Motivation	Approaches for Metareasoners	Results	Summary

Metareasoning for Deliberation Time Distribution in the PROST Planner

Ferdinand Badenberg

University of Basel

Bachelor Thesis Presentation, 2017

Motivation	Approaches for Metareasoners	Results	Summary
000		000	000

Outline

1 Motivation

- Why Metareasoning?
- Metareasoning Problem
- 2 Approaches for Metareasoners
 - Hand Made Functions
 - Metareasoner of Lin. et al.
 - Improvements for the Metareasoner

3 Results

- Results for the Hand Made Functions
- Results for the Formal Procedure

-	6.0			
Motivation		Approaches for Metareasoners	Results	Summary

Table of Contents

Motivation

- Why Metareasoning?
- Metareasoning Problem

2 Approaches for Metareasoners

- Hand Made Functions
- Metareasoner of Lin. et al.
- Improvements for the Metareasoner

3 Results

- Results for the Hand Made Functions
- Results for the Formal Procedure

Motivation	Approaches for Metareasoners	Results	Summary
●00		000	000
Cycle			

Motivation	Approaches for Metareasoners	Results	Summary
⊙●○		000	000

Why Metareasoning?

Motivation

- Optimise policy in given time
- Allocate time to think where it is needed
- Act if decision is easy, clear best action
- Think if decision is difficult, multiple actions very close

Motivation	Approaches for Metareasoners	Results	Summary
○○●		000	000
Metareasoning	Problem		

Metareasoning Problem

- Steps from finite horizon MDP
- Rounds
- Limited time
- Anytime search algorithm

Metareasoner

Decision to think or act

- Based on specific values for these factors
- After one thinking cycle of the algorithm
- Goal: only think when necessary

Motivation	Approaches for Metareasoners	Results	Summary

Table of Contents

Motivation

- Why Metareasoning?
- Metareasoning Problem
- 2 Approaches for Metareasoners
 - Hand Made Functions
 - Metareasoner of Lin. et al.
 - Improvements for the Metareasoner

3 Results

- Results for the Hand Made Functions
- Results for the Formal Procedure

Motivation	Approaches for Metareasoners	Results	Summary
000		000	000
Hand Made Fu	nctions		

Idea

- Allocate time for each step
- Think for as long as time is left
- State of the search algorithm not considered

Functions Tested:

- Uniform (Standard)
- 2 First
- Iinear
- Hyperbolic

Motivation 000		Approaches for Metareasoners	Results 000	Summary 000
-	1 7			

Time Distribution of Hand Made Functions

Formal Metareasoner of Lin et al.

Metareasoner

- Idea: think if change of policy is likely, act if it will stay the same
- Only considers expected reward estimations (Q-values) of search algorithm
- Act if $Q^{act} \ge Q^{think}$
- How are they calculated?

Formal Metareasoner: Q^{think} and Q^{act}

Q^{think}

- Expected reward of the policy after another thinking cycle
- Simplification: only best action is relevant
- Estimate probability of action *a* being the best after the next thinking cycle
- Estimate expected reward given that action a is chosen
- Needed: next Q-values for each action

Q^{act}

- Intuitive idea: Q-value of current best action
- But: average of current Q-value and next Q-value

Motivation	Approaches for Metareasoners	Results	Summary
	000000000		

Formal Metareasoner: Estimation of Next Q-values

Estimating Next Q-values

- Idea: base next change in Q-values on previous change in Q-values
- Assumption: next ΔQ -value no larger than the previous one
- Draw random ρ between 0 and 1
- $\Delta Q(a) = \hat{\Delta}Q(a) * \rho$ for all actions a

Motivation	Approaches for Metareasoners	Results	Summary
	000000000		

Line Segment Example: UCT

$Q^{think} > Q^{act}$

Motivation	Approaches for Metareasoners	Results	Summary
	0000000000		

Line Segment Example: UCT

$Q^{think} = Q^{act}$

Motivation	Approaches for Metareasoners	Results	Summary
000		000	000
Improvements			

Minimum Thinking Time

Problem: assumption is often not true early on Improvement: think for at least T_{min} seconds

Motivation	Approaches for Metareasoners	Results	Summary
000	○○○○○○○●○	000	000
$Cthink^+$			

$Cthink^+$

Problem: time left is not considered Improvement: subtract C^{think} from Q^{think}

Motivation	Approaches for Metareasoners	Results	Summary
000		000	000
Cthink			

Cthink

Problem: stopping with time left is useless Improvement: allow a negative C^{think}

Motivation	Approaches for Metareasoners	Results	Summary

Table of Contents

Motivation

- Why Metareasoning?
- Metareasoning Problem
- 2 Approaches for Metareasoners
 - Hand Made Functions
 - Metareasoner of Lin. et al.
 - Improvements for the Metareasoner

3 Results

- Results for the Hand Made Functions
- Results for the Formal Procedure

Motivation	

Results ●○○

Results Hand Made Functions

Results

Problem	Uniform	Hyperbolic	First	Linear
Wildfire	74	71	80	81
Triangle	72	65	72	75
Academic	37	37	34	45
Elevators	93	93	91	94
Tamarisk	93	94	92	91
Sysadmin	94	94	90	91
Recon	97	99	97	96
Game	97	93	94	93
Traffic	97	97	96	96
Crossing	87	89	91	99
Skill	91	91	88	93
Navigation	65	58	83	82
Total	83	82	84	86

Motivation	Approaches for Metareasoners	Results	Summary
		⊚●○	

Results Formal Procedure

Results					
Problem	Uniform	Lin et al.	Minimum	$Cthink^+$	Cthink
Wildfire	60	90	86	95	68
Triangle	78	67	62	59	68
Academic	39	32	36	35	38
Elevators	98	71	83	83	97
Tamarisk	96	68	86	90	92
Sysadmin	100	36	67	74	82
Recon	98	56	75	75	97
Game	97	64	82	86	96
Traffic	99	85	90	87	98
Crossing	88	58	78	83	89
Skill	100	25	71	69	86
Navigation	82	26	25	28	83
Total	86	56	70	72	83

Motivation	Approaches for Metareasoners	Results	Summary
000	000000000	000	●00

Summary

Result Summary

- Hand made functions performed very well
- Default metareasoner severely underestimates thinking
- The improvements proved to be very useful

Motivation	Approaches for Metareasoners	Results	Summary
			000

Summary

Outlook

- More general hand made functions
- Improve formal procedure:
 - Consider all previous ΔQ -values
 - $\bullet~{\rm Replace}~{\rm random}~\rho$
- More sophisticated cost of thinking: combination of two approaches

Motivation	Approaches for Metareasoners	Results	Summary
			000

Questions?

BRTDP vs UCT

BRTDP

- Used in original paper
- Cost setting
- Uses upper bound of the actual Q-value
- Monotonously decreasing

UCT

- \bullet Used by PROST planner
- Reward setting
- No guarantees

BRTDP vs UCT: Visualisation

Steps

Line Segment Example: BRTDP

$Q^{think} < Q^{act}$

Wildfire Time per Step

