
Metareasoning for Deliberation Time
Distribution in the PROST Planner

Bachelor Thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Artificial Intelligence

http://ai.cs.unibas.ch

Examiner: Prof. Dr. Malte Helmert

Supervisor: Dr. Thomas Keller

Ferdinand Badenberg

ferdinand.badenberg@unibas.ch

14-055-206

10.12.2017

Acknowledgments

I would like to offer my thanks to Dr. Thomas Keller for all the support, insight and guidance

he provided me with and to Prof. Dr. Malte Helmert for the opportunity to write this thesis

in his research group. Calculations were performed at sciCORE (http://scicore.unibas.ch/)

scientific computing core facility at University of Basel and I also want to thank them for

their resources.

Abstract

Probabilistic planning expands on classical planning by tying probabilities to the effects of

actions. Due to the exponential size of the states, probabilistic planners have to come up

with a strong policy in a very limited time. One approach to optimising the policy that can

be found in the available time is called metareasoning, a technique aiming to allocate more

deliberation time to steps where more time to plan results in an improvement of the policy

and less deliberation time to steps where an improvement of the policy with more time to

plan is unlikely.

This thesis aims to adapt a recent proposal of a formal metareasoning procedure from Lin.

et al. for the search algorithm BRTDP to work with the UCT algorithm in the Prost

planner and compare its viability to the current standard and a number of less informed

time management methods in order to find a potential improvement to the current uniform

deliberation time distribution.

Table of Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

2 Background 3

2.1 Probabilistic Planning . 3

2.1.1 Markov Decision Drocess . 3

2.2 Anytime Setting . 4

2.2.1 Metareasoning Problem . 4

2.2.2 Metareasoner . 4

2.3 Search Algorithms: UCT and BRTDP . 5

2.3.1 UCT . 5

2.3.2 BRTDP . 6

3 Metareasoners 7

3.1 Hand Made Functions . 7

3.1.1 Uniform . 7

3.1.2 First . 8

3.1.3 LinearPre . 8

3.1.4 LinearAdaptive . 9

3.1.5 Hyperbolic . 9

3.2 Metareasoner of Lin et al. 9

3.2.1 Calculating Qthink . 9

3.2.2 Calculating Qact . 10

3.3 BRTDP and UCT in Metareasoning . 12

3.4 Adaptation from BRTDP to UCT . 13

3.5 Metareasoner with Minimum Thinking Time 13

3.6 Metareasoner with a Cost of Thinking . 14

4 Evaluation 15

4.1 Hand Made Functions . 15

4.1.1 Parameter for First . 15

Table of Contents v

4.1.2 Parameter for Hyperbolic . 16

4.1.3 Comparison of the Hand Made Functions 16

4.2 Metareasoner of Lin et al. and Improvements 17

5 Conclusion 22

5.1 Future Work . 23

Bibliography 24

Declaration on Scientific Integrity 25

1
Introduction

Probabilistic planning differs from classical planning by including non-deterministic actions

with effects that take place with certain known probabilities. A probabilistic planning prob-

lem is typically modeled by a Markov decision process for which a planner will then develop

a solution called a policy. Planners can be divided into online planners, i.e. planners which

alternate between steps of thinking (planning, finding a good action to be executed next)

and acting (executing the best action) and offline planners which come up with a complete

policy before executing any actions.

Popular algorithms used by such online planners are RTDP (Real-Time Dynamic Program-

ming) [2] and its variations like BRTDP (Bounded RTDP) [3] or LRTDP [4] but also UCT

(UCB applied to trees) [7]. They evaluate the current state of the Markov decision process

and provide an estimation of the expected reward for the applicable actions in this state

(often simply called a Q-value), based on which the next action will be chosen. The more

often these algorithms can evaluate the actions, the larger the part of the following actions

that is guaranteed to be correctly estimated. In fact, given an infinite amount of resources,

they will come up with the optimal solution. Therefore it would be best to let them evaluate

for as long as possible, resulting in optimal action choices.

However, in all applications of planning time is limited as it is generally not possible to

simply give them all the time they need. In this somewhat theoretical application of plan-

ning we assume that there is no time cost to acting, which is different from some real world

applications where deciding a robot’s next action should be walking two meters takes some

time to execute. In both cases however there is an explicit cost to thinking as opposed to

acting, different from the action costs, in that thinking expends the limited time (and in our

case, acting does not). Consequently it would be preferable to only continue thinking when

there is a high chance that the action that is regarded as best will change after the next

thinking cycle. In ”Metareasoning for Planning Under Uncertainty”, Lin et al. [1] propose

a formal way to make such a decision that only continues thinking if the Q-values are likely

to improve in the environment of BRTDP.

Introduction 2

This thesis adapts their concept and applies it to the Prost planner [8] that uses UCT,

comparing the results to both the current standards for planning under uncertainty and a

selection of intuitive, hand made functions distributing the time to think about each action

without further knowledge of the problem. The general idea of the metareasoning procedure

is to gather the Q-values generated by the search algorithm for all actions and use the latest

change in the Q-values to appraise their next values, based on the reasonable assumption

that the next change will generally not be larger than the previous change. Using these next

values, an expected value for the next thinking cycle can be calculated and compared to the

currently best action.

In order to do this, we first declare the formal background needed for the procedures. In

a second part we will talk about the different approaches for metareasoners, outline the

formal approach of Lin et al. and its application to the UCT setting as well as present

some ideas for improvement. We will then evaluate the different approaches based on our

experiments and compare and contrast the different results. Lastly we will summarise the

thesis and discuss both flaws and promising aspects of the procedures, providing an overview

for potential future work.

2
Background

In the following chapter, a brief overview over the environment in which this project is set

will be given and the concepts needed to understand the context of the work and the choices

that were made will be formally introduced.

