
Automated Planning using
Property-Directed Reachability

with Seed Heuristics

Master Thesis

Faculty of Science of the University of Basel
Department Mathematics and Computer Science

Artificial Intelligence Research Group
ai.dmi.unibas.ch

Examiner: Prof. Dr. Malte Helmert
Supervisors: Dr. Salomé Eriksson and Simon Dold

Tim Bachmann
tim.bachmann@stud.unibas.ch

15-916-299

May 06, 2023

Abstract

Planning is the process of finding a path in a planning task from the initial
state to a goal state. Multiple algorithms have been implemented to solve such
planning tasks, one of them being the Property-Directed Reachability algorithm.
Property-Directed Reachability utilizes a series of propositional formulas called
layers to represent a super-set of states with a goal distance of at most the layer
index. The algorithm iteratively improves the layers such that they represent a
minimum number of states. This happens by strengthening the layer formulas
and therefore excluding states with a goal distance higher than the layer index.
The goal of this thesis is to implement a pre-processing step to seed the layers
with a formula that already excludes as many states as possible, to potentially
improve the run-time performance. We use the pattern database heuristic and
its associated pattern generators to make use of the planning task structure for
the seeding algorithm. We found that seeding does not consistently improve
the performance of the Property-Directed Reachability algorithm. Although we
observed a significant reduction in planning time for some tasks, it significantly
increased for others.

1

Contents

1 Introduction 3

2 Background 4
2.1 Propositional Logic . 4
2.2 Symbolic Transition Systems . 5
2.3 Planning . 5

2.3.1 Finite-Domain Representation 6
2.4 Heuristics . 7

2.4.1 Pattern Database Heuristic 7

3 Property-Directed Reachability 9
3.1 Data Structures . 9
3.2 The Algorithm . 11
3.3 Extending the Witnessing Path 16

4 Heuristics in PDR 19
4.1 Seeding Layers . 19
4.2 Layers from Heuristics . 20
4.3 Layers from Pattern Database Heuristics 20

5 Implementation 24
5.1 PDR in the Fast Downward Planning System 24

5.1.1 Data Structures . 24
5.2 Heuristic Seeding of Layers . 26

5.2.1 The Pattern Database PDR Heuristic 26
5.2.2 Seeding a Layer from the Pattern Database 27

6 Evaluation 28
6.1 Evaluated Configurations . 28
6.2 Benchmark Setup . 29
6.3 Results . 30

7 Conclusion 36

A Appendix 39

2

1 Introduction

Many problems in everyday life can be modeled as planning problems that can
be solved by dedicated software. While everyday problems are usually non-
deterministic, modeling those problems as a simplified deterministic planning
problem is often possible. A planning problem consists of a state space with a
single initial state and a set of goal states. The act of planning refers to the
process of finding a path from the initial state to one of the goal states. Such a
path encoded as a sequence of operators is called a plan.

The Property-Directed Reachability algorithm can be used to solve such
planning problems. One of the main components of the algorithm is a sequence
of formulas L0, L1, . . ., referred to as layers, where each layer Li represents a
super-set of states that are at most i steps away from a goal state. Property-
Directed Reachability iteratively modifies each layer to restrict the number of
states represented by it, in a way such that the set of states represented by the
layer Li approaches the set of states that is at most i steps away from a goal
state. The algorithm initializes the layers Li with i > 0 with the formula ⊤,
which represents the whole state space.

The algorithm was first introduced under the name IC3 (“Incremental Con-
struction of Inductive Clauses for Indubitable Correctness”) by Bradley as a
form of SAT-based model checking [1]. The name Property-Directed Reachabil-
ity was introduced by Eén et al. as part of their work on a simplified and faster
implementation [4]. Suda adapted the algorithm for planning and proposed a
SAT-free version for positive STRIPS planning tasks [13].

Heuristics are functions that efficiently estimate the goal cost of a state.
Often this corresponds to the length of a path from this state to one of the
goal states. Some heuristics, like the pattern database heuristic, achieve this
by deriving a simplified planning task and solving it in a pre-computation step.
The pattern database heuristic in particular has some favorable properties, such
as being admissible, meaning it never overestimates the cost, and exposing the
simplified planning task as a set of variables.

The goal of this thesis is to explore ways to initialize, or seed, the Property-
Directed Reachability algorithm with more restrictive layers, with the intuition
that those pre-seeded layers improve the performance of the algorithm signifi-
cantly. We propose to extract such formulas from the pattern database heuristic.
In addition, we explore the run-time effects of seeding the layers.

This thesis is organized into seven chapters. Chapter 2 is an introduction to
the necessary concepts and terminology used throughout the thesis. In Chap-
ter 3, we describe the Property-Directed Reachability algorithm, as proposed
by Suda, in detail. In Chapter 4 we propose a general seeding method using a
generic heuristic, and a specific method based on the pattern database heuris-
tic. In Chapter 5, we describe how we implemented the algorithm and the layer
seeding in the Fast Downward planning system. The performance of the seeded
and non-seeded variants of the algorithm are compared in Chapter 6. Finally,
in Chapter 7, we summarize our findings and provide suggestions for future
research.

3

2 Background

In this chapter we will explain the concepts and terminology used in this the-
sis. A brief introduction to propositional logic, symbolic transition systems, the
concepts of planning, and heuristics, specifically the pattern database heuristic,
follows. Additionally, a thorough explanation of the Property-Directed Reach-
ability algorithm follows in Chapter 3.

2.1 Propositional Logic

In this section we will define some concepts of propositional logic, used in the
rest of the thesis.

We call a set of variables a signature Σ. A literal is either a variable v ∈ Σ
or its negation ¬v. The function var(l) = v where l = v or l = ¬v, returns the
variable that is used to build the literal l.

A formula is an expression consisting of either a literal l, the truth constants
⊤, which always evaluates to true, or ⊥ which always evaluates to false, or one
of the following connectives: A conjunction ϕ∧ψ, with ϕ and ψ being formulas.
A disjunction ϕ ∨ ψ, with ϕ and ψ being formulas. Or a negation ¬ϕ, with ϕ
being a formula.

A clause is a formula consisting of disjunctions of literals, and a cube is
a formula consisting of conjunctions of literals. A literal is called positive if
it is a variable that is not negated, and negative if the negation operator is
applied. When multiple negation operators are applied consecutively, we silently
remove them pairwise. Clauses and cubes are called positive if they only contain
positive literals, and negative if they only contain negative literals. Clauses and
cubes can also be represented as sets of literals, where the formula is equal
to the disjunction or the conjunction of the elements respectively. A set of
clauses denotes the conjunction of those clauses and thus represents a formula
in conjunctive normal form (CNF), and in turn, a set of cubes refers to a formula
in disjunctive normal form (DNF). An assignment is a function s : Σ→ {⊤,⊥}
that maps variables to truth values. A partial assignment maps a subset of all
variables to a truth value, while a full assignment applies to all variables in Σ.
We write an assignment in the form s = {(v1 → d1), . . . , (vn → dn)}, where
v1, . . . , vn are variables and d1, . . . , dn are the assigned values.

We write s |= ϕ if an assignment s satisfies the formula ϕ. The satisfy relation
between an assignment s and a formula ϕ is defined recursively as follows:

if ϕ = v where v is a variable, then s |= ϕ iff s(v) = ⊤
if ϕ = ¬ψ1, then s |= ϕ iff not s |= ψ1

if ϕ = ψ1 ∧ ψ2, then s |= ϕ iff s |= ψ1 and s |= ψ2

if ϕ = ψ1 ∨ ψ2, then s |= ϕ iff s |= ψ1 or s |= ψ2

A formula is called SAT or satisfiable if there exists an assignment that satisfies
the formula, and UNSAT or unsatisfiable if no such assignment exists. We
define the implication symbol “⇒” as a relation between two formulas. The
implication G⇒ F between the formulas G and F means that every assignment
that satisfies G also satisfies F . This is equivalent to the statement “G ∧ ¬F is
UNSAT”.

4

The function Lits over a partial assignment s, where Σ′ ⊆ Σ contains the
assigned variables, is defined as the cube

Lits(s) = {v | v ∈ Σ′ ∧ s(v) = ⊤} ∪ {¬v | v ∈ Σ′ ∧ s(v) = ⊥} ,

which maps each variable v1 assigned to ⊤ to the positive literal v1 and each
variable v2 assigned to ⊥ to the negative literal ¬v2. All assignments that agree
with s satisfy the formula Lits(s).

2.2 Symbolic Transition Systems

A symbolic transition system (STS) is defined as the tuple S = (Σ, I, G, T)
with the following elements: The signature Σ = {a, b, . . . } is a finite set of
propositional variables at the current point in time. An assignment s : Σ →
{⊤,⊥} is a mapping from variables to truth values. A full assignment is called
a state. We use a disjunct copy of Σ denoted by Σ′ = {a′, b′, . . . } to describe
the state of the system after one step. I is the initial formula, a predicate logic
formula over Σ, representing the set of initial states. In this thesis, we will
only consider transition systems with a single initial state sI |= I. G is the
goal formula over Σ, which represents the set of goal states. T is the transition
formula over Σ ∪ Σ′. It is a CNF formula where the variables in Σ represent
the current state and the variables in Σ′ represent the next state. A transition
from an assignment s to an assignment s′ is valid for a given STS, if s |= T with
regards to Σ and s′ |= T with regards to Σ′.

The STS is an alternative but equivalent representation of an explicit tran-
sition system T = (S, sI , sG, t) where S is the finite set of states where each
state is an assignment of all variables in Σ. The finite set of initial states sI ⊆ S
consists of all states that are a model of I. The finite set of goal states sG ⊆ S
consists of all states that are a model of G. The set of transition relations
t ⊆ S × S′ contains pairs of states that jointly satisfy the transition formula.

2.3 Planning

A unit cost STRIPS planning task is defined as a tuple Π = (V,O, sI , s∗) [5],
which implicitly defines a symbolic transition system. V is a finite set of variables
V ∈ V, corresponding directly to the elements of the signature Σ in the STS.
A state sa in a STRIPS planning task is a full assignment a : V → {⊤,⊥}. We
call the set of all possible states S. The finite set O contains operators o ∈ O
with a precondition pre(o) and an effect eff (o). Both the precondition and the
effect can be modeled as a cube over a subset of V. An operator is applicable on
a state s if s |= pre(o). Applying an applicable operator o on a state s results
in the successor state t = sJoK, which assigns all positive variables in eff (o)
to ⊤, all negative variables in eff (o) to ⊥, and all remaining variables to the
assignment of s. Aggregating the precondition and the effect as a formula in
CNF results in a formula that is equivalent to the transition formula T in the
STS

T ≡
∨
o∈O

(
pre(o) ∧ (eff (o))

′)
.

The state sI is the initial state, which is the only state that models the initial for-
mula I from the STS1. The goal description s∗ is a partial variable assignment,

1As we defined the initial formula I to only be model of a single state.

