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Abstract

Most well-known and traditional online planners for probabilistic planning are in some way
based on Monte-Carlo Tree Search. SOGBOFA, symbolic online gradient-based optimization
for factored action MDPs, offers a new perspective on this: it constructs a function graph
encoding the expected reward for a given input state using independence assumptions for
states and actions. On this function, they use gradient ascent to perform a symbolic search
optimizing the actions for the current state. This unique approach to probabilistic planning
has shown very strong results and even more potential. In this thesis, we attempt to integrate
the new ideas SOGBOFA presents into the traditionally successful Trial-based Heuristic
Tree Search framework. Specifically, we design and evaluate two heuristics based on the
aforementioned graph and its QQ value estimations, but also the search using gradient ascent.
We implement and evaluate these heuristics in the PROST planner, along with a version of

the current standalone planner.
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Introduction

Planning is a part of Artificial Intelligence concerned with achieving a goal from a given
initial state. Probabilistic planning includes the additional challenge of non-deterministic
actions, where the resulting next state from executing an action is tied to a certain probabil-
ity. Online planning algorithms attempt to find a policy indicating which action should be
taken in each state in order to reach a goal state by alternating between planning and exe-
cution steps. Therefore, planning steps are rather short and they have to be able to operate
efficiently under tight time constraints. The space of states and actions from which they
have to select good ones can be extremely large. A popular approach to tackle this challenge
is Trial-based Heuristic Tree Search (THTS) [9], which searches the problem tree using trials
with heuristic guidance. It closely based on Monte-Carlo Tree Search [2], where the search
is conducted through repeated random samples (or trials) to find an approximation of the
result. THTS introduces a common framework for well-known MCTS algorithms, such as
UCT [10] or AO* [11].

Recently, a novel approach to MCTS based on concepts generally used in inference problem
has shown very strong results: Symbolic Online Gradient-Based Optimisation for Factored
Action MDPs (SOGBOFA) [4]. SOGBOFA symbolically approximates the expected reward
as a differentiable function of the available actions based independence assumptions of multi-
ple actions. This differentiable function for the expected reward allows it to perform gradient
ascent to find a good action. This works very well for many problems, but can struggle when
the symbolic representation is too simplistic: For future actions, a random policy is used.
This assumption for the next planning steps is often insufficient, which negatively impacts
the evaluation of the quality of the current state. This can be remedied with a conformant
planning version of the algorithm [5] which optimizes the future actions in addition to the
current one.

In this thesis, we attempt to combine the best of both approaches by adapting the SOG-
BOFA algorithm to be used as a heuristic to guide THTS-based algorithms. The aim is to
retain the strong intuition SOGBOFA delivers with its Q value function and optimization
thereof, but provides an independent search algorithm to fall back on. We will explore the
potential synergies of this combination and attempt to exploit them based on empirical
testing. In order to do this, we want to implement the standalone SOGBOFA procedure
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and its conformant version as a search engine in the PROST planner [8], which is a proba-
bilistic planning system following the THTS framework. This gives us the opportunity to
evaluate the importance of the different components of SOGBOFA and potentially think
about possible improvements to the SOGBOFA procedure itself, such as a way to include
action preconditions in a more general way. But more importantly, it will give us a good
understanding of the components, so that we can design a good heuristic from them. In par-
ticular, we will use a heuristic that calculates its value within a single forward pass through
the SOGBOFA Q value graph and one where we optimize conformant actions for additional
guidance.

In the following Chapter 2, we will present the theoretical background including all the
definitions and techniques relevant to the application of the SOGBOFA algorithm in this
context. In Chapter 3, we will outline the SOGBOFA algorithm in its existing form, followed
by a discussion of the most relevant parts for our context and the changes necessary to
accomodate an adaption of the procedure to the heuristic setting in Chapter 4. Finally, we
will fine tune the parameters for all configurations and then test and discuss the performance
of the conformant planner, the non-conformant planner, and, most importantly, the designed

heuristics in Chapter 5.
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2.1 Definitions
This section provides basic definitions needed for the procedures discussed in the subsequent

sections.

2.1.1  Markov Decision Process
A Markov decision process (MDP) is a formalisation of a planning task as a 6-tuple M =
(S,s1,A, T, R, H), where

e S is a finite set of states;

e s; € S is the initial state;

e A is a finite set of actions;

e T:5xAxS —]0,1] is the transition function where T'(s, a, s’) models p(s’ | a, s);
e R:5x A— R is the reward function;

e H € N is a finite horizon.

Given an MDP, a policy is a function 7 : S — A dictating for each state which action should
be chosen. A policy can be evaluated by calculating the Q-value for the policy in the initial
state, Qr(sr,m(sr), H).
The Q-value (or action-value) function @, : S x A x N — R for a given policy 7 is defined
as:

0 ifh=0

R(s,a) + >, cgT(s,a,8)Qxr(s,m(s),h —1) otherwise

Q?T(S) a, h) =

This value stands for the expected reward for executing action a in state s under the policy 7
with h remaining steps. It is calculated by summing the immediate reward and the rewards

in the following states weighted by the probability to reach them.
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2.1.2 Trial-based Heuristic Tree Search

The Trial-based Heuristic Tree Search framework (THTS) [7, 9] is a more general version
of the Monte-Carlo Tree Search framework [2]. The name Trial-based Heuristic Tree Search
comes from the unfolding of the MDP used to define the problem into a tree, which is then
searched in trials with the guidance of a heuristic.

The general idea of the THTS framework is for one to formulate search algorithms that
combine guarantees of optimality when going towards the limit of the full horizon with effi-
cient performance under strict time and memory constraints. Furthermore, the framework
also attempts to define these algorithms succinctly and under a common denominator. It
distinguishes different approaches to search algorithms based on their so-called ingredients,

six components that together define a search algorithm. These ingredients are:

initialisation and heuristic function

backup function

action selection

e outcome selection

trial length

e recommendation function

A heuristic h : S x A — R attempts to provide guidance to a search algorithm by estimating
the Q-value of a state-action pair. Most of the time, heuristics find a reasonable Q-value for
a state-action pair by solving a partial or simplified version of the problem. In this regard,

they are quite similar to a search algorithm themselves.

2.1.3 Factored MDP

In practice, MDPs are often very large with huge state and action spaces. Hence, they are
often represented in the more compact factored form [1] An MDP as defined in Section 2.1.1

can be fully described using this factored form:

e A set of binary state variables V inducing S = 2V

A valuation vr(V) representing the initial state sy € S

A set of binary action variables A inducing A = 24

A set of transition functions 7 with a transition function ¢ € T, over V, A, for all state
variables s* € V and all action variables a* € A. T induces T'(s,a, s’) as a product of

all transition functions ¢.
e A reward function R over V, A, R modelling R.

e H < N is the finite horizon.

This is a much more compact representation of an MDP.
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2.1.4 RDDL
Relational Dynamic Influence Diagram Language (RDDL) [12] is a relational definition

language using parameterized variables and first-order logic to succinctly describe factored
MDPs as follows:

e V is described using a set of parameterized state variables called state fluents.
e A is described using a set of parameterized action variables called action fluents.

e 7T is described using a set of transition functions, called conditional probability func-
tions, over the state and action fluents. They encode the probability of reaching a

next state, given previous states and actions.
e R is described using a reward function over the state and action fluents.
Transition and reward functions can use the following expressions:
e logical expressions
e arithmetic expressions
e equality and inequality comparisons
e conditional expressions

e probability distributions

The encoding of functions used by RDDL can also be described using a numerical rep-
resentation rather than a logical one. The translation from the logical to the numerical

representation is easiliy done following a few rules.

Converting RDDL to Arithmetic Expressions The RDDL description can be con-

verted into arithmetic expressions in the following way:

Logical Formula Arithmetic Expression

aAb a-b

aVb 1—((1=a)(1-0))

—a l1—-a

a=5d ocla—b+e)—o(a—b—e¢) withe=10.5
a<b o(t(a — b)) with 7 =10

if C; then E; elseif Co then Ey ... else B, (C1)E1+ ((1—=C1)Co)Ea+ -+ (...)E,

In this case, o represents the sigmoid function:

1
c=—
1+e®
Other functions used in RDDL follow accordingly. Hence, we can say that, for all our
intents and purposes, RDDL formulates transition functions ¢ and the reward function R

as arithmetic expressions over action fluents A4, state fluents V and R.
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2.1.4.1 Navigation Example

An example of such an RDDL description can be built from a simplified toy instance of
the navigation domain from the International Planning Competition (IPC) 2011 [13]. It
is modified to reduce the complexity of the example by only allowing a choice of actions
in the initial state and not allowing a noop action. The reward is also modified to give
an immediate reward. The idea is to reach the goal state at the top right from the initial
state at the bottom right. The tiles in between have a chance of blowing up, leading to
an unsuccessful terminal state. The path through the left is safer (with only a 0.2 chance
to explode) but also a detour, while the direct path is more dangerous (with a 0.8 chance
to explode). Figure 2.1 shows the states, s1,..., s¢, encoding where the traveller currently
is and the applicable actions, moving left, right or up. Here, the actions other than the
first choice of paths are fixed. Upon reaching the goal state, a large immediate reward is

received, while a penalty is applied as long as the goal state is not yet reached.

$1 82 — | Goal

53 | S4 T T

S5 56 T«

(a) States (b) Actions

Figure 2.1: Toy Navigation

For each state of this toy example, RDDL would have a transition function describing

how the state variable is updated in each step based on previous states and actions A =

{go-up, go-left, go-right}.
e at-s§ = if at-s3 A go-up then true else false;

o at-sh = if at-s1 A go-right then true else if at-s4 A go-up then true else if at-s5 then

true else false;
o ai-sh = if at-s5 A go-up then Bernoulli(0.8) else false;
e at-s) = if at-sg A go-up then Bernoulli(0.2) else false;
o ai-sy = if at-sg A go-left then true else false;
o at-s; = false;

The initial state can never be reached again, while the goal state can be reached from two
different paths and is never left again. The two fields in the middle are only reached with a
certain probability.