2.1 Probabilistic Planning
In contrast to classical planning where only deterministic problems are considered, proba-

bilistic planning deals with non-deterministic problems where the effects of actions have a

certain probability tied to them. Therefore probabilistic planning tasks differ from classical

planning tasks and are often modeled as Markov decision processes. Probabilistic planning

is then finding a policy for such a planning task formalised as a Markov decision processes.

2.1.1 Markov Decision Drocess
Probabilistic planning tasks are formalised as a Markov decision process (MDP) which is a

6-tuple M = 〈S, sI , A, T,R,H〉, where

• S is a finite set of states;

• sI ∈ S is the initial state;

• A is a finite set of actions;

• T : S×A×S → [0, 1] is the transition function where T (s, a, s′) models the probability

of reaching a state s′ given action a is applied in state s;

• R : S ×A→ R is the reward function on a;

• H ∈ N is a finite horizon.

Such an MDP represents a model for decision processes with the Markov property that new

states are selected only with regard to the current state and the selected action and without

the influence of previous decisions.

Background 4

2.2 Anytime Setting
2.2.1 Metareasoning Problem
The MDP describing our planning task is now expanded to a time-limited problem, the

metareasoning problem M = 〈M,R, T , X〉, where

• M is an MDP describing the planning task

• R ∈ N is a finite amount of rounds to be executed

• T ∈ R+ is the time given to solve M and execute the policy ρ times

• X is an anytime algorithm that provides a Q-value estimate x̂(a) ∈ R for each action

a and stops in sufficiently small time intervals.

2.2.2 Metareasoner
Let M be a metareasoning problem. Then a metareasoner χM is a function that maps a

6-tuple 〈s0, ρ, σ, τ, t, x̂〉 to ”act” or ”think”, where

• s0 ∈ S is the current state of the decision process;

• ρ ∈ {1, ...,R} is a finite amount of rounds remaining;

• σ ∈ {1, ...,H} is a finite amount of steps remaining in this round with the total number

of steps per round given by the horizon;

• τ ∈ [0, ..., T] is the time remaining to solve M and execute the policy ρ times;

• t is the smaller value of the time since the last decision to act or the time since the

very first thinking cycle;

• x̂ ∈ R|A| is the current state of algorithm X.

This decision to act or to think will lead to another metareasoning decision step, where the

input depends on the selected decision.

Let µ be the time the metareasoning decision step took and a ∈ A be the action with the

highest x̂(a).

Then, if the decision is to act, first the action a is applied and the next metareasoning

decision step will take 〈s′0, ρ′, σ′, τ ′, t′, x̂′〉 where

• s′0 ∈ S with s′0 ∼ T (s0, a, ·) so s′0 is the resulting state when applying the chosen action

a to s0 determined by sampling a successor state according to T

• ρ′ =

ρ− 1 if σ = 0

ρ otherwise

• σ′ =

H if σ = 0

σ − 1 otherwise

Background 5

• τ ′ = τ − µ

• t′ = 0

• x̂′ is the next state of algorithm X

as an input. Notably, the execution of the action itself takes up no time.

If the decision is to think, rather than applying an action the expected reward for all

actions will be reevaluated and another metareasoning decision step will follow, taking

〈s′0, ρ′, σ′, τ ′, t′, x̂′〉 where

• s′0 = s0

• ρ′ = ρ

• σ′ = σ

• τ ′ = τ − µ

• t′ = t+ µ

• x̂′ is the next state of algorithm X

as an input.

2.3 Search Algorithms: UCT and BRTDP
Regarding search algorithms for finding a policy for an MDP, the major contenders are:

Dynamic Programming (e.g. RTDP, BRTDP), Heuristic Search (e.g. AO*) and Monte-

Carlo Tree Search (e.g. UCT). In the following part we will take a closer look at both

BRTDP and UCT and discuss their key differences in regard to their usage as a search

algorithm for metareasoning, more specifically as the algorithm X we described before. To

do so we take a look at both of them under the steps that are commonly used to describe

Monte-Carlo Tree Search [5] but very similar to the more general THTS framework [6].

These are the four steps: selection, expansion, simulation (or heuristic in a general case)

and backpropagation.

2.3.1 UCT
The most popular version of MCTS algorithms is UCT, Upper Confidence Bounds applied

to trees [7], which applies the multi-armed bandit algorithm UCB1 to Monte-Carlo planning

trying to balance exploitation (further abusing the best results) and exploration (looking

for other options). The important thing about the UCT algorithm for this project is that it

can evaluate the problem and can give us reward estimations for all the applicable actions

in a state by estimating their optimal value function.

Regarding the aforementioned steps, UCT handles them in the following ways:

Background 6

• Selection: the UCB1 algorithm is applied to select a child.

• Expansion: chance nodes for all available actions are generated.

• Heuristic: UCT uses a random walk heuristic to estimate the optimal value.

• Backpropagation: Monte-Carlo Backups, meaning the average of the simulation results

is backpropagated.

2.3.2 BRTDP
Bounded Real-Time Dynamic Programming (BRTDP) [3] uses both an upper and a lower

bound of the optimal value function, allowing it to make anytime performance guarantees

while acting greedily.

BRTDP handles the steps above in the following way:

• Selection: BRTDP uses a greedy policy to select the child resulting in the highest

valued reward function.

• Expansion: both chance nodes for all available actions and their child nodes (who are

again decision nodes) needed for the Bellman Backups are generated.

• Heuristic: both an admissible heuristic and a heuristic that never underestimates the

actual cost are used to maintain this lower/upper bound on the optimal value.

• Backpropagation: Bellman Backups, meaning the best result is backpropagated.