5

corresponding to the goal formula in the STS. Operators can be chained together
to form a sequence π = ⟨o0, . . . on⟩. Such a sequence of operators π is applicable
on a state s0 if every operator oi is applicable on the state si resulting in the
state si+1. If π is applicable to the state sI , and the resulting state sn satisfies
Lits(s∗), then π is called a plan and the sequence of states σ = ⟨sI , s1, . . . , sn⟩ is
called a witnessing path. Most definitions of STRIPS tasks include a cost func-
tion on operators. We are however only considering tasks where each operator
has a fixed cost of one and thus omit the cost function. Therefore, the cost of
a plan is always equal to its length.

Positive STRIPS Tasks A STRIPS task is called positive if it fulfills the
following set of requirements: The precondition pre(o) of every operator o ∈ O
is a positive cube. The goal s∗ is a partial assignment that only assigns to the
value ⊤.

Most literature uses the definition of the positive STRIPS task synonymously
with STRIPS. For the rest of this thesis, we will only consider positive STRIPS
tasks.

2.3.1 Finite-Domain Representation

A planning task in Finite-Domain Representation (FDR) as introduced by
Helmert [8] is defined by a tuple

Π̂ =
(
V̂, Ô, ŝI , ŝ∗

)
,

with V̂ being a finite set of variables. While a variable of a STRIPS task can
only be assigned to the values ⊤ and ⊥, every variable v̂ ∈ V̂ has an associated
finite domain Dv̂ and can be assigned to any element of this domain. A partial
assignment to of a single variable in the form (v̂ → d) is called a fact. A state
in an FDR task is a full assignment ŝ. Similar to a STRIPS task, sI refers to
the initial state and s∗ is the partial assignment that describes the set of goal
states. The finite set Ô contains operators ô ∈ Ô with a precondition pre(ô)
and an effect eff (ô). The precondition is a cube over facts, while the effect is
a partial assignment. Similar to STRIPS, an operator ô is applicable to a state
s when s |= pre(ô). The resulting successor state t = sJôK assigns all variables
v̂ to a value dv̂ if (v̂ → dv̂) ∈ eff (ô). For all variables that are not assigned by
the effect, t assigns them to the same value as s. For an FDR variable v̂ ∈ V̂
the function var , as defined in Section 2.1, returns the fact on which a literal is
based.

Converting an FDR Task into a STRIPS Task An FDR planning-

task Π̂ =
(
V̂, ŝI , ŝ∗, Ô

)
can be converted to a STRIPS planning task Π =

(V,O, sI , s∗). The set of STRIPS variables is defined as the set of tuples con-
taining the FDR variable and its assigned value V = {(v̂, d) | v̂ ∈ V̂, d ∈ Dv}.
The initial state is defined as the full assignment

sI = {(v̂, d)→ ⊤ | (v̂ → d) ∈ ŝI} ∪ {(v̂, d)→ ⊥ | (v̂ → d) ̸∈ ŝI}.

Similarly, the set of goal states is defined as the partial assignment

s∗ = {(v̂, d)→ ⊤ | (v̂ → d) ∈ ŝ∗}.

6

Every FDR operator ô ∈ Ô has a corresponding STRIPS operator o ∈ O with
a precondition consisting of the cube

pre(o) = {(v̂, d) | (v̂ → d) ∈ pre(ô)}

and an effect consisting of the cube

eff (o) = {(v̂, d) | (v̂ → d) ∈ eff (ô)}∪{¬(v̂, d) | (v̂ → x) ∈ eff (ô), d ∈ Dv̂, x ̸= d}.

As an example consider the following effect of an FDR task: eff (ô) = {(v →
d1)}, where Dv = {a, b, c}. The effect in the converted STRIPS task is defined
as eff (o) = {(v, a),¬(v, b),¬(v, c)}.

While the number of states increases during the conversion, the resulting
task has equivalent plans to the original task. However, the conversion to
STRIPS is not free of information loss. Due to the increase in the number
of states during the conversion, the STRIPS task contains states that are not
representable in the original FDR task. An FDR task with a variable v with
the domain Dv = {a, b} results in a STRIPS task with the variables (v, a), and
(v, b). While states containing the assignments {((v, a)→ ⊤) , ((v, b)→ ⊥)} and
{((v, a)→ ⊥) , ((v, b)→ ⊤)} are representable in the FDR task as the assign-
ments {(v → a)} and {(v → b)}, all states containing the partial assignments
{((v, a)→ ⊤) , ((v, b)→ ⊤)} and {((v, a)→ ⊥) , ((v, b)→ ⊥)} are not. However,
those states that are unrepresentable in the original FDR task are still unreach-
able from the initial state in the STRIPS task. This means, that there is no
sequence of operators ⟨o1, o2, . . . , on⟩ that, when applied sequentially from the
initial state sIJo1KJo2K . . . JonK, results in such a state. A group of such variables,
where only one of them can ever be assigned to⊤ in any reachable STRIPS state,
is called mutual exclusive or mutex. The implicit information of what variables
are mutex is lost in the conversion from an FDR task to a STRIPS task.

2.4 Heuristics

In the context of a STRIPS planning task, a heuristic function h : S → R∪{∞}
is an approximation of the goal distance of a state. For planing, there are several
properties of heuristic functions. For this thesis we are mostly interested in
heuristics that are admissible, meaning that the function never overestimates
the distance to the goal.

For convenience, we define the heuristic function over a set of states S′ ⊆ S
as the minimal heuristic value of any state in the set:

h(S′) = min
s∈S′
{h(s)}

2.4.1 Pattern Database Heuristic

A pattern database heuristic (PDB) is a heuristic function hpdb that relies on
a pre-computation step to calculate the heuristic values of states in a planning
task [2]. This is accomplished by projecting the original state space onto a
sufficiently smaller state space using a projection πP and calculating the cost
for each projected state s′ ∈ {πP (s) | s ∈ S}, where S refers to the set of all
states. A projection πP : S → SP is a surjective function that uses a pattern
P to map a state s to a corresponding state s′ in the smaller state space SP .

7

The pattern P ⊆ V defines the variables that are considered in the projected
state space. A projection πP maps two states s1 and s2 to the same projected
state s′ if and only if all variables in P are assigned to the same values in both
states. If a pattern contains all variables V, the projected state is the same as
the non-projected state s = πV(s).

The projected transition relation tπ corresponds to the original transition
relation t where the “source” and “destination” states have been projected:
tπ = {(π(ss), π(sd)) | (ss, sd) ∈ t}.

The precondition and the effect of an operator o′ ∈ O′ in the projected state
space only considers the variables in the pattern P . The precondition and the
effect are defined as

pre(o′) = {l | l ∈ pre(o) and var(l) ∈ P},

and
eff (o′) = {l | l ∈ eff (o) and var(l) ∈ P}.

The pre-computation step of the pattern database works by finding a suitable
pattern P for the projection πP , such that all states SP of the projected state
space fit into a predefined amount of memory while keeping as much of the
complexity of the state space as possible. Next, a uniform-cost search starting
from the goal states through the whole projected state space is performed. Every
visited projected state gets recorded into the database along with the distance
to the closest goal state. After the pre-computation step, the pattern database
is initialized and can be used as any other heuristic function. Retrieving a
heuristic value hpdb(s) of a state works by applying the same projection πP (s)
as in the pre-computation to the state. The cost of the projected state gets
queried from the database and is returned as the heuristic value.

One of the properties of the PDB is that it is admissible, which is a direct
consequence of finding the optimal costs for each state in the smaller projected
state space. PDBs are often defined on a planning task in FDR form since the
finite-domain representation is more concise and allows for larger sub-tasks to
be solved and stored in memory [8].

8

3 Property-Directed Reachability

Property Directed Reachability (PDR) is an algorithm that can be used for
finding a witnessing path in symbolic transition systems [1][4]. It was originally
designed for checking the correctness of hardware models. Suda showed that
this algorithm can be used for planning [13]. This chapter will explain the PDR
algorithm as presented by Suda. PDR performs an explicit search in a symbolic
transition system which is complemented by symbolic reachability analysis using
a SAT planner. In the context of planning, PDR can be used to compute an
optimal plan in a given unit cost planning task.

The algorithm works by iteratively calculating a set of layers Li. A layer
Li is a CNF formula that represents a super-set of all states from which a
goal state can be reached in i or fewer steps. By repeatedly updating a layer
and strengthening the formula, the algorithm progressively excludes more states
from the layer such that as few states as possible are a model of the layer while
still being the super-set of all states that are i or fewer steps away from a goal.
It then tries to find a witnessing path for the planning task by starting at the
initial state and extending the path by only considering states that are modeling
the corresponding layer.

PDR starts by initializing the layers. The layer L0 is set to the goal formula
and therefore is modeled by only the goal states. All other layers are initialized
with an empty CNF formula. This formula is a tautology, meaning that all
states in the transition system are a model of the layers Li with i > 0.

The algorithm then proceeds with the iteration which is counted by the
variable k. Every iteration step goes through a path construction phase and a
clause propagation phase. The path construction phase checks if sI is in the
layer Lk and when this is not the case skips to the clause propagation phase.
Otherwise, it then tries to build a witnessing path ⟨sI , s1, . . . , sn, sg⟩ to a goal
state sg, such that sI satisfies the layer Lk, every state sj satisfies Lk−j for all
j ∈ {1, . . . , n} and the state sg satisfies the layer L0. Clause propagation then
tries to strengthen the layers by propagating clauses from a layer Lj to Lj+1.
Both of those phases are described in detail below.

Suda proposes two variants of the PDR algorithm for planning: the original
variant, and the SAT-solver-free variant. By removing the need for the SAT
solver, Suda showed a performance increase, with the downside that the SAT-
solver free algorithm is only defined for positive STRIPS tasks. Since the SAT-
solver-free variant is specifically designed for planning, and the implementation
introduced in Chapter 5 is based on that variant, the following explanation will
focus on the SAT-solver-free variant.

3.1 Data Structures

Layers We represent each layer as a set of clauses, where the conjunction over
the whole set builds the CNF. A state s is considered to be “in” a layer L if the
state is a model of this layer s |= L. Figure 1 shows an example of a state space
with three non-empty layers.

The PDR algorithm iteratively strengthens the layers by adding clauses to
a layer and therefore restricting the set of states that are represented by it.
However, as shown by Suda, the following invariants are always satisfied:

9

.
s0

.
s1

.
s2

.
s3

L0

L1

L2

Figure 1: Layers L0, L1, L2 and states s0, . . . , s3. The goal distance for each
state si is at least i. Every state si is “in” all layers Lj where j ≥ i. The layers
are depicted as sets of states that are represented by each layer.

1. L0 represents exactly the goal states.

2. Lj+1 ⊆ Lj ; The layers are interpreted as sets of clauses. All clauses in
a layer Lj+1 are also in the layer Lj , and therefore all states that are in
layer Lj are also in layer Lj+1.