Furthermore, the reward could be described as:

reward = 10 - (at-s1 A go-right) + 10 - (at-s4 A go-up)— ~ at-so
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This gives a reward of 10 once for reaching the goal state while applying a penalty of 1 as
long as the goal state is not reached

However, this description still contains logical and conditional expressions as well as proba-
bility distributions and is not yet in the numerical representation we need. Once translated

into arithmetic expressions, transitions and reward would look like this:
e at-s| = at-s3 - go-up;

o at-sh = (at-s1 - go-right) + (1 — at-sy - go-right) - (at-s4 - go-up) + (1 — at-sq - go-right) -
(1 — at-s4 - go-up) - (at-s2);

o at-sh = 0.6 - at-s5 - go-up;
o at-s) = 0.4 at-s¢ - go-up;
e at-sk = at-sg - go-left;

o at-si = 0;

e reward = 10 - (at-sy - go-right) + 10 - (at-s4 - go-up) + at-so — 1

2.2 Automatic Differentiation
This section describes the process of automatic differentiation independent of SOGBOFA.
How it is used in the context of SOGBOFA is described in Section 3.1.
Automatic Differentiation is a set of common techniques to find derivatives of functions in
computer programs which are particularly suited to gradient calculation. As described by
Griewank and Walther [6], automatic differentiation assumes and exploits that the function
to be derived is a composition of differentiable elementary operations and functions. Using
this input, automatic differentiation essentially describes the repeated use of the chain rule
to find derivatives at working precision. The function to be derived can also be represented
as a directed, acyclic graph, with nodes for each elementary operation. The most commonly
used variants are forward mode and reverse mode, which are simply the two extreme cases
of traversing the chain rule, inside out and outside in, respectively (or bottom to top and
top to bottom for the graph representation). We will have a closer look at reverse mode, as
this is what we will use later on.
In order to understand the process behind reverse mode, a small toy example is presented in
the following, which is already very similar to its application for the SOGBOFA procedure.
Let us consider the function:

z = zix9 + 271 (2.1)

We are now interested in finding the partial derivatives with regards to z1 and xs:

o

8961
and

o

8I2
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Equation (2.1) can be decomposed into several sub-expressions:

wy = 1 (2.2)
we = Ty (2.3)
w3 = Wiws (2.4)
wy = 2% (2.5)
W5 = w3 + Wy (2.6)

where ws = z. For each of these expressions, the differentiation rules are known. Further-
more, Figure 2.2 shows how this expression z can be represented as a DAG, both as the

original encoding of z and using these sub-expressions.

2 = x129 + 271 z

X1 T2 w1 w2

(a) Encoding of original ex- (b) Decomposition into sub-
pression expressions

Figure 2.2: Expression Graph

2.2.1 Reverse Pass
The reverse pass is based on the chain rule for derivatives, which leads to the following

statement in this graph context:

0z 0z Ow
-y o 2.7)
ow; . Owy, Ow;

pEParents(i)
where z is our topmost node containing the full expression and w; are the input nodes
x1,...,T, with respect to which we want to find the partial derivatives. In order to calculate

this at the leaf nodes, we need to sweep through the complete graph from top to bottom,
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always applying Equation (2.7) to calculate the partial derivatives in the intermediary nodes.
Notably, as Equation (2.1) is a scalar valued function, we only need to go through the graph

once. The complete traversal of the graph using chain rule is also demonstrated in Figure 2.3.

z z
dz
5 1
dws Ows
8w4 871}3
Owy Odws w
Owq / dwy ng lOg -2 1
0z oz
dwr gw; | 109(2) -2 +wy g

(a) Reverse pass graph traversal (b) Results of reverse pass calculation

Figure 2.3: Computational Graph

In our example, starting at the top would yield us:

02 0202 4 4y
Oows 0z 0z
as we know that ws = z and % =1.
The next calculation would be:
0z 0z Ows

8w4 8w5 8w4
The first part of which, -2 8w ,

we only have to calculate:

we just calculated. The second part is easy to calculate because

Jws (2.6) (w3 + wy)

=1
Owy Owy
Hence, the whole expression yields:
0z 0z Jws 1121

87104 8105 (9’UJ4

Continue by repeatedly reusing the previous derivatives and the derivatives of simple ex-

pressions:
ﬁ:ﬁ%:1.8<w73+w4> —1.1=1
8103 8105 6’(03 8w3
0z 0z Ows Owiws

2 =1 =1. =
awg awg (’)wg ng w1 e
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0z _ 0z Ows , 0z Owg

8w1 B 8w4 8w1 8103 8w1

02wt Owiws
1.

6w1 * 8w1

=1-log(2) - 2" + 1wy

=log(2) - 2" + wo

Reverse pass so far is independent of the forward pass and needs to be done only once.

2.2.2 Forward Pass

During the forward pass, we simply evaluate the basic expressions for specific inputs by
forward propagation through the graph. Let’s say these inputs are ;1 = 2 and zy = 3.
Then, we would save the following values during the forward pass:

U}3:I11‘2:6
w4:2w1:4
ws = wg + wy = 10

Depending on the results of the reverse pass, we might not need to calculate the full forward
pass, even though it is very fast and straight-forward. In our case, for example, we only

need the values for w; and ws:

0z

_— = 2
3w2 w1

8%1 =log(2) - 2 + we = 5.77

2.2.3 Reverse Mode versus Forward Mode

The above procedure of the reverse mode automatic differentiation showed us that we can
calculate the full gradients of the function in only one traversal of the graph, for which we
can then simply plug in our input variable assignments.

In contrast, forward mode directly follows the flow of derivative information in its evaluation
by saving the derivative evaluation of each expression directly with the expression, starting
at the input variables. As such, it is conceptionally simpler than reverse mode, but only
calculates the derivative of one input variable during each traversal of the graph. This leads

to slower calculation times if the full gradient is needed and the graph is large.
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3.1 SOGBOFA

Online symbolic gradient-based optimisation for factored action MDPs, short SOGBOFA is
a successful, recent stochastic online planning algorithm by Hao Cui and Roni Khardon [4]
that symbolically represents an approximation of the @ value function as a function of
the action variables in order to perform gradient-based search over actions. This assumes

independence of state and action variables to reduce the complexity.

Algorithm 1: SOGBOFA

Result: action

optimizedActions = {};

qFunction = buildQFunctionTree(States, Actions);

while time remaining do

currentActions < randomRestart();

while time remaining and not converged do
gradient < calculateGradient(currentStates, currentActions, qFunction);
currentActions < makeUpdates(gradient);
currentActions < projection(currentActions);
optimizedActions.add(sampleConcrete Action(current Actions));

end

end
return best(optimized Actions);

SOGBOFA (Algorithm 1) uses a rollout algorithm [15] to symbolically build a directed,
acyclic graph, which succinctly approximates the Q value function in terms of the action
variables. Once such a graph is built, it is used extensively to find a good action. This
is done by repeatedly sampling a legal initial action for the state, which is then optimised
using gradient ascent.

After each gradient step, a concrete action is generated from the action variables and saved.
This is repeated with new initial actions until the time is up and the best concrete action

found so far is selected.
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From Algorithm 1, we can identify these core functions:
e Building the @ function graph
e Gradient steps
e Action projection

e Concrete action sampling

The details of these different steps are explained in the following.

3.1.1 Building the Q Function Graph

The first step in the algorithm is the construction of the directed, acyclic graph representing
the Q value function, i.e. the transformation of the Q value function into a symbolic repre-
sentation. As we have seen in Section 2.2, this graph is vital to the procedure as it allows
for automatic differentiation to be used to perform efficient gradient calculations.

The idea behind the graph follows from the MCTS rollouts. These rollouts sample trajec-
tories for of action variables over future steps to get an estimation of the Q value of each
action. With such a strategy, problems can occur if the sampling of trajectories is very
costly. Then, this procedure has a high variance due to only having few samples. This
was the motivation for a strategy of aggregate simulation, an algebraic process where only
one sample of the trajectory is performed, but this one sample gives an estimation of many
trajectories [3]. In this one sample, the marginal probabilities of state variables in the next
state are calculated based on the marginals of state and action variables in the previous
state. If we make the assumption of independence among state and action variables, these
marginals can be used as an approximation of the state distribution at the next state. From
this, we can calculate (an approximated) evaluation of the reward function for this state.
If done over multiple future states, this leads to estimation of the Q value, based on the
current state and action variables. Even better, we can represent this estimation of the
Q value as a symbolic function of the marginals of action variables at the root level (i.e.
the current state). It is imporant to understand that the calculations for the marginals is
very much correct, but we disregard the dependence between them. For example, we can
calculate exact marginal probabilities of an elevator in the elevators-2011 domain? going up
and going down, but we disregard that he can not, in fact, do both at the same time.
Both formally and its construction this graph is very much akin to expression trees. It

contains the following components:
e State variables (current state)
e Action variables (subject to updates)

e Next state variables (algebraic expression)

2 In this domain, one or more elevators have to transport people arriving at random timesteps to their
target floor. For more information, see [13].
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e Action constants (fixed)
e Reward (algebraic expression)

e Q value (sum of rewards)

This is very similar to the RDDL encoding of the MDP as described in Section 2.1.4. Thus,
building the graph is a rather straight-forward compilation from the RDDL encoding, using
its description of the variables, transition functions and the reward function in their numeric
representation. The Q value function graph for the toy navigation example is shown in
Figure 3.1 for the direct path with two actions, and in Figure 3.2 for the safer path with

four actions.

Graph construction from RDDL: Given a factored MDP M = (V, A, T, R, H), with
a horizon H, encoding a planning task, we construct the SOGBOFA Q-function graph as

follows:

e Add a node (v*,h) for all v* € V and h € 1,..., H encoding the state fluents at that
step.

e Add anode (a*,h) for all a* € A and h € 1,..., H encoding the action fluents at that
step.

e Add anode (R,h) for all h € 1,..., H endcoding the reward at that step.
e Add anode Vh € 1,..., H encoding the Q value at that step.

e Add a directed, acyclic subgraph for all state fluent nodes with A # 1, encoding
the transition function in 7 updating that state fluent based on the previous layer.
This subgraph connects this state fluent node with the relevant nodes at step h — 1
and contains operator nodes for operators used by the arithmetic expressions in the
RDDL transition function it encodes. The same is true for constants. Analogously, a
subgraph is introduced for each reward node to encode the reward function, connecting

the reward node with the relevant state and action nodes of the same layer.

e Add an edge from each node encoding a Q value to the reward node at that layer and
Q value node on the previous layer, connecting the Q values to the rewards as a sum

of the current reward and the previous Q value.

For this graph construction all functions are assumed to only contain arithmetic expres-
sions. The standard RDDL transition and reward functions can be converted to arithmetic

expressions following the rules described in Section 2.1.4.

Q function graph for the navigation example: This graph is built from bottom up,
starting at the leaves with state variables initiated as given by the current state (either 0 or
1) and action variables initiated with valid values derived from a concrete, random action.
Constant nodes can be set as necessary. Which state and action variables or constants there

are directly follows the RDDL encoding of the problem, as demonstrated in Figure 3.1.
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@® @ & & 6 & & 6 0 O

Figure 3.1: DAG approximating the Q value function for the navigation example from
Section 2.1.4 over two steps. Reward and its summation to the @ value in red, actions to
be optimised in grey.

There are six state variables for the possible positions on the field, three action variables
for the movement, and constant nodes for the probability and reward calculation. On the
internal layers, the next states are represented as algebraic operation nodes over previous
states and actions. They are again derived from the algebraic expression for the next state
in the RDDL transition functions. The RDDL transition functions for our example are
shown in Section 2.1.4. In addition to these internal state nodes, these layers also introduce
additional action constants representing the action choices made in the next planning step.
These are assigned a uniformly distributed probability value. For each layer with state and
action variables, there is also a node encoding the reward formula, as compiled from the
algebraic expression for the reward in RDDL. Finally, the QQ value node is simply a sum over
all reward nodes.

The height of the DAG represents the search depth. In theory, of course, one could build the
graph for the full horizon, i.e. such that the search depth is equal to the horizon depth. As
the size of the DAG scales only linearly with search depth, this would be feasible. However,
this is generally not ideal due to time constraints on the overall search. As such, there is an
inherent tradeoff between the search depth and the number of actions that can be explored.
We will discuss how to find a good search depth dynamically in detail in Section 4.3.2. The
general idea is to allocate time for a minimum number of updates beforehand and then
building the graph with as many layers as possible while ensuring the specified number of

updates can still be performed afterwards.
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Figure 3.2: DAG approximating the Q value function for the running navigation example
over four steps. Reward and its summation to the Q value in red, actions to be optimised
in grey.