3
Metareasoners

3.1 Hand Made Functions
A rather naive approach to metareasoning is to completely disregard the search algorithm

with its current Q-values and only base the decision on the remaining steps, rounds and

time. From these three parameters a time t is allocated for the current step and the decision

to act will be made if the time used to think in this step so far exceeds t, otherwise the

decision is to think again. Formally, these hand made metareasoners can be defined as

follows:

χM(〈s0, ρ, σ, τ, t, x̂〉) =

act if t > t′

think otherwise

where t′ is calculated differently for each function. Most of the calculations use a the total

number of remaining steps s = σ+ρ∗H. Additionally, some of these metareasoners include

an additional parameter α in their calculation of t′.

As this approach does not need a Q-value for each applicable action to make its decision,

it can be evaluated after every single trial. The current standard approach of the Prost

planner for time management is actually a version of this which uses a uniform distribution

of the remaining time over the remaining steps. In addition to this existing one, we imple-

mented several versions of this concept that try to bias the time distribution towards steps

that intuitively seem to have more influence on the solution quality without having further

information about the specific problem. In the following we will talk about the way they

calculate t′. Figure 3.1 showcases an example for the time distribution of these functions

using the results on a problem instance.

3.1.1 Uniform
This time management method is the current default version for the Prost planner, the

idea is to uniformly distribute the remaining time over the remaining steps. Thus,

t′ =
τ

s

This is based on the very simple assumption that every step is equally important and aims

to make sure that every planning step has enough time to make a good choice.

Metareasoners 8

Figure 3.1: Example time distribution of the hand made functions for the wildfire 9
instance.

3.1.2 First
Coming from a uniform deliberation time distribution, a reasonable first idea is to prioritise

the first step. For one, it is the step we are guaranteed to reach in every problem meaning

the time allocated there is always put to use. Secondly, the planner can reuse some of the

calculations of previous steps for the following steps, meaning the time spent early one can

also be useful down the line. This time management method allocates a fraction of the

remaining time to the first step depending on the parameter α, and uniformly distributes

the time over all other steps. Formally,

t′ =

 τ
α if s = RH
τ
s otherwise

3.1.3 LinearPre
The next step from a distribution favouring the very first step to a distribution valuing the

early steps in general as the second step will have the second highest probability of being

reached every time and has almost as many steps following where its calculations could be

useful. Hence this time management method aims for a linearly descending time distribution

by calculating the sum over all steps and then divides the time for each step by this sum

and multiplies it with the remaining steps for all rounds, resulting in a linearly descending

distribution of the time over all the steps. We can describe t′ as follows:

t′ =
τs

c

where c = (RH)2+RH
2 is calculated in the first step and decreased by s in each following

step.

Metareasoners 9

3.1.4 LinearAdaptive
This time management method acts similarly to the LinearPre version, but recomputes the

sum over the values of the remaining steps over all rounds in each step and uses this for the

division, resulting in a smooth curve instead. The formal definition of this time management

method is:

t′ =
τs
s2+s
2

=
2τ

s+ 1

3.1.5 Hyperbolic
The next idea was to firstly use a hyperbolic function for the distribution instead of a linear

one with the same reasoning as before, but also to apply this to each round instead of the

whole problem so the first step in each round will have a similar deliberation time and so on.

This assumes again a simple uniform distribution of time over all rounds. The Hyperbolic

time management method divides the remaining time for this round by α in each step,

meaning it allocates a similar amount of time for any step i in all rounds and decreasing the

time for each step as a round goes on. Thus,

t′ =
c

α

where c = τ
ρ is calculated at the beginning of every round and decreased after each step by

t′. Intuitively, this is the most advanced of the hand made functions as it allocates more

time not simply to the beginning of the calculation but to the start of each new round,

hopefully supporting exploration early in a round and exploitation later on.

3.2 Metareasoner of Lin et al.
In the paper ”Metareasoning for planning under uncertainty”, Lin. et al. [1] present a

formal solution for the aforementioned metareasoning decision step together with a BRTDP

[3] algorithm. The general idea behind their procedure is to calculate values we call Qthink

and Qact representing how useful thinking and acting is respectively in the current state.

Based on these values we make our decision: if Qthink is larger than Qact we continue to

think, else we execute our currently best actions. Formally, we can say that:

χM =

act if Qact ≥ Qthink

think otherwise

3.2.1 Calculating Qthink

Of the two values, Qthink is more difficult to compute: This value is essentially represented

by the expected value of our policy after another thinking cycle. In order to compute this

expected value we would need both the values of meta-states describing the configuration

of our algorithm after thinking again and the probabilities that this state will be reached

for each combination of Q-values for all actions. Unfortunately, neither the successor states

nor their probabilities are know to us at that time, hence we need a way to estimate them.

However, we are not actually interested in estimating the complete configuration of our

Metareasoners 10

algorithm, as we really only need to know which action the algorithm will consider to be the

best. This means that for each action, it suffices to estimate the values and probabilities of

the successor states where this action is considered to be the best. This makes the problem

much more manageable since we only need one probability and state for each action.

The idea of Lin et al. is now to estimate this next change in Q-values for each action based on

the previous change in Q-values. This relies on the assumption that the change in Q-values

becomes smaller in each step (we will use their notation of ∆Q(a) for the next change in the

Q-value of action a and ∆̂Q(a) for the last previous change in the Q-value). As the values

given by the upper bound of the BRTDP algorithm actually converges toward the optimal

solution and it is monotonously falling meaning the estimated Q-values are only getting

smaller and closer to the actual Q-value, it is certainly reasonable albeit not guaranteed to

assume that the ∆Q-values are also getting smaller with each step.

