

Factored Mappings as Knowledge Compilation for Symbolic Search

Leonhard Badenberg <leonhard.badenberg@stud.unibas.ch>

Department of Mathematics and Computer Science, University of Basel

June 14, 2021

> Symbolic Search

- > Approach to classical planning
- > Processes sets of states at a time

> Knowledge Compilations

- > Represent knowledge bases as compact data structure
- > Used for symbolic search (e.g. BDDs)

> Factored Mappings

- > Also called merge-and-shrink representations
- > Represent functions that map variable assignments to a set of values

- > Symbolic Search
 - > Approach to classical planning
 - > Processes sets of states at a time
- Knowledge Compilations
 - > Represent knowledge bases as compact data structure
 - > Used for symbolic search (e.g. BDDs)
- > Factored Mappings
 - > Also called merge-and-shrink representations
 - > Represent functions that map variable assignments to a set of values

- > Symbolic Search
 - > Approach to classical planning
 - > Processes sets of states at a time
- Knowledge Compilations
 - > Represent knowledge bases as compact data structure
 - > Used for symbolic search (e.g. BDDs)
- > Factored Mappings
 - > Also called merge-and-shrink representations
 - > Represent functions that map variable assignments to a set of values

Symbolic Search

- > Approach to classical planning
- > Processes sets of states at a time
- Knowledge Compilations
 - > Represent knowledge bases as compact data structure
 - > Used for symbolic search (e.g. BDDs)
- > Factored Mappings
 - > Also called merge-and-shrink representations
 - > Represent functions that map variable assignments to a set of values

Can we use Factored Mappings as knowledge compilation for symbolic search?

Background	Canonicity	Operations on Factored Mappings	Symbolic Search Algorithm
		Background	
		Canonicity	
	Opera	ations on Factored Mappings	
	Sy	mbolic Search Algorithm	

Planning Task

A planning task is given by $\langle \textit{V},\textit{I},\textit{O},\gamma\rangle$ where

- > V is a finite set of state variables,
- > *I* is a valuation over *V* called the initial state,
- > O is a finite set of operators over V, and
- $>\gamma$ is a formula over V called the goal.

Propositional: $\alpha: V \to {\mathbf{T}, \mathbf{F}}$

Finite-domain representation (FDR): $\alpha : V \to \bigcup_{v \in V} dom(v)$

Factored Mappings

A Factored Mapping (FM) σ over V is either

- atomic with associated variable $v \in V$, or
- a merge of two components σ_L and σ_R

Atomic FM tables: σ_v^{tab} spanned by dom(v)

Merge FM tables: σ_m^{tab} spanned by the values of its two components

Component tables σ_i^{tab} are filled with arbitrary different entries Root table σ_{root}^{tab} is filled with 0 and 1

Can we use FMs for symbolic search on FDR planning tasks?

Factored Mappings

Background	Canonicity	Operations on Factored Mappings	Symbolic Search Algorithm
		Background	
		Canonicity	
	Onera	tions on Eastared Mannings	
	Opera	itions on Factored Mappings	
	Sv	mbolic Search Algorithm	

Requirements

- 1. FMs over V have the same underlying merge tree $\mathcal{T}(V)$
- 2. Component tables σ_i^{tab} are filled with fixed value order $0, 1, \ldots, n-1$

This leads to $A(\sigma) = A(\gamma) \iff \sigma = \gamma$.