3.1.2 Gradient Steps

The gradient ascent is repeated for as many randomly chosen initial actions as possible within
the time remaining, after which a best action is selected from the actions found during the
random restarts of gradient ascent. Gradient ascent for each starting configuration is itself
a loop over gradient calculation, action updates, action projection, and concrete action
sampling. Gradient ascent is stopped once the largest change in a single action value is
under a certain threshold, with the assumption that we have reached a local optimum.

The first part of gradient ascent is to take a step in the direction of the gradients.
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Gradient calculation: With the symbolic graph of the Q value function built, SOG-
BOFA uses reverse mode automatic differentiation (as explained in Section 2.2) to calculate
gradients for all action variables. This yields values to use for updates of the action variables
in a time efficient manner: only one sweep through the @ function graph is needed in this
case due to the scalar-valued Q value function. Of course, we also calculate the Q value

itself together with the gradients.

Action updates: Once we know the gradients of the actions, we use them to update the
action variables with a certain step size by adding the product of the step size and the
respective derivative. While we assume a fixed step size for now, we will discuss possibilities
to find the step size dynamically in Section 4.3.1. The idea behind this is that some step
sizes might be better suited than others depending on the problem or the particular gradient

steps.

3.1.3 Action Projection

While the gradient based updates work well to find the right direction for action updates,
there is no guarantee that the updated actions still maintain the a € [0,1] bound on their
domain due to probability constraints or any constraints induced by what constitutes a legal
action. This can propagate through the Q value function graph, leading to very nonsensical
and wrong results. It is possible to fix this by projecting the actions back to a legal range
after any gradient update step in what is called lazy gradient ascent. [14]: If any actions
are outside their [0, 1] range after the gradient updates, they can be simply scaled back by
subtracting the smallest value among the actions and then dividing by the difference of the
largest and the smallest value among the actions. This keeps the correct relation between
the values But this only projects them to be between zero and one again, it does not help
to make sure no action constraints are violated in the gradient step.

Therefore, SOGBOFA also uses a second projection: The actions are projected again such
that they adhere to action constraints (for example being able to play only one action at a
time). They do this by repeatedly subtracting any excess amount in violation of the action
constraints from all actions equally, with the lower bound of 0 for all actions. While this is

a very helpful step, potentially providing a lot of guidance, such a solution only works for

ZCLZSB

with a; € Actions and a bound B. Any constraints on actions in another form would have

sum constraints in the form of

to be manually added in a similar manner.

3.1.4 Concrete Action Sampling

With the gradient steps and the following projection, gradient ascent over the actions means
that a continuous search is applied to a discrete action space. In other words, we generate
marginal action probabilities for all factored action variables somewhere between zero and

one. Yet, when we have to take an action, a valid action only has values of zero or one in
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its factored action variables. Therefore, we need to apply a process of sampling a concrete,
discrete action from our continuous assignments. SOGBOFA does this after every gradient
step and saves the resulting concrete state together with the estimated Q value, from which
the best one is selected in the end. This also means that it is less essential at which
exact threshold we stop the gradient ascent as long as we sample the same concrete value
afterwards.

With regards to how the action state is sampled, SOGBOFA uses a greedy highest marginal
probability heuristic, meaning they repetedly set the highest action values to one for as long
as the maximum number of legal actions is not surpassed and its probability is not smaller
than a uniform distribution. All other actions are set to zero. The resulting action state is
the concrete action state.

This approach is exploiting the way the planning domains are generally encoded, in that
most of the time, taking an action is beneficial, so rounding up to a one for an action can
often prove useful. But the same problem could theoretically also be encoded the other way

around, and then this greedy assumption would fall flat.

3.2 Conformant SOGBOFA

@ @
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Figure 3.3: DAG of the conformant SOGBOFA approximating the Q value function for the
running navigation example over two steps. Reward and its summation to the Q value in
red, actions to be optimised in grey. Note that action constants are now action variables.

In addition to the algorithm described in Section 3.1, there is an extension of it called
conformant SOGBOFA [5]. It offers an improvement to the algorithm by improving the
policy assumed for future actions.

The conformant algorithm for SOGBOFA introduces a change to handling action variables
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in layers other than the leaves. Normally, SOGBOFA would simply assign probabilities
to all actions in deeper layers as action constants based on a uniform distribution. This
simulates an execution of all actions at the same time, but to a small extent, for any future
action up to the search depth. While this works well in many cases, there are definitely
domains where such a uniform simulation is insufficient to properly evaluate the quality of
the current state.

This is where the conformant algorithm offers a large improvement: In conformant SOG-
BOFA, the aforementioned action constants are replaced with uniformly initialised action
variables, which are then optimized together with the action variables at the leaf level.
This means that their gradient is calculated and they are updated just like the other action
variables, but of course the selection of a concrete action remains to be only based on the
action variables in the initial state. How this changes the Q value function graph is shown
in Figure 3.3. The implication here is that the optimized conformant actions represent a
good choice of future actions, so SOGBOFA can recognize good rewards from a very spe-
cific set of choices that is not apparent from a random policy for future actions. It focuses
the many estimated trajectories of the current actions towards the ones containing sensible
future actions.

Due to the gradient calculation in reverse mode automatic differentiation, the many addi-
tional gradients for the conformant actions can still be calculated in one traversal of the

graph, thus not really impacting the calculation time.
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In this thesis, we are at first looking to test the SOGBOFA search algorithm, understand-
ing the contributions and necessity of the different parts involved, and identify room for
improvement.

However, the main contribution of this thesis is the design of heuristics to be used by a
THTS framework, such as the PROST planner, based on the ideas from the SOGBOFA.
Specifically, we incorporate the guidance from the Q value function graph and the gradient-
based optimization techniques performed on it into a THTS heuristic.

In the following, we discuss the techniques, parameters, and concepts used in the heuristics
by explaining them in the context of a standalone SOGBOFA planner as a search engine in
THTS. Then, we will discuss the key changes in the heuristic setting and how SOGBOFA

can be adapted as a heuristic.

41 SOGBOFA as a Standalone Planner

A more general overview of the SOGBOFA procedure can be found in Section 3.1. Here, we
will focus on details relevant to our implementation and fine tuning of the algorithm with
parameters. We will also present an idea for a potential improvement of the algorithm.

As explained in Section 3.1, the SOGBOFA search engine repeats random restarts of gradient
ascent steps finding optimal values for its Q-function. Now, we look at the algorithm in more
detail, including the parameter settings Cui and Khardon [4] suggest and changes made in
our implementation. Algorithm 2 demonstrates the main loop over random restarts and
gradient ascent steps, but with some changes to Algorithm 1. These changes reflect the
additions discussed in this chapter, providing their context in SOGBOFA.

The first notable change in Algorithm 2 is the calculation of a dynamic search depth for the
construction of the @ function. Then, we calculate a dynamic step size for each gradient
step. Lastly, we can see that our implementation only samples concrete actions once in the
end, and instead always saves the best continuous action after each gradient step.

Another change is hidden in the way we sample concrete actions (not shown in the algo-
rithm). In the PROST planner, we have the concrete action states available. Thus, it is

easy to calculate the distance of our desired action state given by the gradient ascent to all
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Algorithm 2: SOGBOFA Search Engine

Result: Estimates best actions
bestAction;
findDynamicSearchDepth();
qFunction = buildQFunctionTree(States, Actions);
while time remaining do
currentActions < randomRestart();
while time remaining and not converged do
gradient «+ calculateGradient(currentStates, currentActions, gFunction);
findDynamicStepSize(current Actions, gradient);
currentActions + makeUpdates(gradient);
currentActions < projection(currentActions);
if currentActions have better () value then

‘ bestAction < currentActions;
end

end

end
return sampleConcreteAction(bestAction);

concrete, legal and applicable action states. Consequently, we currently use the action state
minimizing this distance as the corresponding concrete action.

This complicates direct comparisons, but should only beneficial to the procedure, as we
can guarantee to pick a legal action. It should also dampen the effect of violated action
constraints, as working with illegal actions can surely impact the quality of the decisions,
but does not lead to a final illegal action.

Algorithm 3 shows how the Q-function to be optimized is built. It closely follows the
procedure outlined in Section 3.1, building the Q function level by level by calculating
reward and Q value while updating the state and action fluents accordingly.

The only difference from the procedure described in Section 3.1.1 is that we subtracted a
penalty from the Q value in the first layer. This penalty adds a large cost to the Q value
for all the action preconditions that are violated with the current actions. The idea is to
force SOGBOFA to stay within the legal actions with its optimization, as we explain in the
following Section 4.2.

There are some slight changes for the conformant procedure, in particular the function
calculateGradient also takes conformant action fluents as input to be optimized, which

replace the uniform actions in the Q function.

4.2 Action Preconditions as Reward Penalties

We have seen in Section 3.1.3 how constraints on actions are handled in the original SOG-
BOFA procedure. Constraints in the form of )", a; < B are supported. In general, however,
constraints can take the form of any arbitrary arithmetic formula. Hence, SOGBOFA can
not represent or take into account action constraints in a different form than the ones im-
plemented. Following this implementation, the way to support new action precondition
formulas would be to manually add a similar constraint handling for every type of formula

encountered. For this reason, we only implemented this for the constraint on the sum of
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Algorithm 3: qFunction

Input: currentStates, currentActions
Result: gqValue
while searchDepth not reached do
if first layer then
reward < rewardFormula.evaluate(currentStates, currentActions);
penalty < 0;
for all actionPreconditions do
penalty < penalty - 1000 * (1 -
actionPreconditionFormula.evaluate(currentState, currentActions));
end
qValue < reward + penalty;
nextStates < transitionFormulas.evaluate(currentState, currentAction);
nextActions < 1 / currentActions.size();
nd
else
nextStates <— currentStates;
reward < rewardFormula.evaluate(nextStates, nextActions);
qValue < qValue + reward;
end

[¢]

end
return qValue;

legal actions specifically, and opted for a different method to represent other constraints.

As an alternative, we propose a generalized way to handle action constraints, where any
constraint in the form of an arithmetic expression can automatically be taken into account.
The idea is to integrate the action precondition formulas, which are in the form of an
arithmetic expression, directly into the SOGBOFA Q value function graph. This is done by
adding a multiplication node for each constraint formula to the reward node of the actions
we want to force to adhere to the constraints. This multiplication node has a large negative
penalty as one child and the negation of the constraint formula as the other child. Using
sigmoid functions for the equality expressions, this remains differentiable (which is of course

critical for the gradient calculation).

4.3 Parameters of SOGBOFA

Now, we have a look at the most important parameters of the algorithm, which can all have
significant effects on the overall performance.