Of the two versions to calculate the next Q-values suggested by the paper we have decided

to only pursue the more promising variant: we pick a single ρ ∼ Uniform[0, 1] and calculate

for all actions the next ∆Q(a)-value as the last delta Q-value ∆̂Q(a) ∗ ρ.

With this we can construct line segments for each action a on the unit interval with la(0) =

Qs,a and la(1) = Qs,a + ∆Q(a) where Qs,a is simply the Q-value given by our algorithm

for the action a in the state s. This allows us to estimate the probability of action a being

considered to be the best action after the next thinking cycle denoted by P (As′ = a) by

calculating the percentage of the unit interval where la lies above all other line segments.

Now the only thing missing to compute our Qthink, which was the expected value of our

policy, is the expected Q-value in the next state for all actions, given that action a was

chosen, called E[Qs′,a|As = a]. This value is simply given by the mean of the section where

la is considered to be the best action, i.e. above all other line segments.

3.2.2 Calculating Qact

The calculation of Qact is much simpler. For this value we use the mean of the values over

the complete line segment of the action we currently consider to be the best action, using the

values from the line segments as calculated above. At a first glance, it seems counterintuitive

not to simply use the Q-value of our current best action, but it is actually very important to

use the mean. This is because we do not want to think again if after the next thinking cycle

we still consider the same action to be the best, even if its Q-value has improved over the

thinking cycle, as then thinking again would not result in a policy change. Conveniently,

when using the mean, our Qact value will the the same as the Qthink value if the probability

of our current best action also being considered the best action after the next thinking cycle

is one, meaning we stop thinking if we think that our policy will not change.

Figure 3.2 and 3.3 show two examples of how Qthink and Qact are determined using these line

segments. In Figure 3.2 we can see a case where our currently best action a1 is projected to

become even better, meaning it is above a2 and a3 for the complete unit interval. Therefore

the probability of a1 being considered to be the best action after another thinking cycle is 1.

The expected Q-value in the next state for a1, E[Qs′,a|As = a] (depicted as e1), is now the

Metareasoners 11

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

e1, b

a1

a2

a3

Unit Interval

S
ca

le
d

V
a
lu

es

l(0) l(1)

Figure 3.2: Example Line Segments with Qthink = Qact

mean of the values of a1 over the complete unit interval which is the same as the mean of

the values of the current best action over the complete unit interval (depicted as b). Thus,

the value of Qthink and Qact will be the same, leading to the decision to act. This is also

what we intuitively would want to do as there is no change in our policy.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

e1

e2

b

a1

a2

a3

Unit Interval

S
ca

le
d

V
al

u
es

l(0) l(1)

Figure 3.3: Example Line Segments with Qthink > Qact

Figure 3.3 shows an example where the line segment of the projection of our action a1

currently considered best is intersected by the line segment of a2. This means that the

probability of a1 being considered the best action again after the next thinking cycle is the

x value of the point of intersection and the probability of a2 is 1 minus the x value of the

point of intersection. E[Qs′,a1 |As = a1] is now the average over part of la1 from la1(0) to

la1(point of intersection) and E[Qs′,a2 |As = a2] is the average over la2 from la2(point of

Metareasoners 12

intersection) to la2(1) (depicted as e1 and e2 respectively). Consequently,

Qthink = P (As′ = a1) ∗ E[Qs′,a1 |As = a1] + P (As′ = a2) ∗ E[Qs′,a2 |As = a2]

will be larger than Qact, the average of la1 (depicted as b).

3.3 BRTDP and UCT in Metareasoning
A version of UCT is used in the Prost planner, while the original paper used BRTDP for

their search algorithm. As both of these algorithms are able to stop in sufficiently small

time steps, their only other aspect relevant to a metareasoning problem are their Q-value

estimates. Hence, their most important difference for the metareasoning procedure lies in

the way they estimate the optimal value function of the Q-values: While BRTDP only

overestimates the optimal value with the guarantee of being monotonously falling, UCT

only provides a balanced estimation of the optimal value function that can be lower or

higher. Both algorithms however converge toward the optimal value. Figure 3.4 illustrates

the possible differences in the Q-value estimation functions of the two algorithms. Another

difference between the two algorithms is that the policy of BRTDP is greedy with respect

to its upper bound while UCT is greedy with respect to the Q-value estimate.

Figure 3.4: Possible UCT and BRTDP value functions together with the optimal value
function.

Regarding the metareasoning procedure, the monotonously falling overestimation of BRTDP

guarantees that any change in Q-values will result in a better estimation of Q-values than

before. As UCT offers no such guarantee using it in combination with this metareasoner

means that it is entirely possible that we correctly predict a change in our policy causing

us to follow up with another thinking cycle only for this change to lead to a worse policy

because later Q-value estimations in UCT can temporarily be less accurate than previous

ones.

Metareasoners 13

3.4 Adaptation from BRTDP to UCT
As mentioned before, the procedure presented by Lin et al. was constructed with the frame-

work of a BRTDP algorithm in mind, which means several points have to be adapted for

it to be usable with UCT, the search algorithm used by the Prost planner. While the

basic assumption of the next ∆Q-values being no larger than the previous ∆̂Q-values is still

reasonable, UCT is lacking the guarantee of being monotonically falling and only converges

toward the actual value. This means that our Q-values can be both negative and positive,

so technically the corresponding assumption would be to say that the absolute value of the

∆Q-values will be no larger than the absolute value of the ∆̂Q-values.