3. (Lj)
′ ∧T ⇒ Lj+1 for any j ≥ 0; meaning that Lj+1 represents a super-set

of states that have successors that are represented by Lj .

From the invariants follows that any state that is in a layer Li is also in
every layer Lj where j > i.

Obligation Obligations are used during the path construction phase and con-
sist of a state s, an index i ∈ N as well as a reference to a parent obligation
q′. During the iteration step k, an obligation q = (s, q′, i) is used in the path
construction phase to store the fact that a path from the initial state to s with
length k − i exists. This path is stored as the chain of parent obligations. The
obligation of the initial state has the index i = k and no parent obligation, we
represent this empty reference by the symbol ∗. The set of obligations Q acts as
a priority queue, allowing access to the obligation which has the minimal index
value min(s,q′,i)∈Q i. This obligation contains the state which is the tip of the
longest path from the initial state, where each state sj of the obligation (sj , q, j)
is a model of the layer Lj .

Once the goal has been reached, meaning an obligation with the index 0
exists, the witnessing path, which consists of a series of states, can be extracted
from the obligations by following the chain of parent obligation references and
storing the corresponding states in a list. A witnessing path of length n consists
of the states s0, . . . , sn−1. The witnessing path can then be converted to a plan
by iterating over every two consecutive states (si−1, si) in the witnessing path
and storing the operator oi ∈ O where si−1 |= pre(oi) and si−1JoiK = si. In
case multiple operators meet those two criteria, any one of those operators can
be selected.

10

3.2 The Algorithm

As mentioned above, PDR is structured into two separate phases, the path
construction phase, and the clause propagation phase. In every iteration step
k, the path construction phase is executed first, followed by the clause propa-
gation phase. The pseudo-code for the implementation of PDR can be found in
Algorithm 1.

Initialization Before the main iteration, the layer L0 is initialized with the
goal formula. The goal formula of a positive STRIPS task is always a cube,
which is a conjunction of literals. Therefore, the conversion to CNF is done by
iterating over each literal in the goal formula and treating it as a unit-clause c.
This clause is then inserted into the CNF formula. All other layers Li with i > 0
are initialized with the empty set. Next, the main iteration starts, counted by
the variable k starting with the value 0 and only aborting if either a plan has
been found, or the conclusion that no plan exists has been reached.

Path Construction Phase The goal of the path construction phase is to
build a witnessing path from the initial state to a goal state. If such a witness-
ing path exists, it will be found during the path construction phase, and the
algorithm terminates. Otherwise, if no witnessing path of such length exists,
the path construction phase concludes.

The path construction phase starts by checking if the initial state sI is a
model of the current layer Lk, and only if this is the case, the rest of the path
construction phase, as illustrated in Figure 2, is executed. Otherwise if sI ̸|= Lk,
the initial state is not in layer Lk which means there is no path from the initial
state to a goal state with a length of k or less. Next on line 8, the obligation
queue Q is initialized and the obligation q = (sI , ∗, k) is pushed into it. With
this, we store the fact that the initial state sI is the tip of the zero-length path
starting at sI . This corresponds to the step visualized in Figure 2a, where the
newly inserted obligation is q1.

On line 10, a loop is started that terminates when the priority queue has no
more elements. The first step in this loop is to pop an obligation q = (s, p, i)
from the obligation queue with the smallest index i. If i is zero, s |= L0 and
s is therefore a goal state, meaning that the search has concluded. The plan
is extracted from the obligation and returned. This corresponds to the step
visualized in Figure 2e. Otherwise, the extend function is called with the state
of the obligation and with the layer Li−1 as arguments. The extend function
returns either a successor t of s, such that t is in the layer Li−1, or a reason
r ⊆ Lits(s), which is a cube containing the literals of s that prevent any successor
of s from being in Li−1. A detailed explanation of the extend function follows
in Section 3.3. If the successor is returned, the popped obligation q is pushed
back into the queue, along with the new obligation (t, q, i − 1), and the loop
is continued. Otherwise, the negation of the reason r is inserted into all layers
Lj with j ≤ i, which strictly strengthens the layers. The reason r removes at
least the state s from any of the updated layers. This prevents further path
construction from state s for any layer Lj with 0 ≤ j ≤ i. Additionally, on
line 24 if the popped obligation has an index of less than k, it is pushed back into
the obligation with a higher index than before. This obligation rescheduling is
not necessary for the correctness of PDR, but allows it to find non-optimal length

11

Algorithm 1 PDR Planning Algorithm

Input A positive unit cost STRIPS planning task Π = (V,O, sI , s∗).

Output A plan for Π or “unsolvable” if no plan exists for Π.

1: ▷ Initializing the layer L0 as a set of unit clauses from the goal cube. ◁
2: L0 ← {{c} | c ∈ s∗}
3: for j > 0 do
4: Lj ← ∅;
5: end for
6: for k = 0, 1, . . . do ▷ Start of the path construction phase
7: if sI |= Lk then
8: Q← min priority queue()
9: Q.push((sI , ∗, k))

10: while not Q.empty() do
11: q′ ← Q.pop()
12: (s, p, i)← q′

13: if i = 0 then
14: return extract plan((s, p, i))
15: end if
16: (success, x)← extend(s, Li−1)
17: if success then ▷ x is a successor state
18: Q.push((x, q′, i− 1))
19: Q.push((s, p, i))
20: else ▷ x is a reason x ⊆ Lits(s)
21: for j = 0, . . . , i do
22: Lj ← Lj ∪ {¬x}
23: end for
24: if i < k then ▷ Obligation rescheduling
25: Q.push((s, p, i+ 1))
26: end if
27: end if
28: end while
29: end if
30: for i = 1, . . . , k + 1 do ▷ Clause propagation
31: for c ∈ Li−1 \ Li do
32: sc ← {p→ ⊥ | p ∈ c} ∪ {p→ ⊤ | p ∈ X \ c}
33: if all o ∈ O : sc ̸|= pre(o) or scJoK ̸|= Li−1 then
34: Li ← Li ∪ {c}
35: end if
36: end for
37: if Li−1 = Li then
38: return “unsolvable” ▷ No plan possible
39: end if
40: end for
41: end for

12

Algorithm 2 Function extend(s, L)

Input A state s, and a layer L.

Output A tuple (success, x), with success being a truth value and x being a
cube. If success = true, then x = Lits(t) where t is a successor of s such that
t |= L. Otherwise, success = false and x ⊆ Lits(s) is a reason such that no
state satisfying x has a successor satisfying L.

1: assert s ̸|= L
2: Ls ← {c ∈ L | s ̸|= c}
3: Rnoop ← {¬c | c ∈ Ls}
4: assert Rnoop ̸= ∅
5: R ← {Rnoop}
6: for o ∈ O do
7: preso ← {l ∈ pre(o) | s ̸|= l}
8: t← sJ(∅, eff (o))K ▷ apply o regradless of the precondition
9: Lt ← {c ∈ L | t ̸|= c}

10: if preso = ∅ and Lt = ∅ then
11: return (successor, t)
12: else if Ls ⊆ Lt then
13: continue
14: else
15: Lt

0 ← {c ∈ Lt | c ∩ preso = ∅}
16: Ro ← {{¬l} | l ∈ preso} ∪ {{¬l | l ∈ c and ¬l ̸∈ eff (o)} | c ∈ Lt

0}
17: R ← R∪ {Ro}
18: end if
19: end for
20: r ← ∅
21: for Ro ∈ R ordered by |Ro| from small to large do
22: ro ← minro∈Ro

{|r ∪ ro|} ▷ find an ro that increases |r| the least
23: r ← r ∪ ro
24: end for
25: return (reason, r)

13

Lk Lk−1 L1 L0

sI

q1=(sI ,∗,k)

(a) Iteration step i = 1 of the path construction phase. The only existing obligation
is q1 containing the initial state sI in layer Lk.

Lk Lk−1 L1 L0

sI

q1=(sI ,∗,k)

s2

(s2,q1,k−1)

extend

(b) A call to extend(sI , Lk−1) returned a successor state s2.

Lk Lk−1 L1 L0

sI

q1=(sI ,∗,k)

s1

q2=(s1,q1,k−1)

s2

(s2,q1,k−1)

extend

(c) Calls to extend(s2, Lk−2) resulted in a new state, a further call to extend from this
state returns a reason, and no path to layer L0 is found. A call to extend(sI , Lk−1)
resulted in the new state s1.

14

Lk Lk−1 L1 L0

sI

q1=(sI ,∗,k)

s1

q2=(s1,q1,k−1)

s2

(s2,q1,k−1)

s3

q3=(s3,q2,1)

s4

(s4,q2,1)

extend extend

(d) Calls to the extend function resulted in two paths of obligations ending in the
states s3 and s4 in the layer L1. A further call to extend(s4, L0) returns a reason.

Lk Lk−1 L1 L0

sI

q1=(sI ,∗,k)

s1

q2=(s1,q1,k−1)

s2

(s2,q1,k−1)

s3

q3=(s3,q2,1)

s4

(s4,q2,1)

sg

q4=(sg,q3,0)

extend extend extend

(e) A call extend(s3, L0) resulted in the state sg. The corresponding obligation q4
has a priority value of 0. The algorithm terminates in the next step. The witnessing
path is extracted from the obligation q4 by following the parent obligation references
q4 → q3 → · · · → q2 → q1. The witnessing path ⟨sI , s1, . . . , s3, sg⟩ is returned.

Figure 2: Illustration of the path construction phase. Shown are the states
sI , s1, . . . , s4, sg and the obligations q1, . . . q4. The dashed layer line between
layer Lk−1 and L1 represents an arbitrary number of layers, and the dashed
arrows across those layers represent an arbitrary number of expansion steps.
Each sub-figure shows the state of the path construction phase at a progressive
iteration step. The strengthening of the layers through reasons returned by the
extend function is not shown.

15

paths, while typically increasing the performance of the algorithm. Without
this obligation rescheduling, the obligation q = (s, p, i) will be discarded, and
work continues on the obligation p. This corresponds to the strict backtracking
behavior with the obligation queue Q acting as the stack.

Clause Propagation Phase After the construction phase has concluded for
an iteration step k, the clause propagation phase starts. Clause propagation
has the goal to copy clauses from low-index layers to high-index layers, and
therefore strengthening the high index layers. This is done by iterating over
i = 1, . . . , k+1 and checking for every clause c ∈ Li−1 \Li if it could be pushed
into the layer Li. For a clause to be pushed into a higher layer without violating
any of the layer invariants, the formula

Fc := ¬c ∧ T ∧ (Li−1)
′

must be unsatisfiable. To express this requirement without a SAT solver, con-
sider the positive STRIPS task Π = (V,O, sI , s∗) with the transition formula T ,
L a set of positive clauses over V and c a positive clause over V. Additionally,
sc is an assignment for every p ∈ V with

sc(p) =

{
⊥ if p ∈ c
⊤ otherwise.