The following parameters can be tuned (regardless of conformant or non-conformant proce-
dure):

e Search depth: The depth for the Q-function tree, i.e. the number of layers. Ways

to calculate this dynamically are discussed below.

e Step size: The step size scaling the gradient ascent updates. Ways to calculate it

dynamically are discussed below.

e Threshold: The number of gradient steps per random restart can be indirectly con-
trolled through the sensitivity of the threshold.
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4.3.1 Dynamic Step Size

Cui describes a process of dynamically finding an appropriate step size for every newly
calculated gradient. This process is shown in Algorithm 4 and works as follows: We find the
maximum value among the gradients. This defines our maximal step size, such that we make
sure not to push the action values beyond [—1,2]. From zero to this maximal step size, we
perform a search over ten evenly spaced potential step sizes. During this search, we estimate
the potential Q value for each step size through an evaluation of the QQ value function with
action values after a gradient step with that step size (i.e., we simulate a gradient step at
that step size). We then pick the step size with the best Q value, but repeat the procedure
up to five times if the smallest step size was picked, indicating our search window had too
large step sizes. In that case, we set the next maximal step size to the current minimal step

size for the next iteration.

Algorithm 4: findDynamicStepSize

Input: currentActions, gradient
Result: step size a
Umaz < max(gradients);
Qmaz < ﬁ;
alphas « calculate 10 evenly spaced ay, ..., ag € [0, @maz;
do
| o« find o; from alphas with the best Q value;
while « is g, but at most 5 times;

return «;

While the intuition provided by a search over possible step sizes seems potentially very
useful, it seems somewhat costly to calculate a new step size with every gradient update.
It might be more efficient to calculate a suitable step size for each problem once at the

beginning.

4.3.2 Dynamic Search Depth

Algorithm 5: FindSearchDepth

Result: searchDepth

t; < stop the time for one gradient ascent step at a minimum searchDepth;

t; —t; +

while minUpdates -t; < remainingTime do
searchDepth < searchDepth + 1;

t; .
searchDepth?

/.
t; < ti’
! AT 7 S
t’i b+ searchDepth ’
end

For SOGBOFA, a dynamic calculation of the search depth, i.e. the height of the search tree,
is suggested. Cui and Khardon suggest the calculation of one gradient update at a specified
minimal search depth to find the average time increase for gradient calculation that comes

with adding another layer (as this time increase linearly scales with the search depth). Then,



Methods 23

additional layers are added as long as the remaining time is enough for k£ gradient updates
at that search depth.

4.4 SOGBOFA as a Heuristic

Due to the setting, a heuristic will naturally be different to the standalone planner. Most
importantly, the action variables will always be fixed at the input layer (leaf level), because
together with the state variables they are given by the planner. Rather than optimizing
these actions, we now have to calculate a good estimation of their Q value. But there are
also other differences, some implicitly given. For example the heuristic calculation has to
be much faster than the standalone planner, as it is expected to be calculated many times
in a single step. Based on these constraints, we have designed two heuristic approaches in
line with the ideas from the standalone SOGBOFA procedure. Both are presented in the

following.

4.4.1 Propagation Heuristic
The first idea was to create a heuristic from the SOGBOFA procedure by simply forward
propagating the action state values given by the planner once. The resulting Q value is

returned to the planner.
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Figure 4.1: DAG approximating the Q value function for the navigation example from
Section 2.1.4 over two steps as used for a simple heuristic calculation. Reward and its
summation to the Q value in red. Note that both the state variables and action variables
are now constants at the leaf level.

The idea behind this heuristic is to create a very minimal integration of the guidance pro-

vided by the SOGBOFA Q value function graph into an existing planner, without relying on
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the finely tuned process of gradient based optimisation. An example of a Q value function
graph for this type of heuristic evaluation can be see in Figure 4.1. The biggest potential
advantage of this heuristic is that it would be very fast to calculate. It also has only one
parameter to tune: the depth of the Q value function graph. Nonetheless, this parameter

allows some control over calculation speed and the information the graph can provide.

4.4.2 Conformant Heuristic

The second heuristic also integrates the gradient-based optimization steps. As the actions
at the input layer are fixed, we can not do any optimization on them. We can, however,
optimize the other action variables not at the lowest level, in the same way they are optimized
in the conformant version of the Sobgofa standalone planner. This should provide a more
accurate approximation of the Q value function, as we gain additional information about
good future actions. It also means we have more parameters that can influence the exact
settings of the heuristic. Next to the search depth, we now also have a maximum number
of gradient steps, a threshold, and a step size.

What this conformant heuristic procedure means for the structure of the Q value function

graph is shown in Figure 4.2.
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Figure 4.2: DAG approximating the Q value function for the navigation example from
Section 2.1.4 over two steps as used for a more advanced conformant heuristic calculation.
Reward and its summation to the Q value in red. Note that while the state variables and
action variables are still constants at the leaf level, the action variables in higher levels are
now being optimized.

Lastly, we will have a look at an overview of the algorithm for these heuristics in Algorithm 6.
We cache the states we visit to increase performance if we have few or very similar states.

We initially set state fluents and search depth, only we can not afford to calculate a search
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depth dynamically. Then we perform the actual calculation of the Q values, depending on
the chosen heuristic. In the conformant case, we initialize the conformant actions in addition
to the action fluents at the leaf level in the same way as for the standalone planner. Then, we
optimize only the conformant action fluents until we have converged or reached a maximum
number of gradient ascent steps, returning the last Q value we calculated to the planner. In
the propagation case, we simply perform a forward propagation step by evaluating the Q

value function once.

Algorithm 6: Heuristic

Input: state, actionsToExpand

Result: qValues

qValues = if state is already cached then

| return qValues(state);

else

sf + state.stateFluents;

maxSearchDepth < min(maxSearchDepth, state,stepsToGo);

for all actionsToFEzpand do

af « action.state.actionFluents;

q;

if conformant then
afConformant <— 1 / action.state.size();
while steps remaining and not converged do

‘ q + gradientAscentHeuristic(af, afConformant);

end

else

‘ q + gFunction(af);

end

qValues(state) = g;

return qValues(state);

end

end




Experiments

This section describes the experimental evaluation of our methods. We first look at the
setup for the experiment and then discuss strengths and weaknesses of the procedures, key
findings, and trends. To do so, we initially look at the individual parameters of the different
setups. Then, we compare our standalone planner and heuristics. We also compare and

contrast our algorithms to the other closely related state-of-the-art planners PROST [§].

5.1 Experiment Setup

The setup for our experiments closely followed the setup used for the International Planning
Competition (IPC) 2018. [16] Notable differences are that the algorithms were tested on the
planning domains from the IPC 2011, 2014, and 2018 over 100 runs for each configuration
with 2.5 seconds for each step. Calculations were performed at sciCORE?.

An issue with the SOGBOFA planner [4] in general is that it demands several restrictions
from the domain and instance encoding. For one, it assumes that there are no enums in the
domain encoding. While these can be replaced in a precompilation step and instead be mod-
elled with interm fluents, SOGBOFA will not work if they are still existent. Furthermore,
SOGBOFA can not handle action constraints that are not in the form of a sum constraint
over actions. This, again, means that SOGBOFA will not work if it encounters action con-
straints it does not recognize. The latter is not as problematic in the PROST setting, as
we always have concrete actions calculated and use a more general way to handle all action
constraints. But, our implementation does not work with enums either. Also, the PROST
planner does not support interm fluents. This becomes a problem as enums are compiled
away using interm fluents to generate binary domains from the finite domains with enums.
As there is currently no version of all IPC 2018 domains without both enums and interm
fluents available, we unfortunately have to restrict our benchmark setup by excluding the
problematic TPC 2018 domains.

Similarly, the SOGBOFA planner used at the IPC 2018 is unable to parse the 2011 and

2014 instances we used. This leaves us with an overlap of very few domains where we can

3 http://scicore.unibas.ch/
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directly compare the scores between our setup and the original SOGBOFA. Hence, it does
not make sense to do so. Instead, we can use the PROST IPC2014 configuration to have a
state-of-the-art planning benchmark to compare to. Still, we will closely relate our results
to the ones of the original SOGBOFA and see which trends and attributes of the planner

we can also notice.

5.1.1 IPC Score

A very commonly used measurement for the performance of a probabilistic planner is the
IPC score.

It is the performance score calculated in the planning competitions to evaluate the perfor-

mance of a planner and defined as
R— Ry

R*
with R being the average accumulated reward of the planner over all runs, Ry the average

accumulated reward of a minimal reference policy (the better of a random and a noop
policy), and R* the highest average accumulate reward of planners tested. This can be
calculated for every instance, and then summed up over all instances and domains. It is,
however, very context sensitive based on the compared configurations, because the difference
in accumulated reward is divided by the reward of the best configuration. Unless otherwise
specified, IPC scores can only be directly compared between results of the same experiment.
Note that we follow the recent trend of the IPC 2018 to use the sum of the IPC scores over
all instances and domains as total score instead of the previously used average. As a side
effect of this, the 2018 planning domains are weighted stronger as they have 20 instances
instead of 10, but we will mention this again if it should have an effect on the experiments.
In the following, we will do an in-depth discussion of our different configurations, the tuning

of their parameters, and their strengths and weaknesses.

5.2 Standalone Planner

In a first step, we take a look at the results for the standalone planner. For the most part,
we are interested in confirming the trends discussed by Cui and Khardon [4] to show that
the procedure is solid and our implementation is sound. Furthermore, we want to provide an
evaluation of all components discussed in Chapter 4, and discuss which components could
merit a further investigation. As a default configuration for the experiments, we used the

the one which corresponds to the original SOGBOFA planner:

e Using a dynamic search depth.
e Using a dynamic step size.
e Using a threshold of 0.1.

e Using sum constraints in the sampling of concrete actions and in the action projection

to adhere to action constraints.
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Since we want to know the contribution of these settings to the performance of the procedure,
we tested other options for each of these settings. This was done one setting at a time, with
always one setting different from the default to show its effect. The tested differences to the

default are:
e Using fixed search depths.
e Using fixed step sizes.
e Using a different threshold.

e Using general reward penalties to adhere to action constraints.

The results are presented in the following.

5.2.1 Search Depth

Table 5.1: TPC Scores for the non-conformant standalone planner at varying search depths
(between 3 and the horizon), including the dynamic selection of a search depth. These scores
are comparable with Table 5.5. Notable results in bold.

Domain 3 7 10 14 20 30 40 Dynamic
crossing-traffic-2011 4.42 984 984 984 984 984 9.84 9.84
elevators-2011 1.26 081 081 081 081 081 0.81 0.81
game-of-life-2011 792 899 9.07r 876 878 8.64 877 9.09
navigation-2011 3.22 225 225 225 225 225 225 2.25
recon-2011 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
skill-teaching-2011 9.63 923 930 911 9.16 925 9.08 9.09
sysadmin-2011 940 971 97 9.69 9.78 9.67 9.70 9.69
academic-advising-2014  0.00 0.00 0.00 0.00 0.00 0.62 1.23 1.23
tamarisk-2014 945 930 949 943 924 937 9.30 9.45
triangle-tireworld-2014 4.55 3.04 3.09 310 259 257 3.06 4.28
wildfire-2014 7.61 945 959 953 945 956  9.64 9.67
academic-advising-2018 3.68 6.26 6.56 6.76 6.44 6.52  5.95 6.37
cooperative-recon-2018 140 127 123 147 1.60 1.10 1.44 1.75
Sum 62.54 70.15 70.99 70.75 69.94 70.19 71.08 73.53

We have tested different fixed search depths and the dynamic approach of SOGBOFA. From
the scores in Table 5.1, we can see that a dynamic search depth leads to an improvement
of the procedure in general. Of course, fixed search depths can still work well if they are
well suited for the problem, as the dynamic search depth simply fixes a search depth to be
used for the whole instance based on an estimation of the needed time. Overall, it is not
an enormous increase, but the fixed search depths seems to find a rather reasonable balance
between the number possible random restarts and a more informative gradient ascent.