What does this mean for the metareasoning procedure? Firstly, for the probabilities and

expected values we are interested in the sections where the line segment is above all other

line segments (as described previously) instead of below (as in their paper), since our Q-

values are estimations and not an upper bound and we want to increase our Q-values in

this reward based setting instead of lowering them. Secondly, the ρ ∼ Uniform[0, 1] would

technically have to be ρ ∼ Uniform[−1, 1] as the next ∆Q-value could be either positive or

negative. This however was not changed in our implementation of the metareasoner as for

one it is often rather likely that the next change will change its sign but more importantly

this would increase the dependance of the outcome of our decision on the choice of ρ even

more than it already does. This seems very problematic as being dependant on the choice

of ρ to decide if it is better to act or to think means that the outcome is more a random

chance than an actual estimation. Therefore we chose to not further increase this random

aspect and keep sampling ρ from Uniform[0, 1] as they did.

3.5 Metareasoner with Minimum Thinking Time
A problem we have encountered with the metareasoning procedure as given by Lin et al. is

that the way it only continues to think if Qthink is larger than Qact the implicit assumption

made is actually stronger than ∆Q ≤ ∆̂Q. This is because in actuality we want to continue

thinking if after any following thinking cycle we would pick another action, meaning by

acting if Qact ≥ Qthink we assume that an arbitrarily high number of thinking cycles would

not lead to a better policy. Therefore we implicitly assume that the sum of all following

∆Q-values is no larger than ∆̂Q.

While this can still hold, it certainly does only rarely during the first few trials, especially

when considering the explorative nature of UCT. In fact, the more thinking cycles have been

already, the likelier it is for this assumption to hold true. For this reason we also implemented

a version of the metareasoning that only follows the metareasoning procedure when a certain

amount of time was already spend thinking about the current step to make our assumption

more applicable for the problems and overcome the trials where it is somewhat unreasonable.

Metareasoners 14

3.6 Metareasoner with a Cost of Thinking
Another problem we had with the given metareasoning procedure is that while it obviously

aims to reduce the time spent thinking redundantly, there is no explicit statement of the

cost that actually comes with thinking. Of course this cost of thinking we call Cthink

varies depending on the framework, but nonetheless we wanted to introduce a version of the

procedure that considers an explicit cost to thinking with the environment of the Prost

planner in mind. Since we are given a specific amount of time to execute several rounds of

planning and acting and aim to achieve the best solution we can during this time, we are in

a situation where we can have a rather high cost to thinking if we have a lot of steps still

left to plan but very little time, and on the other hand if we have a lot of time left but only

few steps to go, there is no gain by being done preemptively so the cost of thinking is very

low.

Therefore, we suggest the cost of thinking:

Cthink(τ, s) =


0 for τ

s > Tmax

1 for τ
s < Tmin

Tmax + Tmin − τ
s otherwise

where τ is the total time remaining given as input to the metareasoner and s = σ+ ρ ∗H is

the total number of steps remaining. We use this in another modified version where we now

subtract Cthink from Qthink before comparing it to Qact, so formally this third metareasoner

looks like this:

χM =

act if Qact ≥ Qthink − Cthink

think otherwise

In order to make Qthink and Cthink comparable in this manner we scaled the values of the

line segments and thus also the values of Qthink and Qact to lie between zero and one.

Furthermore we mentioned previously that there is no reason to stop thinking while we

have still time left, i.e. τ > 0. And while the aforementioned function Cthink of the third

metareasoner does not punish thinking if we have plenty of time left, it also does nothing to

bias the decision towards thinking in this scenario. For this reason it could make sense to

completely remove the lower bound for the cost function so that it will become negative if

we have enough time left just keep thinking and we will spend the remaining time thinking

rather than being done prematurely. This new cost function

Cthink
′
(τ, s) =

1 for τ
s < Tmin

Tmax + Tmin − τ
s otherwise

will be used in a fourth metareasoner otherwise identical to the third one.

4
Evaluation

This version of the metareasoning procedure was adapted to work in the state of the art

Prost planner [8] and hence was implemented and tested within this framework. The

problem domains and instances used to test on are from the International Probabilistic

Planning Competition (IPPC) 2011 [9] and 2014 [10]. The results are averages over 30 runs

of each of the problems as is the standard in the IPPC. They are then assigned a relative

value from 0 to 100 based on their performance which is given by the scaled value of the

official IPPC score.

4.1 Hand Made Functions
First is an evaluation of the hand made functions. Keep in mind that these have no infor-

mation of the current state of the search algorithm and operate solely on the time and steps

remaining.

4.1.1 Parameter for First

Figure 4.1: Average First scores for different parameter values on all problems.

As some of the hand made functions contain an additional parameter α, we tested different

values for this parameter to find a good value for the future comparisons. Regarding the

Evaluation 16

parameter for the time management method First, we tried values ranging from 2 to 50.

The results can be found in Figure 4.1, ranging from 76 to 81 so only a difference of 5 in

performance. Nevertheless we used an α of 32 in the following tests for this function.

4.1.2 Parameter for Hyperbolic

Figure 4.2: Average Hyperbolic scores for different parameter values on all problems.

For the time management method Hyperbolic, we again tested α-values from 2 to 50. The

resulting performances seen in Figure 4.2 range from 65 to 79 so already a larger difference

of 14 compared to results for the function First. Interestingly enough, one of the parameter

values resulting in the best performance score is again an α-value of 32. Other than that

we can see that performance for small α-values was the worst as the discrepancy in time

allocated between the first few steps and all consecutive steps in each round is very high.

4.1.3 Comparison of the Hand Made Functions
Table 4.1 shows results for the different hand made functions, where the Uniform results are

our baseline to compare them to as this, while being a (very simple) metareasoner under

our previous definition, is the current default of the Prost planner and does not share

the same intent of the other metareasoners trying to allocate time based on importance of

the calculation step. As previously noted, First and Hyperbolic use α-values of 32 for this

calculation.

