yi
l (v , θ, θ

′)−
∑

θ′′∈dom(v)

Yi
l+1(v , θ

′, θ′′) ≥

{∑
σ∗
l (o,o

′) Y
i
σ∗
l
(o, o ′) if θ′ = G f

r [v ]

0 otherwise
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Goal Inequality

A goal inequality: ∑
σ∗
l ∈σ(r)

∑
o∈O f

r [r ]
eff(o)[r ]=1−si [r ]

∑
o′∈O f

r [r ]
eff(o′)[r ]=si [r ]

Yi
σ∗
l
(o, o ′) ≥ 1
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Inverted Fork Constraint: Operator Count Inequalities

For the unary-effect operator ov ∈ O i
r [v ](o) for all v ∈ V i

r and or ∈ O i
r [r ](o). For each

operator o ∈ O:

Yo ≥
∑

θ∈dom(v)
θ ̸=eff(ov )[v ]

Yi (v , θ, eff(ov )[v ], ov ),

...

Yo ≥
∑

π∗
m∈P(r)

Y
π∗
m

or · Yi
π∗
m
,

where Y
π∗
m

or denotes the number of occurrences of or in π∗
m.
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Inverted Fork Constraint: Cheapest Path Inequalities

For all parent variables v ∈ V i
r \ {r} and each θ, θ′ ∈ dom(v):

For θ = θ′, we have:

Yi (v , θ, θ,□) ≥
∑

π∗
m∈P(r)

∑
0≤j≤m
pj [v ]=θ

pj+1[v ]=θ′

Yi
π∗
m
+

∑
o′∈O i

r [v ]
pre(o′)[v ]=θ
θ ̸=eff(o′)[v ]

Yi (v , θ, eff(o ′)[v ], o ′)

For θ ̸= θ′, we have:∑
o∈O i

r [v ]
eff(o)[v ]=θ′

Yi (v , θ, θ′, o) ≥
∑

π∗
m∈P(r)

∑
0≤j≤m
pj [v ]=θ

pj+1[v ]=θ′

Yi
π∗
m
+

∑
o′∈O i

r [v ]
pre(o′)[v ]=θ′

θ ̸=eff(o′)[v ]

Yi (v , θ, eff(o ′)[v ], o ′)
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Inverted Fork Constraint: Goal Inequality

A goal inequality: ∑
π∗
m∈P(r)

Yi
π∗
m
≥ 1
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Forward Forks

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩

o2 = ⟨{b = 1, d = 0}, {c = 1}⟩

O f
a = {oa1 , ob1} with

oa1 = ⟨{ }, {a = 1}⟩,
ob1 = ⟨{a = 1, b = 0}, {b = 1}⟩.

a

b

CG (Πf
a)
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Forward Forks

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩

o2 = ⟨{b = 1, d = 0}, {c = 1}⟩

O f
d = {oc2} with

oc2 = ⟨{d = 0}, {c = 1}⟩.

d

c

CG (Πf
d)
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Inverted Forks

o1 = ⟨{b = 0}, {a = 1, b = 1}⟩

o2 = ⟨{b = 1, d = 0}, {c = 1}⟩

O i
a = {ob1 , oa1} with

ob1 = ⟨{b = 0}, {b = 1}⟩,
oa1 = ⟨{b = 1}, {a = 1}⟩.

a

b

CG (Πi
a)
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