As to the effect of the search depth in general, it is interesting to look at specific domains.
Then, we can see that a search depth of three can be very insufficient for certain problems,
such as crossing-traffic-2011, wildfire-2014, or academic advising-2018, as we fail to model

key mechanisms of that domain with such a small Q value function graph. We can also see
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that SOGBOFA does not appear to work at all on some domains, such as elevators-2011, or
recon-2011

5.2.2 Step Size

Table 5.2: IPC Scores for the non-conformant standalone planner at varying step sizes
(between 0.01 and 0.5), including the dynamic selection of a step size. These scores are
comparable with Table 5.6. Notable results in bold.

Domain 0.01 0.05 0.1 0.3 0.5 Dynamic
crossing-traffic-2011 9.86 98 990 9.86 9.86 9.86
elevators-2011 1.05 1.05 1.05 1.05 1.05 1.05
game-of-life-2011 9.18 9.06 847 745 691 8.96
navigation-2011 230 230 230 230 230 2.30
recon-2011 0.00 0.00 0.00  0.00 0.00 0.00
skill-teaching-2011 9.14 9.15 8.63 8.22 7.63 9.16
sysadmin-2011 9.67 9.69 979 950 9.59 9.65
academic-advising-2014  1.21 1.23 138 1.67 1.60 1.23
tamarisk-2014 9.61 9.23 872 826 8.36 9.56
triangle-tireworld-2014 4.35 483 449 480 5.39 5.71
wildfire-2014 9.57 830 795 7.62 7.58 9.69
academic-advising-2018  5.79 554 559 548  5.39 6.53
cooperative-recon-2018 3.99 4.60 2.59 0.71 0.21 1.75
Sum 75.73 T74.83 70.85 66.92 65.88 75.45

We tested several fixed step sizes in addition to the dynamic calculation. The results are
shown in Table 5.2. As a general trend, small step sizes seem more suitable, as they lead to
a smoother convergence of the algorithm. The dynamic step size appears to find a suitable
step size for all domains. Especially when there is a large difference between the step sizes,
the dynamic procedure selects one which is among the best of that domain, which leads to
a very successful overall performance. This behavior of the dynamic step size is consistent
with the findings by Cui and Khardon [4].

An exception is the cooperative-recon-2018 domain, where the dynamic step size is only

mediocre, which hurts the total score.

5.2.3 Threshold

In a very similar fashion to the findings of Cui and Khardon, we can see that the choice
of thresholds does not have clear trend for the different values or too much overall impact
on the score; neither overall nor in specific domains (other than maybe that a 0.1 threshold
underperforms in cooperative-recon-2018).

The range of reasonable thresholds seems to be generously large. But, as a threshold of 0.3

yields the best results, we will keep that for our best configuration.
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Table 5.3: IPC Scores for the non-conformant standalone planner at varying thresholds
(between 0.05 and 0.7). These scores are comparable with Table 5.7. Notable results in
bold.

Domain 0.05 0.1 0.3 0.5 0.7
crossing-traffic-2011 9.79 979 979 9.79 9.79
elevators-2011 029 029 029 029 0.29
game-of-life-2011 9.04 852 9.01 9.11  9.06
navigation-2011 2.89 289 2.89 289  2.89
recon-2011 0.00 0.00 0.00 0.00 0.00
skill-teaching-2011 9.31 9.15 938 932 9.22
sysadmin-2011 9.89 987 987 988 9.88
academic-advising-2014 1.96  2.00 1.98 1.99 1.97
tamarisk-2014 9.32 921 936 933 9.16
triangle-tireworld-2014 4.48 428 5.01 4.37 5.18
wildfire-2014 9.66 9.69 971 974 9.73

academic-advising-2018 596 736 6.49 625 548
cooperative-recon-2018 3.17  1.74 3.18 3.45 2.76

Sum 75.77  T4.TT  T76.97  76.42  75.40

5.2.4 General Action Constraints

We tested a generalized way to include the essential information from action constraints,
without having to implement them by hand for each new type of constriant that is encoun-
tered, but not yet supported. Recall that SOGBOFA also uses a specific handling for the
sum constraint on the maximum number of concurrent actions allowed, as it is included in
the concrete action sampling in addition to the action projection.

In the PROST framework, on the other hand, concrete actions are always generated. While
this leads to increased difficulty for the parser, it means that we always have the legal,
concrete actions available for us to simply pick the closest one to our symbolic action state.
As such, we should be less reliant on the information introduced through the maximum
number of concurrent actions during concrete action sampling based on highest marginal
probabilities. This lessens the need to have all encountered action preconditions integrated
in the procedure, as we could still find legal states in the end. This might therefore also
dampen the effect of our generalized action constraint implementation in our version, but
we would still gain a lot of information from them regardless.

As our default implementation also adopts the special handling of the maximum number
of concurrent actions allowed used in action projection and concrete action sampling, we
disable this in the configuration with generalized action constraints. The aim is to test our
generalized action constraints, through the integration of action preconditions directly into
the Q value function graph, without giving it specific, additional information, which would
weight some constraints as more important than others.

We can see in Table 5.4 that the general integration of action constraints gives similar
results to the use of the mazimum number of concurrent actions constraint only. This is
somewhat expected, as many domains here do not use a large number of additional action
preconditions. One example of a domain with many action preconditions is cooperative-

recon-2018. And indeed, we can see that the general action constraints work significantly
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Table 5.4: TPC Scores for the non-conformant standalone planner with and without our gen-
eralized action constraint integration. These scores are comparable with Table 5.8. Notable
results in bold.

Domain Generalized Constraints Special Handling of Allowed Actions
crossing-traffic-2011 9.83 9.79
elevators-2011 0.29 0.29
game-of-life-2011 6.86 8.52
navigation-2011 2.89 2.89
recon-2011 0.00 0.00
skill-teaching-2011 8.94 9.19
sysadmin-2011 8.39 9.75
academic-advising-2014 1.23 1.23
tamarisk-2014 9.19 9.27
triangle-tireworld-2014 6.18 4.25
wildfire-2014 9.02 9.67
academic-advising-2018 4.36 7.42
cooperative-recon-2018 3.93 1.52
Sum 71.12 73.79

better on this domain than only including the maximum number of concurrent actions.
On the other hand, we can see in academic-advising-2018, where there is only one other
constraint beside the maximum of actions, that the integration of the action preconditions
into the Q value function graph can cost a lot of calculation time on such large domains.

This does not pay off if it does not lead to additional information.

5.3 Conformant Standalone Planner
The experiment setup for the conformant standalone planner follows the setup for the non-

conformant planner.

5.3.1 Search Depth

Table 5.5 shows the effect of the search depth on the performance of SOGBOFA. Note that
these IPC scores can be directly compared to the ones presented in Table 5.1.

As a general trend, similar to the non-conformant version, we can see that a very small
search depth is inqadequate for many problems. We also have to note that the dynamic
search depth calculation does not generate the best results. While the dynamic search depth
appears to select a very reasonable search depth on most domains, cooperative-recon-2018
catches the eye as a domain where it does not work at all. With a better performance on
this domain, it would represent the best results overall. We have to also keep in mind that
the 2018 domains have twice the number of instances of the other domains, which widens

the gap in the sum over all domains this deficit causes.
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Table 5.5: TPC Scores for the conformant standalone planner at varying search depths
(between 3 and the horizon), including the dynamic selection of a search depth. These
scores are comparable with Table 5.1. Notable results in bold.

Domain 3 7 10 14 20 30 40  Dynamic
crossing-traffic-2011 4.04 984 984 984 9.79 8.63 7.55 9.81
elevators-2011 1.79 469 394 343 438 335 3.06 3.93
game-of-life-2011 792 9.08 9.05 9.07 888 877 884 8.64
navigation-2011 325 225 225 295 295 424 470 2.69
recon-2011 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
skill-teaching-2011 9.78 895 9.02 922 890 7.98 747 9.10
sysadmin-2011 9.04 904 9.16 9.12 872 833 827 8.85
academic-advising-2014  0.00 0.00 0.23 0.69 086 2.17 3.14 0.00
tamarisk-2014 9.22 857 782 7,51 631 558  5.36 8.85
triangle-tireworld-2014 453 319 353 284 273 4.15 4.68 3.90
wildfire-2014 821 957 951 898 930 9.53  9.59 9.57
academic-advising-2018  3.80 5.19 450 4.09 4.01 3.78  3.80 5.36
cooperative-recon-2018 1.20 2.07 1.57 277 5.46 5.25 3.92 0.03
Sum 62.75 72.43 70.42 70.5 7229 71.76 71.39 70.73

5.3.2 Step Size

In Table 5.6 we can see that we generally need larger step sizes for the conformant SOGBOFA
compared to the non-conformant SOGBOFA.

Table 5.6: IPC Scores for the conformant standalone planner at varying step sizes (between
0.01 and 0.5), including the dynamic selection of a step size. These scores are comparable
with Table 5.2. Notable results in bold.

Domain 0.01 0.05 0.1 0.3 0.5 Dynamic
crossing-traffic-2011 9.86 9.93 9.88 9.83 9.68 9.83
elevators-2011 0.05 3.30 3.96 4.69 3.28 4.61
game-of-life-2011 9.16 843 8.09 717 6.80 8.51
navigation-2011 230 230 230 389 4.25 2.94
recon-2011 0.00 0.00 0.00 0.00 0.00 0.00
skill-teaching-2011 9.15 914 891 8.92  8.04 9.17
sysadmin-2011 945 934 923 922 944 8.81
academic-advising-2014 ~ 0.00 0.94 241 202 1.35 0.00
tamarisk-2014 950 9.09 885 3.74 3.85 8.96
triangle-tireworld-2014 457 462 446 433 5.19 5.31
wildfire-2014 9.29 923 895 8381 8.78 9.59
academic-advising-2018  5.57  5.58 5.51 5.00  5.20 5.46
cooperative-recon-2018 1.95 0.00 0.00 0.25 0.16 0.03
Sum 70.85 T71.91 7256 67.88 66.01 73.20

Still, step sizes too large are can be conterproductive, the most prominent example for

this is tamariks-2014. But the best configuration is, again, the dynamic step size. With

the exception of navigation-2011, academic-advising-2014, and cooperative-recon-2018, it

selects a very good step size for each domain.



Experiments 33

5.3.3 Threshold

Table 5.7: TPC Scores for the conformant standalone planner at varying thresholds (between
0.05 and 0.7). These scores are comparable with Table 5.3. Notable results in bold.