Looking at Table 4.1, we can see that all hand made metareasoners but Hyperbolic actually

performed better than Uniform, although only by a very small margin. In fact, all of the

total scores are very close together with LinearAdaptive being the best. When looking at the

totals for the different problems, LinearAdaptive is always rather strong and does not have

the same drop to a bad performance the way for example Hyperbolic has in the navigation

domain or LinearPre has in the triangle domain, leading to its strong overall performance.

Interestingly enough, Hyperbolic performed rather poorly compared to the other functions,

especially when considering that we initially thought it to be one of the more reasonable

time allocations based on our intuition.

The metareasoners First, LinearAdaptive and LinearPre on the other hand show an es-

pecially large improvement over the Uniform distribution on both the Crossing and the

Evaluation 17

Table 4.1: Total IPPC scores for the different hand made metareasoners where Uniform is
the current default.

Problem Uniform Hyperbolic First LinearAdaptive LinearPre
Wildfire 74 71 80 81 90
Triangle 72 65 72 75 54
Academic 37 37 34 45 33
Elevators 93 93 91 94 94
Tamarisk 93 94 92 91 88
Sysadmin 94 94 90 91 91
Recon 97 99 97 96 96
Game 97 93 94 93 98
Traffic 97 97 96 96 97
Crossing 87 89 91 99 100
Skill 91 91 88 93 92
Navigation 65 58 83 82 84
Total 83 82 84 86 85

Navigation domain. All of these heavily favour the early steps and these domains can actu-

ally realistically be solved by the planner if he invests enough time, so it is likely that the

early focus of these time management methods leads to just enough time for the planner to

do so and then play the optimal action afterwards.

4.2 Metareasoner of Lin et al. and Improvements
The complete results for all informed metareasoners, i.e. the adaption of the metareasoner

of Lin et al. and our proposed improvements for it, can be seen in Table 4.2. The Uniform

result represents the control result using the same THTS configuration with the same ingre-

dients as all of the metareasoners, the only different part is that it uses the default uniform

time management method instead of the metareasoning. The THTS configuration used the

following ingredients:

• Action selection: UCB1

• Outcome selection: Monte Carlo

• Backup function: Partial Bellman

• Heuristic function: IDS of Prost

Standard stands for the basic metareasoner of Lin et al. adapted to UCT and the following

versions are our various potential improvements. Minimum is the metareasoner with a

minimum thinking time so we increase the likelihood of our assumption being true. We

used a Tmin value of 0.1 in all of these calculations, and all of the following metareasoners

will also use this minimum thinking time in addition to their other changes. Going forward,

both other metareasoners are using the suggested explicit formulation of the cost to thinking

Cthink with the difference being the actual cost function: Cthink+ uses Cthink as initially

stated while Cthink uses the version Cthink
′

that omits the lower bound and allows for the

cost to become negative, biasing towards thinking.

Evaluation 18

Table 4.2: Total IPPC scores for the formal versions of the metareasoner.

Problem Uniform Standard Minimum Cthink+ Cthink
Wildfire 60 90 86 95 68
Triangle 78 67 62 59 68
Academic 39 32 36 35 38
Elevators 98 71 83 83 97
Tamarisk 96 68 86 90 92
Sysadmin 100 36 67 74 82
Recon 98 56 75 75 97
Game 97 64 82 86 96
Traffic 99 85 90 87 98
Crossing 88 58 78 83 89
Skill 100 25 71 69 86
Navigation 82 26 25 28 83
Total 86 56 70 72 83

When looking at the scores shown in Table 4.2, we can immediately see that there is a

very large discrepancy between the current standard and the straight adaptation from the

metareasoner of Lin et al. with the current standard being much better. Despite this bad

performance however we can see that the other versions of the metareasoner with different

small improvements are indeed relevant improvements regarding the performance compared

to the standard version. Still, even the version of the improved metareasoners Cthink with

the best results does not outperform the current standard, despite being pretty close to

it. We can also see that the two big improvements over the Standard metareasoner are

for one the fixation of a minimum thinking time and removing the lower bound of the cost

function Cthink so can also promote thinking if there is spare time instead of only punishing

it. The performance improvement coming with Cthink+ introducing the first version of

Cthink only pushing towards acting interestingly is very small compared to these other two

improvements.

This suggests that the Standard metareasoner likely tends to underestimate the expected

reward of thinking so it is already too quick to act, meaning a balancing towards thinking

shows more improvement than a balancing towards acting.

But where does that underestimation come from? When we suggested the implementation

of a minimum thinking time, we did so because we said that the way this metareasoning

procedure is constructed, the assumption we make is actually more severe than ∆Q(a) being

no larger than ∆̂Q(a). The reason behind this is that we only consider the very next ∆Q-

value to make our decision to act or to think, but the action we consider to be the best

might very well only change after multiple consecutive thinking cycles.

Therefore, if we base our decision only on the next ∆Q(a), we are actually assuming that

the sum over all of the subsequent ∆Q(a)-values will also be no larger than ∆̂Q(a). And

this much stronger assumption seems indeed to be false in a lot of cases, leading to this

underestimation of Qthink. But despite both of our ways to mitigate this underestimation

improving the result, it is hard to say how precise Qthink is in the end.

Moreover, although the improvement going along with Cthink proves to be very relevant

in practice, placing it very close to the current standard, it means that the underlying

Evaluation 19

Table 4.3: Scoring results for the problem instances of the time allocation figures.

Problem instance Uniform Standard Minimum Cthink+ Cthink
Wildfire 9 33 50 59 72 40
Game 9 100 58 72 81 94

metareasoning strategy is less than ideal, since we want to allocate the time where we

need it so the fact that simply using up more time to think just because we can leads to

such a big improvement shows that the time budgeting is suboptimal. Also if the previous

metareasoners are done with time left over it should mean that they are reasonably certain

that no improvement could have been made by thinking more. Thus this large performance

increase by using this spare time again shows the underestimation of the value of thinking.