Suda shows in Lemma 4 that 2

Fc is satisfiable if and only if there is an operator o ∈ O such that
sc |= pre(o) and scJoK |= L.

Therefore, for Fc to be unsatisfiable for layer Li−1, every operator o ∈ O
must satisfy either sc ̸|= pre(o) or scJoK ̸|= Li−1, or both. If this is the case, the
clause c can be added to layer Li without violating the layer invariants.

After every iteration of the clause propagation phase, we check for the
equality of neighboring layers. If indeed two equal layers Li−1 and Li with
0 < i ≤ k+1 are found, the algorithm is terminated, returning “unsolvable”. In
this case, no path of length k or longer can exist. Suda proves this formally as
part of Theorem 1, however, this can also be explained by intuition: Consider a
case where the layers Li−1 and Li with 0 < i ≤ k + 1 are equal. Assume there
exists witnessing path π = (sk = sI , . . . , si, si−1, . . . , s0 = s∗). Any state sj
with j ∈ {1, . . . , k} fulfills the conditions sj |= Lj and sj ̸|= Lj−1. The second
condition holds because the layer Lj−1 would have been strengthened during
the path construction phase if this was not the case before. We can now follow
from Li−1 = Li that si |= Li and si ̸|= Li, which is a contradiction.

3.3 Extending the Witnessing Path

This section will describe the extend(s, L) function, as used in the path con-
struction phase, in detail. The goal of the function extend(s, L), with s being a
state and L being a layer, is to provide a successor state t of s that is a model of

2The notation of this lemma has been adapted. The action a has been renamed to the
operator o, and the notation for the successor state of sc applying a has been written as scJoK
instead of apply(sc, a).

16

L, if such a t exists. This case is called a successful path extension. If no such
t exists, extend provides a reason r, which is a cube and a subset of the literals
of Lits(s), such that no state that satisfies r has a successor that satisfies L.

The reason should be preferably small, meaning it should contain as few liter-
als as possible. Small reasons are preferred because they are used to strengthen
the layers. Larger layers, in terms of the number of clauses and the number
of literals inside of those clauses, impact the performance of PDR negatively.
This performance impact happens both in terms of run-time complexity when
computing operations such as the satisfies relation, and also because larger layer
clauses lead to the layer excluding less states, which potentially leads to more
iterations in the path construction phase.

The full pseudo code for the extend function can be seen in Algorithm 2.
The extend function works by iterating over all of the operators o ∈ O and
generating a successor state to if o is applicable. If such a successor to is a
model of L, the path extension is successful and the successor is returned. In
the unsuccessful case, a reason has to be calculated.

The idea of the unsuccessful case is to collect a reason set Ro for every
operator o. The overall full reason rf is the union

rf =
⋃
o∈O

Ro.

Suda shows how it is possible to construct a smaller, but still valid reason, by
selecting reason contribution ro ∈ Ro such that the union

r =
⋃
o∈O

ro (1)

results in a small |r|, while still satisfying the condition that no state that
satisfies r has a successor that satisfies L. Suda calls this method “minimizing
the reason”.

Constructing the Set of Reasons The set of reasons Ro for an operator
o ∈ O is comprised of reasons acquired as follows. If the operator o is not
applicable for the state s, then there is at least one literal l ∈ pre(o) that is false
in s. The negation of l is one such reason {¬l} ⊆ Lits(s) that we add to Ro.

The next step is to compute the successor state to = sJo′K, where the operator
o′ consists of pre(o′) = ⊤ and eff (o′) = eff (o). If this successor state to is not
a model of L, there is at least one clause c ∈ L where to ̸|= c. This is the case
when either s is not a model of c due to some literals which are not changed by
eff (o), or s is a model of c, but eff (o) introduces literals that prevent to from
being a model of c. For every such clause, we add the reason rc to Ro, which
consists of the negations of the literals l ∈ c. To reduce the size of the reason
rc, we can exclude the literals ¬l ∈ eff (o). This still results in a valid reason
because as long as s satisfies rc, the successor to cannot satisfy c. Formally, the
set of reasons is defined as on line 16.

Reason Subsumption When the extend function returns a reason r, we
want this reason to have the smallest size |r| as possible. Smaller reasons are
preferable as mentioned above, because the size of the layers influences the
performance of the PDR algorithm.

17

Before computing the overall reason r from the sets Ro, there are subsump-
tions between individual reasons ro ∈ Ro, as well as between the reason sets Ro.
For individual reasons r1, r2 ∈ Ro, the subsumption is the subset relation. If
r1 ⊆ r2, it is not necessary to keep both inside Ro, since keeping just the smaller
cube r1 is sufficient. Keeping r1 leads to the result of the union in Equation 1
being smaller.

Additionally to the subsumption of individual reasons, a reason set Ro for
an operator o is subsumed by a reason set Ru for an operator u if for every
ru ∈ Ru there exists an ro ∈ Ro such that ro ⊆ ru. In this case, we can
discard the whole reason set Ro. As mentioned by Suda, this is only applied in
regard to the Rnoop reason set corresponding to the (artificially inserted) no-op
operator due to performance reasons. The no-op action is included to ensure
the correctness of the PDR algorithm, and the Rnoop reason set contains the
reasons why s is not a model of L. The reason set Rnoop always contains at least
one cube, since the extend function is only called for s ̸|= L. If an operator o
does not result in any of these clauses being made true, the resulting reason set
Ro is subsumed by Rnoop and will be skipped. This is implemented on line 12.

The Overall Reason The whole reason r is computed by selecting a reason
ro ∈ Ro for every operator o such that the union from Equation 1 is as small
as possible. Selecting the right reasons ro is difficult. Suda even argues that
finding the optimal solution is NP-complete. Instead of trying to find an optimal
solution, we use a greedy approach as implemented on lines 20 - 23.

First, the variable of the overall reason r is initialized with an empty set.
We iterate over all Ro, ordered by increasing |Ro|. We then select an element
ro ∈ Ro such that |r ∪ ro| is as small as possible, which is then added to the
overall reason r. After the iteration, the overall reason r is returned from the
extend function.

The greedy minimization of r happens due to the ordering of Ro. For Ro1

containing a single cube c, we don’t have any freedom to choose the contribution
to the overall reason: c is the only reason that can be contributed. Contrary to
this, for a large Ro2 = {c1, c2, . . . } we have the freedom to choose any one of
those cubes. By ordering Ro according to their size, the choice of which cube
c ∈ Ro to contribute to the overall reason is better informed by the previously
contributed cubes.

Suda proposes an optional additional reason minimization step to further
reduce the size of the reason, which is not explicitly covered here.

18

4 Heuristics in PDR

As mentioned in Chapter 1, the goal of this thesis is to explore ways to pre-
populate – or seed – the layers before they are accessed for the first time by
the PDR algorithm. We expect this to lead to performance improvements of
the whole algorithm, at the cost of higher memory consumption, depending on
how much the layers are seeded. In this section we will explore how to seed
the layer with a generic heuristic function, and then how to improve this with
a specialized implementation using the pattern database heuristic.

4.1 Seeding Layers

Recall from Section 3.1 that layers are formulas in conjunctive normal form. A
layer Li represents a super-set of all states that have a goal distance of at most
i. PDR iteratively refines the layers to progressively exclude states that are too
far from the goal. The goal of seeding the layers is to initialize each layer with
a formula that excludes as many states as possible while making sure the layer
invariants still hold. By excluding states from a layer Li, the PDR algorithm is
more likely to pick a state s |= Li in the path construction phase that is actually
at most i steps away from the goal. We introduce the notion of a perfect layer
L∗
i , that represents exactly the set of states with a goal distance of i or less.

For such a perfect layer, the algorithm is guaranteed to pick a state si that is
at most i steps away from the goal. By intuition, using a fast heuristic function
to remove some of the work from the algorithm should lead to higher overall
performance.

Theorem 1. Given the perfect layers L∗
i and L∗

i−1, and a state s with s |= L∗
i

and s ̸|= L∗
i−1, there must be a successor t of s with t |= L∗

i−1, as shown in
Figure 3.

Proof. Given a state s that models the clauses of the layer L∗
i and not of the

layer L∗
i−1. Assume that for the set of all successors T of s, no successor t ∈ T

models the clauses of L∗
i−1. This implies that all successors of s are more than

i− 1 steps away from the goal, and therefore s is at least i+1, not i steps away
from the goal. This contradicts the definition of the layer L∗

i , which declares
that all states that are a model of it, are at most i steps away from the goal.
Therefore, at least one successor state t ∈ T of s with t |= L∗

i−1 exists.

The function call extend(s, Li−1) is guaranteed to return a successor of s
that satisfies Li−1, if such a state exists. From this and from Theorem 1 it
follows that the path construction phase always successfully finds a successor t,
and therefore never needs to strengthen a layer.

Through seeding, we strengthen each layer Li. This reduces the likelihood of
expanding an obligation with the state s for a layer Li in the path construction
phase that is more than i steps away from a goal. This leads to fewer obligation
expansions and therefore fewer iterations in the path construction phase. By
seeding the layers with as restrictive formulas as possible, while making sure
they still fulfill the invariants, the PDR algorithm should therefore amortize the
pre-computation overhead and find a solution faster.

19

L∗
i L∗

i−1

.
s

.
t

Figure 3: An illustration of the perfect layers L∗
i and L∗

i−1, as well as a state s
and its successor state t.

4.2 Layers from Heuristics

By intuition, using a fast heuristic function to remove some of the work from
the algorithm should lead to higher overall performance.

Seeding the layers requires insight into the search space of the particular
problem the algorithm is trying to solve. The seeding algorithm needs a way
to classify states for each layer Li into the categories “at least i+ 1 steps away
from the goal” and “possibly fewer than i + 1 steps away from the goal”. The
categories can be this loose because PDR explicitly uses layers that are a super-
set of states that are at most i steps away from the goal. It is therefore enough to
find an estimate of the distance to the goal that is guaranteed to be optimistic,
meaning that for a state that is j steps away from the goal, the estimate must
be at most j. As mentioned in Section 2.4, heuristic functions are designed to
find such estimations. Specifically, admissible heuristics fulfill this requirement.

To seed a layer Li we can find the set of states Sh,i := {s ∈ S | h(s) > i}
where each element is a state with the heuristic value greater than i. Since we
require the heuristic function to be admissible, each state in Sh,i is guaranteed
to be at least i + 1 steps away from the goal. To strengthen the layer Li, we
add a new clause c to the layer for every state s ∈ Sh,i, where the clause is of
the form c = ¬(Lits(s)). This formula ensures that all states in Sh,i are not a
model of the seeded layer Li.