Domain 0.05 0.1 0.3 0.5 0.7
crossing-traffic-2011 9.82 959 986 9.83 9.86
elevators-2011 029 3.77 029 029 0.29
game-of-life-2011 8.84 806 881 886 883
navigation-2011 2.89 4.00 2.89 295 2.89
recon-2011 0.00 0.00 0.00 0.00 0.00
skill-teaching-2011 9.17 891 926 941 9.33
sysadmin-2011 9.76 893 987 9.69 9.73
academic-advising-2014 ~ 0.00  0.00  0.00 0.00  0.00
tamarisk-2014 947 889 931 945 9.65
triangle-tireworld-2014 488 484 628 598  4.26
wildfire-2014 9.68 9.71 9.66 9.63 9.65

academic-advising-2018 440 542 433 426 4.35
cooperative-recon-2018 448 0.67 377 388 4.10

Sum 73.68 72.79 7433 7425 7293

The results for the effect different thresholds can have on conformant SOGBOFA are shown
in Table 5.7. It is difficult to see significant differences between them, even when looking
at specific domains. The only notable outliers appear to be generated by the threshold
of 0.1. It has much better results than the other thresholds in the elevators-2011 and the
navigation-2011 domain, but much worse results than the others in cooperative-recon-2018,
although it remains unclear why that is.

Again, the threshold of 0.3 produces the best results overall.

5.3.4 General Action Constraints

Table 5.8 shows our general version of integrating action precondition information compared
to using the information on the maximum number of concurrent actions only.

We can still see that the general version performs better on cooperative-recon-2018. But it
also has much better results on the elevators-2011 domain with the conformant version.

In general (and on tamarisk-2014 specifically), however, the limited information gain still

does not appear to be worth the increased complexity of the Q value function tree.

5.4 Propagation Heuristic

We now do an in-depth evaluation of the SOGBOFA heuristics, starting with the propagation
heuristic. Recall that the propagation heuristic uses a forward propagation through the
SOGBOFA Q value function graph to give a Q value estimate for a specific action.

The key attributes to good performance of any heuristic are how informative it is and how
fast it can be calculate. It is necessary to balance a tradeoff between these two attributes:
a slow, but informative and a fast, but uninformative heuristic might both be outperformed

by a heuristic in between. Regarding the propagation heuristic, the idea was to design a
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Table 5.8: TPC Scores for the conformant standalone planner with and without our gener-
alized action constraint integration. These scores are comparable with Table 5.4. Notable
results in bold.

Domain Generalized Constraints Special Handling of Allowed Actions
crossing-traffic-2011 9.81 9.59
elevators-2011 5.82 3.77
game-of-life-2011 7.59 8.07
navigation-2011 4.79 4.00
recon-2011 0.00 0.00
skill-teaching-2011 6.28 8.96
sysadmin-2011 8.45 8.82
academic-advising-2014 0.00 0.00
tamarisk-2014 5.39 8.97
triangle-tireworld-2014 5.00 4.80
wildfire-2014 9.47 9.69
academic-advising-2018 4.38 5.37
cooperative-recon-2018 2.25 0.67
Sum 69.23 72.71

faster, but less informed heuristic, particularly in comparison to the conformant heuristic,
which is strictly slower to calculate. But the aforementioned tradeoff is not only dependent
on the version of the heuristic, but it also heavily depends on the parameters we use. Hence,
we need to discuss the effect of our parameters on the interplay of informativeness, speed,
and the resulting performance of our heuristics. Luckily, in the case of the propagation

heuristic, we only have one parameter: the search depth.

5.4.1 Search Depth Parameter

The search depth parameter is very important to our analysis. It is the only parameter
for the propagation heuristic and important part of the conformant heuristic. Based on
Section 3.1 we would assume that a higher search depth leads to a more informed heuristic,
as more future steps are taken into account. In some cases, this can have very drastic effects:
consider the simple case where the reward does not contain any action fluents directly in
its formula (such as the elevators-2011 domain). Then, we would need at least a search
depth of two to detect that the actions have an effect on the Q value. This means that we
would expect a higher search depth to lead to a very large increase in informativeness. But
this, of course, comes at a price: a higher search depth should, at least in theory, increase
the evaluation time of the Q value function linearly. As we have seen in Section 5.2.1 and

Section 5.3.1, a good search depth is a tradeoff of speed and information.

Heuristic guidance: Now, we want to verify if our experiments agree with our theoretical
assumptions of guidance and calculation time for the search depth. First of all, that means
testing the guidance our heuristic provides at different search depths. This can be detected
by evaluating the results for always playing the action with the highest Q value, as given by
the heuristic. Such a procedure effectively considers our heuristic to be our search enigne:

We evaluate each action with our heuristic, and return the one with the highest Q value as
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the best action. In this case, the very harsh time constraints for the heuristic are mostly
eliminated, as we now have the 2.5 seconds for a planning step to calculate our heuristic
for the applicable actions.* The resulting IPC score gives a good estimate for the guidance
quality of the heuristic.

Propagation Heuristic Guidance Score
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Figure 5.1: IPC Score of the propagation heuristic when used as a search engine to indicate
the guidance provided at varying search depths.

Figure 5.1 shows the guidance of the propagation heuristic at varying search depths. And,
indeed, the guidance increases with a rising search depth. While this is not a drastic increase
over all domains, it does support our assumptions. From the tested domains, the crossing-
traffic-2011, the wildfire-2014, and the academic-advising-2018 domains profit most from an
increased search depth, in particular the increase from three to six (as shown in Table 5.9).
This agrees with our assumption that a very small search depth is sometimes insufficient to
see basic connections between the actions and their effects.

Table 5.9: TPC Scores the propagation heuristic on interesting domains at different search
depths.

Domain SD3 SD6 SD10 SD15 SD 20
crossing-traffic-2011 3.41  8.82 9.05 9.05 9.05
wildfire-2014 5.07 942 9.64 9.70 9.76
academic-advising-2018  3.28  4.49 4.62 5.32 4.32
Sum (all domains) 53.98 61.89 62.06 63.41 62.31

Calculation time: In a second step, we are interested in the cost in calculation time that
comes with an increased search depth. Generally, in order to evaluate how fast a heuristic
can be calculated in practice, it is a good idea to look at the performed trials. Specifically, the
number of trials a planner can perform using this particular heuristic. While this does have

a certain bias through cache hits during heuristic calculation when states are very similar

4 In extreme cases, timeouts can still apply. But in that case, the heuristic would not usable in practical
applications with multiple trials anyway.
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due to limited stochasticity, other options include their own bias. For example, looking at
the number of different states visited to filter out cache hits, includes the non-negligible time
used by the planner.

Figure 5.2 shows the sum of performed trials during the first planning step over all domains
and instances for the propagation heuristics at varying search depths. And indeed, the cost
of adding more layers to the Q function to reach a higher search depth is mostly linear,

reflecting our theoretical assumptions very closely.

Performed Trials over all domains Perfggmed Trials over the sysadmin-2011 domain
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Figure 5.2: Performed trials of the propagation heuristic at varying search depths. For each
instance, the number of performed trials in the first planning step is used and summed up
over instances.

Of course, exact curves for the relationship between search depth and performed trials,
shown here over all domains, will vary from domain to domain, but the overall trend is
representative of the results by domain. Still, it is also worthwhile to look at an extreme
case in addition to the overall sum of performed trials, such as the last instance of the
sysadmin-2011 domain (shown in Figure 5.2). Sysadmin-2011 is a particularly large and
stochastic domain, which makes it ideal to evaluate the number of performed trials. This is
because it can happen (as mentioned before) in smaller and less stochastic domains, where
only few different states are reached, that cache hits of previously visited states heavily
boost the number of trials that can be performed which can mitigate and mask the effects
from slower heuristic calculations.

Here, the overall linear trend is even clearer, with some outliers for small changes in search

depth, which is to be expected with fewer samples.

Performance as a heuristic: We have seen an increased search depth lead to a better
heuristic guidance, with diminishing returns, but also a linearly degrading calculation speed.
The best performing search depth parameter for our heuristic has to strike a balance between
a higher search depth for better quality and a lower search depth for a faster calculation.

Figure 5.3 shows this search depth to be at seven for our experiments. Note that the summed

trend shown here is representative of the trends in the different domains.
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Propagation Heuristic Score with Unlimited Trial
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Figure 5.3: IPC Score of the propagation heuristic at varying search depths.

5.5 Conformant Heuristic
Recall that the conformant heuristic optimizes conformant actions using gradient ascent to

achieve receive a better heuristic estimation from the Q value function graph.

5.5.1 Parameters

Above, we have shown the effects of the search depth parameter on the guidance, calculation
time, and finally the resulting performance score for the propagation heuristic. In the
following, we want to use the same approach to discuss and tune the parameters of the
conformant heuristic. In addition to the search depth parameter, we now also have to
consider the number of gradient steps, step size, and threshold for convergence.

Previously, we have seen algorithms for a dynamic calculation of search depth, step size, and
even the gradient steps® in the context of the standalone SOGBOFA planner. Accordingly, a
natural thought would be to simply apply these to find good parameters now. Unfortunately,
the dynamic calculations of search depth and step size do not make sense in the heuristic
setting: They are calculated by forward propagation or gradient calculations on the Q
function graph. This would lead to an extreme overhead for only one heuristic trial. As
such, we have to find good all around values for these parameters. In particular,this means
that we will need to look at the interplay of these parameters. To look at the overall trends
of a single parameter, we can average all combinations of parameters tested at each value of
that parameter. But, we have to keep in mind that such an overall trend only gives a very
limited view of the complete picture. Hence, we will also discuss noteworthy combinations

of parameters.

Heuristic guidance: While we have mentioned the threshold for convergence as a po-
tential parameter to tune, in this setting we will mostly disregard it. This is because the
only thing it does is indirectly affect the number of gradient steps performed. But, now we

already give an explicit step size. Then, the threshold only potentially reduces the number

5 Through the use of the threshold.
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of gradient steps to save calculation time. However, in this experiment, we are not inter-
ested in the performance optimization as we have mostly eliminated the time aspect anyway.
Instead we rather want to know the potential guidance the heuristic can provide and how
this is influenced by the number of gradient steps. This would be negatively impacted when
less gradient steps are performed than we set out to test for any specific configuration.

Therefore, we will simply use a very small threshold for this evaluation.
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Figure 5.4: IPC scores for varying parameters with the conformant heuristic as search engine
to give an estimate of the parameters on heuristic guidance. The last figure compares
the guidance at different search depth with the respective best configurations against the
propagation heuristic. Note that the scores from the last figure are not directly comparable
to the other scores mentioned here.

Figure 5.6 shows the effect of the different parameters on heuristic guidance averaged over
all combinations.

We can see that, as expected, search depth plays an important role for the heuristic quality.
Similar to the results for the propagation heuristic, a higher search depth clearly leads to a
better guidance, and expectedly so. It gets harder to tell a trend for the number of gradient
steps and step size. From the overall trends, we can see a slight decrease in score with more
gradient steps. While this is rather unexpected, it is only a very small difference, which
makes it hard to draw confident conclusions from this. This is trend is understandable if we
keep in mind that the step sizes used are very large compared to standard gradient ascent

methods, which leads to a high variance in the results of the optimization, especially with
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more gradient steps. Yet, a high step size seems to be necessary from the results, as a very
small step size will be unable to exploit the gradient information in the few steps.

Even when looking at the full combination of parameter configurations, there is no clear
trend favoring one particular value of the parameter.

The different step sizes seem to make only very slight differences on guidance when the
search depth is low, but they appear to have a stronger impact at higher search depths, as

shown in Table 5.10. The same can be observed for the gradient steps.