Figure 4.3: Time allocation per step in seconds for the formal metareasoners on the game
of life instance 9.

Figure 4.3 shows us the time the four metareasoners as well as the uniform time distribution

have allocated to each step during the solution of instance nine of the game of life domain.

This domain is a good example for the average performance of these metareasoners, since as

seen in Table 4.3 the scores for it are similar to the total of all domains. The almost constant

uniform distribution of the control configuration would be around one in this graph, which

Metareasoner Cthink exceeds with some larger spikes.

In Figure 4.4 we can see a section of the previous figure, allowing us to better make out the

trends for the other metareasoners: Standard varies quite a bit depending on the step, but

has very low values overall. Minimum and Cthink+ are both very close to the minimum

thinking time of 0.1. Cthink however shows a pattern somewhat similar to Standard but

with a much larger amplitude.

Evaluation 20

Figure 4.4: Subsection of 4.3.

Figure 4.5: Time allocation per step in seconds for the formal metareasoners on the
wildfire instance 9.

Looking at Figure 4.5 shows us another such example but for the wildfire domain. Especially

when looking again at a zoomed section as seen in Figure 4.6, we can see that while Cthink

and Uniform are again similar with higher values, the values for the first three metareasoners

show a very similar trend resembling a linear function over a certain interval. This is very

close to something one might expect to be a good time allocation intuitively, and indeed,

Evaluation 21

when looking at the results, these three metareasoners actually beat the performance of

Cthink and the Uniform on this instance.

Figure 4.6: Subsection of 4.5.

This shows that there are some problems where the assumption of the formal metareasoning

procedure seems to work very well and manages to outperform the current standard, but

this is clearly not the case in general. It shows however that there is some dependance of

a good time allocation on the specific problem, meaning there is certainly some merit to a

metareasoner taking the state of the search algorithm into account.

Furthermore we tested configurations for Cthink+ and Cthink using the calculations of the

hand made functions for the Tmax value as a first attempt to combine the two metareasoning

concepts, however they performed strictly worse than the original versions. This is because

Cthink is modelled around the assumption of a uniform time distribution as a guideline for

how much time we should still have and the standard of 1 for Tmax fits this ratio rather

well for our problems. Consequently only changing Tmax and not τ
s was not a enough to

combine both concepts.

5
Conclusion

The goal of this thesis was to examine and analyse different possibilities for metareason-

ing for the deliberation time distribution of the time given to the Prost planner. This

was achieved by comparing simple hand made approaches to the metareasoning procedure

presented by Lin et al., a formal way to make a decision based on the estimation of an

expected reward for thinking and acting, after implementing both in the Prost planner.

Furthermore, in addition to adapting the formal procedure from its BRTDP environment to

a UCT environment, we proposed several possible improvements based on certain assump-

tions and choices of the given procedure we identified as suboptimal in the setting of the

Prost planner.

The results of our experiments using the problems and score of the IPPC showed that the

very simple, hand made time management functions performed very well and three of the

four functions were able to improve overall performance compared to the current standard.

The formal metareasoning procedure however performed very badly compared to the current

standard, but all three of our main suggestions for improvement managed to increase the

solution quality, in fact so far that the best solution is again very close to the current

standard, but unfortunately did not manage to beat it.

The two of our improvements who ended up being very useful are the introduction of a

minimum thinking time, which makes it more likely that the assumption underlying the

metareasoning procedure of Lin et al. matches the actual situation, and the statement of

an explicit cost to thinking weighing the algorithm towards thinking or acting depending on

the time and steps left.

During this adaptation of the metareasoning of Lin et al. to UCT, we encountered some

weaknesses of the procedure, partly due to the use with UCT, partly due to the procedure

itself. The most important problem we encountered very severely was one they already men-

tion themselves [1]: Due to this procedure only projecting changes for one more thinking

cycle when in fact there can be many more thinking cycles if thinking is chosen, the value

of thinking is in many cases underestimated. While they suggested projecting the change

in Q-values over multiple thinking cycles but ultimately dismissed it as impractical due to

Conclusion 23

being too imprecise, we managed to improve this problem with a minimum thinking time

based on the assumption that the sum of all future ∆Q-values being no larger than the

single previous ∆Q-values is more likely the more the Q-values have already been explored.

A possible reason for multiple projections being so imprecise could be that the actual pro-

jection of the future ∆Q-values for all actions based on a single, randomly chosen ρ between

zero and one is a rather weak way of estimating the next ∆Q-values based on the previous

ones.

5.1 Future Work
Based on these problems and the solutions we used for some of them, there are still several

possibilities both regarding this procedure of Lin et al. and metareasoning in general we

could not yet explore. One such idea would be to base the estimation of the next ∆Q on

the history of previous ∆Q-values and not just the last one as this estimation seemed to be

the weakest point of their procedure. A more accurate estimation of the future ∆Q-values

might also help with the underestimation of the value of thinking. Additionally, with our

metareasoner formulating an explicit cost to thinking being reasonably close to the current

standard, a more elaborate cost function might allow the metareasoning approach to surpass

it. Based on the promising results of the simple and high level hand made approaches, one

such idea was the combination of the hand made functions with the metareasoning based

on the search algorithm by integrating the suggested time allocation of these functions into

the cost function Cthink: the cost function biases based on how much time should be left

for the remaining steps. The current version of this function uses the assumption of a uni-

form distribution for the default budgeting of the remaining time, but with other functions

showing better results than the uniform distribution, there is likely an improvement to be

made by testing their distribution for this estimation. Moreover, it is very likely that there

are still better hand made functions to be found. We realised during this project that these

hand made functions and several other configurations could easily be described based on few

parameters: either using one function (Linear, step, hyperbolic, constant or other function)

describing the time distribution for all steps, or a combination of two such functions with

one describing the time distribution for each round and the other describing the time for

each step in a round. With such a parametrisation of these hand made functions, it would

be easily possible to test many more configurations to likely find an even better function.