4.3 Layers from Pattern Database Heuristics

In practice state spaces tend to be very large, and adding a clause to a layer for
every state is generally not feasible. Instead, it makes sense to take advantage
of the structure of the state space, not just the goal distance of every state. It is
preferable to exclude a whole class of states from the layer at once with a single
clause. For example, consider a state space where all states with the variable
v ∈ V assigned to ⊥ are more than i steps away from the goal:

h(S{(v→⊥)}) > i.

It is not necessary to add a clause for every state in S{(v→⊥)}. Instead, we
should add the single clause (v) = (¬Lits({v → ⊥})). Adding this clause to the
layer Li, has the same effect as adding all the clauses {(¬Lits(s)) | s ∈ S{v→⊥}},
but the formula is much more compact.

As mentioned in Section 2.4.1, the pattern database heuristic makes use of
the structure of the state space through the projection pattern P . It is possible
to exploit the pattern to exclude a whole set of states in the same way as
demonstrated above. However, instead of only considering a single variable,

20

we consider all variables in the pattern P . We exclude all projected states
from the layer that are more than i steps away from the goal. The first step
is enumerating all projected states SP and calculating their distance from the
goal. Conveniently, this is already done by the pattern database heuristic in the
pre-computation step. Next, the states are filtered to extract all projected states
that are more than i steps away from the goal: Sh,i

P := {h(s) > i | s ∈ SP }.
Each state in Sh,i

P is potentially the projection of a high number of states,
depending on the pattern. To exclude the projected states, and therefore also
their corresponding non-projected states from the layer we insert a clause for
each projected state

L′
i = Li ∧

 ∧
{s∈Sh,i

P }
¬ (Lits(s))

 . (2)

As mentioned in Chapter 3, the PDR implementation without SAT-solver
requires the STRIPS task to be positive. Due to this, the layers must consist
of only positive clauses for the implementation to be correct. However, by
seeding the layers as described above, the seeded layers are not guaranteed to
only contain positive clauses. The following is an example that leads to a non-
positive clause:

Assume we want to seed a layer Li, and the projected state πP (s) = {a →
⊤, b → ⊥}) has a goal distance greater than i. The clause for this projected
state is c = (¬Lits(πP (s)) = (¬a ∨ b). This clause is non-positive.

Additionally, recall from Section 2.4.1, pattern databases are usually defined
for tasks in finite domain representation, as opposed to STRIPS tasks. We will
assume the planning tasks are in FDR for the rest of this section.

Recall from Section 2.3.1, a task in FDR has variables v̂ ∈ V̂ and each
variable v̂ has domain Dv̂. The equivalent planning task converted back to
a STRIPS representation defines the variables V = {(v̂, d) | v̂ ∈ V̂ and d ∈
Dv̂}. In any single variable assignment in the FDR task, a variable can only be
assigned to one value in Dv.

As mentioned previously, the PDR algorithm expects the layers to con-
sist of only positive clauses. However, trying to exclude the FDR state s =
{(v → A)}, with the domain Dv = {A,B,C}, from a layer results in the clause
{¬(v,A), (v,B), (v, C)}, which contains the negative literal ¬(v,A). To prevent
this, we can exploit that s can also be represented as the cube

Lits(s) ≡
⋃

d′∈Dv,d′ ̸=A

¬d = {¬(v,B),¬(v, C)}.

When considering the states reachable from the initial state, this representation
is equivalent to Lits(s) because both cubes {(v,A)} and {¬(v,B),¬(v, C)} im-
ply each other due to the mutual exclusivity of the literals. By applying this
procedure for every variable v ∈ V̂ of the FDR task, every projected state can be
represented using a negative cube. Excluding this state from a layer is achieved
by negating this cube, yielding a positive clause that is inserted into the layer.

Even though this results in layers that include potentially unreachable states,
this does not violate any of the layer invariants as defined in Chapter 3 as shown
by Theorem 4.

21

. t.s

Li

Li+1

Figure 4: An example of a scenario that violates Layer Invariant 3. Shown
are the states s and its successor t and the layers Li and Li+1, where t |= Li

and s ̸|= Li+1.

Theorem 2. For any two seeded layers Li and Lj with i > j, Li is a subset of
Lj.

Proof. Assume P is a pattern in Σ, and Sh,i
P is the set of projected states with

a goal distance of more than i steps. From i > j follows that Sh,i
P ⊆ Sh,j

P , since
all projected states with a goal distance of more than i also have a goal distance
of more than j. From the definition of Equation 2 it follows that Li ⊆ Lj .

Theorem 3. Layers seeded with the PDB heuristic do not violate the layer
invariant 3.

Proof. The layer invariant 3 (Li)
′ ∧ T ⇒ Li+1 states, that all predecessors of

the states in layer Li are in layer Li+1. By applying the contradiction theorem
it follows that the statement (Li)

′ ∧ T ∧ ¬Li+1 must be unsatisfiable. This
means, that a situation where a state is in Li and its predecessor is not in Li+1

is impossible. We will prove the invariant by contradiction: Consider the states
s and t where t is a successor of s. Assume that t |= Li and s ̸|= Li+1 where
Li and Li+1 are seeded layers. Figure 4 shows an example of such a scenario.
From t |= Li we know that hpdb(t) ≤ i, and from s ̸|= Li+1 we know that
hpdb(s) > i+1. This follows directly from the seeding of the layers. Every layer
Lj only models states sj that have a heuristic value hpdb(sj) ≤ j. The pattern
database heuristic is consistent] [6], meaning that hpdb(s) ≤ hpdb(t)+1 since the
planning task has unit costs. From this, we can follow that i + 1 < hpdb(s) ≤
hpdb(t) + 1 ≤ i+ 1 and therefore i+ 1 < i+ 1 which is a contradiction.

Theorem 4. Layers seeded with the PDB heuristic do not violate any of the
layer invariants.

Proof. Recall the layer invariants from Chapter 3:

1. L0 represents only the goal states.

2. Lj+1 ⊆ Lj .

3. (Lj)
′ ∧ T ⇒ Lj+1 for any j ≥ 0.

22

Invariant 1: By the definition of the PDR algorithm, the layer L0 is initial-
ized (before seeding) to be equivalent to the goal formula. The seeding step
strengthens the layer by adding additional clauses to it. The clauses that are
added during the seeding step are the negation of Lits(s) of abstract states s
with a heuristic value of more than zero. The PDB heuristic only has non-zero
heuristic values for abstract states with at least one variable v that is not as-
signed to its goal value g. Therefore only states with a goal distance of more
than zero are excluded from the layer. Since the only states with a goal dis-
tance of zero are goal states, the layer L0 before and after seeding is equivalent.
Invariant 2 follows directly from Theorem 2. Invariant 3 holds as shown in
Theorem 3.

With this, we have found a way to seed the layers with a pattern database
heuristic, and shown that the resulting seeded layers do not violate the layer
invariants. We can conclude that the PDR algorithm with seeding using the
proposed method is correct.

23

5 Implementation

This section describes the implementation of the PDR algorithm as a search
engine in the Fast Downward [9] planning system, as well as the layer seeding
with the pattern database heuristic.

5.1 PDR in the Fast Downward Planning System

The PDR algorithm is implemented as a distinct search engine in Fast Down-
ward3. Specifically, the search-engine interface is satisfied by implementing the
methods initialize and step.

The initialization step is not absolutely necessary for the implementation of
PDR, since no tasks have to be completed before the main loop besides initial-
izing the layers. Since the number of layers can not be determined beforehand,
we only initialize the layer L0 here. Additionally, the effects of all actions are
fetched from Fast Downward and cached for later use, as part of an optional
optimization.

The step method returns a value that indicates the current state of the
search, such as in progress, solved, or failed. The method is repeatedly
called by Fast Downward until it returns one of the values that indicate that
the search task has concluded. This maps directly to the main iteration step of
the PDR algorithm. Each call of the step function corresponds to an iteration
of the outermost loop in the PDR algorithm.

5.1.1 Data Structures

The PDR algorithm as described in Chapter 3 consists mostly of set operations.
While cubes, clauses, and formulas in CNF are just represented as sets in the
pseudo-code, using raw set objects for the implementation is ill-suited. While
reasoning about a set that is called a cube is easy, a set does not intrinsically
have the property that it is a cube. To add such kind of metadata, we create
the following specialized data structures:

Literal A literal consists, as defined in Section 2.1, out of a variable and an
indicator if it is positive or negative. Since Fast Downward operates in FDR,
the domain Dv of a variable v can contain more than the values ⊤ and ⊥.
Since the PDR algorithm can not operate on FDR literals, we convert them to
STRIPS literals as described in Section 2.3.1. We end up with a data structure
containing the variable and the FDR value as integers and the indicator if the
value is positive or negative as a boolean. For debugging reasons, a reference to
the Fast Downward type FactProxy is stored as well, which holds the original
name of the literal in the planning task. As a memory usage optimization, this
reference could be dropped, as no code in the PDR implementation depends on
it.

LiteralSet All formulas used in the PDR algorithm are either clauses, cubes,
or formulas in CNF or DNF. We model clauses and cubes as sets of literals
with an additional indicator if the set is to be treated as a clause or a cube. To

3The implementation can be found at https://github.com/Tiim/fast-downward-pdr

24

store the literals, the LiteralSet contains a literals member variable of the
container type std::unordered set which stores a set of Literal values. The
additional indicator if the set is to be considered a clause of a cube is stored as an
enum value SetType::CLAUSE, or SetType::CUBE. The LiteralSet class imple-
ments common set operations used by the PDR algorithm, such as: set union

which implements the union set operator “∪”, set minus which implements the
set operator “\”, as well as the models function, which accepts a layer L and
returns true if the LiteralSet c fulfills c |= L. Some other member functions
are implemented as well which are not mentioned here.

SetOfLiteralSets As mentioned above, formulas used in PDR can also be
in CNF or DNF. Both of those normal forms can be represented as either
sets of clauses or sets of cubes respectively. To store the clauses or cubes,
the SetOfLiteralSets contains a sets member variable of the container type
std::unordered set which stores a set of LiteralSet values. An additional
indicator for the type of normal form is not strictly needed, since the elements
of the set already contain this information. It is however still stored for explic-
itness when the set is empty, and to ensure correctness in the case a clause was
inserted into a DNF or a cube was inserted into a CNF. While this should never
happen, such an error would be hard to find without such an indicator and ad-
ditional checks on every insert. The SetOfLiteralSets class also implements
some convenience methods that operate on the sets member variable, which
are not mentioned here.

Layer A special case of a formula in CNF is the data structure of a layer.
Since most functionality is the same it is implemented the same way as the
SetOfLiteralSets class. The main difference in the internal representation is
the delta-encoding of the sets member variable. As described in Section 3.1,
layer invariant 2 states that Lj+1 ⊆ Lj for every j > 0. For this reason, and
since the layers are strictly ordered, it is possible for each layer Li to only store
the layer delta L∆

i = Li \ Li+1, together with a reference to the parent layer
Li−1 and the child layer Li+1, provided they exist and have been initialized.
The layer delta L∆

i contains the clauses that are in all layers up to the layer Li

and are not members of any following layers. The union of all child layer deltas
results in the layer

Li =
⋃
i≤j

L∆
j .