Table 5.10: Effect of different step sizes and gradient steps on the heuristic guidance given
by IPC scores for the conformant heuristic as a search engine at different search depths.

Configuration Step Size 0.1 Step Size 0.3 Step Size 0.5
Search Depth 3 53.71 53.83 53.88
Search Depth 10 60.69 63.85 62.42
Configuration 1 Gradient Step 3 Gradient Steps 5 Gradient Steps
Search Depth 3 54.18 53.72 53.47
Search Depth 10 63.29 62.77 61.31

This makes sense, as at a low search depth, the gradients themselves provide much less
guidance. When the gradients are more meaningful at higher search depths, it is more
important to use an adequate step size. But, even at a high search depth, the differences
between the step sizes is low enough to be potentially caused by only a single domain where
a certain step size works particularly well. And indeed, for example the at search depth 15,
a step size of 0.3 with 5 gradient steps appears to work particularly well for the elevators
domain, which then pushes its total score over all domains to be higher than the other step
sizes. That the choice of a good step size is rather domain dependent is not necessarily news,
though. Cui and Khardon [4] already showed for the original SOGBOFA that a dynamic step
size payed off on certain problems, which we confirmed earlier for the standalone planner.
But we also have to consider the interplay of the step size with the number of gradient steps.
A good step size generally also tuned to the number of gradient steps taken. When we are
only interested in the quality of our heuristic and not in the time it takes to calculate, we
would prefer a very large number of gradient steps with a low step size.

Table 5.11 shows additional testing in that direction: We have added configurations with
ten and twenty gradient steps to test a smaller step size of 0.05 on. There appears to be
a tradeoff between the smallest step size not being able to exploit the gradient information
enough and a larger step size causing too much variance. This indicates that the procedure
follows our theoretical assumptions in practice as well, but only if the search depth and the
gradient steps are high enough.

Table 5.11: Effect of different step sizes on the heuristic guidance given by IPC scores for

the conformant heuristic as a search engine. Here, the search depth is fixed at 15, but we
use a higher number of 10 and 20 gradient steps and include a smaller step size.

Configuration  Step Size 0.05 Step Size 0.1 Step Size 0.3 Step Size 0.5
Average Score 67.35 69.30 65.38 65.88
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Unforunately, with the aim of an at least somewhat realistic performance for a heuristic in
mind, we have to limit our gradient steps heavily. Already for the tests shown in Table 5.11,
with ten and twenty gradient steps at high search depths, the heuristic was sometimes unable
to even finish one trial in particularly large domains. This is also the reason why the tested
step sizes are all rather large. But, with a larger step size and fewer trials, it is hard to
reach optimal results consistently.

Nonetheless, we have seen some configuration which work very well together and, in fact,
lead to a strong improvement in guidance over the propagation heuristic. Specifically, we
have previously seen a conformant configuration that works particularly well for the eleva-
tors domain. This domain was specifically mentioned by Cui et al. [5], because here, the
conformant variant of SOGBOFA lead to a large improvement over the non conformant
procedure. The assumption of the non-conformant procedure that all future actions are
partially executed at the same time can sometimes be very problematic when a random
policy for future actions provides poor guidance. The elevators domain is a good example
of this. Because of this assumption, the elevator has a hard time picking up passengers, as
he is always also facing the wrong direction, stationed at the wrong floor, or has his doors
closed. Optimizing the future actions so he, for example, only moves in one direction means
that the planner recognizes how to pick up passengers, which is the only way to increase the
reward. And indeed, we have also seen in Table 5.9 that the propagation heuristic provides
a very poor guidance on the elavators domain. This, similar to the original SOGBOFA
planner, can also be fixed with the conformant version (as can be seen in Table 5.12). But,
the results for the conformant elevators domain do not show such a large improvement over
all configurations. This indicates that the gradient based conformant procedure is rather
sensitive to the chosen configuration and parameters. Still, even without the ideal configu-
ration of parameters, we can see a better heuristic guidance from the conformant heuristic

compared to the propagation heuristic, but not as pronounced.

Table 5.12: IPC scores for some domains showing an improvement in guidance of the con-
formant heuristic over the propagation heuristic (as a search engine). We compare the best
propagation and conformant heuristics over all domains with the conformant heuristic that
gives the best score on that specific domain. As such scores here are not directly comparable
with the rest of this section.

Domain Propagation Heuristic ~Conformant Heuristic Best Settings
elevators-2011 0.24 1.99 4.00
navigation-2011 0.14 0.47 0.49
recon-2011 0.00 1.78 3.00
triangle-tireworld-2014 0.88 1.05 1.34

Calculation time: While we have seen that the conformant procedure generally provides
better guidance, we can also expect a strictly worse calculation speed. This is, of course,
because we always have a final forward propagation step of the @ value for the optimized
conformant actions, which is identical to the propagation heuristic. But, before that, we

have to optimize the conformant actions in a set number of gradient steps, each of them
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taking more time than just the forward propagation. As such, the main question is whether
the calculation of the heuristic is fast enough to be able to profit from the better guidance
for better overall results.

Accordingly, the first configuration to test would be the fastest one, which is the very
minimal configuration of one gradient step. As we have found that a large search depth
is the most important parameter to a better heuristic guidance, we now examine how fast
the configuration with one gradient step is to calculate at varying search depths, as seen in
Figure 5.5.

Performed Trials over all domains Perlfggmed Trials over the sysadmin-2011 domain
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Figure 5.5: Performed trials of the conformant heuristic at varying search depths, compared
with the propagation heuristic. For each instance, the number of performed trials in the
first planning step is used and summed up over instances.

We can see that, initially, the number of performed trials looks reasonable, as we have
already explained that we would expect a a number a little less than 50% of the performed
trials the propagation heuristic can achieve. But, as soon as we increase the search depth,
which would provide much more guidance, the performed trials of the conformant heuristic
drop unproportionally to the propagation heuristic. This is even worse when we minimize
the effect of caching by looking again at the very stochastic sysadmin-2011 domain. On the
last instances of the sysadmin-2011 domains, only one trial is performed when using a good
search depth. But even before that point, we reach a very problematic amount of trials,
that makes it almost impossible to attain a good overall performance, no matter the quality.
And in fact, the results in Figure 5.7 show that the best configurations from the single trial
experiment do not outperform the most efficient calculations .

A direct comparison between propagation and conformant heuristic on the different domains
(Figure 5.6) shows that, on every domain, the conformant heuristic only performs a small
fraction of the trials the propagation heuristic can achieve. With increasing search depths,
it can keep a good or decent percentage of the propagation trials on the easier domains
with limited action spaces, such as crossing-traffic-2011, elevators-2011,navigation-2011,skill-
teaching-2011, and triangle-tireworld-2014. On all other domains, with a larger number of
possible actions, it sinks under 10% of the trials performed by the propagation heuristic
after the smalles search depth.

This is partly due to the fact that the propagation heuristic is very fast to compute and
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Figure 5.6: The ratio of performed trials for the conformant heuristic to the performed trials
of the propagation heuristic over different search depths.

performs a very large amount of trials. It is to be expected that the gradient calculation
is a core bottleneck of this procedure, leading to notable decline in performed trials. Still,
the decrease in performed trials at higher search depths in particular is significantly lower
from what we would expect with only one gradient step more than the forward propagation.
As a result, the total number of trials becomes unusably small in larger problems. These
results indicate that the gradient calculation is simply too slow to produce good results in
this heuristic setting.

As to why this is, we can identify two main problems in the concrete implementation of the
presented concepts which can explain a slow gradient calculation, both related to the autodiff
library used. The first problem has to do with the calculation mode of the gradients: As
we discussed in Section 2.2, theory suggests that reverse mode is ideal for such large, scalar
valued functions, due to it being able to calculate gradients for all nodes in only one sweep
of the graph. Yet, in practice, reverse mode proved unusable for these gradients, failing
to calculate the gradients even for small search depths on simple instances in a reasonable
time. While reverse mode does have a certain memory overhead, in this case, it appears that
this due to an unoptimized implementation of the library.® As a custom implementation of
reverse mode without any guarantees of leading to an improvement was outside the scope
of this work and as forward mode seemed to be very optimised in the library, functioning
reasonably well in tests, we decided to stick to forward mode. This does mean, however, that

gradient calculation has to suffer to some extent if the action state, and with that the number

6 From personal communication with the author of the library, it appears that it is much more optimized
for forward mode than it is for reverse mode.
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of derivatives that have to be calculated, increases. And especially using the conformant
variant, we have to pay a high price for this, as we have many actions to be optimized over
all layers, which normally would have almost no overhead. The second problem has to do
with the strucure of our problem: We have a potentially very large and complex function we
build in the Q function. A large part of gradient calculation will be spent calculating this
function and building the associated graph. But, if we want to calculate multiple gradient
steps for one state-action pair (which we do pretty much always), the structure of this graph
does not change at all. We only have different values at the action level which we want to
propagate through the graph. As such, it would be possible to exploit this and save time by
not recalculating the whole graph but reusing the previously calculated one. Unfortunately,
this is not implemented in the autodiff library. Using a proper reverse mode and reusing the
Q function graph would presumably lead to an improvement of gradient calculation speed
and, as it appears, to the overall quality of the procedure.

In any case, as is, it is very hard to justify the use of the conformant version when the
falloff in trials is so steep compared to the non-conformant version. This also means that
it does not make sense to attempt a more rigorous gradient calculation with more steps at

this time, as already one step provides a struggle for the calculation speed.

Performance as a heuristic: We showed above that, again, search depth is the key
parameter, with a large one leading to better guidance but also a much slower calculation.
The remaining question is where the best performing tradeoff for the search depth is.

Unfortunately, it appears that the increased informativeness of a higher search depth does
not do enough to compensate the significantly lower amount of trials, and the best configu-

ration is the one with a search depth of 3.
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Figure 5.7: IPC Score of the conformant heuristic at varying search depths, compared to
the propagation heuristic. Conformant [Performance] stands for the configuration provid-
ing fastest calculation (with a single gradient step, Conformant [Guidance] stands for the
configuration providing the best guidance).

But, as Figure 5.7 shows, not by a huge margin. There are also some domains where a higher
search depth leads to better results, specifically academic-advising-2018, sysadmin-2011, and
wildfire-2014 (as shown in Table 5.13).
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Table 5.13: IPC scores for some domains showing an improvement of the conformant heuris-
tic at a higher search depth.

Domain SD3 SD6 SD10 SD 15
sysadmin-2011 583 T7.11 8.35 8.84
wildfire-2014 872 9.26 9.31 9.43

academic-advising-2018  3.61  3.47 3.48 4.73

These are all domains where the calculation was very expensive, but also among the domains
with the best guidance and a notable benefit trough increased search depth. This shows
that, given a particularly informative configuration, it can be useful for the conformant
heuristic as well to invest more time into its calculation, indicating that the guidance is
solid. It is very likely that, with a fix of the discussed performance problems of the gradient
calculation and the resulting increase in performed trials, the overall performance of the
heuristic would be much better. Because that would also allow the use of the much more

informed configurations at a higher search depth than 3 and more than one gradient step.

5.6 Comparison to State-of-the-Art

With good configurations for the standalone planner and the heuristic found for the non-
conformant and the conformant version, we can now evaluate how they compare to the
state-of-the-art.