In conclusion, despite our improvements not the formal procedure based on the estimations

of the search algorithms but the simple, more general time management functions outper-

formed the current standard method of deliberation time distribution, proving the viability

of approaches different to the current uniform distribution. Additionally, these results show

that there are multiple promising options for further research connecting to this work.

Bibliography

[1] Lin, C. H., Kolobov, A., Kamar, E., and Horvitz, E. Metareasoning for Planning Under

Uncertainty. In Proceedings of the Twenty-Fourth International Joint Conference on

Artificial Intelligence (IJCAI 2015), pages 1601–1609 (2015).

[2] Barto, A. G., Bradtke, S. J., and Singh, S. P. Learning to act using real-time dynamic

programming. Artificial Intelligence, 72(1):81 – 138 (1995).

[3] McMahan, H. B., Likhachev, M., and Gordon, G. J. Bounded Real-Time Dynamic

Programming: RTDP with Monotone Upper Bounds and Performance Guarantees.

In Proceedings of the Twenty-Second International Conference on Machine Learning

(ICML 2005), pages 569–576 (2005).

[4] Bonet, B. and Geffner, H. Labeled RTDP: Improving the Convergence of Real-Time

Dynamic Programming. In Proceedings of the Thirteenth International Conference on

Automated Planning and Scheduling (ICAPS 2003), pages 12–21 (2003).

[5] Browne, C., Powley, E. J., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen,

P., Tavener, S., Liebana, D. P., Samothrakis, S., and Colton, S. A Survey of Monte

Carlo Tree Search Methods. IEEE Transactions on Computational Intelligence and AI

in Games, 4(1):1–43 (2012).

[6] Keller, T. and Helmert, M. Trial-Based Heuristic Tree Search for Finite Horizon MDPs.

In Proceedings of the Twenty-Third International Conference on Automated Planning

and Scheduling (ICAPS 2013), pages 135–143 (2013).

[7] Kocsis, L. and Szepesvári, C. Bandit Based Monte-Carlo Planning. In Proceedings

of the 17th European Conference on Machine Learning (ECML 2006), pages 282–293

(2006).

[8] Keller, T. and Eyerich, P. PROST: Probabilistic Planning Based on UCT. In Pro-

ceedings of the Twenty-Second International Conference on Automated Planning and

Scheduling (ICAPS 2012), pages 119–127 (2012).

[9] Coles, A. J., Coles, A., Olaya, A. G., Celorrio, S. J., Linares López, C., Sanner, S., and

Yoon, S. A Survey of the Seventh International Planning Competition. AI Magazine,

33(1):83–88 (2012).

[10] Vallati, M., Chrpa, L., Grzes, M., McCluskey, T. L., Roberts, M., and Sanner, S.

The 2014 International Planning Competition: Progress and Trends. AI Magazine,

36(3):90–98 (2015).

Declaration on Scientific Integrity

Erklärung zur wissenschaftlichen Redlichkeit

includes Declaration on Plagiarism and Fraud

beinhaltet Erklärung zu Plagiat und Betrug

Author — Autor

Ferdinand Badenberg

Matriculation number — Matrikelnummer

14-055-206

Title of work — Titel der Arbeit

Metareasoning for Deliberation Time Distribution in the Prost Planner

Type of work — Typ der Arbeit

Bachelor Thesis

Declaration — Erklärung

I hereby declare that this submission is my own work and that I have fully acknowledged

the assistance received in completing this work and that it contains no material that has

not been formally acknowledged. I have mentioned all source materials used and have cited

these in accordance with recognised scientific rules.

Hiermit erkläre ich, dass mir bei der Abfassung dieser Arbeit nur die darin angegebene

Hilfe zuteil wurde und dass ich sie nur mit den in der Arbeit angegebenen Hilfsmitteln

verfasst habe. Ich habe sämtliche verwendeten Quellen erwähnt und gemäss anerkannten

wissenschaftlichen Regeln zitiert.

Basel, 10.12.2017

Signature — Unterschrift

	Acknowledgments
	Abstract
	Table of Contents
	1 Introduction
	2 Background
	2.1 Probabilistic Planning
	2.1.1 Markov Decision Drocess

	2.2 Anytime Setting
	2.2.1 Metareasoning Problem
	2.2.2 Metareasoner

	2.3 Search Algorithms: UCT and BRTDP
	2.3.1 UCT
	2.3.2 BRTDP

	3 Metareasoners
	3.1 Hand Made Functions
	3.1.1 Uniform
	3.1.2 First
	3.1.3 LinearPre
	3.1.4 LinearAdaptive
	3.1.5 Hyperbolic

	3.2 Metareasoner of Lin et al.
	3.2.1 Calculating Qthink
	3.2.2 Calculating Qact

	3.3 BRTDP and UCT in Metareasoning
	3.4 Adaptation from BRTDP to UCT
	3.5 Metareasoner with Minimum Thinking Time
	3.6 Metareasoner with a Cost of Thinking

	4 Evaluation
	4.1 Hand Made Functions
	4.1.1 Parameter for First
	4.1.2 Parameter for Hyperbolic
	4.1.3 Comparison of the Hand Made Functions

	4.2 Metareasoner of Lin et al. and Improvements

	5 Conclusion
	5.1 Future Work

	Bibliography
	Declaration on Scientific Integrity