Background	Canonicity	Operations on Factored Mappings	Symbolic Search Algorithm
		Background	
		Canonicity	
	Opera	tions on Eactored Mannings	
Operations of Lactored Mappings			

- > False (\perp): $A(\sigma) = \emptyset$
 - > Fills all entries in all tables with zeroes
- Frue (\top): $A(\sigma) = A(V)$
 - > Fills all entries in all tables with zeroes
 - > Sets entry in root table to 1

- > Atom (v = c): $A(\sigma) = \{\alpha \mid \alpha[v] = c\}$
 - > Fills σ_v^{tab} with 0 and 1
 - > Fills all other atomic tables with zeroes
 - > Keeps different values distinct until the root table

- > False (\perp): $A(\sigma) = \emptyset$
 - > Fills all entries in all tables with zeroes
- Frue (\top): $A(\sigma) = A(V)$
 - > Fills all entries in all tables with zeroes
 - $\,>\,$ Sets entry in root table to 1

Atom
$$(\mathbf{v} = \mathbf{c})$$
: $A(\sigma) = \{\alpha \mid \alpha[\mathbf{v}] = \mathbf{c}\}$

- Fills σ_v^{tab} with 0 and 1
- > Fills all other atomic tables with zeroes
- > Keeps different values distinct until the root table

- > False (\perp): $A(\sigma) = \emptyset$
 - > Fills all entries in all tables with zeroes
- True (\top): $A(\sigma) = A(V)$
 - > Fills all entries in all tables with zeroes
 - > Sets entry in root table to 1

Atom
$$(\mathbf{v} = \mathbf{c})$$
: $A(\sigma) = \{\alpha \mid \alpha[\mathbf{v}] = \mathbf{c}\}$

- Fills σ_v^{tab} with 0 and 1
- > Fills all other atomic tables with zeroes
- > Keeps different values distinct until the root table

For all of these: $\mathcal{O}(n \cdot D^{max})$, where n = |V| and $D^{max} = \max_{v \in V} |dom(v)|$

Boolean Tests

- Includes ($I \models \phi$): Is $\alpha \in A(\sigma)$?
 - > Follows the assignment from leaves to root
 - > Checks if entry in root node is 1
 - > O(n)

Equals (
$$\phi\equiv\psi$$
): Is ${\sf A}(\sigma)={\sf A}(\gamma)$?

- > Because FMs are canonical: $A(\sigma) = A(\gamma) \iff \sigma = \gamma$
- > Checks every entry in σ and γ for equality
- $\mathcal{O}(n(T_{\sigma}^{max}+T_{\gamma}^{max}))$

Where n = |V|, and T_{σ}^{max} and T_{γ}^{max} is the maximum over all table sizes of σ and γ respectively

- > Combines two FMs σ and γ into one FM δ
- > Combines component table pairs σ_i^{tab} and γ_i^{tab} directly into δ_i^{tab}
- > δ_i^{tab} is initially filled with 2-dimensional entries

We combine atomic leaf node tables differently than merge node tables

Combining Leaves

Two leaf node tables σ_l^{tab} and γ_l^{tab} get combined to one δ_l^{tab} with 2-dimensional values.

Combining Merges

Combining Merges

Set Operations

- > Union $(\phi \lor \psi)$: $A(\sigma) \cup A(\gamma)$
 - > Uses $\operatorname{COMBINE}$ to create δ
 - > Maps entries (x, y) in δ_{root}^{tab} to 1 if x = 1 or x = 1
 - $\mathcal{O}(n \cdot T^{max}_{\sigma} \cdot T^{max}_{\gamma})$
- > Intersection $(\phi \land \psi)$: $A(\sigma) \cap A(\gamma)$
 - > Uses $\operatorname{COMBINE}$ to create δ
 - Maps entries (x, y) in δ_{root}^{tab} to 1 if x = 1 and x = 1
 - $> \mathcal{O}(n \cdot T_{\sigma}^{max} \cdot T_{\gamma}^{max})$
- Complement $(\neg \phi)$: $A(\overline{\sigma}) = \overline{A(\sigma)}$
 - Swaps all zeroes and ones in the root table
 - $> \mathcal{O}(T_{\sigma}^{max})$

Where n = |V|, and T_{σ}^{max} and T_{γ}^{max} is the maximum over all table sizes of σ and γ respectively