Conveniently, since each layer saves its delta encoding, the set operation Li−1 \
Li, as required in the clause propagation phase, directly evaluates to L∆

i−1 and
does not need to be computed.

State As defined in Section 2.3, a state is a full assignment. Since we already
have a way to convert assignments to cubes we can conveniently represent a
state s as the cube Lits(s) using the LiteralSet class.

Obligation As described in Section 3.1, an obligation is defined as a tuple
q = (s, q′, p). The elements of the tuple can directly be mapped to the member
variables of the Obligation class: The state variable is a LiteralSet with
a set type of SetType::CUBE as mentioned above. The priority p is a simple

25

integer, and the reference to the parent obligation is a member variable of type
std::shared ptr<Obligation>. The obligation (sI , ∗, k) has a parent value of
nullptr to signal that no parent obligation exists.

5.2 Heuristic Seeding of Layers

The PDR search engine instance holds a list of all accessed layers. Whenever a
layer Lk needs to be accessed during the run-time of the PDR algorithm, the
get layer method of the search engine object is invoked. If this layer has been
accessed before, it is returned from the layer list directly. Otherwise, it is ini-
tialized as an empty Layer object with a reference to its parent layer Lk−1. The
parent layer is in turn updated with the reference to the newly created layer.
Then the layer is passed to the initial heuristic layer function of the con-
figured PDRHeuristic. This function accepts a goal distance k and a reference
to the Layer instance and inserts clauses into the layer Lk to strengthen it ac-
cording to the implemented heuristic. The default NoopPDRHeuristic does not
insert anything into the provided layer and returns immediately. This lack of
seeding is used as a ground truth to compare against, since comparing the seeded
performance characteristics to a fundamentally different implementation such as
Sudas PDRPlan4 would not be meaningful. The PatternDBPDRHeuristic uses
a provided pattern database to seed clauses into the provided layer.

5.2.1 The Pattern Database PDR Heuristic

A pattern database, as implemented in Fast Downward, receives a pattern and
seeds its heuristic values database using this pattern. Fast Downward imple-
ments various pattern generator algorithms, which use the internal task de-
scription to generate a suitable pattern according to some specified parameters.
Through the modular nature of Fast Downward, the pattern generator can be
chosen dynamically through a command line argument. Fast Downward version
22.06 implements the following pattern generators:

• CEGAR pattern generator

• greedy pattern generator

• manual pattern generator

• random pattern generator

Since the manual pattern generator is not strictly a generator but rather
emits the manually specified pattern, we will omit it in our analysis. One of the
parameters all pattern generator algorithms have in common, is the size of the
resulting pattern database, as measured in the number of states in the projected
state space. Since this number directly influences the number of clauses in the
layers after seeding, this parameter must be chosen carefully.

A comparison of how the choice of pattern generators and their parameters
affects the performance of the seeded PDR algorithm is shown in Chapter 6.

4PDRPlan is Sudas reference implementation of the PDR planning algorithm and can be
found at https://github.com/quickbeam123/PDRplan

26

5.2.2 Seeding a Layer from the Pattern Database

Seeding a layer Lk from the pattern database generally works as described in
Section 4.3, however, some tweaks are necessary for compatibility with Fast
Downward. The PatternDatabase class in Fast Downward does not offer an
interface to access the states of the projected state space and their heuristic
value directly. Instead, the method get value is exposed, which expects a non-
projected state and returns its heuristic value. Since the pattern P is accessible,
we can iterate over all projected states s ∈ SP . Assigning the variables v ∈ V\P
of the projected state to a value of zero results in a valid non-projected state s′ ∈
S. This is the case because the domain of a variable in Fast Downward always
contains 0, since every domain has a size of at least two, and Fast Downward uses
zero-based indexing for the domain values. If the queried value h(s′) is bigger
than the specified goal-distance k, no state which has a projection equal to s can
ever have a goal distance of k or less. The projected state s is converted into a
LiteralSet of type SetType::CUBE according to the rules of the Lits function,
the positive literals are replaced by their negative equivalents as discussed in
Section 4.3, and its inverse is added as a new positive clause to the layer Lk.
After iterating over all projected states, all states that have a heuristic value of
more than k are not a model of Lk.

27

6 Evaluation

We have successfully implemented the Property-Directed Reachability algorithm
as part of the Fast Downward planning system, as well as layer seeding based on
the pattern database heuristic. In this chapter we will evaluate the performance
of the seeded PDR algorithm. We compare the seeded algorithm using a pattern
database that has been initialized with a variety of pattern generators to the
non-seeded algorithm.

6.1 Evaluated Configurations

This section will list the various configurations that have been tested to evaluate
the performance and behavior of the seeded PDR algorithm. A list of configu-
rations and their corresponding configuration string, as well as the theoretical
maximal number of projected states, can be found in Table 1.

Non-Seeded PDR This configuration uses the NoopPDRHeuristic as a seed-
ing heuristic, and is used as the base for all comparisons. As mentioned in
Section 5.2, this seeding heuristic does not modify the provided layer at all and
therefore performs no seeding. We call this configuration the non-seeded PDR
configuration or by its shorthand name noop from here on out.

Greedy Pattern Generator The configurations greedy-50 to greedy-1000
use the pattern database seeding heuristic as introduced in Section 5.2 with the
greedy pattern generator. The parameter of the pattern generator refers to the
maximum number of states the projected state space can contain. As listed
in Table 1, the maximal number of projected states ranges from 50 to 1000.
Usually, this is considered to be a very low number of states, yielding a very
weak heuristic. However, since the number of projected states directly maps
to the number of seeded clauses, and since the pattern size directly maps to
the size of these clauses we need to limit this number to maintain performance.
Ideally, we would increase the number of projected states to get better heuristic
values and to restrict the layers more.

The greedy pattern generator selects as many variables as possible until the
number of projected states is not within the predefined limit. The variables are
selected in the following order: First, all variables occurring in the goal formula
are selected, then variables are selected according to the order of the casual
graph as introduced by Helmert [7].

CEGAR Pattern Generator The configuration cegar uses the pattern
database seeding heuristic with the CEGAR [10] pattern generator. Similar
to the greedy pattern generator, the CEGAR pattern generator exposes a con-
figuration option to set the maximum number of projected states. However, for
the planning problems used in the benchmarks, the CEGAR pattern generator
never reaches more than 500 projected states, and therefore we left the setting
at the default value of 1 million projected states.

Random Pattern Generator The configuration rand uses the seeding heu-
ristic with the random pattern generator as described by Rovner et al. [10] in the

28

Shorthand Seed Heuristic
Max. Projected

States

noop pdr-noop() -
greedy-50 pdr-pdb(pattern=greedy(50)) 50
greedy-100 pdr-pdb(pattern=greedy(100)) 100
greedy-500 pdr-pdb(pattern=greedy(500)) 500
greedy-1000 pdr-pdb(pattern=greedy(1000)) 1000
cegar pdr-pdb(pattern=cegar pattern()) 1’000’000
rand pdr-pdb(pattern=random pattern(1000)) 1000

Table 1: List of seeding heuristic configurations used for testing.

experiment section. Just like the above pattern generators, the random pattern
generator has a configuration option for the maximum number of projected
states.

6.2 Benchmark Setup

In order to evaluate the performance of various configurations of the seeded
PDR planner, we tasked them with solving a set of unit-cost problems from
the “downward-benchmarks”5 task collection. The full list of problem domains
can be seen in the Appendix in Table 3 as part of the coverage table. Each
benchmark involved running a PDR configuration with a planning task and
collecting its run-time metrics, which were then used to compare different as-
pects of each planner configuration. The benchmarks were conducted on the
SciCORE6 scientific computing center at the University of Basel. Every node
in the cluster has 6.4 GiB of RAM per core and runs on Intel Xeon Silver 4114
2.2 GHz processors.

We utilized the Downward Lab [11] Python library to set up the benchmarks,
collect metrics from the produced log files, and help with the comparison of the
collected metrics. Downward Lab offers tools to generate scatter plots that
compare a property across multiple planner configurations pairwise, and offers
interfaces to build custom visualizations.

Every configuration was tasked with solving every problem with the standard
memory limit suggested by Downward Lab, and with a higher than standard
time limit of two hours. The increased time limit was chosen to limit the
number of tasks that are aborted due to the time constraint, so that we are able
to compare problems where one configuration takes significantly longer than
another configuration.

We use “relative” scatter plots to compare the value of a property at a run
of a seeded PDR configuration versus the value of the same property on the
same planning task using the non-seeded PDR configuration. The x-value of
every point denotes the absolute value of the property for the non-seeded PDR
configuration, whereas the y-value represents the relative value such that x ∗ y
yields the value of the property for the compared PDR configuration. A value
less than one indicates that the seeded PDR configuration exhibited a lower
value for the specific property than the non-seeded PDR configuration.

5https://github.com/aibasel/downward-benchmarks
6https://scicore.unibas.ch/

29

PDR Configuration Successful Out of Time Failed

noop 861 307 22
greedy-50 846 318 26
greedy-100 843 321 26
greedy-500 818 350 22
greedy-1000 799 372 19
cegar 865 303 22
rand 864 304 22

Table 2: The number of timed-out, successful, and failed planning tasks per
PDR configuration. In total there are 1190 total tasks per configuration. Tasks
are considered successful if a valid path is found or if it was shown that the task
is unsolvable within the time and memory constraint. Failed tasks only consist
of tasks that received the sigkill signal from the cluster. None of the tested
planning tasks failed due to not having enough memory.

6.3 Results

The most important metric for the evaluation of the seeded PDR algorithm
is how many of the tasks were able to be solved within the time and memory
constraints. Table 2 shows that the cegar and rand configurations were able to
solve the most tasks successfully. However, they only solved 4 and 3 additional
tasks compared to the non-seeded noop configuration. This is surprising because
we expected the seeded configurations to solve the tasks significantly faster
than the base configuration. The worst configuration was the greedy-1000

configuration, which, compared to the noop configuration, timed out on 65
more tasks. The failed runs shown in Table 2 are due to a sigkill signal that
the planners received from the cluster. We were not able to fully determine the
root cause of this, since this behavior was not reproducible on local machines.
For all configurations, 13 of those failures happen when solving problems of
the organic-synthesis-opt18-strips domain. Other affected domains were
satellite with six to eight failed problems depending on the configuration,
and driverlog, logistics98, mystery and storage with zero to two failed
problems. We can not attribute those failures due to timeout conditions, since
those errors happened within the defined time constraint. The total number
of tasks that were successfully solved, grouped by domain, can be seen in the
Appendix in Table 3.