Table 5.14: IPC Scores for the the best performing configuration of each category. Notable
results in bold.

Domain Prost Planner C. Planner Propagation Conformant
crossing-traffic-2011 8.66 4.19 4.19 9.72 8.07
elevators-2011 9.38 0.04 0.04 9.28 9.55
game-of-life-2011 9.60 4.86 4.79 9.02 8.57
navigation-2011 8.88 0.24 0.24 9.31 9.28
recon-2011 9.52 0.00 0.00 9.57 9.61
skill-teaching-2011 9.07 8.39 8.02 9.09 9.30
sysadmin-2011 6.76 9.70 9.75 7.45 5.76
academic-advising-2014 2.99 1.18 0.00 3.61 3.06
tamarisk-2014 7.64 6.37 6.08 9.65 7.52
triangle-tireworld-2014 7.61 1.08 1.09 6.37 4.92
wildfire-2014 5.52 9.68 9.70 8.99 8.59
academic-advising-2018 3.23 6.68 4.76 4.72 3.62
cooperative-recon-2018 9.58 1.79 0.94 10.23 3.96
Sum 98.44 54.17 49.58 107.00 91.81

Table 5.14 shows the IPC scores for the best configurations of the non-conformant stan-
dalone planner, the conformant standalone planner, the PROST planner using the propaga-
tion heuristic, and the PROST planner using the conformant heuristc in comparison against
the state-of-the-art PROST IPC2014 configuration.

We discuss these results in the following.
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5.6.1 Comparison of Standalone Planners

Overall, the non-conformant version of the standalone planner produces better results than
the conformant version. This is in contrast to our expectations, but can be explained
by the somewhat ill-suited implementation of gradient calculation that was explained in
Section 5.5. This also affects both versions of the standalone planner, as it limits the amount
of random restarts that can be performed, especially in large domains. But in particular,
the conformant SOGBOFA originally was such a large improvement to SOGBOFA due to
not being slower to calculate thanks to the reverse mode gradient calculation [5]. If the time
increases for the gradient calculation, there is a tradeoff where it is not necessarily worth it
any more to perform the conformant procedure.

When compared to the state-of-the-art benchmark of the PrRosT IPC2014, neither versions
can reach results that strong.

As discussed in Section 5.1, it unfortunately does not make sense to compare the results
directly to the original SOGBOFA planner used at the IPC 2018 due to necessary restrictions
on the benchmark domains leading to mutually exclusive benchmarks for the planners.
This restriction also impacts our comparison with the IPC2014 planner, as it means that
we do not have most of the 2018 domains to compare on. The SOGBOFA procedure was
shown and designed to perform much better than PROST specifically on the 2018 domains,
which means that this benchmark set includes a bias towards good results from IPC2014
compared to the original SOGBOFA results.

With this in mind, together with the performance issues, it is understandable that the
standalone planner can not produce results as good as ProsT IPC2014.

Yet, on the domains sysadmin-2011, wildfire-2014, and academic-advising-2018, the stan-
dalone planners manage to achieve the best results, indicating that the procedure can even

under these limitations lead to an advantage on large and very stochastic domains.

5.6.2 Comparison of Heuristics

We have seen above that both heuristics show similar trends regarding the search depth as
main component controlling guidance and calculation speed.

When compared against each other, we can see in Figure 5.6 and Figure 5.5 that the theoret-
ically more informed and slower conformant heuristic also behaves like that in practice. Yet,
when it comes to the overall performance, Figure 5.7 shows that the propagation heuristic
strikes a better balance between speed and quality.

The last step is now to compare them against the PROST heuristic IDS used in the IPC2014
configuration, representing our state-of-the-art benchmark.

Most importantly, of course, we are interested in the overall score, but we also want to know

about their strengths and weaknesses regarding quality and speed.

Heuristic guidance: We have seen in Figure 5.6 that, in accordance with the theory, the
conformant heuristic provides better guidance.
However, the IDS beats the guidance of both our heuristics in informativeness over all do-

mains. Still, there is a number of domains where the both heuristics are better than IDS:
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Table 5.15: Heuristic guidance through IPC scores of the different heuristics as search engine
on interesting domains.

Domain IDS Propagation Conformant
skill-teaching-2011 8.09 9.49 9.26
sysadmin-2011 5.11 9.21 9.24
tamarisk-2014 5.00 9.30 9.75
wildfire-2014 6.38 9.42 5.04
academic-advising-2018  0.77 4.49 3.32
Sum (all domains) 89.13 61.89 54.29

academic-advising-2018, tamarisk-2014, wildfire-2014, skill-teaching-2011, and sysadmin-
2011, as shown in Table 5.15. Notice that the conformant wildfire-2014 score is lower
because it uses a low search depth in the best configuration. Again, these are generally

larger and more stochastic domains where SOGBOFA gives a good guidance.

Table 5.16: Performed trials of the different heuristics.

Domain IDS Propagation Conformant
sysadmin-2011 232’050 249611 1397629
Sum (all domains) 1’490’326 2°948'572 1’649°386

Calculation time: Figure Table 5.16 shows that the propagation heuristic can perform
notably more trials than IDS over all domains. It can calculate about twice the trials IDS
can, which is a very large increase. But, there are some domains where it struggles and
the IDS is faster, especially at the higher search depths. For example, in the sysadmin-
2011 domain, it only performs slightly more trials than IDS. The conformant heuristic can
compete on many domains with the number of performed trials of the IDS, but not on the

more complex domains such as sysadmin.

Performance as a heuristic: Regarding overall performance, it appears that the prop-
agation heuristic strikes a very strong balance between guidance and calculation time. This
leads to it outperforming the IDS by quite a bit, as shown in Table 5.14, only being beaten
narrowly in the domains elevators-2011 and game-of-life-2011, where its heuristic guidance
was particularly bad. This is very interesting, as it indicates that there were cases where its
fast calculation made up for mediocre guidance, but also vice versa, meaning it combines
both aspects very well.

The conformant heuristic can, unfortunately, not boast with such results. It cannot perform
enough trials, which means it cannot make up for cases where the heuristic guidance is
insufficient and prevents it from using more insightful heuristic configurations. As such, it
is generally worse than the IDS, except for the domains where its heuristic guidance was
better.

Still, the very strong performance of the propagation heuristic demonstrates that the incor-
poration of the SOGBOFA graph into a THTS heuristic can lead to state-of-the-art results.
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In this thesis, we apply the method of Symbolic Online Gradient-Based Optimization for
Factored Action MDPs to guide Trial-based Heuristic Tree Search. SOGBOFA, created by
Cui and Khardon [4], builds a symbolic approximation of the Q value function for probabilis-
tic planning tasks. On this differentiable function, it performs gradient ascent to optimize
random starting actions based on the expected Q value. This is, in concept, a symbolic
extension of Monte-Carlo Tree Search through independence assumptions. As such, the in-
formation provided by this approach can also be used to guide THTS, a generalized MCTS
framework. In a first step of our efforts to evaluate the potential guidance SOGBOFA can
bring to THTS, we implemented two search engines in THT'S as standalone planners who are
as close as possible to the original SOGBOFA planner and its conformant improvement [5].
Based on this, we then created two heuristics in THTS following the underlying concepts of
SOGBOFA. The first propagation heuristic abuses a very fast and minimalistic evaluation
of the Q value function graph with a simple forward propagation of the current state to
profit from a big part of the contained information while retaining a very small calculation
time. The second conformant heuristic pushes for more information from the Q value func-
tion graph by optimizing the representation of future actions in the graph making it a more
accurate approximation of the actual @ value function. This is done following a modified
conformant SOGBOFA procedure with gradient ascent steps towards future actions promis-
ing better rewards. Hence, the increased guidance comes at the cost of a notably harder

calculation.

6.1 Results

Our practical evaluation of the standalone planners generally confirmed the trends of the
original SOGBOFA, showing that the procedure works and can be adapted to the THTS
framework. While we were unable to reproduce state-of-the-art performance with the plan-
ners by beating IPC2014, we demonstrated that the SOGBOFA procedure can lead to better
results on some domains. We also saw that a conformant approach can indeed lead to a
better performance through the increased guidance, but this was not the case here due to

limitations of the implementation. Furthermore, we suggested a generalized way of handling
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constraints on actions in the form of action preconditions by including them in the SOG-
BOFA Q value function graph. The results showed this approach in its current form to be
promising on domains with many action preconditions, but not worth it in general.

For the main evaluation of the heuristics based on SOGBOFA components, we showed that
the search depth is important to balance guidance and speed for the heuristics. This is
because the guidance gained from increasing the search depth can be essential at low values
for recognizing key connections in problems, but can also yield diminishing returns at higher
values if not much new information is gained; while the calculation time is always increasing.
Using a well suited search depth, we managed to outperform the state-of-the-art benchmark
of the PROST configuration IPC2014 with our propagation heuristic by a reasonable margin.
Investigating the reasons for this success, we showed that it has a worse heuristic guidance
than the Iterative Deepening Search used by the IPC2014 configuration overall, but is very
strong in some domains. It is, however, much more efficient to compute, and strikes a very
strong and balanced combination of efficiency and guidance. Excellent results in one aspect
can compensate mediocre results in the other aspect: this happens here in both directions.
The conformant heuristic, on the other hand, encountered performance problems, at least
partially due to an unoptimized method of gradient calculation. This meant that, while
theoretically yielding a better guidance, the insufficient number of trials prevents it from

scoring good results in practice.

6.2 Future Work

We have shown that it is possible to achieve state-of-the-art heuristic performance through
the use of the SOGBOFA concepts. The main failing of the conformant heuristic was the
slow calculation, for which we already discussed potential ways for improvement: We have
seen the theoretically better suited reverse mode calculation of gradients for scalar valued
functions. This would likely lead to better results overall with a significant improvement on
domains with large action states. The other improvement would be to save time by reusing
the Q value function graph and simply changing the necessary values, as the structure
remains exactly the same over multiple gradient steps. As both these improvements can not
be done with the autodiff library used, a natural way to improve the results further would
be find a way to solve these issues, ideally by implementing a custom version of automatic
differentiation. This could allow for an even more efficient implementation by integrating
the PROST formula evaluation calls.

While these fixes are not new work itself, they would allow testing of many interesting
setups that are currently not possible to realize in practice. With a faster calculation, it
would be possible to use and realistically test configurations of the conformant heuristic
giving a much better guidance than the ones we had to limit ourselves to. It would also
benefit the standalone planners, who would profit by being able to do more random restarts.
Calculating the gradients for the conformant actions would also mean no time increase with
reverse mode, which would massively boost the performance of the conformant verstion of
the standalone compared to the non-conformant one.

We have also seen that the standalone planners have a lot of components where the current
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solutions work reasonably well. But it is entirely possible that with a bigger focus on
them, better solutions could be found. For example, further investigation of the outlined
generalized handling of action constraints could likely increase its general viability.

On the other hand, there are also possibilities for interesting future work in our successes:
The Q value function graph of SOGBOFA has proven to be very successful when applied to
the traditional THTS framework of planners, even when isolated from the gradient ascent.
While it was not optimal on every domain, it proved its worth through strong performance
on several domains and a very efficient calculation. As this was a simple and very direct
way to use it, there are probably other, more sophisticated ways to successfully integrate it

into a traditional procedure.
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