	Background	Canonicity	Operations on Factored Mappings	Symbolic Search Algorithm
			Background	
			-	
			Caponicity	
			Canonicity	
		0		
Operations on Factored Mappings				

Algorithm 1 Progression Breadth-first Search

- 1: function BFsProgression(V, I, O, γ)
- 2: $goalStates \leftarrow MODELS(\gamma)$
- 3: $reached_0 \leftarrow \{I\}$
- 4: $i \leftarrow 0$
- 5: **loop**
- 6: **if** reached_i \cap goalStates \neq 0 then
- 7: **return** solution found
- 8: $reached_{i+1} \leftarrow reached_i \cup Apply(reached_i, O)$
- 9: **if** $reached_{i+1} = reached_i$ **then**
- 10: **return** no solution exists
- 11: $i \leftarrow i + 1$

Algorithm 1 Progression Breadth-first Search

- 1: function BFsProgression(V, I, O, γ)
- 2: $goalStates \leftarrow MODELS(\gamma)$
- 3: $reached_0 \leftarrow \{I\}$
- 4: $i \leftarrow 0$
- 5: **loop**
- 6: **if** reached_i \cap goalStates \neq 0 then
- 7: **return** solution found
- 8: $reached_{i+1} \leftarrow reached_i \cup Apply(reached_i, O)$
- 9: **if** $reached_{i+1} = reached_i$ **then**
- 10: **return** no solution exists
- 11: $i \leftarrow i + 1$

Formula and Singleton

Formula

- > Converts formulas ϕ into FMs σ , representing MODELS (ϕ)
- > Uses the introduced operations and their combinations
- > Can take exponentially long

Singleton

- > Converts the single assignment I into an FM σ , representing $\{I\}$
- > Uses Intersection and Atom

$$\{I\} := \{\{\mathbf{v} \mapsto \mathbf{0}, \mathbf{w} \mapsto \mathbf{1}, \mathbf{x} \mapsto \mathbf{2}\}\} = \{\alpha \mid \alpha[\mathbf{v}] = \mathbf{0}\} \cap \{\alpha \mid \alpha[\mathbf{w}] = \mathbf{1}\} \cap \{\alpha \mid \alpha[\mathbf{x}] = \mathbf{2}\}$$

Algorithm 1 Progression Breadth-first Search

- 1: function BFsProgression(V, I, O, γ)
- 2: $goalStates \leftarrow MODELS(\gamma)$
- 3: $reached_0 \leftarrow \{I\}$
- 4: $i \leftarrow 0$
- 5: **loop**
- 6: **if** reached_i \cap goalStates \neq 0 then
- 7: **return** solution found
- 8: $reached_{i+1} \leftarrow reached_i \cup APPLY(reached_i, O)$
- 9: **if** $reached_{i+1} = reached_i$ **then**
- 10: **return** no solution exists
- 11: $i \leftarrow i + 1$

> Computes the set of states that can be reached by applying operators $o \in O$ in states $s \in reached$

> Stores it as set of assignments inside an FM

- > Needs transition relation $T_V(O) = \text{FORMULA}(\bigvee_{o \in O} \tau_V(o))$
- > $T_V(O)$ needs variables from V and from V' to describe transitions
- > For all FMs σ : σ_L over V and σ_R over V'
- > Computes intersection between reached and $T_V(O)$
- > Reorders and renames the state variables, so the new states over V' will be over V

- > Computes the set of states that can be reached by applying operators $o \in O$ in states $s \in reached$
- > Stores it as set of assignments inside an FM
- > Needs transition relation $T_V(O) = \text{FORMULA}(\bigvee_{o \in O} \tau_V(o))$
- > $T_V(O)$ needs variables from V and from V' to describe transitions
- > For all FMs σ : σ_L over V and σ_R over V'
- > Computes intersection between reached and $T_V(O)$
- > Reorders and renames the state variables, so the new states over V' will be over V