To compare the performance in more detail, we measured the total time it
takes for each planning task to be solved. Lower total planning times are better.
We expected to find that seeding the layers results in decreased planning time in
comparison to the non-seeded configuration. We also expect to see that “over-
seeding” results in diminishing returns or even decreased performance due to
increased calculation overhead.

As seen in Figure 5, the seeded PDR algorithm does not generally perform
better than the non-seeded variant. While the greedy-50, cegar, and rand

configurations perform on average similar to the non-seeded configuration, with
a total planning time of 1.6 times, 1.3 times and 1.3 times more than the noop
configuration, the variance of the search time increase is high with 4.3, 1.9 and

30

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

noop (sec) – lower for 492 tasks

g
r
e
e
d
y
-
5
0
–
lo
w
er

fo
r
31
5
ta
sk
s

total-time

fewer expansions
more expansions
at least one run failed

(a) noop vs. greedy-50

10−2 10−1 100 101 102 103 104

10−1

100

101

noop (sec) – lower for 580 tasks

g
r
e
e
d
y
-
1
0
0
–
lo
w
er

fo
r
22
8
ta
sk
s

total-time

fewer expansions
more expansions
at least one run failed

(b) noop vs. greedy-100

10−2 10−1 100 101 102 103 104

10−1

100

101

102

noop (sec) – lower for 713 tasks

g
r
e
e
d
y
-
5
0
0
–
lo
w
er

fo
r
77

ta
sk
s

total-time

fewer expansions
more expansions
at least one run failed

(c) noop vs. greedy-500

10−2 10−1 100 101 102 103 104

10−1

100

101

102

103

noop (sec) – lower for 733 tasks

g
r
e
e
d
y
-
1
0
0
0
–
lo
w
er

fo
r
45

ta
sk
s

total-time

fewer expansions
more expansions
at least one run failed

(d) noop vs. greedy-1000

10−2 10−1 100 101 102 103 104

10−2

10−1

100

101

noop (sec) – lower for 484 tasks

c
e
g
a
r
–
lo
w
er

fo
r
32
0
ta
sk
s

total-time

fewer expansions
more expansions
at least one run failed

(e) noop vs cegar

10−2 10−1 100 101 102 103 104

10−2

10−1

100

101

noop (sec) – lower for 489 tasks

r
a
n
d
–
lo
w
er

fo
r
31
1
ta
sk
s

total-time

fewer expansions
more expansions
at least one run failed

(f) noop vs rand

Figure 5: Comparison of the total time between the non-seeded configuration
and the seeded configurations using relative scatter plots. The blue marks signify
that the task had fewer expanded obligations in the seeded configuration than in
the non-seeded configuration. The red marks signify the opposite. The cluster
of points at x = 10−2 stems from rounding the total time up to a minimum of
10−2. The same comparison grouped by the problem domain can be found in
the Appendix in Figure 11.

31

gr
ee
d
y
-5
0

gr
ee
d
y
-1
00

gr
ee
d
y
-5
00

gr
ee
d
y
-1
00
0

ce
ga
r

ra
n
d

0

100

200

300

19.32
38.18

157.76

309.07

4.74 4.74
A
ve
ra
ge

S
ee
d
ed

C
la
u
se
s

Figure 6: Number of seeded clauses for layer L0, averaged over all tasks.

1.8 respectively. However, it is obvious that the configurations greedy-100 to
greedy-1000 do worse than the non-seeded configuration for most tasks, with
an average planning time increase of more than five times. This slowdown for
the greedy-1000 configuration is especially pronounced for smaller tasks, where
the total planning time for most tasks is over twenty times higher. While our
hypothesis of seeding leading to faster solve times was not confirmed, we can
see that over-seeding due to too many inserted clauses does indeed occur. The
slowdown of the seeded configurations generally matches the number of total
seeded clauses as seen in Figure 6. However, a general trend for configura-
tions greedy-500 and greedy-1000 can be seen: the longer the non-seeded
configuration takes to solve a task, the closer the planning time approaches the
non-seeded planning time. This suggests that for long-running tasks, the layer
sizes are increasing enough over time so that the added clauses from the seeding
step have less of a negative relative performance impact.

We did not find any significant correlation between certain domains and any
increase or decrease in planning performance. This can be seen in the Appendix
in Figure 11.

Another metric is the number of obligation expansions for each configura-
tion. We expected seeding to lead to strictly fewer expanded obligations due to
the layers being more strict from the beginning of the planning phase. As seen
in Figure 7 this is however not the case. While for all seeded configurations the
majority of tasks have fewer expanded obligations than the non-seeded config-
uration, there are still a significant number of tasks where more obligations are
expanded in the seeded configuration. This raises the question of how stricter
layers can lead to more expansions.

A possible explanation could be that due to the layers being strict from the
beginning, the PDR algorithm does not enter the path construction phase until
later iterations. The path construction phase is only entered in an iteration k
if sI |= Lk. Since we already seeded layer Lk this is only the case for iterations
where hpdb(sI) ≤ k. This could prevent the algorithm from finding some high-
quality reasons R through the extend function. Missing the clauses ¬r ∈ R from
the layer would in turn lead to more expansions in later iterations.

Those tasks that were solved faster in the seeded configurations almost ex-
clusively consist of tasks that expanded fewer obligations in the seeded config-

32

urations as seen in Figure 7. This demonstrates the link between the planning
time and the number of expanded obligations. While faster tasks mostly con-
sist of tasks that also expanded fewer obligations, the opposite is not generally
true. In the configurations greedy-50 to greedy-1000, many of the tasks that
expanded fewer obligations are still slower than in the noop configuration. Inter-
estingly, this is much less the case in the cegar and rand configurations. Tasks
with fewer expanded obligations are, except for some individual cases, faster in
those configurations.

Figure 8 compares the size of the initial layer |L0| in multiple configurations.
The size of the first layer is also the number of unique clauses in all layers
|L0| = |∪i>0Li| which follows from layer invariant 2. There is a direct correlation
between the number of clauses and the planning time. Over 71% of tasks that
have fewer clauses in the seeded variant are also faster in that variant, and
inversely over 86% of tasks that have more clauses are also slower. This finding
is consistent with the findings in Sudas paper that bigger layers lead to worse
performance and is the reason why Suda goes to great length to reduce the size
of clauses through subsumption and reason minimization.

33

100 101 102 103 104

10−1

100

noop – lower for 291 tasks

g
r
e
e
d
y
-
5
0
–
lo
w
er

fo
r
49

6
ta
sk
s

obligation-expansions

faster
slower

(a) noop vs. greedy-50

100 101 102 103 104

10−1

100

101

noop – lower for 253 tasks

g
r
e
e
d
y
-
1
0
0
0
–
lo
w
er

fo
r
5
2
3
ta
sk
s

obligation-expansions

faster
slower

(b) noop vs. greedy-1000

100 101 102 103 104

10−1

100

noop – lower for 298 tasks

c
e
g
a
r
–
lo
w
er

fo
r
32

3
ta
sk
s

obligation-expansions

faster
slower

(c) noop vs. cegar

100 101 102 103 104

10−1

100

noop – lower for 298 tasks

r
a
n
d
–
lo
w
er

fo
r
32
3
ta
sk
s

obligation-expansions

faster
slower

(d) noop vs. rand

Figure 7: Comparison of the number of expanded obligations for the non-seeded
and the seeded PDR configurations using relative scatter plots. The blue marks
signify that the task was solved faster in the seeded configuration than in the
non-seeded configuration. The red marks signify the opposite. The plots for
the configurations greedy-100 and greedy-500 are excluded from from this
figure for the sake of clarity. They show an interpolation of the data between
greedy-50 and greedy-1000 and can be found in the Appendix as Figure 9.
Tasks where at least one of the configurations failed are not shown.

34

100 101 102 103 104

10−1

100

101

noop – lower for 529 tasks

g
r
e
e
d
y
-
5
0
–
lo
w
er

fo
r
2
7
6
ta
sk
s

layer-size-first

faster
slower

(a) noop vs. greedy-50

100 101 102 103 104

10−1

100

101

102

noop – lower for 748 tasks

g
r
e
e
d
y
-
1
0
0
0
–
lo
w
er

fo
r
3
5
ta
sk
s

layer-size-first

faster
slower

(b) noop vs. greedy-1000

100 101 102 103 104

10−1

100

noop – lower for 400 tasks

c
e
g
a
r
–
lo
w
er

fo
r
26

7
ta
sk
s

layer-size-first

faster
slower

(c) noop vs. cegar

100 101 102 103 104

10−1

100

noop – lower for 400 tasks

r
a
n
d
–
lo
w
er

fo
r
26
7
ta
sk
s

layer-size-first

faster
slower

(d) noop vs. rand

Figure 8: Comparison of the size of the first layer |L0| after planning has con-
cluded using relative scatter plots. The blue marks signify that the task was
solved faster in the seeded configuration than in the non-seeded configuration.
The red marks signify the opposite. The plots for the configurations greedy-100
and greedy-500 are excluded from from this figure for the sake of clarity. They
show an interpolation of the data between greedy-50 and greedy-1000 and
can be found in the Appendix as Figure 10. Tasks where at least one of the
configurations failed are not shown.

35

7 Conclusion

The goal of this thesis was to implement layer seeding using heuristics as an
additional step of the PDR algorithm for planning and to test our hypothesis
that seeding improves performance by reducing the number of obligation ex-
pansions. We implemented the SAT-free PDR variant for planning proposed
by Suda as a search engine in the Fast Downward planning system and added
heuristics-based seeding using the pattern database heuristic. We measured the
performance characteristics of the non-seeded implementation and compared it
to a variety of seeded configurations. Those configurations varied by the choice
of pattern generators and number of projected states.

We found that seeding generally does neither consistently improve the total
planning time, nor does it consistently reduce the number of expanded obliga-
tions. Additionally, we found that heavily seeding the layers leads to a signif-
icant increase in planning time for small tasks, while for big tasks we found
the time increase to be less severe. For some bigger planning tasks, the heavily
seeded configuration leads to the same planning time as the non-seeded con-
figuration, for some occasional tasks even a significant time decrease. We also
found that the lightly seeded configurations perform on average slightly slower
than the non-seeded configuration. However, while many of the tasks have a
significantly higher planning time, many others have an equally significant re-
duction in planning time. In terms of the number of expanded obligations, we
found that a significant number of tasks have an increased number of obligation
expansions in the seeded configuration. We hypothesize that this is due to high-
quality reasons that were never returned from the expand function, due to the
path construction phase not being executed for low-index layers in the seeded
configuration.

While our approach to seeding did not yield the desired results, there are
several areas of optimization that could be investigated in future research: For
example, it may be possible to further reduce the size and number of seeded
clauses by implementing clever clause minimization strategies. Another promis-
ing approach would be to combine multiple small pattern databases, in order
to find seed clauses consisting of only a small number of literals. Addition-
ally, implementing seeding using other heuristics, such as the merge and shrink
heuristic [3][12], may also prove to be worthwhile.

36

References

[1] Aaron R. Bradley. “SAT-Based Model Checking without Unrolling”. In:
Proceedings of the 12th International Conference on Verification, Model
Checking, and Abstract Interpretation. 2011, pp. 70–87.

[2] Joseph C. Culberson and Jonathan Schaeffer. “Pattern Databases”. In:
Computational Intelligence 14.3 1998, pp. 318–334. doi: 10.1111/0824-
7935.00065.

[3] Klaus Dräger, Bernd Finkbeiner, and Andreas Podelski. “Directed Model
Checking with Distance-Preserving Abstractions”. In: International Jour-
nal on Software Tools for Technology Transfer 11.1 2009, pp. 27–37. doi:
10.1007/s10009-008-0092-z.

[4] Niklas Eén, Alan Mishchenko, and Robert Brayton. “Efficient Implemen-
tation of Property Directed Reachability”. In: Proceedings of the Interna-
tional Conference on Formal Methods in Computer-Aided Design. 2011,
pp. 125–134.

[5] Richard Fikes and Nils J. Nilsson. “STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving”. In: Artificial Intel-
ligence 2.3 1971, pp. 189–208. doi: 10.1016/0004-3702(71)90010-5.

[6] Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet, and Sven Koenig.
“Domain-Independent Construction of Pattern Database Heuristics for
Cost-Optimal Planning”. In: AAAI 2007, pp. 1007–1012.

[7] Malte Helmert. “A Planning Heuristic Based on Causal Graph Analysis”.
In: Proceedings of the International Conference on Automated Planning
and Scheduling 16 2004, pp. 161–170.

[8] Malte Helmert. “Concise Finite-Domain Representations for PDDL Plan-
ning Tasks”. In: Artificial Intelligence 173.5 2009, pp. 503–535. doi: 10.
1016/j.artint.2008.10.013.

[9] Malte Helmert. “The Fast Downward Planning System”. In: Journal of
Artificial Intelligence Research 26 2006, pp. 191–246. doi: 10.1613/jair.
1705.

[10] Alexander Rovner, Silvan Sievers, and Malte Helmert. “Counterexample-
Guided Abstraction Refinement for Pattern Selection in Optimal Classical
Planning”. In: Proceedings of the International Conference on Automated
Planning and Scheduling 29 2019, pp. 362–367. doi: 10.1609/icaps.
v29i1.3499.

[11] Jendrik Seipp, Florian Pommerening, Silvan Sievers, and Malte Helmert.
Downward Lab. 2017. doi: 10.5281/zenodo.790461.

[12] Silvan Sievers and Malte Helmert. “Merge-and-Shrink: A Compositional
Theory of Transformations of Factored Transition Systems”. In: Journal
of Artificial Intelligence Research 71 2021, pp. 781–883. doi: 10.1613/
jair.1.12557.

[13] Martin Suda. “Property Directed Reachability for Automated Planning”.
In: Journal of Artificial Intelligence Research 50 2014, pp. 265–319. doi:
10.1613/jair.4231.

37

https://doi.org/10.1111/0824-7935.00065
https://doi.org/10.1111/0824-7935.00065
https://doi.org/10.1007/s10009-008-0092-z
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1016/j.artint.2008.10.013
https://doi.org/10.1016/j.artint.2008.10.013
https://doi.org/10.1613/jair.1705
https://doi.org/10.1613/jair.1705
https://doi.org/10.1609/icaps.v29i1.3499
https://doi.org/10.1609/icaps.v29i1.3499
https://doi.org/10.5281/zenodo.790461
https://doi.org/10.1613/jair.1.12557
https://doi.org/10.1613/jair.1.12557
https://doi.org/10.1613/jair.4231

38

A Appendix

n
o
o
p

g
r
e
e
d
y
-
5
0

g
r
e
e
d
y
-
1
0
0

g
r
e
e
d
y
-
5
0
0

g
r
e
e
d
y
-
1
0
0
0

c
e
g
a
r

r
a
n
d

airport (50) 21 22 22 21 22 22 22
barman-opt14-strips (14) 14 14 14 14 12 14 14
blocks (35) 35 35 35 34 34 35 35
childsnack-opt14-strips (20) 5 1 2 0 0 2 2
depot (22) 18 18 18 18 18 18 18
driverlog (20) 15 15 15 15 15 15 15
freecell (80) 51 40 40 29 25 49 49
grid (5) 3 3 3 3 3 3 3
gripper (20) 20 20 20 20 20 20 20
hiking-opt14-strips (20) 20 20 20 20 20 20 20
logistics00 (28) 28 28 28 28 28 28 28
logistics98 (35) 23 23 24 23 23 23 23
miconic (150) 150 150 150 150 150 150 150
movie (30) 30 30 30 30 30 30 30
mprime (35) 32 30 30 30 30 33 33
mystery (30) 25 25 24 20 18 23 23
nomystery-opt11-strips (20) 10 10 8 8 10 9 9
openstacks-strips (30) 26 26 26 26 25 26 26
organic-synthesis-opt18-strips (20) 7 7 7 7 7 7 7
parking-opt11-strips (20) 2 1 1 3 3 2 2
parking-opt14-strips (20) 0 2 2 0 0 0 0
pathways (30) 29 29 29 27 27 30 30
pipesworld-notankage (50) 37 37 35 34 33 40 39
pipesworld-tankage (50) 24 25 25 21 20 24 24
psr-small (50) 50 50 50 50 50 50 50
rovers (40) 32 32 32 31 31 31 31
satellite (36) 19 19 17 19 18 22 22
snake-opt18-strips (20) 11 10 8 10 8 10 10
storage (30) 22 21 23 22 22 22 22
termes-opt18-strips (20) 5 4 4 5 5 6 6
tidybot-opt11-strips (20) 13 14 14 13 12 13 13
tidybot-opt14-strips (20) 6 7 7 5 2 6 6
tpp (30) 17 17 17 18 18 18 18
trucks-strips (30) 10 10 11 13 9 11 11
visitall-opt11-strips (20) 20 20 20 20 20 20 20
visitall-opt14-strips (20) 13 14 15 14 14 15 15
zenotravel (20) 18 17 17 17 17 18 18
Total (1190) 861 846 843 818 799 865 864

Table 3: Coverage of all tested domains and algorithm configurations. Tasks are
considered successful if they find a valid path or show that the task is unsolvable
before the maximal time is reached.

39

100 101 102 103 104

10−0.5

100

100.5

noop – lower for 305 tasks

g
r
e
e
d
y
-
1
0
0
–
lo
w
er

fo
r
4
89

ta
sk
s

obligation-expansions

faster
slower

(a) noop vs. greedy-100

100 101 102 103 104

10−1

100

101

noop – lower for 277 tasks

g
r
e
e
d
y
-
5
0
0
–
lo
w
er

fo
r
5
10

ta
sk
s

obligation-expansions

faster
slower

(b) noop vs. greedy-500

Figure 9: Comparison of the number of expanded obligations for the non-seeded
and the seeded PDR configurations. The blue marks signify that the task was
solved faster in the seeded configuration than in the non-seeded configuration.
The red marks signify the opposite.

100 101 102 103 104

10−1

100

101

noop – lower for 613 tasks

g
r
e
e
d
y
-
1
0
0
–
lo
w
er

fo
r
19

4
ta
sk
s

layer-size-first

faster
slower

(a) noop vs. greedy-100

100 101 102 103 104

10−1

100

101

102

noop – lower for 722 tasks

g
r
e
e
d
y
-
5
0
0
–
lo
w
er

fo
r
72

ta
sk
s

layer-size-first

faster
slower

(b) noop vs. greedy-500

Figure 10: Comparison of the size of the first layer |L0| after planning has
concluded. The blue marks signify that the task was solved faster in the seeded
configuration than in the non-seeded configuration. The red marks signify the
opposite.

40

airport barman-opt14-strips blocks childsnack-opt14-strips
depot driverlog freecell grid
gripper hiking-opt14-strips logistics00 logistics98
miconic movie mprime mystery

nomystery-opt11-strips openstacks-strips organic-synthesis-opt18-strips parking-opt11-strips
parking-opt14-strips pathways pipesworld-notankage pipesworld-tankage
psr-small rovers satellite snake-opt18-strips
storage termes-opt18-strips tidybot-opt11-strips tidybot-opt14-strips
tpp trucks-strips visitall-opt11-strips visitall-opt14-strips
zenotravel

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

noop (sec) – lower for 492 tasks

g
r
e
e
d
y
-
5
0
–
lo
w
er

fo
r
31
5
ta
sk
s

total-time

(a) noop vs. greedy-50

10−2 10−1 100 101 102 103 104

10−1

100

101

noop (sec) – lower for 580 tasks

g
r
e
e
d
y
-
1
0
0
–
lo
w
er

fo
r
22
8
ta
sk
s

total-time

(b) noop vs. greedy-100

10−2 10−1 100 101 102 103 104

10−1

100

101

102

noop (sec) – lower for 713 tasks

g
r
e
e
d
y
-
5
0
0
–
lo
w
er

fo
r
77

ta
sk
s

total-time

(c) noop vs. greedy-500

10−2 10−1 100 101 102 103 104

10−1

100

101

102

103

noop (sec) – lower for 733 tasks

g
r
e
e
d
y
-
1
0
0
0
–
lo
w
er

fo
r
45

ta
sk
s

total-time

(d) noop vs. greedy-1000

41

10−2 10−1 100 101 102 103 104

10−2

10−1

100

101

noop (sec) – lower for 484 tasks

c
e
g
a
r
–
lo
w
er

fo
r
3
20

ta
sk
s

total-time

(e) noop vs cegar

10−2 10−1 100 101 102 103 104

10−2

10−1

100

101

noop (sec) – lower for 489 tasks

r
a
n
d
–
lo
w
er

fo
r
31
1
ta
sk
s

total-time

(f) noop vs rand

Figure 11: Comparison of the total time between the non-seeded configuration
and the seeded configurations using relative scatter plots. The markers are
grouped by the problem domain.

42

	Introduction
	Background
	Propositional Logic
	Symbolic Transition Systems
	Planning
	Finite-Domain Representation

	Heuristics
	Pattern Database Heuristic

	Property-Directed Reachability
	Data Structures
	The Algorithm
	Extending the Witnessing Path

	Heuristics in PDR
	Seeding Layers
	Layers from Heuristics
	Layers from Pattern Database Heuristics

	Implementation
	PDR in the Fast Downward Planning System
	Data Structures

	Heuristic Seeding of Layers
	The Pattern Database PDR Heuristic
	Seeding a Layer from the Pattern Database

	Evaluation
	Evaluated Configurations
	Benchmark Setup
	Results

	Conclusion
	Appendix