- > Computes the set of states that can be reached by applying operators $o \in O$ in states $s \in reached$
- > Stores it as set of assignments inside an FM
- > Needs transition relation $T_V(O) = \text{FORMULA}(\bigvee_{o \in O} \tau_V(o))$
- > $T_V(O)$ needs variables from V and from V' to describe transitions
- > For all FMs σ : σ_L over V and σ_R over V'
- > Computes intersection between reached and $T_V(O)$
- Reorders and renames the state variables, so the new states over V' will be over V

- > Computes the set of states that can be reached by applying operators $o \in O$ in states $s \in reached$
- > Stores it as set of assignments inside an FM
- > Needs transition relation $T_V(O) = \text{FORMULA}(\bigvee_{o \in O} \tau_V(o))$
- > $T_V(O)$ needs variables from V and from V' to describe transitions
- > For all FMs σ : σ_L over V and σ_R over V'
- > Computes intersection between reached and $T_V(O)$
- > Reorders and renames the state variables, so the new states over V' will be over V

Time complexity of $\mathcal{O}(n \cdot T_{T_V(O)}^{max} \cdot T_{reached}^{max})$

	Background	Canonicity	Operations on Factor	ed Mappings S	Symbolic Search Algorithm	
Alg	Algorithm 2 Progression breadth-first search for a FDR planning task using FMs					
1:	function Br	FSPROGFINAL(V, I, O)	O, γ)			
2:	$T_V(O) \leftarrow$	- Formula ($\bigvee_{o \in O} \tau$	$r_V(o))$	⊳ Only needs to	o be computed once	
3:	goalState	$es \leftarrow \operatorname{FORMULA}(\gamma)$		⊳ Only needs to	o be computed once	
4:	<i>reached</i> ₀	\leftarrow SINGLETON(<i>I</i>)		⊳ Only needs to	o be computed once	
5:	$i \leftarrow 0$					
6:	loop					
7:	if rea	$iched_i \cap goalStates =$	$\neq 0$ then	b Use Intersection	on, Equals and False	
8:	re	eturn solution found				
9:	reach	$\textit{ned}_{i+1} \leftarrow \textit{reached}_i \cup$	APPLY(<i>reac</i>	$hed_i, T_V(O))$	⊳ Use Union	
10:	if rea	$iched_{i+1} = reached_i$ t	then		⊳ Use Equals	
11:	re	eturn no solution exis	sts			
12:	$i \leftarrow i$	1 + 1				

- > Operations inside loop run in polynomial time
- > Usable search algorithm for FDR planning tasks using FMs

We can use FMs as knowledge compilation for symbolic search on FDR planning tasks.

Questions?

leonhard.badenberg@stud.unibas.ch

Factored Mappings

A Factored Mapping (FM) σ over V has

- > a finite value set $vals(\sigma)$,
- > an associated table σ^{tab} , and
- > can be atomic or a merge.

Atomic: σ^{tab} : $dom(v) \rightarrow vals(\sigma)$ Merge: σ^{tab} : $vals(\sigma_L) \times vals(\sigma_R) \rightarrow vals(\sigma)$

- > False (\perp): $A(\sigma) = \emptyset$
 - > Fills all entries in all tables with zeroes
- True (\top): $A(\sigma) = A(V)$
 - > Fills all entries in all tables with zeroes
 - > Sets entry in root table to 1

- Atom $(\mathbf{v} = \mathbf{c})$: $A(\sigma) = \{\alpha \mid \alpha[\mathbf{v}] = \mathbf{c}\}$
 - Fills σ_v^{tab} with 0 and 1, where $\sigma_v^{tab}(c)
 eq \sigma_v^{tab}(d)$ for all d
 eq c
 - > Fills all other atomic tables with zeroes
 - > Swaps root table entries if $\sigma_v^{tab}(c) = 0$

For all of these: $\mathcal{O}(n \cdot D^{max})$, where n = |V| and $D^{max} = \max_{v \in V} |dom(v)|$